
On the Complexity of the Equivalence Problem

for Probabilistic Automata⋆

Stefan Kiefer1, Andrzej S. Murawski2, Joël Ouaknine1,
Björn Wachter1, and James Worrell1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. Deciding equivalence of probabilistic automata is a key prob-
lem for establishing various behavioural and anonymity properties of
probabilistic systems. In recent experiments a randomised equivalence
test based on polynomial identity testing outperformed deterministic al-
gorithms. In this paper we show that polynomial identity testing yields
efficient algorithms for various generalisations of the equivalence prob-
lem. First, we provide a randomized NC procedure that also outputs a
counterexample trace in case of inequivalence. Second, we consider equiv-
alence of probabilistic cost automata. In these automata transitions are
labelled with integer costs and each word is associated with a distribu-
tion on costs, corresponding to the cumulative costs of the accepting
runs on that word. Two automata are equivalent if they induce the same
cost distributions on each input word. We show that equivalence can be
checked in randomised polynomial time. Finally we show that the equiv-
alence problem for probabilistic visibly pushdown automata is logspace
equivalent to the problem of whether a polynomial represented by an
arithmetic circuit is identically zero.

1 Introduction

Probabilistic automata were introduced by Michael Rabin [21] as an extension of
deterministic finite automata. Nowadays probabilistic automata, together with
associated notions of refinement and equivalence, are widely used in automated
verification and learning. Two probabilistic automata are said to be equivalent
if each word is accepted with the same probability by both automata. Checking
two probabilistic automata for equivalence has been shown crucial for efficiently
establishing various behavioural and anonymity properties of probabilistic sys-
tems, and is the key algorithmic problem underlying the apex tool [19, 17, 13].

It was shown by Tzeng [28] that equivalence for probabilistic automata is
decidable in polynomial time. By contrast, the natural analog of language inclu-
sion, that one automaton accepts each word with probability at least as great as
another automaton, is undecidable [6] even for automata of fixed dimension [4].

⋆ Research supported by EPSRC grant EP/G069158. The first author is supported by
a postdoctoral fellowship of the German Academic Exchange Service (DAAD).

It has been pointed out in [8] that the equivalence problem for probabilistic
automata can also be solved by reducing it to the minimisation problem for
weighted automata and applying an algorithm of Schützenberger [24].

In [13] we suggested a new randomised algorithm which is based on polyno-
mial identity testing. In our experiments [13] the randomised algorithm compared
well with the Schützenberger-Tzeng procedure on a collection of benchmarks. In
this paper we further explore the connection between polynomial identity testing
and the equivalence problem of probabilistic automata. We show that polyno-
mial identity testing yields efficient algorithms for various generalisations of the
equivalence problem.

In Section 3 we give a new randomised NC algorithm for deciding equiva-
lence of probabilistic automata. Recall that NC is the subclass of P containing
those problems that can be solved in polylogarithmic parallel time [11] (see
also Section 2). Tzeng [29] considers the path equivalence problem for nonde-
terministic automata which asks, given nondeterministic automata A and B,
whether each word has the same number of accepting paths in A as in B. He
gives a deterministic NC algorithm for deciding path equivalence which can be
straightforwardly adapted to yield an NC algorithm for equivalence of prob-
abilistic automata. Our new randomised algorithm has the same parallel time
complexity as Tzeng’s algorithm, but it also outputs a word on which the au-
tomata differ in case of inequivalence, which Tzeng’s algorithm cannot. Our
algorithm is based on the Isolating Lemma, which was used in [18] to compute
perfect matchings in randomised NC. The randomised algorithm in [13], which
relies on the Schwartz-Zippel lemma, can also output a counterexample, exploit-
ing the self-reducibility of the equivalence problem—however it does not seem
possible to use this algorithm to compute counterexamples in NC. Whether
there is a deterministic NC algorithm that outputs counterexamples in case of
inequivalence remains open.

In Section 4 we consider equivalence of probabilistic automata with one or
more cost structures. Costs (or rewards, which can be considered as negative
costs) are omnipresent in probabilistic modelling for capturing quantitative ef-
fects of probabilistic computations, such as consumption of time, (de-)allocation
of memory, energy usage, financial gains, etc. We model each cost structure as
an integer-valued counter, and annotate the transitions with counter changes.

In nondeterministic cost automata [2, 15] the cost of a word is the minimum
of the costs of all accepting runs on that word. In probabilistic cost automata
we instead associate a probability distribution over costs with each input word,
representing the probability that a run over that word has a given cost. Whereas
equivalence for nondeterministic cost automata is undecidable [2, 15], we show
that equivalence of probabilistic cost automata is decidable in randomised poly-
nomial time (and in deterministic polynomial time if the number of counters is
fixed). Our proof of decidability, and the complexity bounds we obtain, involves
a combination of classical techniques of [24, 28] with basic ideas from polynomial
identity testing.

We present a case study in which costs are used to model the computation
time required by an RSA encryption algorithm, and show that the vulnerability
of the algorithm to timing attacks depends on the (in-)equivalence of probabilis-
tic cost automata. In [14] two possible defenses against such timing leaks were
suggested. We also analyse their effectiveness.

In Section 5 we consider pushdown automata. Probabilistic pushdown au-
tomata are a natural model of recursive probabilistic procedures, stochastic
grammars and branching processes [10, 16]. The equivalence problem of deter-
ministic pushdown automata has been extensively studied [26, 27]. We study
the equivalence problem for probabilistic visibly pushdown automata (VPA) [3].
In a visibly pushdown automaton, whether the stack is popped or pushed is
determined by the input symbol being read.

We show that the equivalence problem for probabilistic VPA is logspace
equivalent to Arithmetic Circuit Identity Testing (ACIT), which is the problem
of determining equivalence of polynomials presented via arithmetic circuits [1].
Several polynomial-time randomized algorithms are known for ACIT, but it is
a major open problem whether it can be solved in polynomial time by a deter-
ministic algorithm. The inter-reducibility of probabilistic VPA equivalence and
ACIT is reminiscent of the reduction of the positivity problem for arithmetic
circuits to the reachability problem for recursive Markov chains [10]. However
in this case the reduction is only in one direction—from circuits to recursive
Markov chains.

In the technical development below it is convenient to consider Q-weighted
automata, which generalise probabilistic automata. All our results and examples
are stated in terms of Q-weighted automata. Missing proofs can be found in a
technical report [12].

2 Preliminaries

2.1 Complexity Classes

Recall that NC is the subclass of P comprising those problems considered ef-
ficiently parallelisable. NC can be defined via parallel random-access machines
(PRAMs), which consist of a set of processors communicating through a shared
memory. A problem is in NC if it can be solved in time (log n)O(1) (polyloga-
rithmic time) on a PRAM with nO(1) (polynomially many) processors. A more
abstract definition of NC is as the class of languages which have L-uniform
Boolean circuits of polylogarithmic depth and polynomial size. More specifically,
denote by NCk the class of languages which have circuits of depth O(logk n).
The complexity class RNC consists of those languages with randomized NC al-
gorithms. We have the following inclusions none of which is known to be strict:

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ RNC ⊆ P .

Problems in NC include directed reachability, computing the rank and de-
terminant of an integer matrix, solving linear systems of equations and the tree-

isomorphism problem. Problems that are P-hard under logspace reductions in-
clude circuit value and max-flow. Such problems are not in NC unless P = NC.
Problems in RNC include matching in graphs and max flow in 0/1-valued net-
works. In both cases these problems have resisted classification as either in NC

or P-hard. See [11] for more details about NC and RNC.

2.2 Sequence Spaces

In this section we recall some results about spaces of sequences [23].
Given s > 0, define the following space of formal power series:

ℓ1(Z
s) := {f : Zs → R :

∑

v∈Zs |f(v)| < ∞} .

Then ℓ1(Z
s) is a complete vector space under the norm ||f || =

∑

v∈Zs |f(v)|. We
can moreover endow ℓ1(Z

s) with a Banach algebra structure with multiplication

(f ∗ g)(v) :=
∑

u,w∈Z
s

u+w=v

f(u)g(w) .

Given n > 0 we also consider the space ℓ1(Z
s)n×n of n × n matrices with

coefficients in ℓ1(Z
s). This is a complete normed linear space with respect to the

infinity matrix norm

||M || := max
1≤i≤n

∑

1≤j≤n

||Mi,j || .

If we define matrix multiplication in the standard way, using the algebra struc-
ture on ℓ1(Z

s), then ||MN || ≤ ||M ||||N ||. In particular, if ||M || < 1 then we can
define a Kleene-star operation by M∗ := (I − M)−1 =

∑∞

k=0 Mk.

3 Weighted Automata

To permit effective representation of automata we assume that all transition
probabilities are rational numbers. In our technical development it is convenient
to work with Q-weighted automata [24], which are a generalisation of Rabin’s
probabilistic automata.

A Q-weighted automaton A = (n,Σ,M,α,η) consists of a positive integer
n ∈ N representing the number of states, a finite alphabet Σ, a map M : Σ →
Qn×n assigning a transition matrix to each alphabet symbol, an initial (row)
vector α ∈ Qn, and a final (column) vector η ∈ Qn. We extend M to Σ∗ as the
matrix product M(σ1 . . . σk) := M(σ1) · . . . · M(σk). The automaton A assigns
each word w a weight A(w) ∈ Q, where A(w) := αM(w)η. An automaton A is
said to be zero if A(w) = 0 for all w ∈ Σ∗. Two automata B, C over the same
alphabet Σ are said to be equivalent if B(w) = C(w) for all w ∈ Σ∗. In the
remainder of this section we present a randomised NC2 algorithm for deciding
equivalence of Q-weighted automata and, in case of inequivalence, outputting a
counterexample.

Given two automata B, C that are to be checked for equivalence, one can com-
pute an automaton A with A(w) = B(w)−C(w) for all w ∈ Σ∗. Then A is zero
if and only if B and C are equivalent. Given B = (n(B), Σ,M (B),α(B),η(B)) and
C = (n(C), Σ,M (C),α(C),η(C)), set A = (n,Σ,M,α,η) with n := n(B) +n(C) and

M(σ) :=

(

M (B)(σ) 0
0 M (C)(σ)

)

, α := (α(B),−α
(C)) , η :=

(

η
(B)

η
(C)

)

.

This reduction allows us to focus on zeroness, i.e., the problem of determin-
ing whether a given Q-weighted automaton A = (n,Σ,M,α,η) is zero. (Since
transition weights can be negative, zeroness is not the same as emptiness of the
underlying unweighted automaton.) Note that a witness word w ∈ Σ∗ against
zeroness of A is also a witness against the equivalence of B and C. The following
result from [28] is crucial.

Proposition 1. If A is not equal to the zero automaton then there exists a word
u ∈ Σ∗ of length at most n − 1 such that A(u) 6= 0.

Our randomised NC2 procedure uses the Isolating Lemma of Mulmuley,
Vazirani and Vazirani [18]. We use this lemma in a very similar way to [18], who
are concerned with computing maximum matchings in graphs in RNC.

Lemma 2. Let F be a family of subsets of a set {x1, . . . , xN}. Suppose that
each element xi is assigned a weight wi chosen independently and uniformly at
random from {1, . . . , 2N}. Define the weight of S ∈ F to be

∑

xi∈S wi. Then the
probability that there is a unique minimum weight set in F is at least 1/2.

We will apply the Isolating Lemma in conjunction with Proposition 1 to
decide zeroness of a weighted automaton A. Suppose A has n states and alphabet
Σ. Given σ ∈ Σ and 1 ≤ i ≤ n, choose a weight wi,σ independently and uniformly
at random from the set {1, . . . , 2|Σ|n}. Define the weight of a word u = σ1 . . . σk,

k ≤ n, to be wt(u) :=
∑k

i=1 wi,σi
. (The reader should not confuse this with the

weight A(u) assigned to u by the automaton A.) Then we obtain a univariate
polynomial P from automaton A as follows:

P (x) =
n
∑

k=0

∑

u∈Σk

A(u)xwt(u) .

If A is equivalent to the zero automaton then clearly P ≡ 0. On the other
hand, if A is non-zero, then by Proposition 1 the set F = {u ∈ Σ≤n : A(u) 6=
0} is non-empty. Thus there is a unique minimum-weight word u ∈ F with
probability at least 1/2 by the Isolating Lemma. In this case P contains the
monomial xwt(u) with coefficient A(u) as its smallest-degree monomial. Thus
P 6≡ 0 with probability at least 1/2.

It remains to observe that from the formula

P (x) = α

n
∑

i=0

i
∏

j=1

∑

σ∈Σ

M(σ)xwj,σ

η

and the fact that iterated products of matrices of univariate polynomials can be
computed in NC2 [7] we obtain an RNC algorithm for determining zeroness of
weighted automata.

It is straightforward to extend the above algorithm to obtain an RNC pro-
cedure that not only decides zeroness of A but also outputs a word u such that
A(u) 6= 0 in case A is non-zero. Assume that A is non-zero and that the random
choice of weights has isolated a unique minimum-weight word u = σ1 . . . σk such
that A(u) 6= 0. To determine whether σ ∈ Σ is the i-th letter of u we can increase
the weight wi,σ by 1 while leaving all other weights unchanged and recompute
the polynomial P (x). Then σ is the i-th letter in u if and only if the minimum-
degree monomial in P changes. All of these tests can be done independently,
yielding an RNC procedure.

Theorem 3. Given two weighted automata A and B, there is an RNC proce-
dure that determines whether or not A and B are equivalent and that outputs a
word w with A(w) 6= B(w) in case A and B are inequivalent.

4 Weighted Cost Automata

In this section we consider weighted automata with costs. Each transition has
a cost, and the cumulative cost of a run is recorded in a tuple of counters.
Transitions can also have negative costs, which can be considered as rewards.
Note though that the counters do not affect the control flow of the automata. In
Example 9 we use costs to record the passage of time in an encryption protocol.
We explicitly include ε-transitions in our automata because they are convenient
for applications (cf. Example 8) and we cannot rely on existing ε-elimination
results in the presence of costs.

Let Σ be a finite alphabet not containing the symbol ε. A Q-weighted cost
automaton is a tuple A = (n, s,Σ,M,α,η), where n ∈ N is the number of states;
s ∈ N is the number of counters; M : Σ ∪ {ε} → (C → Q)n×n is the transition
function, where C = {−1, 0, 1}s is the set of elementary cost vectors; α ∈ Qn

is an initial (row) vector; η ∈ Qn is a final (column) vector. In this definition,
M(σ)i,j(v) represents the weight of a σ-transition from state i to j with cost
vector v ∈ C. For the semantics to be well-defined we assume that the total
weight of all outgoing ε-labelled transitions from any given state is strictly less
than 1.

In order to define the semantics of weighted cost automata it is convenient
to use results on matrices of formal power series from Section 2. We can regard
M(σ) as an n×n matrix whose entries are elements of the space ℓ1(Z

s) of formal
power series, where M(σ)i,j(v) = 0 for v ∈ Zs \ C. Our convention on the total
weight of ε-transitions is equivalent to the requirement that ||M(ε)|| < 1. We
next extend M to a map M : Σ∗ → (ℓ1(Z

s))n×n such that, given a word w ∈ Σ∗

and states i, j, M(w)i,j(v) is the total weight of all w-labelled paths from state
i to state j with accumulated cost v ∈ Zs. Given a word w = σ1σ2 . . . σm ∈ Σ∗,

we define

M(w) := M(ε)∗M(σ1)M(ε)∗ · · ·M(σm)M(ε)∗ . (1)

Finally, given w ∈ Σ∗ we define A(w) := αM(w)η. Then A(w) is an element
of ℓ1(Z

s) such that A(w)(v) gives the total weight of all accepting runs with
accumulated cost v ∈ Zs.

Let x = (x1, . . . , xs) be a vector of variables, one for each counter. Our
equivalence algorithm is based on a representation of A(w) as a rational function
in x, following classical ideas [20]. Given v ∈ Zs we denote by x

v the monomial
xv1

1 · · ·xvs
s . (Note that we allow negative powers in monomials.) We say that

f ∈ ℓ1(Z
s) has finite support if f(v) = 0 for all but finitely many v ∈ Zs. We

identify such an f with the polynomial
∑

v∈Zs f(v)xv. We furthermore say that
f ∈ ℓ1(Z

s) is rational if there exist g, h : Zs → Q with finite support such that
f ∗ h = g. We then identify f with the rational function

∑

v∈Zs

g(v)xv

/

∑

v∈Zs

h(v)xv .

Note that we can clear all negative exponents from the numerator and denomina-
tor of such an expression. Note also that sums and products of rational functions
correspond to sums and products in ℓ1(Z

s) in the above representation.

Proposition 4. M(w) can be represented as a matrix of rational functions in x

such that the numerator and denominator in each matrix entry have degrees at
most 2n(s + 1) · |w|.

Proof. From equation (1) it suffices to show that M(ε)∗ can be represented
as a matrix of rational functions with appropriate degree bounds. Recall that
M(ε)∗ = (I − M(ε))−1, so it suffices to show that I − M(ε) (considered as a
matrix of polynomials) has an inverse that can be represented as a matrix of
rational functions. But the determinant formula yields that det(I − M(ε)) is
a (non-zero) polynomial in x, thus the cofactor formula for inverting matrices
yields a representation of (I −M(ε))−1 as a matrix of rational functions in x of
degree at most 2ns. ⊓⊔

An automaton A is said to be zero if A(w) ≡ 0 for all w ∈ Σ∗. Two automata
B, C over the same alphabet Σ with the same number of counters are said to
be equivalent if B(w) ≡ C(w) for all w ∈ Σ∗. As in Section 3, the equivalence
problem can be reduced to the zeroness problem, so we focus on the latter.

The following proposition states that if there is a word witnessing that A is
non-zero, then there is a “short” such word.

Proposition 5. A is zero if and only if A(w) ≡ 0 for all w ∈ Σ∗ of length at
most n − 1.

The proof, given in full in [12], is similar to the linear algebra arguments from [24,
28], but involves an additional twist. The key idea is to substitute concrete values

for the variables x, thereby transforming from the setting of infinite-dimensional
vector spaces of rational functions in x to a finite dimensional setting where the
arguments of [24, 28] apply.

The decidability of zeroness (and hence equivalence) for weighted cost au-
tomata follows immediately from Proposition 5. However, using polynomial iden-
tity testing, we arrive at the following theorem.

Theorem 6. The equivalence problem for weighted cost automata is decidable
in randomised polynomial time.

Proof. We have already observed that the equivalence problem can be reduced
to the zeroness problem. We now reduce the zeroness problem to polynomial
identity testing.

Given an automaton A = (n, s,Σ,M,α,η), for each word w ∈ Σ∗ of length
at most n we have a rational expression A(w) in variables x = (x1, . . . , xs) which
has degree at most d := 2n(s + 1) · n by Proposition 4.

Now consider the set R := {1, 2, . . . , 2d}. Suppose that we pick r ∈ Rs

uniformly at random. Denote by A(w)(r) the result of substituting r for x in
the rational expression A(w). Clearly if A is a zero automaton then A(w)(r) = 0
for all r. On the other hand, if A is non-zero then by Proposition 5 there exists
a word w ∈ Σ∗ of length at most n such that A(w) 6≡ 0. Since the degree of
the rational expression A(w) is at most d it follows from the Schwartz-Zippel
theorem [9, 25, 30] that the probability that A(w)(r) = 0 is at most 1/2.

Thus our randomised procedure is to pick r ∈ Rs uniformly at random and
to check whether A(w)(r) = 0 for some w ∈ Σ∗. It remains to show how we
can do this check in polynomial time. To achieve this we show that there is
a Q-weighted automaton B with no counters such that A(w)(r) = B(w) for all
w ∈ Σ∗, since we can then check B for zeroness using, e.g., Tzeng’s algorithm [28].
The automaton B has the form B = (n(B), Σ,M (B),α(B),η(B)), where n(B) = n,
α

(B) = α, η
(B) = η and M (B)(σ) =

∑

v∈Zs M(σ)(v)rv for all σ ∈ Σ. ⊓⊔

Corollary 7. For each fixed number of counters the equivalence problem for
weighted cost automata is decidable in deterministic polynomial time.

See [12] for a proof.

Example 8. We consider probabilistic programs that randomly increase and de-
crease a single counter (initialised with 0) so that upon termination the counter
has a random value X ∈ Z. The programs should be such that X is a random
variable with X = Y −Z where Y and Z are independent random variables with
a geometric distribution with parameters p = 1/2 and p = 1/3, respectively. (By
that we mean that Pr(Y = k) = (1 − p)kp for k ∈ {0, 1, . . .}, and similarly for
Z.) Figure 1 shows code in the syntax of the apex tool.

The program on the left consecutively runs two while loops: it first incre-
ments the counter according to a geometric distribution with parameter 1/2 and
then decrements the counter according to a geometric distribution with parame-
ter 1/3, so that the final counter value is distributed as desired. The program on

inc:com, dec:com |-

var%2 flip;

flip := 0;

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

flip := 0;

while (flip = 0) do {

flip := coin[0:2/3,1:1/3];

if (flip = 0) then {

dec;

};

}

:com

inc:com, dec:com |-

var%2 flip;

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

} else {

flip := 0;

while (flip = 0) do {

dec;

flip := coin[0:2/3,1:1/3];

};

}

:com

Fig. 1. Two apex programs for producing a counter that is distributed as the difference
between two geometrically distributed random variables.

the right is more efficient in that it runs only one of two while loops, depending
on a single coin flip at the beginning. It may not be obvious though that the final
counter value follows the same distribution as in the left program. We used the
apex tool to translate the programs to the probabilistic cost automata B and C
shown in Figure 2. Since the input alphabets are empty, it suffices to consider
the input word ε when comparing B and C for equivalence. If we construct the
difference automaton A = (5, 1, ∅,M,α,η) and invert the matrix of polynomials
I − M(ε), we obtain

A(ε)(x) =

(

2

x − 2
,

2

(3x − 2)(x − 2)
, 1,

−x

2(x − 2)
,

3

2(3x − 2)

)

η ≡ 0 ,

which proves equivalence of B and C. Notice that the actual algorithm would
not compute A(ε)(x) as a polynomial, but it would compute A(ε)(r) only for a
few concrete values r ∈ Q. ⊓⊔

Example 9. RSA [22] is a widely-used cryptographic algorithm. Popular imple-
mentations of the RSA algorithm have been shown to be vulnerable to timing
attacks that reveal private keys [14, 5]. The preferred countermeasures are blind-
ing techniques that randomise certain aspects of the computation, which are
described in, e.g., [14]. We model the timing behaviour of the RSA algorithm
using probabilistic cost automata, where costs encode time. These automata are
produced by apex, and are then used to check for timing leaks with and without
blinding.

At the heart of RSA decryption is a modular exponentiation, which computes
the value md mod N where m ∈ {0, . . . , N −1} is the encrypted message, d ∈ N

1, 1
6

2, 1
3

ε
1
2

: inc

ε
2
3

: dec

ε

1
3

: dec
1, 1

4

2, 1
2

3, 1
3

ε

1
4

: inc

ε
1
2

: inc

ε
1
2 : dec

ε
2
3

: dec

(B) (C)

Fig. 2. Automata produced from the code in Figure 1. The states are labelled with
their number and their “acceptance probability” (η-weight). In both automata, state 1
is the only initial state (α1 = 1 and αi = 0 for i 6= 1). The transitions are labelled
with the input symbol ε, with a probability (weight) and a counter action (i.e. cost).

is the private decryption exponent and N ∈ N is a modulus. An attacker wants
to find out d. We model RSA decryption in apex by implementing modular
exponentiation by iterative squaring (see Figure 3). We consider the situation
where the attacker is able to control the message m, and tries to derive d by
observing the runtime distribution over different messages m. Following [14]
we assume that the running time of multiplication depends on the operand
values (because a source-level multiplication typically corresponds to a cascade
of processor-level multiplications). By choosing the ‘right’ input message m, an
attacker can observe which private keys are most likely.

We consider two blinding techniques mentioned in Kocher [14]. The first one
is base blinding, i.e., the message is multiplied by rd before exponentiation where
d is a random number, which gives a result that can be fixed by dividing by r
but makes it impossible for the attacker to control the basis of the exponentia-
tion. The second one is exponent blinding, which adds a multiple of the group
order ϕ(N) of Z/NZ to the exponent, which doesn’t change the result of the
exponentiation3 but changes the timing behaviour.

Figure 4 shows the automaton for N = 10, and private key 0, 1, 0, 1 with
message blinding enabled. The apex program is given in Figure 3.

We investigate the effectiveness of blinding. Two private keys are indistin-
guishable if the resulting automata are equivalent. The more keys are indistin-
guishable the safer the algorithm. We analyse which private keys are identified
by plain RSA, RSA with a blinded message and RSA with blinded exponent.

For example, in plain RSA, the following keys 0, 1, 0, 1 and 1, 0, 0, 1 are indis-
tinguishable, keys 0, 1, 1, 0 and 0, 0, 1, 1 are indistinguishable with base blinding,
lastly 1, 0, 0, 1 and 1, 0, 1, 1 are equivalent only with exponent blinding. Overall

3 Euler’s totient function ϕ satisfies aϕ(N) ≡ 1 mod N for all a ∈ Z.

9 different keys are distinguishable with plain RSA, 7 classes with base blinding
and 4 classes with exponent blinding.

const N := 10; // modulus

const Bits := 4 ; // number of bits of the key

m :int%N, inc:com |-

var%2 exponent[Bits] = [0,1,0,1];

com power(x:int%N) {

var%N s := 1;

var%N R;

for(var%(Bits + 1) k; k < Bits; ++k) do {

R:=s;

if(exponent[k]) then {

R := R*x;

if(5<=R) then { inc; inc } else { inc }

}

s := R*R;

}

}

var%N message := m*rand[N]; // blinding

power(message) : com

Fig. 3. apex code for RSA.

5 Pushdown Automata and Arithmetic Circuits

In a visibly pushdown automaton [3] the stack operations are determined by
the input word. Consequently VPA have a more tractable language theory than
ordinary pushdown automata. The main result of this section shows that the
equivalence problem for weighted VPA is logspace equivalent to the problem
ACIT of determining whether a polynomial represented by an arithmetic circuit
is identically zero.

A visibly pushdown alphabet Σ = Σc ∪ Σr ∪ Σint consists of a finite set of
calls Σc, a finite set of returns Σr, and a finite set of internal actions Σint .
A visibly pushdown automaton over alphabet Σ is restricted so that it pushes
onto the stack when it reads a call, pops the stack when it reads a return, and
leaves the stack untouched when reading internal actions. Due to this restriction
visibly pushdown automata only accept words in which calls and returns are
appropriately matched. Define the set of well-matched words to be

⋃

i∈N
Li,

where L0 = Σint + {ε} and Li+1 = ΣcLiΣr + LiLi.
A Q-weighted visibly pushdown automaton on alphabet Σ is a tuple A =

(n,α,η, Γ,M), where n is the number of states, α is an n-dimensional initial
(row) vector, η is an n-dimensional final (column) vector, Γ is a finite stack

0 5

	 0 _ m , 1

6

	 1 _ m , 1

	 3 _ m , 1

	 7 _ m , 1

	 9 _ m , 1

7
	 5 _ m , 1

8

	 2 _ m , 1

	 4 _ m , 1

	 6 _ m , 1

	 8 _ m , 1

4

	 i n c , 1

	 i n c , 1 / 5

1

	 i n c , 1 / 5

	 i n c , 3 / 1 0

9

	 i n c , 3 / 1 0

	 i n c , 1 / 2

	 i n c , 1 / 2

	 i n c , 1 / 5

	 i n c , 1 / 5

	 i n c , 2 / 5

	 i n c , 1 / 5

	 i n c , 1

(0 ,1)3
	 i n c , 1	 i n c , 1

	 i n c , 1

Fig. 4. Modeling RSA decryption with apex.

alphabet, and M = (Mc,Mr,Mint) is a tuple of matrix-valued transition functions
with types Mc : Σc×Γ → Qn×n, Mr : Σr×Γ → Qn×n and Mint : Σint → Qn×n.
If a ∈ Σc and γ ∈ Γ then Mc(a, γ)i,j gives the weight of an a-labelled transition
from state i to state j that pushes γ on the stack. If a ∈ Σr and γ ∈ Γ then
Mr(a, γ)i,j gives the weight of an a-labelled transition from state i to j that
pops γ from the stack.

For each well-matched word u ∈ Σ∗ we define an n × n rational ma-
trix M (A)(u) whose (i, j)-th entry denotes the total weight of all paths from
state i to state j along input u. The definition of M (A)(u) follows the induc-
tive definition of well-matched words. The base cases are M (A)(ε) = I and
M (A)(a)i,j = Mint(a)i,j . The inductive cases are

M (A)(uv) = M (A)(u) · M (A)(v)

M (A)(aub) =
∑

γ∈Γ

Mc(a, γ) · M (A)(u) · Mr(b, γ) ,

for a ∈ Σc, b ∈ Σr.
The weight assigned by A to a well-matched word w is defined to be A(w) :=

αM (A)(u)η. We say that two weighted VPA A and B are equivalent if for each
well-matched word w we have A(w) = B(w).

An arithmetic circuit is a finite directed acyclic multigraph whose vertices,
called gates, have indegree 0 or 2. Vertices of indegree 0 are called input gates
and are labelled with a constant 0 or 1, or a variable from the set {xi : i ∈ N}.
Vertices of indegree 2 are called internal gates and are labelled with one of the
arithmetic operations +, ∗ or −. We assume that there is a unique gate with
outdegree 0 called the output. Note that C is a multigraph, so there can be two
edges between a pair of gates, i.e., both inputs to a given gate can lead from the
same source. We call a circuit variable-free if all inputs gates are labelled 0 or 1.

The Arithmetic Circuit Identity Testing (ACIT) problem asks whether the
output of a given circuit is equal to the zero polynomial. ACIT is known to
be in coRP but it remains open whether there is a polynomial or even sub-
exponential algorithm for this problem [1]. Utilising the fact that a variable-
free arithmetic circuit of size O(n) can compute 22n

, Allender et al. [1] give a

logspace reduction of the general ACIT problem to the special case of variable-
free circuits. Henceforth we assume without loss of generality that all circuits
are variable-free. Furthermore we recall that ACIT can be reformulated as the
problem of deciding whether two variable-free circuits using only the arithmetic
operations + and ∗ compute the same number [1].

The proof of the following proposition is given in [12].

Proposition 10. ACIT is logspace reducible to the equivalence problem for
weighted visibly pushdown automata.

In the remainder of this section we give a converse reduction: from equivalence
of weighted VPA to ACIT. The following result gives a decision procedure for
the equivalence of two weighted VPA A and B.

Proposition 11. A is equivalent to B if and only if A(w) = B(w) for all words
w ∈ Ln2 , where n is the sum of the number of states of A and the number of
states of B.

Proof. Recall that for each balanced word u ∈ Σ∗ we have rational matrices
M (A)(u) and M (B)(u) giving the respective state-to-state transition weights of
A and B on reading u. These two families of matrices can be combined into a
single family

M =

{(

M (A)(u) 0

0 M (B)(u)

)

: u well-matched

}

of n× n matrices. Let us also write Mi for the subset of M generated by those
well-matched words u ∈ Li.

Let α
(A),η(A) and α

(B),η(B) be the respective initial and final-state vectors
of A and B. Then A is equivalent to B if and only if

(α
(A)

α
(B))M

(

η
(A)

−η
(B)

)

= 0 (2)

for all M ∈ M. It follows that A is equivalent to B if and only if (2) holds for
all M in span(M), where the span is taken in the rational vector space of n× n
rational matrices. But span(Mi) is an ascending sequence of vector spaces:

Span(M0) ⊆ Span(M1) ⊆ Span(M2) ⊆ . . .

It follows from a dimension argument that this sequence stops in at most n2

steps and we conclude that span(M) = span(Mn2). ⊓⊔

Proposition 12. Given a weighted visibly pushdown automaton A and n ∈ N

one can compute in logarithmic space a circuit that represents
∑

w∈L
n2

A(w).

Proof. From the definition of the language Li and the family of matrices M (A)

we have:

∑

w∈Li+1

M (A)(w) =
∑

a∈Σc

∑

b∈Σr

∑

γ∈Γ

M (A)(a, γ)

(

∑

u∈Li

M (A)(u)

)

M (A)(b, γ)

+

(

∑

u∈Li

M (A)(u)

)(

∑

u∈Li

M (A)(u)

)

.

The above equation implies that we can compute in logarithmic space a circuit
that represents

∑

w∈Ln
M (A)(w). The result of the proposition immediately fol-

lows by premultiplying by the initial state vector and postmultiplying by the
final state vector. ⊓⊔

A key property of weighted VPA is their closure under product.

Proposition 13. Given weighted VPA A and B on the same alphabet Σ one can
define a synchronous-product automaton, denoted A×B, such that (A×B)(w) =
A(w)B(w) for all w ∈ Σ∗.

The proof of Proposition 13, given in [12], exploits the fact that the stack
height is determined by the input word, so the respective stacks of A and B
operating in parallel can be simulated in a single stack.

Proposition 14. The equivalence problem for weighted visibly pushdown au-
tomata is logspace reducible to ACIT.

Proof. Let A and B be weighted visibly pushdown automata with a total of n
states between them. Then

∑

w∈Ln

(A(w) − B(w))2 =
∑

w∈Ln

A(w)2 + B(w)2 − 2A(w)B(w)

=
∑

w∈Ln

(A×A)(w) + (B × B)(w) − 2(A× B)(w)

Thus A is equivalent to B iff
∑

w∈Ln
(A×A)(w) + (B × B)(w) = 2

∑

w∈Ln
(A× B)(w).

But Propositions 12 and 13 allow us to translate the above equation into an
instance of ACIT. ⊓⊔

The trick of considering sums-of-squares of acceptance weights in the above
proof is inspired by [29, Lemma 1].

References

1. E.E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Bro Miltersen. On the
complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

2. S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted au-
tomata? In ATVA, volume 6996 of LNCS, pages 482–491. Springer, 2011.

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. 36th Annual

ACM Symposium on Theory of Computing STOC, pages 202–211. ACM, 2004.
4. V. D. Blondel and V. Canterini. Undecidable problems for probabilistic automata

of fixed dimension. Theoretical Computer Science, 36 (3):231–245, 2003.
5. D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Net-

works, 48(5):701–716, 2005.
6. A. Condon and R. Lipton. On the complexity of space bounded interactive proofs

(extended abstract). In Proceedings of FOCS, pages 462–467, 1989.
7. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Control, 64(1-3):2–22, 1985.

8. C. Cortes, M. Mohri, and A. Rastogi. On the computation of some standard
distances between probabilistic automata. In Proc. of CIAA, pages 137–149, 2006.

9. R. DeMillo and R. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

10. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009.

11. R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation: P-

completeness theory. Oxford University Press, 1995.
12. S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the

complexity of the equivalence problem for probabilistic automata. Technical report,
arxiv.org, 2012. Available at http://arxiv.org/abs/1112.4644.

13. S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language
equivalence for probabilistic automata. In CAV, volume 6806 of LNCS, pages
526–540, 2011.

14. P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO, volume 1109 of LNCS, pages 104–113. Springer,
1996.

15. D. Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Int. Journal of Alg. and Comp., 4(3):232–249, 1994.

16. A. Kučera, J. Esparza, and R. Mayr. Model checking probabilistic pushdown
automata. Logical Methods in Computer Science, 2(1):1–31, 2006.

17. A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. On automated verification
of probabilistic programs. In TACAS, volume 4963 of LNCS, pages 173–187. 2008.

18. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix
inversion. In STOC, pages 345–354, 1987.

19. A. S. Murawski and J. Ouaknine. On probabilistic program equivalence and re-
finement. In CONCUR, volume 3653 of LNCS, pages 156–170. 2005.

20. I. Niven. Formal power series. American Mathematical Monthly, 76(8):871–889,
1969.

21. M. O. Rabin. Probabilistic automata. Inf. and Control, 6 (3):230–245, 1963.
22. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.
23. W. Rudin. Functional analysis. International Series in Pure and Applied Mathe-

matics. McGraw-Hill Inc., New York, second edition, 1991.
24. M.-P. Schützenberger. On the definition of a family of automata. Inf. and Control,

4:245–270, 1961.
25. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

J. ACM, 27(4):701–717, 1980.
26. G. Sénizergues. The equivalence problem for deterministic pushdown automata is

decidable. In ICALP, volume 1256 of LNCS. Springer, 1997.
27. C. Stirling. Deciding DPDA equivalence is primitive recursive. In ICALP, volume

2380 of Lecture Notes in Computer Science, pages 821–832. Springer, 2002.
28. W. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic au-

tomata. SIAM Journal on Computing, 21(2):216–227, 1992.
29. W. Tzeng. On path equivalence of nondeterministic finite automata. Inf. Process.

Lett., 58(1):43–46, 1996.
30. R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, vol-

ume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

