
Compositional relational reasoning via operational
game semantics

Guilhem Jaber
Université de Nantes, LS2N, Inria, France

Andrzej S. Murawski
University of Oxford, UK

Abstract—We show how to use operational game semantics as a
guide to develop relational techniques for establishing contextual
equivalences with respect to contexts drawn from a hierarchy
of four call-by-value higher-order languages: with either general
or ground-type references and with either call/cc or no control
operator. In game semantics, differences between the contexts
can be captured by the absence or presence of the O-visibility
and O-bracketing conditions.

The proposed technique, which we call Kripke normal-form
bisimulations, combines insights from normal-form bisimulation
and Kripke logical relations with game semantics. In particular,
the role of the heap and the name history is abstracted away using
Kripke-style world transition systems. The differences between
the four kinds of contexts manifest themselves through simple
local conditions that can be shown to correspond to O-visibility
and O-bracketing, as applicable.

The technique is sound and complete by virtue of correspon-
dence with operational game semantics. Moreover, it sheds a
new light on other related developments, such as backtracking
and private transitions in Kripke logical relations, which can be
related to specific phenomena in game models.

I. INTRODUCTION

Contextual equivalence is a fundamental concept in pro-
gramming language theory with wide applicability to program
specification and verification. Attempting to characterise it
through mathematical models has been a major theme in deno-
tational semantics, known as the quest for full abstraction [1].
Game semantics [2], [3] has proved especially fruitful in that
quest, providing fully abstract models for a broad spectrum of
programming paradigms.

Game semantics is a mathematical theory that views com-
putation as an exchange of moves between two players, called
O and P, representing the context/environment (O) and the
program (P) respectively. Accordingly, it models a program as
a strategy for P. Such strategies can be assigned to programs
in a compositional way by building categories of games and
strategies. Alternatively, one can define them in an operational
way, as traces of a carefully crafted labelled transition system
(LTS) [4], [5], [6]. In this paper we rely on the latter approach,
referred to as operational game semantics. In particular, we
explain how to extract reasoning principles for contextual
equivalence using the structure of the underlying transition
system.

Our language of study will be HOSC, which is a call-
by-value higher-order language with first-class continuations,
the control operator call/cc and general references. We will

also consider its sublanguages GOSC, HOS and GOS, ob-
tained respectively by restricting storage to ground values,
by removing call/cc, and by imposing both restrictions.
In the paper, we study contextual testing of a class of
HOSC terms using contexts from each of the languages
x ∈ {HOSC,GOSC,HOS,GOS}. Our working notion of
testing will be convergence to error, represented by a free
variable. Accordingly, at the technical level, we will work with
four equivalence relations, written ∼=x

err .
The differences between x correspond to varying access

of contexts to general references and control. Game seman-
tics can capture the resultant variations in the discriminating
power by imposing restrictions on what moves O is allowed
to make during play: the absence of general references in
contexts (x = GOSC,GOS) corresponds to a condition
called O-visibility, while the absence of control operators
(x = HOS,GOS) corresponds to O-bracketing. In recent
work [7], it was shown how to capture ∼=x

err in the spirit
of operational game semantics: for each x, one can define
an LTS, called x[HOSC], such that the induced notion of
trace equivalence (strategy equality) coincides with ∼=x

err for
terms of x. Indeed, the traces of x[HOSC] are those of
HOSC[HOSC] that conform to restrictions relevant to x. Our
starting point will be to present the four LTSs in a unified way
by observing that the conditions boil down to different levels
of access to function and continuation names introduced by
P. The unifying LTS, called Lx, will thus feature a notion of
history of available names, used to enforce restrictions on O-
behavior. The differences between xs can then be addressed
purely locally by adjusting the way in which the two com-
ponents are updated, the HOSC case being unrestricted. We
then use Lx as a guide to develop a relational technique for
establishing trace equivalence. Because Lx is deterministic,
trace equivalence (and so contextual equivalence) corresponds
to bisimilarity.

A key point of Lx is the way higher-order values and
evaluation contexts provided by the program to contexts are
represented via function and continuation names respectively.
In order to enable computation with such names, configura-
tions contain an environment γ, which is a mapping from
the relevant names to the corresponding higher-order values
or evaluation contexts. We find similar notions of such envi-
ronments in eager normal-form bisimulations [8], [9] and in
environmental bisimulations [10], [11], [12]. Their presence is
an obstacle to naive compositional reasoning, as shown by the978-1-6654-4895-6/21/$31.00 ©2021 IEEE

following two ML-like programs:

let x = ref 0 in let y = ref 0 in

let inc f = f(); x++ in let dec f = f(); y-- in

let get() =!x let nget() = −!y
in (inc, get) in (dec, nget)

In order to prove the terms equivalent, we might want to prove
the equivalence of inc with dec and that of get with nget

separately. Unfortunately, as pointed out in [13], this would
not be sound, since they share a common reference. That is
why access to the environment γ is crucial: after inc/dec call
f or return, the context may continue to use elements of γ.
However, keeping it means that proving the equivalence in a
componentwise fashion requires non-trivial measures.

The solution we propose to this problem is to abstract away
the part that is shared by the components of γ, namely the
heap and the name history, using Kripke-style world transition
systems (WTSs) equipped with two accessibility relations
(vOQ, vOA), which correspond to tracking the availability
of function and continuation names respectively. Kripke-style
reasoning about heaps has been explored in the setting of
Kripke logical relations (KLR), where a notion of worlds as
heap invariants was introduced [14], and later refined [15], [16]
to take into account the possibility of invariant evolution.

Our proof principle will be presented as a family of param-
eterized operators Ex

A , Vx
A, Kx

A (for expressions, values and
continuations respectively) over a WTS A. Kripke Normal-
Form Bisimulations (KNFB) are then defined as post-fixpoints
of such operators, in the style of work on normal-form
bisimulations [8]. Equivalence proofs based on KNFBs make
it possible to decompose the proof of the target equivalence
into other equivalences according to the normal form of
the underlying pure λ-term. The soundness of the approach
relies on being able to compose the subproofs subject to
compatibility rules expressed via the WTS. Completeness is
obtained by lifting Lx into a WTS.

Interestingly, we can develop the results simultaneously for
all four variants of x and the differences between the cases
correspond to minor adjustments of the way the vOQ and vOA

relationships have to be maintained after reduction steps.
We call the technique Kripke Normal-Form Bisimulations

(KNFB), because it combines the flavour of open/normal-form
bisimulations [17], [8] with Kripke-style relational reason-
ing [16]. An important feature of KNFBs is that universal
quantifications range over relatively simple first-order entities,
which opens up the way to automated reasoning in each of the
four cases, following [18]. By virtue of the correspondence
with operational game semantics, the technique is sound and
complete. In contrast to [16], we need not use step-indexing
to model general references and we need not rely on bi-
orthogonality to model call/cc. Also, our completeness results
are proved without bi-orthogonality. This is a non-trivial
difference, because bi-orthogonality is a generic completion
technique, which may lead to completeness even if the cor-
responding “direct-style” reasoning principles are incomplete
(e.g. the principle of local invariants from [14] is incomplete).

The authors of [16] discussed the impact of higher-order
state and control effects on relational reasoning and pro-
posed backtracking and private transitions as sound reasoning
principles in the absence of general references and control
respectively. Our work makes it possible to relate them to
the O-visibility and O-bracketing conditions by observing
that backtracking corresponds to the justification relation be-
tween moves and private transitions correspond to tracking
continuation names. Overall, the connections indicate that it
should be possible to state direct-style reasoning principles
for KLR, removing the need to rely on bi-orthogonality for
completeness. However, some additional book-keeping would
have to be added to the structure of the proof, in line with
how we track the history of worlds. We expand on this in
Section VII.

Earlier work on marrying game semantics with operational
techniques in the spirit of this paper concerned contextual test-
ing of HOS terms inside HOS contexts [19]. Our framework
covers all four languages in a uniform way. The associated
soundness and completeness arguments are structured and
provide abstract ways of translating KNFBs into bisimulations
over Lx, and vice versa. In the future, we hope to capitalise
on the generality of the approach and adapt it to further
programming paradigms.

II. HOSC AND ITS FRAGMENTS

HOSC is a higher-order programming language equipped
with general references and continuations. Its syntax is given
in Figure 1. We will study HOSC along with its three
sublanguages: GOSC, HOS and GOS.

Assuming countably infinite sets Loc (locations) and Var
(variables), HOSC typing judgments take the form Σ; Γ `M :
τ , where Σ and Γ are finite partial functions that assign types
to locations and variables respectively. All the typing rules are
standard and can be found in the full version of [7]. In typing
judgements, we often write Σ as shorthand for Σ; ∅ (closed)
and Γ as shorthand for ∅; Γ (location-free). Similarly, `M : τ
means ∅; ∅ `M : τ .

A heap h is a finite type-respecting map from Loc to values.
We write h : (Σ; Γ), if dom(Σ) ⊆ dom(h) and Σ; Γ ` h(`) : σ
for (`, σ) ∈ Σ, The operational semantics of HOSC reduces
pairs (M,h), where Σ; Γ ` M : τ and h : (Σ; Γ). The rules
are given in Figure 2, where {·} denotes (capture-avoiding)
substitution. We write (M,h) ⇓ter if there exist V, h′ such
that (M,h)→∗ (V, h′) and V is a value.

We consider three fragments of HOSC. In GOSC, ref-
erence types are restricted to ref ι, where ι is given by
ι , Unit | Int | Bool | ref ι. GOSC terms are HOSC
terms whose typing derivations (i.e. not only the final typing
judgments) rely on GOSC types only. GOSC is a superset of
FOSC [16]1. HOS types are HOSC types that do not contain
the cont constructor. HOS terms are HOSC terms whose
typing derivations rely on HOS types only. Consequently,
HOS terms never have subterms of the form call/ccτ (x.M),

1GOSC also features references to references - the refι case.

2

σ, τ , Unit | Int | Bool | refτ | τ × σ | τ → σ | cont τ

U, V , () | tt | ff | n̂ | x | ` | 〈U, V 〉 | λxτ .M | rec y(xτ).M | contτ K

M,N, V | 〈M,N〉 | πiM | MN | refτ M | !M | M := N | ifM1 thenM2 elseM3 | M ⊕N | M �N
| M = N | call/ccτ (x.M) | throwτ M to N

K , • | 〈V,K〉 | 〈K,M〉 | πiK | V K | KM | refτ K | !K | V := K | K := M | ifK thenM elseN
| K ⊕M | V ⊕K | K �M | V �K | K = M | V = K | throwτ V to K | throwτ K to M

C , • | 〈M,C〉 | 〈C,M〉 | πiC | λxτ .C | rec y(xτ).C | MC | CM | refτ C | !C
| C := M | M := C | ifC thenM elseN | ifM thenC elseN | ifM thenN elseC | C ⊕M | M ⊕ C
| C �M | M � C | C = M | M = C | call/ccτ (x.C) | throwτ C to M | throwτ M to C

Notational conventions: x, y ∈ Var, ` ∈ Loc, n ∈ Z, i ∈ {1, 2}, ⊕ ∈ {+,−, ∗}, � ∈ {=, <}
Syntactic sugar: letx = M inN stands for (λx.N)M (if x does not occur in N we also write M ;N)

Fig. 1. HOSC syntax

(K[(λxσ.M)V], h) → (K[M{V/x}], h)
(K[πi〈V1, V2〉], h) → (K[Vi], h)
(K[if tt thenM1 elseM2], h) → (K[M1], h)
(K[if ff thenM1 elseM2], h) → (K[M2], h)

(K[n̂⊕ m̂], h) → (K[n̂⊕m], h)
(K[n̂� m̂], h) → (K[b], h)
with b = tt if n�m, otherwise b = ff
(K[call/cc(xτ .M)], h) → (K[M{contτ K/x}], h)

(K[!`], h) → (K[h(`)], h)
(K[ref V], h) → (K[`], h · [` 7→ V])
(K[` := V], h) → (K[()], h[` 7→ V])
(K[` = `′], h) → (K[b], h)
with b = tt if ` = `′, otherwise b = ff
(K[(rec y(xσ).M︸ ︷︷ ︸

U

)V], h) → (K[M{V/x, U/y}], h)

(K[throwτ V to contτ K
′], h) → (K ′[V], h)

Fig. 2. Operational reduction for HOSC

throwτ M to N or contτ K. GOS is the intersection of
HOS and GOSC, both for types and terms, i.e. there are
no continuations and storage is restricted to values of type
ι, defined above. The following definition allows us to study
HOSC terms interacting with contexts in weaker fragments.

Definition 1. Given a HOSC term Γ ` M : τ , we
refer to types in Γ and τ as boundary types. Let x ∈
{HOSC,GOSC,HOS,GOS}. A HOSC term Γ `M : τ has
an x boundary if all of its boundary types are from x.

Note that typing derivations of HOSC terms with an x
boundary may contain arbitrary HOSC types as long as the
final typing judgment uses types from x only.

Next we introduce several notions of contextual equivalence
for HOSC-terms parameterised by x. We start with the classic
notion based on observing termination. We write Γ ` C : τ →
τ ′ if Γ, x : τ ` C[x] : τ ′.

Definition 2 (Contextual Equivalence). Let
x ∈ {HOSC,GOSC,HOS,GOS}. Given x-terms
Γ ` M1,M2 : τ , we define Γ ` M1

∼=x
ter M2 to hold, when

for all x-contexts ` C : τ → τ ′, we have (C[M1], ∅) ⇓ter iff
(C[M2], ∅) ⇓ter .

We also consider another way of testing, based on observing
whether a program can reach a breakpoint (error point) inside
a context. Technically, the breakpoints are represented as
occurrences of a special free error variable err : Unit→ Unit.
Reaching a breakpoint then corresponds to convergence to
a stuck configuration of the form (K[err()], h): we write

(M,h) ⇓err if there exist K,h′ such that (M,h) →∗
(K[err()], h′).

Definition 3 (Contextual Equivalence via Error). Let x ∈
{HOSC,GOSC,HOS,GOS}. Given x-terms Γ `M1,M2 : τ
with err 6∈ dom(Γ), we define Γ ` M1

∼=x
err M2 to hold,

when for all x-contexts err : Unit→ Unit ` C : τ → τ ′, we
have (C[M1], ∅) ⇓err iff (C[M2], ∅) ⇓err .

For the languages we study, it is known that ∼=x
err is always

at least as discriminating as ∼=x
ter (i.e. ∼=x

err implies ∼=x
ter)

and, for contexts with control, they coincide: ∼=x
err=∼=x

ter for
x ∈ {HOSC,GOSC}. Intuitively, for x ∈ {HOS,GOS},
∼=x

err is stricter because it can detect differences in behaviour
regardless of whether or not they lead to termination later,
whereas ∼=x

ter only picks up differences in terminating com-
putations. With control, this difference disappears, because a
context can trigger termination at any point.

For higher-order languages with state and control, it is well
known that contextual testing can be restricted to evaluation
contexts after instantiating the free variables of terms to closed
values (the so-called closed instances of use, CIU). Let us
write Σ,Γ′ ` γ : Γ for substitutions γ such that, for any
(x, σx) ∈ Γ, the term γ(x) is a value satisfying Σ; Γ′ ` γ(x) :
σx. Then M{γ} stands for the outcome of applying γ to M .

Definition 4 (CIU Equivalence). Let x ∈
{HOSC,GOSC,HOS,GOS} and let Γ ` M1,M2 : τ
be HOSC terms with an x boundary. We write
Γ ` M1

∼=x(ciu)
err M2 : τ , when for all Σ, h,K, γ, all built

from x syntax, such that h : Σ; ˆerr , Σ; ˆerr ` K : τ → τ ′,

3

and Σ; ˆerr ` γ : Γ, we have (K[M1{γ}], h) ⇓err iff
(K[M2{γ}], h) ⇓err , where err 6∈ dom(Γ) and ˆerr stands
for err : Unit→ Unit.

Note that we consider an asymmetric version of CIU
equivalence here: while contexts are taken from x, programs
are in HOSC. In the symmetric setting, one can prove that
CIU and contextual equivalence coincide.

Lemma 5 (CIU Lemma). Let x ∈ { HOSC, GOSC, HOS,
GOS} and M1,M2 be two x-terms. Then we have Γ `
M1
∼=x

err M2 iff Γ `M1
∼=x(ciu)

err M2.

The equivalences ∼=x(ciu)
err will play an important role in the

paper. As shown in [7], they correspond to trace equivalence
in operational game semantics. We will review the connection
in the next section and, using it as a foundation, develop a
sound and complete technique for establishing ∼=x(ciu)

err (and,
thus, ∼=x

err for x-terms). The techniques will be applicable to
a class of terms that we call cr-free.

Definition 6. A HOSC term Γ ` M : τ is cr-free if it
does not contain occurrences of contσK and locations, and
its boundary types are cont- and ref-free.

We stress that the above boundary restriction applies to Γ
and τ only, and subterms of M may well contain arbitrary
HOSC types and occurrences of refσ , call/ccσ , throwσ for
any σ. The large majority of examples from the literature,
e.g. [14], [15], [16], concern cr-free terms. The fact that cr-
free terms may not contain subterms contτ K or ` is not really
a restriction, as contτ K and ` are run-time constructs and
not really meant to be used directly by programmers. Note
that the boundary of a cr-free term is an x boundary for any
x ∈ {HOSC,GOSC,HOS,GOS}. Thus, they are an ideal
common ground for comparing the discriminating power of
HOSC,GOSC,HOS and GOS contexts. We will discuss the
scope for extending our results outside of the cr-free fragment,
and for richer type systems, in Section VII.

Example 7. Let Γ = {f : ((Unit → Unit) → Unit) →
Unit, h : Unit → Unit}. In Figure 3, we present three terms
Γ ` Mi : Bool (i = 1, 2, 3), which will be used as running
examples. Using the methodology of the paper, we will be
able to establish the following relationships between the terms:
M1
∼=GOSC

err M2 (but M1 6∼=HOS
err M2), M2

∼=HOS
err M3 (but

M2 6∼=GOSC
err M3), M1

∼=GOS
err M3 (but M1 6∼=GOSC

err M3

and M1 6∼=HOS
err M3). For inequivalences, we will rely on

trace equivalence (Theorem 17) and, for equivalence, we
will take advantage of Kripke Normal-Form Bisimulations
(Theorem 30).

III. OPERATIONAL GAME SEMANTICS

Game semantics models interactions between terms and
contexts as a dialogue between two players, called O (context)
and P (term). Accordingly, by imposing restrictions on O-
moves, one can try to capture constraints imposed on contexts.
The absence of control constructs in contexts turns out to
correspond to a bracketing condition [20], while the absence

of higher-order references corresponds to visibility [21]. An
operational account of the correspondences has been presented
in [7] through a series of labelled transition systems x[HOSC],
which generate traces corresponding to interactions of HOSC
terms with x-contexts. In this section, we give a unifying pre-
sentation of the results as a single LTS, called Lx, which can
be specialised to each case x through simple local adjustments.

1) Names: Operational game semantics relies on countably
infinite sets of names that both players will use in their moves.

Definition 8. Let FNames =
⊎
σ,σ′ FNamesσ→σ′ be the

set of function names, partitioned into mutually disjoint
countably infinite sets FNamesσ→σ′ . We use f, g to range
over FNames , and write f : σ → σ′ for f ∈ FNamesσ→σ′ .
Analogously, let CNames =

⊎
σ CNamesσ be the set of

continuation names. We use c, d to range over CNames, and
write c : σ for c ∈ CNamesσ . Note that the constants represent
continuations, so the “real” type of c is cont σ, but we write
c : σ for the sake of brevity. We assume CNames,FNames
are disjoint and let Names = FNames]CNames. Elements of
Names will be woven into various constructions in the paper,
e.g. terms, heaps, etc. Then we write ν(X) to refer to the set
of names used in some entity X .

2) Values: When players use names during play, they will
be required to specify values to which the names are applied.
Because of the shape of boundary types in cr-free terms (in
particular, the presence of product types), the relevant values
are tuples consisting of (), integers, booleans and functions. To
capture this shape, we introduce a notion of abstract values,
which are simply patterns that match such values: they are
generated by the grammar:

A,B , () | tt | ff | n̂ | f | 〈A,B〉

with the proviso that no name may occur more than once.
They can be seen as a name-based representation of ultimate
patterns introduced in [22]. As function names are intrinsically
typed, we assign types to abstract values in the obvious way,
writing A : σ. Observe that any closed value V of a cont-
and ref-free type σ can be decomposed into an abstract value
A (pattern) and the corresponding substitution γ (matching).
Given a value V of a (cr-free) type σ, we write AValσ(V)
for the set of all pairs (A, γ) such that A is an abstract value
and γ : ν(A) → Vals is a substitution such that A{γ} = V
(an inductive definition of AValσ(V) is given in Figure 4).

Remark 9. Note that, by writing ·, we mean to require
implicitly that the function domains be disjoint. Similarly,
when writing], we stipulate that the argument sets be disjoint.

Example 10. Let σ = ((Int→ Bool)× Int)× (Int→ Bool)
and V ≡ 〈〈λxInt.x = 1, 2〉, λxInt.x 6= 3〉. Then AValσ(V)
consists of (〈〈f, 2〉, g〉, [f 7→ (λxInt.x = 1), g 7→ (λxInt.x 6=
3)]), where f, g ∈ FNamesInt→Bool and f 6= g.

3) Play: During play, each name will have its owner,
who will be the player that introduced the name into the
game. Accordingly, we will refer to names as O-names or P-

4

M1 , let b = ref (tt) in f(λgUnit→Unit. if (!b) then (b := ff ; h(); g(); b := tt) else ()); !b

M2 , let b = ref (tt) in f(λgUnit→Unit. if (!b) then (h(); b := ff ; g(); b := tt) else ()); !b

M3 , let b = ref (tt) in f(λgUnit→Unit. if (!b) then (h(); b := ff ; g(); b := tt) else ()); tt

Fig. 3. Terms M1,M2,M3

AValσ(V) , {(V, ∅)} for σ ∈ {Unit,Bool, Int}
AValσ→σ′(V) , {(f, [f 7→ V]) | f ∈ FNamesσ→σ′}
AValσ×σ′(〈U, V 〉) , {(〈A1, A2〉, γ1 · γ2) | (A, γ1) ∈ AValσ(U), (A2, γ2) ∈ AValσ′(V)}

Fig. 4. Value decompositions into abstract values and substitutions

names. The starting point for play will be a set NO of names
corresponding to the associated typing judgment. These names
are assumed to have been introduced by O, i.e. they are O-
names. After that, P and O will take turns making moves (P
goes first) and their moves may introduce new names into play.
Moves must take one of the four shapes specified below so
that the resultant sequence forms an NO-trace, defined below.

Definition 11 (NO-trace). Let NO ⊆ Names. The empty
sequence ε is an NO-trace. If t is an NO-trace then tm is an
NO-trace as long as it satisfies one of the conditions below.
• t is of even length, m = f̄(A, c′) (P-Question) or m =
c̄(A) (P-Answer), where f : σ → σ′, A : σ, c′ : σ′ and
c : σ. Here f, c must be O-names (introduced by O in t
or from NO), while all names in A and c′ must be fresh
(must not occur in t). These fresh names are considered
to be introduced by P in m and become P-names in tm.

• t is of odd length, m = f(A, c′) (O-Question) or m =
c(A) (O-Answer), where f : σ → σ′, A : σ, c′ : σ′ and
c : σ. Here f, c must be P-names introduced by P in t,
while all names in A and c′ must be fresh (cannot occur
in t). These fresh names are considered to be introduced
by O in m and become O-names in tm.

We will refer to f and c respectively as the head names of
m. Note that the head name of a move by one player always
belongs to the other player.

Example 12. Let NO = {f : ((Unit → Unit) → Unit) →
Unit, h : Unit→ Unit, c : Bool}. The sequences t1, t2, t3 in
Figure 5 are NO-traces.

4) O-visibility and O-bracketing: To spell out the O-
visibility and O-bracketing constraints, for any odd-length
NO-trace t, we define the set VisO(t) of O-visible names
and the top continuation name TopO(t). The definitions are
given in Figure 6. Note that the definition of VisO(t) is based
on tracing the connection between a move and the point of
introduction of its head name. In game semantics, such links
are referred to as justification pointers.

Definition 13. An NO-trace t is O-visible if, for any even-
length prefix t′ f ′(A′, c′) of t, we have f ′ ∈ VisO(t′) and, for
any even-length prefix t′ c′(A′) of t, we have c′ ∈ VisO(t′).
t is O-bracketed if, for any even-length prefix t′ c′(A) of

t (i.e. any prefix ending with an O-answer), we have c′ ∈

TopO(t′).

Remark 14. Observe that, whenever TopO(t) is defined, it
contains a single continuation name which is also in VisO(t).
Consequently, O-bracketing implies O-visibility for answers.

Example 15. We revisit the traces from Figure 5. The
fourth move x(g2, c4) in t1 breaks O-visibility, because
VisO(f̄(x, c1) x(g1, c2) h̄((), c3)) = {c3}. t2 is O-visible, e.g.
the sixth move c1(()) does not violate O-visibility, because
c1 ∈ VisO(f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4)) =
{x, c1, c4}. However, c1(()) in t2 breaks O-bracketing, be-
cause TopO(f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4)) =
{c4}. t3 satisfies both O-visibility and O-bracketing.

5) The LTS Lx: To derive the set of traces corresponding
to a given term, we use the LTS Lx given in Figure 8. Next
we explain how it works. First of all, the LTS is based on
extended HOSC syntax, which incorporates function names as
constants and values. In contrast, continuation names are not
terms on their own. Instead, they are built into the syntax via a
new construct contσ (K, c), which is a staged continuation that
first evaluates terms inside K and, if this produces a value, the
value is passed to c. contσ (K, c) is also regarded as a syntactic
value. Note that we remove the old construct contσK from the
extended syntax. The typing and reduction rules that are added
to the definition of HOSC are summarised in Figure 7. The
operational semantics → underpinning Lx is based on triples
(M, c, h) such that Σ; Γ ` M : σ, c ∈ CNamesσ and h : Σ.
The continuation name c is used to represent the surrounding
context, which is left abstract. The previous operational rules
→ are embedded into the new reduction → using the rule:

(M,h)→ (M ′, h′)

(M, c, h)→ (M ′, c, h′)

The two reduction rules for handling continuations in HOSC
(last line of Figure 2) are replaced with two analogous rules,
shown in Figure 7.

The Lx LTS features two kinds of configurations:
〈γ, φ, h,HF , HC ,Fn,Cn〉 (passive, O to play) and
〈M, c, γ, φ, h,HF , HC〉 (active, internal or P to play).
In both, φ contains all names introduced so far by both
players and h is the current heap. γ is an environment
mapping function names introduced by P to function values,
and continuation names introduced by P to pairs (K, c). Fn

5

t1 = f̄(x, c1) x(g1, c2) h̄((), c3) x(g2, c4) h̄((), c5)
t2 = f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4) c1(()) c̄(ff)
t3 = f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4) c4(()) c̄2(()) c1(()) c̄(tt)

Fig. 5. NO-traces for NO = {f : ((Unit → Unit) → Unit) → Unit, h : Unit → Unit, c : Bool}

VisO(t c̄(A)) = ν(A) c ∈ NO
VisO(t f̄(A′, c) t′ c̄(A)) = VisO(t) ∪ ν(A)

VisO(t f̄(A, c)) = ν(A) ∪ {c} f ∈ NO
VisO(t f ′(A′, c′) t′ f̄(A, c)) = VisO(t) ∪ ν(A) ∪ {c} f ∈ ν(A′)

VisO(t c′(A′) t′ f̄(A, c)) = VisO(t) ∪ ν(A) ∪ {c} f ∈ ν(A′)

TopO(t c̄(A)) = ∅ c ∈ NO
TopO(t f(A′, c) t′ c̄(A)) = TopO(t)

TopO(t f̄(A, c)) = {c}

Fig. 6. O-visible names VisO(t) and top continuation name TopO(t).

f ∈ FNamesσ→σ′

Σ; Γ ` f : σ → σ′
Σ; Γ ` K : σ → σ′ c ∈ CNamesσ′

Σ; Γ ` contσ (K, c) : cont σ

(M,h)→ (M ′, h′)

(M, c, h)→ (M ′, c, h′)

(K[call/ccτ (x.M)], c, h) → (K[M{contτ (K, c)/x}], c, h)
(K[throwτ V to contτ (K ′, c′)], c, h) → (K ′[V], c′, h)

Fig. 7. Modifications of HOSC syntax for use in Lx

(Pτ) 〈M, c, γ, φ, h,HF , HC〉
τ−−→ 〈N, c′, γ, φ, h′, HF , HC〉

when (M, c, h)→ (N, c′, h′)

(PA) 〈V, c, γ, φ, h,HF , HC〉
c̄(A)−−−→ 〈γ · γ′, φ] ν(A), h,HF , HC , F

x
PA] ν(A), Cx

PA〉
when c : σ, (A, γ′) ∈ AValσ(V)

(PQ) 〈K[fV], c, γ, φ, h,HF , HC〉
f̄(A,c′)−−−−→ 〈γ · γ′ · [c′ 7→ (K, c)], φ] φ′, h,HF , HC , F

x
PQ] ν(A), Cx

PQ] {c′})〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V), c′ : σ′ and φ′ = ν(A)] {c′}

(OA) 〈γ, φ, h,HF , HC ,Fn,Cn〉
c(A)−−−→ 〈K[A], c′, γ, φ] ν(A), h,HF · [ν(A) 7→ Fn], HC · [ν(A) 7→ Cn]〉

when c ∈ Cn, c : σ, A : σ, γ(c) = (K, c′)

(OQ) 〈γ, φ, h,HF , HC ,Fn,Cn〉
f(A,c)−−−−→ 〈V A, c, γ, φ] φ′, h,HF · [φ′ 7→ Fn], HC · [φ′ 7→ Cn]〉

when f ∈ Fn, f : σ → σ′, A : σ, c : σ′, γ(f) = V and φ′ = ν(A)] {c}

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N].

Fig. 8. Lx transition rules

represents the set of function P-names currently available to
O, while HF contains historical information about availability.
HF is a function from all O-names encountered so far to sets
of function P-names. The LTS will maintain the invariant that
dom(HF) is the set of all O-names played so far and, for
each such O-name o, HF (o) consists of function P-names
that were available to O when o was first used. Similarly, Cn
represents the set of currently available continuation P-names
and HC plays a role analogous to HF , recording historical
information about availability of continuation P-names.

Because of the c ∈ Cn and f ∈ Fn constraints in rules
(OA), (OQ) respectively, passive configurations may progress
only if O uses one of the currently available names as the
head name. Note how the information stored in HC and HF

is updated at this point to take new O-names into account.
In rules (PA), (PQ), the LTS calculates the Fn,Cn compo-

nents of the successor configuration, deciding which P-names
should be made available to O. Names that are introduced
by P in the current label become immediately available in
each case (as ν(A) and {c′} respectively). Other names to
be made available are given by the Fx

PA, C
x
PA, F

x
PQ , C

x
PQ

components according to the table below, where φPF (resp.
φPC stands for all function (resp. continuation) P-names, i.e.
φPF = dom(γ) ∩ FNames and φPC = dom(γ) ∩ CNames.
The table is designed in such a way that the components
enforce the game-semantic conditions corresponding to x, as
listed below. This is the only part of Lx that really depends
on x. For x = HOSC, all P-names are being made available
to the next configuration. In other cases, the updates follow
the definition of VisO(t) and TopO(t), as applicable. Note that
occurrences in the table of HF , HC correspond to following
justification pointers. The Lx LTS amounts to a uniform

6

x Fx
PA Cx

PA Fx
PQ Cx

PQ

HOSC φPF φPC φPF φPC

GOSC HF (c) HC(c) HF (f) HC(f)
HOS φPF HC(c) φPF ∅
GOS HF (c) HC(c) HF (f) ∅

Fig. 9. Specification of components Fx
PA, C

x
PA, F

x
PQ , C

x
PQ

x (context) O-questions O-answers
HOSC unrestricted unrestricted
GOSC O-visibility O-visibility
HOS unrestricted O-bracketing
GOS O-visibility O-bracketing

Fig. 10. x-contexts and corresponding constraints

presentation of the series of LTSs, called x[HOSC], from [7].
By design, LHOSC produces the same traces as the LTS
HOSC[HOSC] from [7]. For other x, it produces only those
traces from HOSC[HOSC] that satisfy the restrictions relevant
to x. Consequently, in each case, the traces produced by Lx

are the same as those of x[HOSC].
Let us write Trx(C) for the set of traces produced by Lx

started in configuration C. To state the full abstraction result
for Lx, we need to specify initial configurations. Let Γ `M :
τ be a cr-free HOSC term such that Γ = {x1 : σ1, · · · , xk :
σk}. A Γ-assignment ρ is a map from {x1, · · · , xk} to the set
of abstract values such that, for all 1 ≤ i 6= j ≤ k, we have
ρ(xi) : σi and ν(ρ(xi)) ∩ ν(ρ(xj)) = ∅. ρ simply creates a
supply of names corresponding to the context. Let c : τ and
NO = ν(ρ)∪{c}. Then the active initial configuration Cρ,cM is
defined to be 〈M{ρ}, c, ∅, NO, ∅, [NO 7→ ∅], [NO 7→ ∅]〉.

Definition 16. Let x ∈ {HOSC,GOSC,HOS,GOS}. The x
trace semantics of a cr-free HOSC term Γ `M : τ is defined
to be Trx(Γ `M : τ) , {((ρ, c), t) | ρ is a Γ-assignment, c :
τ, t ∈ Trx(Cρ,cM)}.

We can then restate the full abstraction results from [7] as
follows. They establish an exact correspondence between ciu-
equivalence and trace equivalence.

Theorem 17. For any cr-free HOSC terms Γ ` M1,M2 :

τ , Γ ` M1
∼=x(ciu)

err M2 iff Trx(Γ `M1 : τ) =
Trx(Γ `M2 : τ).

From Lemma 5, we deduce an exact correspondence be-
tween contextual equivalence and trace equivalence, in the
symmetric setting.

Corollary 18. For any cr-free x-terms Γ ` M1,M2 : τ , Γ `
M1
∼=x

err M2 iff Trx(Γ `M1 : τ) = Trx(Γ `M2 : τ).

Example 19. We revisit the terms Γ ` Mi (i = 1, 2, 3) from
Figure 3 and traces ti from Figure 5. Let ρ = [f 7→ f, h 7→ h]
(for simplicity, we conflate variable names with function
names) and c : Bool. Then we have t1 6∈ TrHOS(Cρ,cM1

)
but t1 ∈ TrHOS(Cρ,cM2

) and t1 ∈ TrHOS(Cρ,cM3
). Hence, by

Theorem 17, Γ ` M1 6∼=HOS
err M2 and Γ ` M1 6∼=HOS

err M3.
For t2, we have t2 ∈ TrGOSC(Cρ,cM1

) ∩ TrGOSC(Cρ,cM2
), and

t2 6∈ TrGOSC(Cρ,cM3
). Thus, Γ ` M1 6∼=GOSC

err M3 and
Γ ` M2 6∼=GOSC

err M3. Note that t3 ∈ TrGOS(Cρ,cM1
) ∩

TrGOS(Cρ,cM2
)∩TrGOS(Cρ,cM3

). In the second half of the paper,
we will establish Γ ` M1

∼=GOSC
err M2, Γ ` M2

∼=HOSC
err M3

and Γ `M1
∼=GOS

err M3.

IV. FROM LTS TO KNFB

Recall that Theorem 17 recasts ∼=x(ciu)
err -equivalence as trace

equivalence in the respective LTS Lx. Since Lx is determinis-
tic (up to the choice of reference names), this corresponds to
bisimilarity. Based on this observation, we develop a relational
framework for proving bisimilarity in all four cases x. Unfor-
tunately, bisimulations defined directly on configurations of
Lx would be quite complicated, not least due to the growth of
the environment γ and evolution of the heap h. To address this
complexity, we introduce Kripke Normal-Form Bisimulations
(KNFB) as a friendlier technique.
• The associated bisimulations will not be defined on

configurations, but directly on terms, evaluation contexts
and values.

• To disentangle the reasoning about the heap from the
reasoning about program evaluation, we will rely on a
notion of transition systems of invariants, following the
work on Kripke Logical Relations [16]. In our case, the
transition system will be equipped with two transition
relations, vOQ and vOA, introduced to model the avail-
ability of function and continuation names respectively.
Remarkably, the differences between the four fragments
will merely boil down to local conditions controlling
how the two relations have to be maintained during the
proof. As a consequence, we will be able to develop our
techniques simultaneously for all four cases.

• To address the growth of γ, whenever values or evalua-
tion contexts would be added to Lx-configurations, we
establish their equivalence upfront. However, as heaps
are evolving, it would not be sound to perform these
checks for the current heaps only. Similarly, it would
be too strong to aim for equivalence with respect to
arbitrary heaps. Thus, to account for all relevant uses (in
an abstract fashion), we will rely on the transition system
of invariants, using vOQ for function values and vOA for
continuations.

We begin with a formal definition of world transition systems.

Definition 20. A world transition system (WTS) A is a
triple (Worlds,vOQ,vOA, I), where Worlds is a set of states
(worlds), vOQ,vOA are binary reflexive relations on Worlds,
and I : Worlds → P(Heap × Heap) is the invariant
assignment that associates a set of pairs of heaps to any world.

Intuitively, a world can be seen as an abstraction of (a set
of) LTS configurations, where only the heaps matter (via the
function I). w vOQ w′ is meant to capture world evolution
that protects the availability of function names introduced by

7

Vx
A : (XV , XK, XE) 7→ { (β, V, V, w,H) | V : β ∧ ν(V) ⊆ dom(H) } ∪ (with β ∈ {Unit,Bool, Int})

{ (σ1 × σ2, 〈U1, U2〉, 〈V1, V2〉, w,H) | (σi, Ui, Vi, w,H) ∈ XV for i ∈ {1, 2} } ∪
{ (σ → σ′, V1, V2, w,H) | ∀w′ w∗OQ w. ∀A : σ. ∀c : τ. (dom(H), ν(A), {c} mutually disjoint)

=⇒ (σ′, V1A, c, V2A, c, w
′,H · [ν(A) 7→ w′] · [c 7→ w′]) ∈ XE }

Kx
A : (XV , XK, XE) 7→ { (σ, σ′,K1, c1,K2, c2, w,H) | ∀w′ w∗OA w. ∀A : σ. (dom(H), ν(A) disjoint)

=⇒ (σ′,K1[A], c1,K2[A], c2, w
′,H · [ν(A) 7→ w′]) ∈ XE }

Ex
A : (XV , XK, XE) 7→ { (σ,M1, c1,M2, c2, w,H) | ∀(h1, h2) ∈ I(w). PDiv ∨ PPA ∨ PPQ }

PDiv , (M1, c1, h1) ⇑ ∧ (M2, c2, h2) ⇑
PPA , ∃V1, V2, c. ∃w′ wx

c (w,H). ∃(h′1, h′2) ∈ I(w′). (σ, V1, V2, w
′,H) ∈ XV ∧

(M1, c1, h1)→∗ (V1, c, h
′
1) ∧ (M2, c2, h2)→∗ (V2, c, h

′
2)

PPQ , ∃K1, V1,K2, V2. ∃c′1, c′2 : τ. ∃σ1, σ2. ∃f : σ1 → σ2. ∃w′ wx
f (w,H). ∃(h′1, h′2) ∈ I(w′).

(σ1, V1, V2, w
′,H) ∈ XV ∧ (σ2, σ,K1, c

′
1,K2, c

′
2, w

′,H) ∈ XK
∧ (M1, c1, h1)→∗ (K1[fV1], c′1, h

′
1) ∧ (M2, c2, h2)→∗ (K2[fV2], c′2, h

′
2)

Fig. 11. Ax-Kripke Normal-Form Bisimulation for A = (Worlds,vOQ,vOA, I)

terms (P) to the environment (O). Intuitively, if such a value
was available in w and w vOQ w′ then the environment can
also access it in w′. The role of w vOA w

′ is analogous but it
corresponds to continuation names instead. The two relations
will allow us to represent the flow of information about P-name
availability, depending on x. Given a WTS A, we define three
operators Vx

A, Kx
A, Ex

A on relations for handling values, con-
tinuations and expressions respectively. The relevant relations
will contain tuples of the form (· · · , w,H), where w indicates
the world in which the · · · entities are being related, and H is
a partial map from Names to Worlds. H will be referred to as
the world history - it records the names that were introduced
by the context (O-names) along with the world in which each
name was introduced.

Values: : Vx
A(X) relates identical values at base types

and pairs of values that are already related in X . For function
values V1, V2 to be related in w, we interrogate them in
any world w′ in which they are available (w v∗OQ w′) by
applying them to an abstract value A and continuation c.
Fresh names are used to represent unspecified functional and
continuation values in the spirit of open bisimulation [17], [8].
This corresponds to the (OQ) rule in Lx.

Evaluation contexts: : Kx
A corresponds to testing con-

tinuations by providing an abstract value A to two evaluation
contexts K1,K2. In Lx, this corresponds to the (OA) rule and,
similarly, we write w v∗OA w

′ to range over all the worlds w′

in which such tests can be legitimately carried out.
Expressions: : The definition of Ex

A is split into three
cases: PDiv (both terms diverge), PPA (both terms reduce to
values; this corresponds to the (PA) rule), and PPQ (both
terms reduce to callbacks; this corresponds to (PQ)). In all
three cases, in order for the terms to be related in world w,
we execute them with heaps that satisfy the invariant of w. In
both PPA and PPQ , we stipulate the existence of a world w′

whose invariant captures the new heaps h′1, h
′
2. Additionally,

the world w′ must be related to (w,H) as follows: (w,H) vx
c

w′ for PPA and (w,H) vx
f w′ for PPQ . These conditions

are specified in Figure 12. This is the only place where the
definition actually depends on x.

Remark 21. The shapes of vx
c ,vx

f in Figure 12 may seem
mysterious at first, but in fact they mirror the definitions of
Fx
PA, C

x
PA, F

x
PQ , C

x
PQ from Figure 9. For example, Fx

PA =
φPF (making all old function names available) corresponds
to inheriting all function names from the original world, i.e.
w vOQ w

′. The case Fx
PA = HF (c) is captured by H(c) vOQ

w′. Conditions regarding Cx
PA can be interpreted similarly,

though vOA must be used instead of vOQ. For Fx
PQ and Cx

PQ ,
the correspondence is analogous except the case Cx

PQ = ∅,
which generates no condition, since no old names are being
made available. That is why vHOS

f ,vGOS
f do not refer to vOA.

Definition 22. Suppose A = (Worlds,vOQ,vOA, I) is
a WTS. Let τ, τ ′ range over types, Mi over HOSC
terms, Ki over evaluation contexts, Vi over syntactic val-
ues, ci over CNames, w over Worlds, and H over
Names ⇀ Worlds. A triple (RV , RK, RE) of relations
is admissible if RV , RK, RE respectively contain tuples
of the form (τ, V1, V2, w,H), (τ, τ ′,K1, c1,K2, c2, w,H),
(τ,M1, c1,M2, c2, w,H), and each name in Vi,Ki,Mi, ci (as
appropriate) is in dom(H).

Definition 23 (Ax-Kripke Normal-Form Bisimulation). Let A
be a WTS. An admissible triple R = (RV , RK, RE) of rela-
tions is an Ax-KNFB if it is a post-fixpoint of (Vx

A,Kx
A, Ex

A)
defined in Figure 11, i.e. R ⊆ (Vx

A(R),Kx
A(R), Ex

A(R)). Note
that the definition of Ex

A relies on conditions (w,H) vx
c w

′

and (w,H) vx
f w
′, which are specified in Figure 12. (We write

(w,H) vx
n w
′ and w′ wx

n (w,H) interchangeably.)

Remark 24. The definition of Ex
A is reminiscent of bisim-

ulation games: the condition PDiv ∨ PPA ∨ PPQ inside the
definition of Ex

A stipulates identical behaviour from both
parties and specifies, through vx

f and vx
c , how the evolution of

8

x (w,H) vx
c w
′ (w,H) vx

f w
′

HOSC w vOQ w
′ ∧ w vOA w

′ w vOQ w
′ ∧ w vOA w

′

GOSC H(c) vOQ w
′ ∧ H(c) vOA w

′ H(f) vOQ w
′ ∧ H(f) vOA w

′

HOS w vOQ w
′ ∧ H(c) vOA w

′ w vOQ w
′

GOS H(c) vOQ w
′ ∧ H(c) vOA w

′ H(f) vOQ w
′

Fig. 12. vx
c and vx

f

worlds is required to progress with respect to vOQ and vOA.
In this spirit, Vx

A and Kx
A advance the game into multiple

futures calculated according to vOQ and vOA respectively.

Using KNFBs, we can define bisimilarity for HOSC terms.

Definition 25. Two cr-free HOSC terms Γ ` M1,M2 : τ ,
are x-bisimilar, written Γ ` M1 ≡x M2 : τ , if there
exists a WTS A = (Worlds,vOQ,vOA, I), an initial world
w0 ∈ Worlds such that (∅, ∅) ∈ I(w0), and Ax-KNFB
(RV , RK, RE) such that, for any Γ-assignment ρ and c : τ ,
we have (M1{ρ}, c M2{ρ}, c, w0,H0) ∈ RE , where H0 =
[ν(ρ) 7→ w0, c 7→ w0].

In Section VI, we will establish the following theorem.

Theorem (KNFB Full Abstraction). For any cr-free HOSC

terms Γ `M1,M2 : τ , Γ `M1 ≡x M2 : τ iff Γ `M1
∼=x(ciu)

err

M2 : τ . Hence, for any cr-free x-terms Γ ` M1,M2 : τ ,
Γ `M1 ≡x M2 : τ iff Γ `M1

∼=x
err M2 : τ .

Equivalence proofs based on KNFBs have a compositional
flavour in that they proceed by establishing equivalences for
pairs of subterms in various worlds, and piecing them together
in a way controlled by A.

We shall write (Vx
A,Kx

A, Ex
A) to refer to the greatest Ax-

KNFB. Below, for simplicity, we ignore types in related tuples.

Example 26 (`M isc
1
∼=HOSC

err M isc
2 [14]).

M isc
1 , let x = ref (0) in λfUnit→Unit.x := 1; f(); !x

M isc
2 , λfUnit→Unit.f(); 1

We use the WTS A shown below, where I(w∅) = {(∅, ∅)},
and I(w`j) = {([` 7→ j], ∅)} for j ∈ {0, 1}. Solid lines indicate
vOA, dashed ones represent vOQ.

w∅

for all `
++

for all `

33 w`0
++
33 w`1

Given c : Int and H0 = [c 7→ w∅], we aim to show
(M isc

1 , c,M isc
2 , c, w∅,H0) ∈ EHOSC

A .
Let (h1, h2) ∈ I(w∅). Then (M isc

i , c, hi) →∗ (Vi, c, h
′
i),

where V1 = λf.` := 1; f(); !`, h′1 = [` 7→ 0], V2 =
λf.f(); 1 and h′2 = ∅. Noting that (h′1, h

′
2) ∈ I(w`0) and

(w∅,H0) vHOSC
c w`0 (i.e. w∅ vOQ w`0 and w∅ vOA w`0), it

suffices to show (V1, V2, w
`
0,H0) ∈ VHOSC

A . For this, consider
w′ with w`0 v∗OQ w′, i.e. w′ = w`0 or w′ = w`1. Writing f
for A and taking c′ : Unit → Unit, we then need to show
(V1f, c

′, V2f, c
′, w′,H1) ∈ EHOSC

A , where H1 = H0 · [f, c′ 7→
w′].

Let (h1, h2) ∈ I(w′). Observe that (Vif, c
′, hi) →∗

(Ki[f()], c′, h′i) for i = 1, 2, where K1 = •; !`, K2 = •; 1 and
(h′1, h

′
2) ∈ I(w`1). Noting (w′,H1) vHOSC

f w`1, it suffices to
show ((), (), w`1,H1) ∈ VHOSC

A and (K1, c
′,K2, c

′, w`1,H1) ∈
KHOSC
A . The former follows directly from the definition.
To show (K1, c

′,K2, c
′, w`1,H1) ∈ KHOSC

A , consider w′

with w`1 v∗OA w′, i.e. w′ = w`1. Hence, it suffices to show
(K1[()], c′,K2[()], c′, w`1,H1) ∈ EHOSC

A . Taking (h1, h2) ∈
I(w`1), note that (Ki[()], c

′, hi) →∗ (1, c′, hi). Noting
(w`1,H1) vHOSC

c′ w`1, we only need to show (1, 1, w`1,H1) ∈
VHOSC
A , which follows from the definition.

V. SIMPLIFICATIONS AND FURTHER EXAMPLES

Our KBNF framework does not relate vOQ with vOA for
the sake of maximum generality and with a view to applying
the same methodology to other languages. However, for the
languages we consider, it is possible to make some simplifying
assumptions without losing completeness. For example, for
x ∈ {HOSC,GOSC}, function and continuation names are
propagated in the same way, and vOQ and vOA can be
assumed to coincide. Formally, this will be demonstrated in
our completeness arguments. Consequently, in these cases we
can restrict the search for world transition systems to those
with a single reflexive relation, i.e. vOQ=vOA. In HOS, we
will have vOA implies v∗OQ, while in GOS, vOA implies vOQ

(this is related to Remark 14). Under these extra assumptions,
the shape of (w,H) vHOSC

c w′ and (w,H) vHOSC
f w′ from

Figure 12 could be simplified as follows.

x (w,H) vx
c w
′ (w,H) vx

f w
′ assumption

HOSC w vOA w
′ w vOA w

′ vOA =vOQ

GOSC H(c) vOA w
′ H(f) vOA w

′ vOA =vOQ

HOS w vOQ w
′,H(c) vOA w

′ w vOQ w
′ vOA⊆v∗OQ

GOS H(c) vOA w
′ H(f) vOQ w

′ vOA⊆vOQ

We rely on the simplifications in Examples 27, 28, 29. Full
proofs for the examples are available in the full version of the
paper (along with other examples). Below we only give the
associated WTSs and discuss a single representative step in
each proof.

Example 27 (Γ ` M1
∼=GOSC

err M2 (Example 7)). Let
ρ = [f 7→ f, h 7→ h] be a Γ-assignment and c : Bool. The
relevant A is displayed below, where I(w∅) = {(∅, ∅)} and
I(w`1,`2b1,b2

) = {([`1 7→ b1], [`2 7→ b2])} for b1, b2 ∈ {ff , tt}.

9

The solid lines represent both vOA and vOQ, i.e. vOA=vOQ.

w∅

for all `1, `2

,,
for all `1, `2

//

for all `1, `2
11

w`1,`2tt,tt
// w`1,`2ff ,ff

w`1,`2ff ,tt

The ultimate objective is to show (M1, c,M2, c, w∅,H0) ∈
EGOSC
A , where H0 = [f, h, c 7→ w∅]. To this end, among oth-

ers, one needs to establish (K ′1[()], c′,K ′2[()], c′, w`1,`2ff ,tt ,H1) ∈
EGOSC
A for fresh g, c′ and H1 = H0 · [g, c′ 7→ w`1,`2tt,tt], where
K ′1 = •; g(); `1 := tt, K ′2 = •; `2 := ff ; g(); `1 := tt. This
necessitates (w`1,`2ff ,tt ,H1) vGOSC

g w`1,`2ff ,ff , which holds, since it
boils down to w`1,`2tt,tt vOA w

`1,`2
ff ,ff , because H1(g) = w`1,`2tt,tt .

In contrast, (w`1,`2ff ,tt ,H1) 6vx
g w`1,`2ff ,ff (x = HOS,HOSC),

since both require w`1,`2ff ,tt vOQ w
`1,`2
ff ,ff , which does not hold in

A. Consequently, the argument will not carry over to ∼=HOS
err

or ∼=HOSC
err , which is consistent with Γ `M1 6∼=HOS

err M2.

Example 28 (Γ `M2
∼=HOS

err M3 (Example 7)). Let ρ = [f 7→
f, h 7→ h] be a Γ-assignment and c : Bool. The relevant A
is displayed below, where solid lines represent both vOA and
vOQ, and dashed ones - vOQ \ vOA, i.e. vOA⊆vOQ. The
invariants associated with worlds are defined as before.

w∅
for all `1, `2 // w`1,`2tt,tt

,,
w`1,`2ff ,ffll

We want to show (M2, c,M3, c, w∅,H0) ∈ EHOS
A , where

H0 = [f, h, c 7→ w∅]. This leads, among others, to the
subgoal (K ′1[()], c′,K ′2[()], c′, w`1,`2tt,tt ,H1) ∈ EHOS

A , where
H1 = H0 · [g, c′ 7→ w`1,`2tt,tt] and K ′i = •; `i := ff ; g(); `i := tt.
In particular, one needs to check (w`1,`2tt,tt ,H1) vHOS

g w`1,`2ff ,ff ,
which holds, as it stands for w`1,`2tt,tt vOQ w

`1,`2
ff ,ff .

However, (w`1,`2tt,tt ,H1) 6vx
g w

`1,`2
ff ,ff (for x = GOSC,HOSC),

because both involve w`1,`2tt,tt vOA w`1,`2ff ,ff . Consequently, the
argument does not carry over to ∼=HOSC

err or ∼=GOSC
err , which is

consistent with Γ `M2 6∼=GOSC
err M3.

Example 29 (Γ `M1
∼=GOS

err M3 (Example 7)). Let ρ = [f 7→
f, h 7→ h] be a Γ-assignment and c : Bool. The relevant A
is displayed below, where solid lines represent both vOA and
vOQ, and dashed ones - vOQ \ vOA, i.e. vOA⊆vOQ. The
associated heap invariants are the same as before.

w∅
for all `1, `2 //

for all `1, `2
//

w`1,`2tt,tt
// w`1,`2ff ,ff

w`1,`2ff ,tt

We show (M1, c,M3, c, w∅,H0) ∈ EGOS
A , where

H0 = [f, h, c 7→ w∅]. One of the subgoals will be
(K ′1[()], c′,K ′2[()], c′, w`1,`2ff ,tt ,H1) ∈ EGOS

A for fresh g, c′,
where

K ′1 = •; g(); `1 := tt,
K ′2 = •; `2 := ff ; g(); `1 := tt,

and H1 = H0 · [g, c′ 7→ w`1,`2tt,tt]. To this end, one needs to
argue that (w`1,`2ff ,tt ,H1) vGOS

g w`1,`2ff ,ff , which boils down to
w`1,`2tt,tt vOQ w

`1,`2
ff ,ff , because H1(g) = w`1,`2tt,tt .

However, we would not have (w`1,`2ff ,tt ,H1) vx
g w`1,`2ff ,ff

(x = GOSC,HOS), since they reduce to w`1,`2tt,tt vOQ w
`1,`2
ff ,ff ∧

w`1,`2tt,tt vOA w`1,`2ff ,ff (x = GOSC) and w`1,`2ff ,tt vOQ w`1,`2ff ,ff

(x = HOS). Consequently, the argument does not imply
∼=GOSC

err or ∼=HOS
err , which is consistent with Γ `M1 6∼=x

err M3

(x = GOSC,HOS).

VI. SOUNDNESS AND COMPLETENESS

We sketch the proof of our main result.

Theorem 30 (KNFB Full Abstraction). For any cr-free HOSC

terms Γ `M1,M2 : τ , Γ `M1 ≡x M2 : τ iff Γ `M1
∼=x(ciu)

err

M2 : τ . Hence, for any cr-free x-terms Γ ` M1,M2 : τ ,
Γ `M1 ≡x M2 : τ iff Γ `M1

∼=x
err M2 : τ .

We will rely on Theorem 17 and the fact that trace equiva-
lence coincides with bisimilarity in this case. For the left-to-
right direction (soundness), we show how to lift an Ax-KNFB
to a bisimulation over Lx. For the converse (completeness),
we define an Ax-KNFB from a bisimulation over Lx, where
A will be based on Lx.

Soundness

Let R = (RV , RK, RE) be an Ax-KNFB such that A =
(Worlds,vOQ,vOA, I), w0 ∈ Worlds, ρ is a Γ-assignment,
c : τ and (M1{ρ}, c M2{ρ}, c, w0,H0) ∈ RE , where H0 =
[ν(ρ) 7→ w0, c 7→ w0]. We will show how to construct a
bisimulation over Lx, using R.

First we define bisimulations on Lx in a more structured
way that takes the bipartite nature of Lx into account. A
relation S over configurations is well-formed when, for all
(C1, C2) ∈ S, both configurations are either active or passive,
and have the same HF , HC ,Fn,Cn components.

Definition 31. A (bipartite) bisimulation over Lx is a pair
S = (Spas , Sact) of well-formed relations (over passive and
active configurations respectively) such that
• if (C1, C2) ∈ Spas then, for all O-moves o, if C1

o−→ C ′1
and C2

o−→ C ′2 then (C ′1, C
′
2) ∈ Sact ;

• if (C1, C2) ∈ Sact then either C1 ⇑ and C2 ⇑, or there
exists a P-move p such that C1

p
=⇒ C ′1 and C2

p
=⇒ C ′2

and (C ′1, C
′
2) ∈ Spas . We write a

=⇒ for ((
τ−→)∗

a−→).

Lx bisimilarity can be seen as a three-player game
(O,P1, P2) where O chooses a challenge, represented by o,
that both Proponents must either refuse (by diverging) or
satisfy (by producing the same P-action).

As a bridge between A-KNFBs and Lx bisimulations, we
will introduce an intermediate notion of bisimilarity, based on
incomplete configurations. In particular, it will disentangle the
reasoning over the heap resources from other components of
the configurations.

A partial configuration is a configuration without the heap
and the availability record (HF , HC ,Fn,Cn). It is called a

10

prime configuration if it is either active and γ is empty, or
if it is passive and γ is either empty or singleton. Next we
construct an LTS −→→, called the prime Lx, in which pairs
(P, h), where P is a prime configuration and h is a heap, are
reduced using rules analogous to those of Lx, as long as the
prime configuration contains enough information to fire the
corresponding rule.

Because prime configurations do not record available names,
for O-transitions, we simply regard the singleton name in
γ as available. The name is then removed from γ after the
transition fires, to make the successor (active) prime. This
defines (P, h)

o−→→ (P ′, h).
Silent transitions (Pτ) are simply inherited: (P, h)

τ−→
(P ′, h′) implies (P, h)

τ−→→ (P ′, h′).
As P-transitions may introduce multiple P-names into γ,

we split them into several transitions as follows. Recall that
p = f̄(A, c′) or p = c̄(A), where A is an abstract value, i.e.
essentially a tuple ~A = (A1, · · · , Ak) of atomic values that are
not tuples. Abusing notation somewhat, we will refer to this
shape generically as n̄(~A), assuming that for p = f̄(A, c′),
the name c′ is also included in ~A, i.e. Ak = c′. Then we split

the
p−→ transition into (P, h)

(j,n̄(Aj))−−−−−−→→ (Pj , h) (1 ≤ j ≤ k),
where the γ component in Pj contains Aj (if it is a name)
and is empty if Aj is a constant.

The −→→ LTS corresponds to a Böhm-tree like representation
of terms, namely, Lassen’s trees introduced in the setting
of eager normal-form bisimulations for pure call-by-value λ-
calculus [23]. Note that it forces O to explore the names
introduced by P in the very next step, like view functions
in game semantics [3]. Standard bisimulations over the prime
Lx are not sound in the presence of heap resources.

In order to design sound bisimulations based on the prime
LTS, we will reason about heaps and the availability com-
ponents separately, with the help of the WTS A. By a A-
Kripke prime relation R we mean a relation containing tuples
(P1, P2, w,HO), where P1, P2 are prime configurations of
the same kind, the domains of γ in P1, P2 are the same,
w ∈Worlds, and HO is a world history such that dom(HO)
contains all names occurring in the tuple except that in
dom(γ).

Definition 32. An A-Kripke Prime Bisimulation (Ax-KPB)
over Lx is a pair R = (Rpas , Ract) of A-Kripke prime
relations (over respectively passive and active prime config-
urations) such that:
• if (P1, P2, w,HO) ∈ Rpas then for all O-moves o, for

all worlds w′ w∗OX w (with X either Q or A depending
on o), for all active prime configurations P ′1, P

′
2, and

heaps (h1, h2) ∈ I(w′), if (P1, h1)
o−→→ (P ′1, h1) and

(P2, h2)
o−→→ (P ′2, h2) then (P ′1, P

′
2, w

′,HO · [φ 7→ w]) ∈
Ract , where φ are the names introduced by o;

• if (P1, P2, w,HO) ∈ Ract then for all heaps (h1, h2) ∈
I(w):

– Either (P1, h1) ⇑ and (P2, h2) ⇑,
– Or there exists a Player action n̄(~A), a world
w′ wx

n (w,HO) and (h′1, h
′
2) ∈ I(w′) such that

~A = (A1, · · · , Ak) and, for all 1 ≤ j ≤ k,

(Pi, hi)
(j,n̄(Aj))
======⇒⇒ (P ji , h

′
i) (i = 1, 2), where

(P j1 , P
j
2 , w

′,HO) ∈ Rpas .
We write a

=⇒⇒ for ((
τ−→→)∗

a−→→).

The definition of Ax-KPBs is very similar to Ax-KNFBs.
In fact, we can move between them easily, as shown in Fig-
ure 13. However, Ax-KPBs are already based on rudimentary
configurations, which makes them a better starting point for
developing a bisimulation over Lx.

The construction will proceed in two steps, given in
Figure 13. First we lift an Ax-KPB R to a relation R†

featuring partial configurations (i.e. still with no heap or
name-availability information). In the Figure, we write ⊗ to
represent, as in [24], a product of configurations corresponding
to configuration merging, which is allowed if the argument
configurations do not contain the same names in their γ
components. So prime configurations are indeed the prime
elements of this product.

⊗
j corresponds to an arbitrary

number of mergers so that we can generate arbitrarily large
environments. In Rpas , passive prime configurations are being
merged. In Ract , P and P ′ are active. Note that the construc-
tion creates a new component HP at the end of the tuple, to
keep track of worlds in which names from the environments
γ (i.e. P-names) have been introduced (recall that HO tracks
O-names).

The second construction R̂ concretises the outcome of
the previous construction by providing heaps and availabil-
ity information in line with the information drawn from
A via I, vOQ and vOA. We write (D,h,HF , HC) and
(D,h,HF , HC ,Fn,Cn) to inject the heap h and the avail-
ability record into the partial configuration D.

Given w,HO,HP , the corresponding availability compo-
nents H(HO,HP), A(w,HP) are defined to be respectively
(HF , HC) and (Fn,Cn), as specified below.

HF (n) , {f | HP (f) v∗OQ HO(n)}
HC(n) , {c | HP (c) v∗OA HO(n)}

Fn , {f | HP (f) v∗OQ w}
Cn , {c | HP (c) v∗OA w}

We then have:

Lemma 33. If R is an A-Kripke prime bisimulation over Lx

then R̂† is a bisimulation over Lx.

Note that the tuple corresponding to (M1{ρ}, c,M2{ρ},
c, w0,H0) ∈ RE in the associated Ax-KPB (Figure 13) con-
sists of the initial configurations Cρ,cM1

, Cρ,cM2
(without the empty

heap and information about empty availability). Consequently,
by the Lemma above, the configurations will be bisimilar. By
Theorem 17, Γ `M1

∼=x(ciu)
err M2.

Completeness

Assuming Γ ` M1
∼=x(ciu)

err M2, for any Γ-
assignment ρ and suitably typed c, we need to construct
an Ax-KNFB, along with an initial world w0, such that

11

From Ax-KNFB to Ax-KPB, and back.

(σ,M1, c1,M2, c2, w,HO) ↔ (〈M1, c1, ·,dom(HO)〉, 〈M2, c2, ·,dom(HO)〉, (w,HO))
(σ, σ′,K1, c1,K2, c2, w,HO) ↔ (〈[c 7→ (K1, c1)],dom(HO)] {c}〉, 〈[c 7→ (K2, c2)],dom(HO)] {c}〉, (w,HO))
(σ → σ′, V1, V2, w,HO) ↔ (〈[f 7→ V1],dom(HO)] {f}〉, 〈[f 7→ V2],dom(HO)] {f}〉, (w,HO))

Step 1: Given R = (Rpas , Ract), we set R† = (R†pas , R
†
act). Below nj is the unique name in the γ component of P j1 and P j2 .

R†pas , {(
⊗

j P
j
1 ,

⊗
j P

j
2 ,HO,

⋃
j [nj 7→ wj]) | (P j1 , P

j
2 , wj ,HO) ∈ Rpas , j ∈ J, J finite}

R†act , {(P ⊗D,P ′ ⊗D′, w,HO,HP) | (P, P ′, w,HO) ∈ Ract ∧ (D,D′,HO,HP) ∈ R†pas}

Step 2: Given R = (Rpas , Ract), we set R̂ = (R̂pas , R̂act).

R̂pas , {((D1, h1, HF , HC ,Fn,Cn), (D2, h2, HF , HC ,Fn,Cn)) | ∃(w,HO,HP).
(h1, h2) ∈ I(w) ∧ (HF , HC) = H(HO,HP) ∧ (Fn,Cn) = A(w,HP) ∧ (D1, D2,HO,HP) ∈ Rpas}

R̂act , {((D1, h1, HF , HC), (D2, h2, HF , HC)) | ∃(w,HP ,HO).
(HF , HC) = H(HO,HP) ∧ (h1, h2) ∈ I(w) ∧ (D1, D2, w,HO,HP) ∈ Ract}

Fig. 13. Lifting steps

(M1{ρ}, c,M2{ρ}, c, w0,H0) ∈ RE , where H0 = [ν(ρ), c 7→
w0]. Using the correspondence from Figure 13, it suffices to
construct the corresponding Ax-KPB. Next we sketch several
crucial steps in the argument.

The first step extracts a bisimulation S = (Spas , Sact) over
Lx via Theorem 17. We use the bisimulation to specify the
WTS A as (Worlds,vOQ,vOA, I), where Worlds = Spas

(pairs of passive configurations) and I maps a pair of config-
urations to the pair of their heaps. To define vOQ,vOA, we
rely on several new relations.
• C1 vop C2 if C1 = C2 or C1

op
==⇒ C2 for some o,p.

• C1 vj C2 if C1 = C2 or C1
otp
==⇒ C2, where p is

justified by o (i.e. p’s head name is introduced in o).
• C1 vjQA C2 if C1 = C2 or C1

otp
==⇒ C2, where p is an

answer justified by o, i.e. vjQA is a subset of vj .
Note that vj is like calculating VisO(t), while vjQA mimics
TopO(t). An important point to note is that the definitions
given below will be an exact match with how name availability
is calculated in each case (Figure 10). We define vOQ,vOA

as follows.
x vOQ vOA

HOSC vop vop
GOSC vj vj
HOS vop vjQA
GOS vj vjQA

Finally, we construct an Ax-KPB S↑ = (S↑pas , S
↑
act) using

tuples of the form (P1, P2, ((C1, C2),HO)), which must be
“consistent” with S, e.g. (C1, C2) ∈ Spas , Pi is a prime
component of Ci (for S↑pas) and Pi is a prime component
of Ci’s successor (for S↑act).

VII. RELATED WORK AND CONCLUSIONS

Kripke logical relational frameworks [15], [16] typically
operate with a single notion of future. However, to capture
scenarios without control, [16] proposed to make a distinction

between v (private) and vpub (public), with the intuition
that contexts make public transitions only. This is similar
to our vOQ vs vOA distinction, though our perspective is
motivated by distinguishing questions and answers, and the
two relations cover (sequences of) pairs of OP moves. In our
setting, the requirement that the “end-to-end” behaviour must
appear public corresponds to the H(c) vOA w

′ condition.
When proving equivalences without higher-order state (i.e.

GOSC and GOS), the authors of [16] observed that, in the
course of their proof, it was still sound not to follow the future
relation, and to go back in time before moving into the future
again. The technique, called backtracking, has been described
somewhat informally. The authors explain how far one can
backtrack as follows: when proving that functions are related at
a starting state s, “we can transition from any state accessible
from s to any other state accessible from s”. This backtracking
policy is sufficient to prove the examples handled in [16], but
our analysis (namely, the H(n) vOA w

′, H(n) vOQ w′ con-
ditions in various cases) indicates that, to make the technique
complete on its own, it is necessary to allow jumps to the point
of introduction of the relevant continuation name (for values)
or function names (for callbacks). This point of introduction
may well precede the point at which we are showing functions
equivalent, e.g. in Example 27, the equivalence argument for
the λg. · · · terms at w`1,`2tt,tt needs to jump to w∅ in connection
with the callback h().

We believe that a general notion of backtracking in
KLRs [16] can be developed by unfolding the bi-orthogonal
definitions, akin to the Principle of Local Invariants of [14].
However, its formal statement would most likely require the
introduction of a notion of history, similar to the one we have
introduced, i.e. the origin of each function or continuation
provided by the context has to be tracked. It is interesting
to note that the H(c) vOA w′ condition for HOS looks like
backtracking, even though it concerns higher-order state.

In [25], Relational Transition Systems were introduced
as a synthesis of bisimulations and Kripke-style reasoning

12

(for a programming language with references and polymor-
phism), and later refined to Parametric Inter-Language Bisim-
ulations [26]. They are based on a notion of global knowledge
that seeks to generalise notions such as the environment γ, e.g.
in the setting of inter-language reasoning. Our approach has
a rather different technical objective: we seek to remove the
need for such global knowledge in order to obtain a modular
and complete technique for languages with both references
and continuations.

The worlds used in [16], are divided into islands that
carry a transition system of invariants on disjoint parts of
the heap. A future world is then able to add new islands,
i.e. also new transition systems, to the current world. Our
setting is somewhat different: in a WTS, the future relation
corresponds to navigating a transition system that is fixed
upfront and not modified later. While we have not designed
reasoning principles for combining reasoning on components
that handle disjoint parts of the heap, it should be possible to
do so by extending the tensor product of partial configurations
presented in Section VI to configurations with disjoints heaps.

As we briefly mentioned, for contexts without control, ∼=x
err

is stronger than ∼=x
ter . In [7], it was shown how to capture

∼=x
ter using complete traces. Consequently, equivalence then

boils down to bisimilarity testing over complete traces. To
adapt our methodology to such traces, it is necessary to detect
configurations that will never run to completion (termination).
This is largely an orthogonal concern to capturing the shape
of potential interactions in each case. It can be handled
by introducing a special class of “inconsistent” worlds that
guarantee non-termination in any future, as in [16], [19], [9].

Our methodology is general and we would like to extend
it to further paradigms. To go beyond cr-free HOSC terms,
i.e. to allow reference- and continuation-types at the term
interface, it should be sufficient to maintain bijections of
names inside worlds, as introduced in [27]. For polymorphic
types, a natural starting point would be the operational game
semantics provided in [28] for a language with references and
parametric polymorphism.

We believe our work opens up the way to automated
reasoning about contextual equivalence for all four languages
in a common framework, following the approach proposed
in [18].

ACKNOWLEDGMENT

We are very grateful to the anonymous referees for helpful
comments and for pointing out a missing side condition (“for
all x-terms”) in Lemma 1 of [7]. We discuss the issue in more
detail in the full version of the ESOP paper.

REFERENCES

[1] R. Milner, “Fully abstract models of typed lambda-calculi,” Theoretical
Computer Science, vol. 4, no. 1, pp. 1–22, 1977.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for
PCF,” Information and Computation, vol. 163, pp. 409–470, 2000.

[3] J. M. E. Hyland and C.-H. L. Ong, “On Full Abstraction for PCF: I.
Models, observables and the full abstraction problem, II. Dialogue games
and innocent strategies, III. A fully abstract and universal game model,”
Information and Computation, vol. 163(2), pp. 285–408, 2000.

[4] A. Jeffrey and J. Rathke, “A fully abstract may testing semantics for
concurrent objects,” Theor. Comput. Sci., vol. 338, no. 1-3, pp. 17–63,
2005.

[5] R. Jagadeesan, C. Pitcher, and J. Riely, “Open bisimulation for aspects,”
in Proceedings of AOSD, ser. ACM International Conference Proceeding
Series, vol. 208, 2007, pp. 107–120.

[6] J. Laird, “A fully abstract trace semantics for general references,”
in Proceedings of ICALP, ser. Lecture Notes in Computer Science.
Springer, 2007, vol. 4596, pp. 667–679.

[7] G. Jaber and A. S. Murawski, “Complete trace models of state and
control,” in Proceedings of ESOP, ser. Lecture Notes in Computer
Science, vol. 12648. Springer, 2021, pp. 348–374, full version available
at https://hal.archives-ouvertes.fr/hal-03116698.

[8] K. Støvring and S. B. Lassen, “A complete, co-inductive syntactic theory
of sequential control and state,” in POPL. ACM, 2007, pp. 161–172.

[9] D. Biernacki, S. Lenglet, and P. Polesiuk, “A complete normal-form
bisimilarity for state,” in Proceedings of FOSSACS, ser. Lecture Notes
in Computer Science, vol. 11425. Springer, 2019, pp. 98–114.

[10] E. Sumii, “A complete characterization of observational equivalence in
polymorphic lambda-calculus with general references,” in Proceedings
of CSL, ser. Lecture Notes in Computer Science, vol. 5771. Springer,
2009, pp. 455–469.

[11] D. Sangiorgi, N. Kobayashi, and E. Sumii, “Environmental bisimulations
for higher-order languages,” ACM Trans. Program. Lang. Syst., vol. 33,
no. 1, p. 5, 2011.

[12] V. Koutavas and M. Wand, “Small bisimulations for reasoning about
higher-order imperative programs,” in Proceedings of POPL. ACM,
2006, pp. 141–152.

[13] V. Koutavas, P. B. Levy, and E. Sumii, “From applicative to environ-
mental bisimulation,” Electr. Notes Theor. Comput. Sci., vol. 276, pp.
215–235, 2011.

[14] A. M. Pitts and I. D. B. Stark, “Operational reasoning for functions with
local state,” in Higher-Order Operational Techniques in Semantics, A. D.
Gordon and A. M. Pitts, Eds. Cambridge University Press, 1998, pp.
227–273.

[15] A. Ahmed, D. Dreyer, and A. Rossberg, “State-dependent representation
independence,” in Proceedings of POPL. ACM, 2009, pp. 340–353.

[16] D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order state
and control effects on local relational reasoning,” J. Funct. Program.,
vol. 22, no. 4-5, pp. 477–528, 2012.

[17] D. Sangiorgi, “A theory of bisimulation for the pi-calculus,” Acta Inf.,
vol. 33, no. 1, pp. 69–97, 1996.

[18] G. Jaber, “SyTeCi: Automating contextual equivalence for higher-order
programs with references,” Proc. ACM Program. Lang., vol. 4, no.
POPL, 2020.

[19] G. Jaber and N. Tabareau, “Kripke open bisimulation - A marriage of
game semantics and operational techniques,” in Proceedings of APLAS,
ser. Lecture Notes in Computer Science, vol. 9458, 2015, pp. 271–291.

[20] J. Laird, “A semantic analysis of control,” Ph.D. dissertation, University
of Edinburgh, 1998.

[21] S. Abramsky, K. Honda, and G. McCusker, “Fully abstract game
semantics for general references,” in Proceedings of LICS. Computer
Society Press, 1998, pp. 334–344.

[22] S. B. Lassen and P. B. Levy, “Typed normal form bisimulation,” in
Proceedings of CSL, ser. Lecture Notes in Computer Science. Springer,
2007, vol. 4646, pp. 283–297.

[23] S. B. Lassen, “Eager normal form bisimulation,” in Proceedings of LICS,
2005, pp. 345–354.

[24] P. B. Levy and S. Staton, “Transition systems over games,” in Proceed-
ings of CSL-LICS, 2014, pp. 64:1–64:10.

[25] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis, “The marriage of
bisimulations and Kripke logical relations,” in Proceedings of POPL.
ACM, 2012, pp. 59–72.

[26] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis, “Pilsner: A compositionally verified compiler for a higher-
order imperative language,” SIGPLAN Not., vol. 50, no. 9, p. 166?178,
Aug. 2015.

[27] N. Benton and B. Leperchey, “Relational reasoning in a nominal
semantics for storage,” in International Conference on Typed Lambda
Calculi and Applications. Springer, 2005, pp. 86–101.

[28] G. Jaber and N. Tzevelekos, “Trace semantics for polymorphic refer-
ences,” in Proceedings of LICS. ACM, 2016, pp. 585–594.

13

