
Polynomial-Time Equivalence Testing for
Deterministic Fresh-Register Automata
Andrzej S. Murawski
University of Oxford, UK

Steven J. Ramsay
University of Bristol, UK

Nikos Tzevelekos
Queen Mary University of London, UK

Abstract
Register automata are one of the most studied automata models over infinite alphabets. The
complexity of language equivalence for register automata is quite subtle. In general, the problem
is undecidable but, in the deterministic case, it is known to be decidable and in NP. Here we
propose a polynomial-time algorithm building upon automata- and group-theoretic techniques.
The algorithm is applicable to standard register automata with a fixed number of registers as
well as their variants with a variable number of registers and ability to generate fresh data
values (fresh-register automata). To complement our findings, we also investigate the associated
inclusion problem and show that it is PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory

Keywords and phrases automata over infinite alphabets, language equivalence, bisimilarity, com-
putational group theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.72

Funding Supported by EPSRC grants EP/J019577, EP/P004172.

1 Introduction

Register automata [9, 15] are one of the simplest models of computation over infinite alphabets.
They operate on an infinite domain of data by storing data values in a finite number of
registers, where the values are available for future comparisons or updates. The automata
can also recognise when a data value does not appear in any of the registers. Fresh-register
automata [20] are an extension of register automata that can, in addition, generate data
values not seen so far.

In recent years, register-based automata have appeared in a variety of contexts, ranging
from database query languages [18] and programming language semantics [14] to run-time
verification [7]. Since the very beginning, there has been great interest in extending learning
algorithms to register automata [16, 4, 1, 5, 12], driven by applications in verification [11]
and system modelling [21].

Register automata are closely related to nominal automata [3], which constitute a nominal
counterpart of finite-state machines. Their closure properties and associated decision problems
have first been studied in [9, 15]. One of the most fundamental and applicable decision
problems is that of language equivalence, not least due to connections with query equivalence,

© Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 72; pp. 72:1–72:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Polynomial-Time Equivalence Testing

program equivalence and learning. Unfortunately, it turns out that the equivalence problem
for register automata is in general undecidable [15]. Fortunately, it is decidable in the
deterministic case (by reduction to emptiness using closure properties [9]).

Our paper presents the first polynomial-time algorithm for the problem. The algorithm
is actually applicable to a wider class of automata, namely fresh-register automata with a
variable number of registers.

To begin with, we exploit the observation that in the deterministic setting, language
equivalence and bisimilarity are closely related. Secondly, because in our setting only different
values can be stored in different registers [9], we take advantage of symbolic representations
of bisimulation relations based on partial permutations. The proposed algorithm attempts
to build such a bisimulation relation incrementally. To avoid potential exponential blow-ups,
the candidate relations are stored in a concise fashion through generators of symmetric
groups. Thanks to the fact that group membership testing works in polynomial-time [6] and
subgroup chains can only have linear length [2], we can prove that the process of refining the
candidate will terminate in polynomial time. Consequently, the equivalence problem for our
variant of fresh-register automata is in P, which improves upon the best upper bound known
so far, namely, NP [13].

A natural question is whether the polynomial-time bound could have been obtained via
the associated inclusion problem. We give a negative answer to this question by showing
that the inclusion problem in our setting is PSPACE-complete.

2 Automata

Let D be an infinite set (alphabet). Its elements will be called data values (in process algebra,
the term names is used instead). We shall work with a deterministic model of register
automata over D. As in [9], we require that different registers contain different data values.
To allow for more flexible use of registers, the number of available registers will be allowed
to vary according to the current state. Register content can be both erased and created.
Creation can be local (new element is guaranteed not to occur in any register) or global (new
element is guaranteed not to have been encountered in the whole run). We give the formal
definition below. In Remark 5 we discuss the motivation behind various restrictions and
their relevance to polynomial-time complexity.

I Definition 1. Given a natural number r, we write [1, r] for the set {i ∈ N | 1 ≤ i ≤ r}. An
r-register assignment is an injective function from a subset of [1, r] to D. An r-deterministic
fresh-register automaton (r-DFRA) is a tuple A = 〈Σ, Q, q0, µ, δ, F 〉, where:

Σ is a finite alphabet of tags;
Q is a finite set of states, q0 ∈ Q is initial and F ⊆ Q contains final states;
µ : Q→ P([1, r]) is the availability function indicating which registers are filled at each
state, we require µ(q0) = ∅;
δ = δold + δfresh is the transition function, where δold : Q× Σ× [1, r] ⇀ Q controls the
use of existing register values and δfresh : Q × Σ ⇀ Q × [1, r] × {•,~} indicates when
fresh values are created and how fresh they are.

To preserve the meaning of µ, we insist that δold(q, t, i) = q′ implies i ∈ µ(q) and µ(q) ⊇ µ(q′)
and δfresh(q, t) = (q′, i, x) implies µ(q) ∪ {i} ⊇ µ(q′). Note the use of ⊇ instead of =. This
allows for register erasures during computation. We shall write q t,i−→ q′ for δold(q, t, i) = q′

and q t,ix−−→ q′ for δfresh(q, t) = (q′, i, x).

Next we formalise how to obtain a labelled transition system for a given r-DFRA.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:3

I Definition 2. A labelled transition system (LTS) over Act is a tuple S = (Act,C,→),
where C is a set of configurations, Act is a set of action labels, and →⊆ C×Act × C. We
write κ `−→ κ′ for (κ, `, κ′) ∈→. S is deterministic if κ `−→ κ1 and κ `−→ κ2 imply κ1 = κ2.

An r-DFRA induces a deterministic LTS as follows.

I Definition 3. Given an r-DFRA A = 〈Σ, Q, q0, µ, δ, F 〉, we define its set of configurations:

CA = {(q, ρ,H) | q ∈ Q, ρ : µ(q)→ D is injective, rng(ρ) ⊆ H ⊆fin D}

We refer to H as history. Let S(A) be the LTS 〈Σ × D,CA, →A〉, where →A is defined
in the following way: a configuration (q1, ρ1, H1) can make a transition to a configuration
(q2, ρ2, H2) reading input (t, d), written (q1, ρ1, H1) (t,d)−−−→ (q2, ρ2, H2), if one of the conditions
listed below is satisfied (the last two cases never overlap, because δfresh is a partial function).

d = ρ1(i), δold(q1, t, i) = q2, ρ2 = (ρ1 � µ(q2)) and H2 = H1
d 6∈ rng(ρ1), δfresh(q1, t) = (q2, i, •), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}
d 6∈ H1, δfresh(q1, t) = (q2, i,~), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}

Note that S(A) does not depend on the initial and final parameters q0 and F .

I Definition 4. The configuration κinit
A = (q0, ∅, ∅) will be called initial. A sequence of

configurations κ0, · · · , κn such that κ0 = κinit
A and κi

ti,di−−−→ κi+1 (i = 0, · · · , n− 1) is called
a run on the data word (t0, d0) · · · (tn−1, dn−1). A run is accepting if κn = (qn, ρn, Hn) and
qn ∈ F . We write L(A) for the set of words from (Σ×D)∗ with accepting runs, and call it
the language of A.

I Remark 5. Our definition allows for a variable number of available registers, i.e. it is more
permissive than that in [15, 19]. This flexible register regime makes it possible to express
certain common computational scenarios more directly: in particular, data values can be
discarded (“forgotten”) as soon as they are no longer needed (cf. garbage collection). Our
result shows that poly-time equivalence testing is still possible with this added flexibility. At
the same time, the flexible number of registers simplifies the technical development: one can
combine an r1-DFRA and a r2-DFRA into a single max(r1, r2)-DFRA (see Remark 7) by
taking the disjoint union of states and transitions.

We rely on injective register assignments, as in the original definition of Francez and
Kaminski [9]. This restriction is important for poly-time complexity, as the presence of
multiple copies of the same value in registers could be used to model binary memory
content (e.g. 1 is represented by the same value in two registers and 0 by different values).
Consequently, this would imply a PSPACE lower bound. The appeal of injectivity lies in
the fact no expressivity is lost but the transition function has a particularly simple shape
and one can define the deterministic variant without introducing any additional comparisons
between registers. While the injective discipline may seem restrictive, it has proved a good
match for several prominent formalisms that arise in programming language semantics, and
does not limit expressivity (e.g. [1]). For example, one can show that the automata support
elegant translations from the pi-calculus [19]. They are also a natural target when it comes
to investigating the semantics of programs with unbounded data – this is one of the original
motivations mentioned in [9], which was also exploited in our work on the ML programming
language [14].

The explicit availability function µ guarantees that whenever a transition refers to existing
register content, the relevant value will be available. Allowing for transitions that may block
on unavailable values is known to lead to NP-hardness [17], already for emptiness in the

MFCS 2018

72:4 Polynomial-Time Equivalence Testing

deterministic case. Our variant of automata makes it possible for the automaton to drop
multiple data values from registers. Conversely, values can also be created but only one at a
time. Of course, such single value creations can be combined to create multiple new values.
However, the new values must also occur in labels. One can imagine adding a facility for
spontaneous value creation, where locally or globally fresh values would be added to the
registers without being present in labels. However, the resultant non-determinism could then
be used to prove universality undecidable in the same way as for nondeterministic automata,
e.g. the argument from [15] could be repeated by employing spontaneous value creation to
guess the location of errors. Like in [1, 12], we assume that the registers are not filled at the
beginning and are initialised through transitions.

I Definition 6. A relation R ⊆ C × C is called a simulation if, for all (κ1, κ2) ∈ R, if
κ1

t,a−−→ κ′1 then there is κ2
t,a−−→ κ′2 such that (κ′1, κ′2) ∈ R. R is called a bisimulation if both

R and R−1 are simulations. The union of all bisimulations is denoted ∼. Two configurations
κ1, κ2 are bisimilar just if κ1 ∼ κ2, i.e. there is some bisimulation R containing them.

In this paper we are concerned with the language equivalence problem for DFRA, i.e.
the question whether, given r1-DFRA A1 and r2-DFRA A2, we have L(A1) = L(A2). Our
approach to the problem is bisimulation-oriented: language equivalence testing of A1 and A2
can be viewed as a bisimilarity problem for a single r-DFRA with r = max(r1, r2).
I Remark 7. We explain this reduction in a little more detail. First we transform Ai into A′i
as follows:

remove all transitions leading to states from which it is impossible to reach a final state,
add a new state fi and designate it as the only final state,
add transitions from former final states to the new final state on a new tag t$.

Suppose S(A′i) = 〈Σ × D,CA′
i
, →A′

i
〉 (i = 1, 2) and consider the LTS SA1,A2 = 〈Σ ×

D,CA′1 +CA′2 ,→A′1 +→A′2〉. Now language equivalence of the original automata is equivalent
to checking whether κinit

A1
and κinit

A2
are bisimilar in SA1,A2 . If A′i = 〈Σ, Qi, qi0, µi, δi, {fi}〉,

then let SA1,A2 = SA′ , where A′ is the max(r1, r2)-DFRA defined by 〈Σ, Q1 +Q2, q
′, µ1 +

µ2, δ1 + δ2, F
′〉 for any q′ ∈ Q1 +Q2 and F ′ ⊆ Q1 +Q2. Note, the components q′, F ′ can be

chosen arbitrarily, because they do not contribute to the definition of bisimilarity over (the
configuration graph of) SA′ .

3 Symbolic bisimulations

In this section we introduce symbolic representations of bisimulation relations, for configura-
tion pairs with common history,1 based on partial permutations. A partial permutation over
[1, n] is a bijection between two (possibly different) subsets of [1, n]. Let ISn stand for the
set of partial permutations over [1, n] and SX for the group of permutations over X. Let us
consider the kind of possible scenarios that may arise in simulating transitions of a DFRA.

A transition on a value already stored in a register can be matched by a transition on a
stored value or a locally fresh transition, but never a globally fresh one.
A globally fresh transition can be matched by a globally fresh transition or a locally fresh
one, but never a transition on a stored value.
A locally fresh transition can be matched by a transition on a stored value, a locally fresh
transition or a globally fresh one.

1 By Remark 7, it suffices to consider configuration pairs with common history.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:5

The use of partial bijections will help us specify which cases may occur. Although we work
with automata over r registers, we shall use partial permutations over [1, n], where n = 2r.
They will be used to express not only a matching between data values occurring in two sets
of r registers (corresponding to two configurations that we examine for bisimilarity) but also
to indicate which values forgotten by one set are still remembered by the other.

The number 2r may be surprising but it is needed to provide an accurate account of
scenarios in which local freshness can be simulated by global freshness. Note that this is
possible if the registers of the second configuration contain all the data values that have been
forgotten by the first one (i.e. do not appear in its registers any more). Once the size of
the history exceeds 2r, this is no longer possible: because the first configuration has only r
registers it will have forgotten more than r data values and, because the second configuration
has only r registers, it cannot remember them all. Consequently, we only need to track
matches between forgotten values and register content of the other configuration as long as
the size of the history does not exceed 2r. To keep track of such scenarios, it is convenient to
imagine that there are 2r registers available and use partial permutations to match values in
registers with values that were possibly forgotten until the size of the history is at most 2r.
Once that is exceeded, matchings between the real r registers suffice.

Given σ ∈ ISr and q1, q2 ∈ Q, we write σ � (q1, q2) for σ ∩ (µ(q1)×µ(q2)). Next, in
accordance with the use of 2r registers discussed above, we introduce notions that will allow
us to represent configurations in which only a subset S ⊆ [1, 2r] of the registers is available
along with certain values that are not stored any longer. The data values occurring in
registers S will occupy the same positions (as specified by S), for other values we impose the
convention that they should reside in the leftmost register positions that are unoccupied.

I Definition 8 (Notation). Given S ⊆ T ⊆ [1, 2r], let S / T ∈ S2r be the permutation that
shifts all elements in T \ S to the left (inside the interval [1, 2r]) without interfering with S.
Formally, if T \ S is ordered as [i1, · · · , ik] then:

S / T = (i1 i′1); · · · ; (ik i′k), where i′j is the jth smallest element in [1, 2r] \ S.

Each (i i′) denotes a transposition and ; is the composition of permutations. For example,
taking S = {3, 6} and T = {1, 3, 4, 6, 7}, the permutation would be S / T = (1 1); (4 2); (7 4)
and, therefore, (S / T)(T) = {1, 2, 3, 4, 6}.
Given S ⊆ [1, 2r] and h ≤ 2r with |S| ≤ h, we define S/h to be the unique T satisfying
S ⊆ T ⊆ [1, 2r], |T | = h and T = (S/T)(T). In other words, S/h is obtained by adding h−|S|
smallest numbers from [1, 2r] \ S to S. For instance, for S = {3, 6}: S/2 = S, S/3 = {1, 3, 6},
S/4 = {1, 2, 3, 6}, etc. Finally, given σ ∈ IS2r and S1 ⊆ dom(σ), S2 ⊆ rng(σ):

we write: σ(S1,S2)/ = (S1 / dom(σ))−1;σ; (S2 / rng(σ)),
and extend the notation to q1, q2 ∈ Q by: σ(q1,q2)/ = σ(µ(q1),µ(q2))/.

Next we shall introduce a symbolic notion of simulation. Pairs of configurations will be
represented by elements of U0 = Q×IS2r×Q× ([0, 2r]∪{∞}): each pair is represented by
the states it contains and a partial permutation representing the two register assignments (a
matching between their common data values). In order to handle the interaction between
the two kinds of fresh transitions we also introduce an additional element storing the size
of the common history (∞ stands for “bigger than 2r”). Below we define a subset U of U0
that characterises the elements compatible with availability information. Moreover, once the
history becomes larger than 2r, we reduce the matchings to r registers only (see above).

MFCS 2018

72:6 Polynomial-Time Equivalence Testing

I Definition 9. Let U0 = Q×IS2r×Q× ([0, 2r]∪{∞}) and:

U = { (q1, σ, q2, h) ∈ U0 | h ≤ 2r =⇒ (dom(σ) = µ(q1)/h ∧ rng(σ) = µ(q2)/h)
∧ h =∞ =⇒ (σ ∈ ISr ∧ σ ⊆ µ(q1)×µ(q2)) }

Given configurations κ1, κ2, with κi = (qi, ρi, H) for some common H, we define the set of
symbolic representations of (κ1, κ2) by:

symb(κ1, κ2) =
{
{(q1, ρ1; ρ−1

2 , q2,∞)} |H| > 2r
{(q1, (ρ̂1; ρ̂−1

2)/(q1,q2), q2, |H|) | ρi ⊆ ρ̂i ∧ rng(ρ̂i) = H} |H| ≤ 2r

The essence of the above representation is the abstracting away from the register assign-
ments ρ1, ρ2 to a partial permutation σ ∈ IS2r. If the history is large, then σ is simply a
matching between the common values of ρ1 and ρ2. If, on the other hand, H contains at
most 2r elements then σ is obtained by extending each ρi to some ρ̂i that stores the full
history H, and these pairs (ρ̂1, ρ̂2) are then represented by recording their indices containing
matching values.

We proceed with defining symbolic bisimulations. The clauses (a)-(f) in the definition
below cover all possible kinds of simulation scenarios. Partial bijections help to capture the
conditions under which simulation is possible.

I Definition 10. Let A = 〈Σ, Q, q0, µ, δ, F 〉 be an r-DFRA. A symbolic simulation on
A is a relation R ⊆ U , with elements (q1, σ, q2, h) ∈ R written q1 R

h
σ q2, such that all

(q1, σ, q2, h) ∈ R satisfy the (FSyS) conditions in R. We say that a tuple (q1, σ, q2, h) satisfies
the fresh symbolic simulation conditions (FSyS) in R if the following conditions hold, where
(a-c) apply to h ≤ 2r, and (d-e) to h =∞:
(a) for all q1

t,i−→ q′1,

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = σ(q′1,q

′
2)/,

2. if σ(i) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and σ′ =

(σ; (j j′))(q′1,q
′
2)/;

(b) for all q1
t,i•−−→ q′1 and i′ ∈ dom(σ) \ µ(q1),

1. if σ(i′) ∈ µ(q2) then there is some q2
t,σ(i′)−−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = ((i i′);σ)(q′1,q

′
2)/,

2. if σ(i′) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and

σ′ = ((i i′);σ; (j j′))(q′1,q
′
2)/;

(c) for all q1
t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2

t,`j−−→ q′2 with `j ∈ {j•, j~} and,
1. if h < 2r then q′1 Rh+1

σ′ q′2 with σ′ = ((i 2r);σ[2r 7→ 2r]; (j 2r))(q′1,q
′
2)/,

2. if h = 2r then q′1 R∞σ′ q′2 with σ′ = σ[i 7→ j] � (q′1, q′2);
(d) for all q1

t,i−→ q′1,

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ � (q′1, q′2),

2. if i ∈ µ(q1) \ dom(σ) then there is some q2
t,j•−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ[i 7→ j] �

(q′1, q′2);

(e) for all q1
t,i•−−→ q′1 and j ∈ µ(q2) \ rng(σ), there exists q2

t,j−→ q′2 with q1 R
∞
σ′ q
′
2 and

σ′ = σ[i 7→ j] � (q′1, q′2);
(f) for all q1

t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2
t,`j−−→ q′2 with `j ∈ {j•, j~}, q′1 R∞σ′ q′2

and σ′ = σ[i 7→ j] � (q′1, q′2), and `i = i• =⇒ `j = j•.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:7

Define now the inverse of R by R−1 = { (q2, σ
−1, q1, h) | (q1, σ, q2, h) ∈ R } and call R a

symbolic bisimulation if both R and R−1 are symbolic simulations. We let s-bisimilarity,
denoted s∼, be the union of all symbolic bisimulations.

In the rest of the paper, given R ⊆ U and h ∈ [1, 2r] ∪ {∞}, we shall write Rh for the
projection of R on h: Rh = {(q, σ, q′) | (q, σ, q′, h) ∈ R}.
I Remark 11. To gain some further intuition about the definition above, let us consider
the 2-DFRA configurations κi = (qi, ρi, H), i = 1, 2, where: µ(q1) = µ(q2) = {1, 2},
ρ1 = {(1, a), (2, b)}, ρ2 = {(1, a), (2, c)} and H = {a, b, c}.
The pair (κ1, κ2) can be represented symbolically by (q1, σ, q2, 3) ∈ symb(κ1, κ2) ⊆ U , where
σ = {(1, 1), (2, 3), (3, 2)}. This represents the fact that ρ1, ρ2 share the data value a in their
first register and each have a private value in their second register.2 The (FSyS) conditions
express symbolically what it takes for κ2 to simulate κ1, i.e. what is needed for (q1, σ, q2, 3)
to belong to a (symbolic) simulation R. Let us look at two sample cases.

Suppose q1
t,1−−→ q′1. Then, κ1

(t,a)−−−→ κ′1 and, in order for κ2 to match this, it must be the
case that q2

t,1−−→ q′2. This is imposed by Condition (a)1 of (FSyS).
If q1

t,2−−→ q′1 then κ1
(t,b)−−−→ κ′1. Then, κ2 can only match a transition on b using a

locally fresh transition (Condition (a)2), so we must have e.g. q2
t,1•−−→ q′2, yielding some

κ2
(t,b)−−−→ κ′2.

In each of the cases above, the (FSyS) conditions also stipulate that the resulting repres-
entation of (κ′1, κ′2) must also be in R. In the second case, assuming κ′i = (q′i, ρ′i, H) and
µ(q′i) = {1, 2}, we have that ρ′1 = {(1, a), (2, b)} and ρ′2 = {(1, b), (2, c)}, and the pair (κ′1, κ′2)
is represented by (q′1, σ′, q′2, 3) with σ′ = {(1, 3), (2, 1), (3, 2)}. Because σ′ = σ; (3 1) =
(σ; (3 1))(q′1,q

′
2)/, the (FSyS) conditions require (q′1, σ′, q′2, 3) ∈ R.

The importance of symbolic bisimulations lies in that they precisely represent actual
bisimulations in a finite way. Below, we first show that the symbolic representations of pairs
of configurations are well defined (the choice of extensions ρ̂i for the case of |H| ≤ 2r does
not matter for s∼), and then prove the representation property.

I Lemma 12. For any κ1, κ2 with κi = (qi, ρi, H) and |H| ≤ 2r, either symb(κ1, κ2) ⊆ s∼
or symb(κ1, κ2) ∩ s∼ = ∅.

I Proposition 13. For any κ1, κ2 with common history, κ1 ∼ κ2 iff symb(κ1, κ2) ⊆ s∼.
Although finite, symbolic bisimulations are of exponential size in the worst case (with

respect to the automaton size) because of including the partial bijections σ. Our equivalence-
testing algorithm for r-DFRA will rely on representations of candidate symbolic bisimulations
in a succinct way. In order to spell out in what sense these representations will capture
subsets of U we need to introduce the following closure operations.

I Definition 14. Let R ⊆ U . Then Cl(R) is defined to be the smallest subset X of U such
that R ⊆ X and X is closed under the following rules.

S = µ(q)/h h ≤ 2r
(q, idS , q) ∈ Xh (q, idµ(q), q) ∈ X∞

(q1, σ, q2) ∈ Xh

(q2, σ−1, q1) ∈ Xh

(q1, σ, q2) ∈ X∞ σ ⊆ σ′

(q1, σ′, q2) ∈ X∞
(q1, σ1, q2) ∈ Xh (q2, σ2, q3) ∈ Xh

(q1, σ1;σ2, q3) ∈ Xh

2 E.g. the value b is in register 2 of ρ1 but is not present in ρ2. Seeing ρ̂2 as an expansion of ρ2 to 3
registers (with register 3 containing forgotten values), we set ρ̂2(3) = b and therefore σ(2) = 3.

MFCS 2018

72:8 Polynomial-Time Equivalence Testing

The next lemma provides a handle on proving that closures Cl(R) satisfy (FSyS) conditions.

I Lemma 15. Let R,P ⊆ U with R = R−1. If all g ∈ R satisfy the (FSyS) conditions in
P then all g′ ∈ Cl(R) satisfy the (FSyS) conditions in Cl(P).

I Corollary 16. Cl(s∼) = s∼.

Proof. It suffices to show the left-to-right inclusion. All elements in s∼ satisfy the (FSyS)
conditions in s∼. Hence, by the previous lemma, all elements of Cl(s∼) satisfy the (FSyS)
conditions in Cl(s∼). This implies that Cl(s∼) is a symbolic bisimulation. Thus, Cl(s∼) ⊆ s∼. J

I Remark 17. One may wonder to what extent our techniques apply to simulation rather
than bisimulation. Although symbolic simulation can be related to simulation, our methods
crucially exploit the fact that bisimilarity is symmetric. This is reflected in the top right
rule of Definition 14, which introduces inverses, and enables us to develop a group-theoretic
representation scheme in the next section.

4 Representation

Our algorithm for DFRA equivalence will rely on manipulating sets H ⊆ U that, for positive
instances, will ultimately converge to a symbolic bisimulation relation. We shall handle
them through succinct representations based on group theory, whose shape is inspired by the
structure of bisimulation relations [13]. The backbone of a generating system, to be defined
next, is an equivalence relation �h on states. As explained in Definition 19, the relation
specifies which pairs of states may actually feature in tuples of the represented subset of U .

I Definition 18. A generating system R consists of a set {Rh |h ∈ [0, 2r] ∪ {∞}}, where
each Rh = 〈�h, {(qhC , Xh

C , G
h
C) | C ∈ Q/�h}, {σhq | q ∈ Q}〉 satisfies the following constraints.

�h ⊆ Q×Q is an equivalence relation.
For any �h-equivalence class C:
qhC is a state from C (class representative);
Xh
C = µ(qhC)/h for h ∈ [0, 2r] and X∞C ⊆ µ(q∞C);
∅ 6= GhC ⊆ SXh

C
.

For any q ∈ Q, C = [q]�h and h ∈ [0, 2r], we have σhq ∈ IS2r with dom(σhq) = µ(qhC)/h
and rng(σhq) = µ(q)/h. Moreover, σ∞q ∈ ISr and dom(σ∞q) = X∞C . Finally, σh

qh
C

= idXh
C
.

Thus, at each level h, a generating system partitions the set of states into equivalence classes
according to �h and each class has a representative qhC , which is “connected” to each element
of the class via σhq . Each representative qhC is also equipped with a subset Xh

C ⊆ [0, 2r] and a
set GhC of permutations (generators) from SXh

C
.

I Definition 19. Let R be a generating system. The subset of U represented by R, written
Gen(R), is defined to be Cl(HR), where HR =

⋃2r
h=0HhR∪H∞R and, for any h ∈ [0, 2r]∪{∞},

we take HhR = { (qhC , ghC , qhC , h) | C ∈ Q/�h, ghC ∈ GhC } ∪ { (qhC , σhq , q, h) | q ∈ Q,C = [q]�h }.

I Example 20. The representation system Rinit is defined by the following components.
�h = {(q, q) | q ∈ Q}. Note that [q]�h = {q}.
For any equivalence class C = {q} we have: qhC = q, Xh

C = µ(q)/h (h ∈ [0, 2r]), X∞C = µ(q),
GhC = {idXh

C
}.

For any q, σhq = idXh
C
.

Note that Gen(Rinit) = Cl(∅).

Next we examine how generating systems can be employed in algorithms. We are particularly
interested in membership testing and a special kind of updates.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:9

4.1 Membership
The next lemma reduces testing for membership in Gen(R) to the classic problem of group
membership testing [6]. Given G ⊆ SX , we let Sub(G) be the subgroup of SX spanned by G.

I Lemma 21. Let R be a generating system, u = (q1, σ, q2, h) ∈ U and σ = σhq1
;σ; (σhq2

)−1.
Then u ∈ Gen(R) if and only if q1 �h q2 and σ ∈ Sub(GhC), where C = [q1]�h = [q2]�h .

4.2 Update
Suppose Gen(R) = Cl(H). We explain how, given u = (q1, σ, q2, h) ∈ U , one can update
R to R′ so that Gen(R′) = Cl(H ∪ {u}). Of course, if u ∈ Gen(R) then it suffices to take
R′ = R. Thus, let us assume u 6∈ Gen(R). By Lemma 21, this corresponds to the following
cases, where σ = σhq1

;σ; (σhq2
)−1.

1. q1 �h q2 and either (a) or (b) holds, where C = [q1]�h = [q2]�h :
(a) σ ∈ SXh

C
\ Sub(GhC),

(b) σ 6∈ SXh
C
, i.e. dom(σ) (Xh

C .
2. q1 �h q2 does not hold.

Observe that 1.(b) will never arise for h 6=∞ due to the definitions of U and R. Note also
that, for h 6=∞, Xh

C is uniquely determined by qhC . However, this is not the case for X∞C .
Before we explain how to tackle each case, we introduce several technical lemmas that

examine how partial permutations interact. They will inform the performance of updates
based on modifying X∞C .

I Lemma 22. Given I ⊆ ISr, let χI = {σ |σ = σε1
1 ; · · · ;σεk

k , k > 0, σi ∈ I, εi ∈ {1,−1}}
and DI = {dom(σ) |σ ∈ χI}. Then χI is closed under composition and inversion, and DI is
closed under intersection.

I Lemma 23. Given I ⊆ ISr, let BI =
⋂
X∈DI

X be called the base of I. Then we have:
1. BI ∈ DI and idBI

∈ χI .
2. Given σ ∈ ISr and X ⊆ [1, r], let us write σ � X for idX ;σ. Then, for any σ ∈ I,

σ � BI ∈ χI and σ � BI is a permutation of BI .
Next we show that, given I, the base BI can be calculated via graph reachability.

I Lemma 24. Let I ⊆ ISr. Consider the undirected graph GI = (V,E) with V = [1, r],
where {j1, j2} ∈ E iff there exists σ ∈ I such that σ(j1) = j2 or σ(j2) = j1. We shall call
v ∈ [1, r] endangered if there exists σ ∈ I such that v 6∈ dom(σ) or v 6∈ rng(σ). For any
i ∈ [1, r], i ∈ BI if and only if no endangered vertex is reachable from i in GI .

4.3 Update implementation
Finally, we are ready to return to the main issue of representation update. We discuss the three
cases (1.(a), 1.(b) and 2.) in turn. Recall that u = (q1, σ, q2, h) ∈ U and σ = σhq1

;σ; (σhq2
)−1.

1. (a) Here we have σ ∈ SXh
C
\ Sub(GhC). To update the system in order to represent σ, it

suffices to add σ to GhC without changing anything else.
1. (b) Here we have dom(σ) (Xh

C and h =∞. In order to capture σ, we replace X∞C with
BI , where I = G∞C ∪ {σ}, and set G∞C = {σ � BI |σ ∈ I}. Note that, by Lemma 23,
all the elements are permutations, as required. Similarly to G∞C , we replace σ∞q with
σ∞q � BI for each q ∈ C. Other elements of the system remain the same.

MFCS 2018

72:10 Polynomial-Time Equivalence Testing

1 i=0; R0 = Rinit; ∆ = {u0}; ∆0 = ∅;
2 while (∆ is not empty) do {
3 u = ∆.get();
4 if u 6∈ Gen(Ri) {
5 if one-step test fails for u return NO;
6 ∆.add(succ-set(u));
7 ∆i+1 = ∆i.add({u});
8 Ri+1 = Ri updated with u;
9 i=i+1;

10 }
11 }
12 return YES

Figure 1 Bisimilarity checking algorithm.

2. This case is the hardest as we need to merge two different equivalence classes, namely,
C1 = [q1]�h and C2 = [q2]�h into a single one C = C1 ∪ C2 (formally, this is a change to
�h). For the new class C, we take qhC = qhC1

.
Next we discuss Xh

qC
. Given τ ∈ GhqC2

, let τ̂ = σ; τ ; (σ)−1 and consider I = GhqC1
∪{τ̂ | τ ∈

GhqC2
}. We shall set Xh

qC
to BI . Note that, if h 6=∞, all elements of I will have the same

domains, so in this case Xh
qC

will not change. As before, we set GhC = {σ � BI |σ ∈ I}.
We also modify σhq , but only for q ∈ C1 ∪ C2. If q ∈ C1, we take σhq � BI instead of
σhq . For q ∈ C2, we need to take the change of representative into account and take
(σ;σhq) � BI instead of σhq .
(For this to be a correct choice, we need to show that dom(σ;σhq) ⊇ BI . This is indeed
so, because dom(σ;σhq) = dom(σ; idXh

qC2
), by dom(σhq) = Xh

qC2
, and dom(σ; idXh

qC2
) =

dom(σ; τ) ⊇ dom(σ; τ ;σ−1) = dom(τ̂) ⊇ BI for any τ ∈ GhqC2
.)

Recall that we work under the assumption that Gen(R) = Cl(H) and let us write R′ for
the updated representation system. In each of the above cases, the modifications contribute
to HR′ only elements from Cl(H ∪ {u}). This is completely clear for 1.(a). For 1.(b) and 2.,
we need to appeal to Lemma 23 (σ � BI ∈ χI) and the use of composition/inversion during
construction. Consequently, Gen(R′) ⊆ Cl(H ∪ {u}).

Conversely, Cl(H ∪ {u}) ⊆ Gen(R′), because all elements of R as well as u have been
integrated into R′, either directly or through composition and reductions to X∞C . Thanks to
the defining rules for Cl (notably, closure under composition and inclusion), such changes
preserve representability.

5 Algorithm

Finally, we present the algorithm for deciding whether two configurations κi = (qi, ρi, H) are
bisimilar. Let u0 = (q1, σ, q2, h) be an arbitrary element of symb(κ1, κ2). By Lemma 12 and
Proposition 13, bisimilarity of κ1, κ2 amounts to checking whether u0 belongs to a symbolic
bisimulation. Our algorithm will determine whether or not this is the case.

The algorithm is presented in Figure 1. It is similar in flavour to the classic Hopcroft-Karp
algorithm for DFA [8], which maintains sets of pairs of states. In contrast, we work with sets
of elements from the set U , i.e. four-tuples (q1, σ, q2, h). As subsets of U may have exponential
size, we do not store them explicitly. Instead we take advantage of the representation systems
developed in the previous section.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:11

Starting from u0, the algorithm maintains generating systems Ri, beginning with Rinit .
We assume the availability of a data structure ∆ for storing multisets of elements of U (e.g.
a queue), equipped with emptiness testing, a get method that removes an occurrence of an
element u from ∆ and returns it as a result, and an add method that extends ∆ with the
elements listed as its argument .
I Remark 25. Each of the conditions for (FSyS) relies on finding a matching transition
satisfying an extra constraint spelt out in terms of Rh. If (FSyS) fails for u or u−1 because
no potential transition exists, we shall say that the one-step test fails for u ∈ U . Note that
we are not concerned whether the extra constraint is satisfied – we only check if a transition
with the specified source and label exists.
Because we work with deterministic automata, the availability of a transition implies unique-
ness. Consequently, if u passes the one-step test, the (FSyS) rules for u and u−1 deliver a
unique set of conditions that need to be checked in order for (FSyS) to be satisfied (for u and
u−1). Formally, these conditions can be captured as a subset of U and we shall call them the
successor set of u, written succ-set(u). In the code above the membership test (u 6∈ Gen(Ri))
is performed as specified in Section 4.1, while the extension of Ri with u follows Section 4.2.
The correctness arguments rely on the following invariants.

I Lemma 26. The loop satisfies the following invariants.
(a) For any i ≥ 0, Gen(Ri) = Cl(∆i) and, for all v ∈ ∆i, v, v−1 satisfy the (FSyS)

conditions in Cl(∆i ∪∆).
(b) For any symbolic bisimulation relation R, if u0 ∈ R then ∆ ⊆ R.

I Theorem 27 (Partial Correctness). When the Algorithm returns YES, there exists a symbolic
bisimulation containing u0. When the Algorithm returns NO, no symbolic bisimulation can
contain u0.

Proof. When the Algorithm returns YES, ∆ is empty. Consequently, Lemma 26 (a) implies
that each element of ∆i ∪∆−1

i satisfies the (FSyS) conditions in Cl(∆i), so Cl(∆i) is a
symbolic bisimulation relation by Lemma 15.

If u0 6∈ Gen(Rinit) then i > 0 and u0 ∈ ∆0 ⊆ ∆i. Thus, u0 ∈ Cl(∆i).
If u0 ∈ Gen(Rinit) then the Theorem is also true, because Gen(Rinit) is a symbolic
bisimulation.

Thus, in each case, there exists a symbolic bisimulation containing u0. The NO case follows
immediately from Lemma 26 (b). J

Next we argue why the algorithm terminates and its complexity is polynomial. To that end,
it will be useful to introduce the following measure on representation systems.

I Definition 28. Given R, let mR : ([0, 2r]∪{∞})×Q→ N×P(IS2r) be defined as follows.

mR(h, q) = (|Q/ �h |+ |X[q]�h
|,Sub(Gh[q]�h

))

Given (n1, H1), (n2, H2) ∈ N × P(IS2r), let (n1, H1) ≤ (n2, H2) stand for n1 < n2 or
(n1 = n2 and H1 ⊇ H2). For R1,R2, we then write mR1 ≤ mR2 iff for all (h, q), mR1(h, q) ≤
mR2(h, q).

I Lemma 29. Given a representation system R and u ∈ U , let R′ be its extension by u
constructed in Section 4.2. Then mR′ � mR.

I Theorem 30. The Algorithm terminates.

MFCS 2018

72:12 Polynomial-Time Equivalence Testing

Proof. We argue by contradiction. Observe that, if the Algorithm does not terminate, there
can be no bound on the number of times that elements are added to the queue. This will
generate an infinite sequence of generating systems R0,R1, · · · ,Ri,Ri+1, · · · , where each
Ri+1 extends Ri according to Section 4.2. By Lemma 29, mR0 mR1 · · · mRi · · · .
Given that the first components (numbers) in mRi(h, q) are bounded by |Q|+ 2r, for this to
happen, we would need to have an infinite chain of subgroups of SX for some X ⊆ [1, 2r].
This contradicts the bound from [2]. J

Following a similar pattern of reasoning, we can establish a bound on the number of
generating systems that can be produced by the Algorithm, which happens to correspond
to the value of i. We have already observed that the integers in the first component of
mRi(h, q) are bounded by |Q|+ 2r. Consequently, that particular component can decrease
|Q| + 2r times for h ∈ [0, 2r] and |Q| times for h = ∞ (the sets Xh

C are not modified in
this case). As for the second component, the bound on the number of times it can change
is 2r + O(1) [2]. Because the decreases may occur for any q, h, the overall bound on i is
|Q|(2r + 1)(|Q|+ 2r)2r︸ ︷︷ ︸

h∈[0,2r]

+ |Q||Q|2r︸ ︷︷ ︸
h=∞

= O(|Q|2r2 + |Q|r3) + O(|Q|2r). Each increase of i is

accompanied by the addition of one-step successors to the queue. There are O(r) such
successors and their generation can take O(r) steps due to rearrangements on permutations.
Consequently, the handling of each element of u may require O(r2) steps (O(r) steps for
h = ∞). This does not take group membership tests into account, for which there exist
polynomial-time algorithms [6]. Thus, the complexity can be conservatively bounded by
O(|Q|2r5p(r)) steps, where p(r) refers to the complexity of membership testing for S2r
(which bounds those for SX , where X ⊆ [1, 2r]). Note that for h = ∞, the complexity is
O(|Q|2r2p(r)). Knuth [10] reports on an algorithm for which p(r) = O(r5 +mr2), where m
is the number of membership queries, adding that it runs considerably faster in practice.

I Theorem 31. The language equivalence problem for r-DFRA is in PTIME.

A natural question for further study is whether the problem is PTIME-complete. It is
certainly NL-hard, by reduction from DFA.

Implementation

An implementation of our algorithm is available from http://github.com/stersay/deq.
Although we leave a full analysis of our empirical results to a future publication, it is worth
mentioning that initial case studies indicate that the high-degree of r in the worst case is not a
hindrance in practice. For example, in comparing two encodings of automata simulating finite
stack machines (considered previously by [12]), bisimulations for automata with r ≤ 1500
can be computed in less than one minute.

6 Inclusion

Equivalence can often be attacked by reduction to the associated inclusion problem. As we
explain next, for DFRA this route would not yield a PTIME bound.

I Theorem 32. The inclusion problem for r-DFRA is in PSPACE-complete.

Proof. For membership in PSPACE, we first note that inclusion can be reduced to simulation.
Now observe that if there is a winning strategy for Attacker over the infinite alphabet then
there will be one if 2r + 1 letters are used. This is because 2r + 1 letters are sufficient to

http://github.com/stersay/deq

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:13

simulate the effect of attacks that rely on global freshness: with 2r + 1 letters available it is
always possible to choose a letter that is not stored in either set of the r-registers and, thus,
attacks based on global freshness can be simulated. Consequently, failures of inclusion can
be detected by guessing the relevant word using 2r + 1 letters on the understanding that for
globally fresh transitions we need to choose a letter not occurring in any of the 2r registers.
To this end, polynomial space is needed to keep track of the current content of both sets of
registers.

We can show PSPACE-hardness already for DFRA without global freshness, which
we refer to as DRA. Because DRA can be complemented easily, we actually show that
the equivalent problem of DRA intersection emptiness is PSPACE-hard. This is done by
reduction from non-emptiness of deterministic linear-bounded Turing machines. The main
difficulty in the argument is to represent the tape through registers. This seems impossible
at first given that a register assignment must contain different data values. We overcome this
by constructing two (n+ 1)-DRA A1, A2 such that whenever they synchronise on a data
word, their register assignments ρ1, ρ2 represent the content of n tape cells as follows: 0 in
the ith cell is represented by ρ1(i) = ρ2(i), and 1 by ρ1(i) 6∈ rng(ρ2). The (n+ 1)th register
plays a technical role that helps us to maintain the representation. The position of the head
and state of the machine are maintained in the state of the automata. J

References
1 F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. W. Vaandrager. Learning register

automata with fresh value generation. In Proceedings of ICTAC, volume 9399 of Lecture
Notes in Computer Science, pages 165–183. Springer, 2015.

2 L. Babai. On the length of subgroup chains in the symmetric group. Communications in
Algebra, 14(9):1729–1736, 1986.

3 M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS, 10(3),
2014.

4 B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A robust class of data languages
and an application to learning. Logical Methods in Computer Science, 10(4), 2014.

5 S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite state
machines. Formal Asp. Comput., 28(2):233–263, 2016.

6 M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation
groups. In Proceedings of FOCS, pages 36–41. IEEE Computer Society, 1980.

7 R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based
on register automata. In Proceedings of TACAS, LNCS. Springer, 2013.

8 J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 114, Cornell University, 1971.

9 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–
363, 1994.

10 D. E. Knuth. Efficient representation of perm groups. Combinatorica, 11(1):33–43, 1991.
11 M. Leucker. Learning meets verification. In Proceedings of FMCO, volume 4709 of Lecture

Notes in Computer Science, pages 127–151, 2007.
12 J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning nominal

automata. In Proceedings of POPL, pages 613–625. ACM, 2017.
13 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Bisimilarity in fresh-register automata.

In Proceedings of LICS, pages 156–167, 2015.
14 A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In Proceedings of

ESOP, volume 6602 of Lecture Notes in Computer Science, pages 419–438. Springer-Verlag,
2011.

MFCS 2018

72:14 Polynomial-Time Equivalence Testing

15 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

16 H. Sakamoto. Studies on the Learnability of Formal Languages via Queries. PhD thesis,
Kyushu University, 1998.

17 H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata.
Theor. Comput. Sci., 231(2):297–308, 2000.

18 T. Schwentick. Automata for XML - A survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.
19 N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer

Science, 5(3), 2009.
20 N. Tzevelekos. Fresh-register automata. In Proceedings of POPL, pages 295–306. ACM

Press, 2011.
21 F. W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017.

	Introduction
	Automata
	Symbolic bisimulations
	Representation
	Membership
	Update
	Update implementation

	Algorithm
	Inclusion

