
An invitation to game semantics

Andrzej S. Murawski Nikos Tzevelekos
Department of Computer Science School of Electronic Engineering and Computer Science

University of Warwick, UK Queen Mary University of London, UK

Game semantics is a flexible semantic theory that has led in recent years to an unprecedented number of

full abstraction results for various programming paradigms. We present a gentle introduction to the subject,

focussing on high-level ideas and examples with a view to providing a bridge to more technical literature.

1. INTRODUCTION

Denotational semantics aims at finding meaningful compositional interpretations (de-
notations) of programs, couched in a variety of mathematical universes. The quality
of such interpretations can then be measured by understanding which programs are
interpreted in the same way, i.e. by the same elements of the model. For example, in-
jective interpretations will be faithful models of the syntax. In contrast to that, if the
modelling objective is to characterise program behaviour then one would like the inter-
pretations of two programs to coincide if and only if the two programs are equivalent.
This criterion of modelling accuracy was introduced in the 1970s [Milner 1977], under
the name full abstraction. It has ever since become the highest prize for the practising
semanticist.

However, the quest for fully abstract models was not to be an easy one. Despite
advances in domain theory, which fuelled early semantic research, the construction of
fully abstract models turned out elusive, even though the techniques were ripe enough
to provide many informative models for numerous complicated programming features.
The efforts of the semantic community in the 1990s, focussed on the purely functional
language PCF, have generated a wealth of results. Among them was the emergence of
a new modelling approach, referred to as game semantics, which uses the metaphor of
game playing as a foundation for building models.

2. GAMES

Game semantics views computation as a two-player dialogue between a program and
the context (or environment) in which it was deployed. The interlocutors, or players,
are traditionally called O (Opponent) and P (Proponent). The former represents the
context, the latter corresponds to the program. Accordingly, a program is interpreted
by a strategy for P that tells P how to conduct the dialogue. Game semantics is not
about winning. Rather, the challenge is to design games in such a way that strategies
express the observable behaviour of code interacting with its computational environ-
ment.

ACM SIGLOG News 4 April 2016, Vol. 3, No. 2



The kind of interactions that a piece of code may produce depends on its interactive
potential: the more complicated the associated types the more interesting interactions
we can expect. The type of free variables as well as the type of the phrase will all
contribute to the shape of potential exchanges.

For example, if we simply take a constant, e.g. ⊢ 2016 : int, then one can imagine the
following conversation between O and P , but not much more.

O What is the result (of evaluation)?
P 2016.

Here P plays according to the strategy that advocates responding with 2016 to the ini-
tial question of the environment. The same situation will occur whenever we deal with
a closed program ⊢ M : int that evaluates to 2016. Even though M can be complicated,
the only thing that the context can observe is the outcome of evaluation. Here, the
interaction is admittedly quite shallow and it ends after one exchange.

This changes when we consider program phrases with more complicated types, such
as ⊢ λxint.x + 1 : int → int. Now, in addition to evaluating the term, the environment
can call the function repeatedly using various arguments (call-by-value evaluation).
This can be captured by a dialogue of the following kind, corresponding to the succes-
sor function. We stress that game semantics strives to capture exactly the observable
behaviour. For instance, the addition operation x + 1 does not appear explicitly in the
play.

O What is the result?
P It’s a function.
O What is the result if the argument is 3?
P 4.
O What’s the result for argument 5?
P 6.

More interesting exchanges are still possible for terms of type int provided they contain
free variables, representing undefined procedures. Take, for instance, f : int → int ⊢
f(f(0)) + 3. In order for the phrase to produce a result, the context in which it is
inserted must provide the missing information about f . Accordingly, we may expect the
following conversation, in which P probes the unknown parameter before returning
the final value.

O What is the result?
P What is f(0)?
O 5.
P What is f(5)?
O 4.
P 7.

Note that the value 5 returned by O has been used in the following question. This
corresponds to parameter passing: the value of f(0) is passed to f in order to compute
f(f(0)).

Finally, let us consider an even more complicated example of

f : int → int → int ⊢ let g = f(0) in leth = f(1) in g(2) + h(3) : int

along with an associated dialogue.

ACM SIGLOG News 5 April 2016, Vol. 3, No. 2



O What is the result?
P What is f(0)?
O It’s a function.
P What is f(1)?
O It’s a function.
P What is the result of applying the first function value to 2?
O 4.
P What is the result of applying the second function value to 3?
O 5.
P 9.

3. INSIDE A GAME MODEL

At a technical level, game semantics dialogues that capture observable aspects of com-
putation are not expressed in English. Rather, they are expressed as sequences of ab-
stract moves connected with pointers, called justified sequences. The sequences corre-
sponding to the dialogues mentioned earlier are shown below.

⋆q 2016a
O P

⋆q ⋆a 3q,⋆ 4a,⋆ 5q,⋆ 6a,⋆
O P O P O P

⋆q 0q,f 5a,f 5q,f 4a,f 7a
O P O P O P

⋆q 0q,f ⋆a,f 1q,f ⋆a,f 2q,f,⋆ 4a,f,⋆ 3q,f,⋆ 5a,f,⋆ 9a
O P O P O P O P O P

Note that only initial moves need not have pointers. Any other move must be equipped
with one (“justified”) and its target cannot be chosen arbitrarily. Firstly, the targeted
move must have been played earlier and, secondly, it must be related to the new move
by a relation between moves called enabling. Thus, when defining a game in game
semantics, one starts off by specifying the set of moves, their ownership (O or P ), kind
(question or answer) and the enabling relation. This information is referred to as the
underlying arena.

Arenas used in our examples are given below. The top moves are meant to belong
to O and then the ownership alternates between levels. The subscripts indicate which
moves are questions and answers respectively. One move enables another if they are
connected by an edge and the former lies one level above the latter. We use i, j, k, l to
range over integers, so the actual structure of the enabling relation is not exactly a
tree (for example, in the second arena ⋆a enables both 0q,⋆ and 1q,⋆, each of which in

ACM SIGLOG News 6 April 2016, Vol. 3, No. 2



turn enables 2a,⋆).

⋆q
❂

❂

❂

ia

⋆q
❈

❈

❈

❈

⋆a

iq,⋆

ja,⋆

⋆q
❉

❉

❉

❉

iq,f ka

ja,f

⋆q

❉

❉

❉

❉

iq,f la

⋆a,f

jq,f,⋆

ka,f,⋆

(⊢ int) (⊢ int → int) (f : int → int ⊢ int) (f : int → int → int ⊢ int)

After specifying an arena, a typical game model will impose further restrictions on
the shape of allowable justified sequences, which will subsequently be called the plays
of the game. The extra restrictions are needed to capture the specificities of differring
programming features. In the following section we shall review the most commonly
used properties and describe the corresponding computational intuitions.

Once the notion of play is established and it is known what exchanges of moves
can take place, one can proceed to the concept of a strategy (for P ). Game semantics
uses strategies as denotations of terms. More concretely, a strategy is a set of plays
which must be closed under taking prefixes and also under forming extensions using
O-moves. The latter reflects the fact that strategies prescribe the program’s (i.e. P ’s)
responses to O’s actions and, thus, have to be ready to react to all scenarios of play by
O.

Models arising from game semantics can be viewed as categories, in which arenas
and strategies take the role of objects and morphisms respectively. In line with the
spirit of categorical semantics, arenas are used to interpret types and type construc-
tors are interpreted by constructions on arenas. The most common type constructors
such as product or sum, can be accounted for by joining up arenas corresponding to
the arguments, often with the help of a few special moves. An important aspect of
constructions corresponding to the formation of function spaces is the fact that in the
A1 ⇒ A2 arena moves from both A1 and A2 are available but the ownership of moves
from A1 is reversed, while it remains the same for A2.

This change of ownership is crucial when it comes to composing strategies from are-
nas A1 ⇒ A2 and A2 ⇒ A3 in order to form a strategy in the arena A1 ⇒ A3. Then
A1 ⇒ A2 and A2 ⇒ A3 both contain moves from A2, but they will belong to different
players in the two arenas. In contrast, ownership of moves from A1 and A3 in A1 ⇒ A3

is the same as in A1 ⇒ A2 and A2 ⇒ A3 respectively. Consequently, the composite
strategy over A1 ⇒ A3 can be defined by appealing to the strategies involved with the
caveat that, if that strategy recommends a P -move from A2, we need to relay the re-
sponse as an O-move to the other strategy, thus fuelling an exchange between them. If
the strategies happen to interact via A2-moves forever, one talks of infinite chattering,
which corresponds to divergence. If, on the other hand, the exchange produces a move
from A1 or A3, it is taken as part of the new composite strategy in A1 ⇒ A3. Because
moves from A2 are not present in A1 ⇒ A3, the exchanges in A2 are hidden and will
not feature in the composite strategy.

Following the definition of games, a typical game semantics paper will go on to dis-
cuss the kind of mathematical/categorical structure that is needed to model the pro-
gramming language in question. The definition is then validated through a soundness

ACM SIGLOG News 7 April 2016, Vol. 3, No. 2



result for closed terms, which will state that every closed term of type unit is inter-
preted by the strategy corresponding to skip if and only if its evaluation terminates.
For many programming languages, such theorems are within reach of many other se-
mantic paradigms and do not imply full abstraction. What really distinguishes game
models at this point is definability: the fact that all strategies of a certain critical kind1

are denotations of terms from the programming language in question. Intuitively, this
means that the model contains no irrelevant elements (“no junk”): for any criticial
strategy we can find a corresponding term. This opens up the path to full abstraction.

The most elegant results of this kind are based on exact equality of denotations
(strategies). In the absence of primitives for controlling the flow of computation (jumps,
continuations) in contexts, it is necessary to restrict this equality to complete plays
only in order to capture the fact that the exact moment of divergence cannot be identi-
fied.

4. PROPERTIES OF PLAYS

Next we survey a number of prominent combinatorial properties regarding the shape
of justified sequences. Remarkably, each of them can be related to a specific program-
ming feature.

4.1. Alternation

Alternation is the requirement that O and P take turns when making moves. Game
semantics uses alternation to model sequential computation. It is relaxed in game
models of concurrency, though. For example, the strategy corresponding to

f : int → unit ⊢ f(0) ‖ f(1) : unit

features the following plays among others (the remaining ones are simply prefixes of
those given below).

⋆q 0q,f 1q,f ⋆a,f ⋆a,f ⋆a

O P P O O P

⋆q 1q,f 0q,f ⋆a,f ⋆a,f ⋆a

O P P O O P

⋆q 0q,f 1q,f ⋆a,f ⋆a,f ⋆a

O P P O O P

⋆q 1q,f 0q,f ⋆a,f ⋆a,f ⋆a

O P P O O P

⋆q 0q,f ⋆a,f 1q,f ⋆a,f ⋆a

O P O P O P

⋆q 1q,f ⋆q,f 0q,f ⋆a,f ⋆a

O P O P O P

Note that, in the first play, the second and third moves correspond to respectively the
left and right calls made inside the term. Similarly, the fourth and fifth moves are
the corresponding returns. Only the last two plays satisfy alternation here. As may be
expected, they correspond respectively to the terms

f : int → unit ⊢ f(0); f(1) : unit and f : int → unit ⊢ f(1); f(0) : unit.

1In most cases, this coincides with domain-theoretic compactness.

ACM SIGLOG News 8 April 2016, Vol. 3, No. 2



In this example the associated arena is

⋆q

❉

❉

❉

❉

❉

iq,f ⋆a

⋆a,f

and any alternating play must begin with ⋆q to be followed by several segments of the
shape iq,f ⋆a,f , which correspond to sequences of calls to f .

Another characteristic feature of concurrent game semantics is that strategies are
closed with respect to unobservable rearrangements of moves: adjacent P -moves may
be permuted, adjacent O-moves may be permuted and an O-move may go past a P -
move (unless this is prevented by the pointer structure). The three cases correspond to
the inability of programs to control environment actions and the scheduling of parallel
events. Saturation stipulates that if a play from a strategy is subjected to a series of
such rearrangements then the resultant play must also belong to the strategy. Satura-
tion is crucial to obtaining a close match between the syntax and semantics (a defin-
ability property). Indeed, while the last two sequences can be traced back to distinct
sequential computations, none of the previous four plays in isolation corresponds to a
term. With saturation in place, the presence of any of the first four plays listed above
necessitates the presence of all six plays. From now on we shall consider alternating
plays only.

4.2. Well-bracketing

A justified sequence is well-bracketed if each answer is justified by the most recent
unanswered question. The condition amounts to insisting on stack discipline between
questions and answers. Intutively, it captures the fact that calls return in the same
order as that in which they were made. Computationally, this corresponds to absence
of programming constructs that can disturb control flow, such as continuations and
exceptions. For example, consider the play given below

⋆q ⋆q,f ⋆q,f,⋆ ⋆a

O P O P

which is not well-bracketed, because the last answer is justified by the first question
instead of the third one. The play can be used to interpret the term

f : (unit → unit) → unit ⊢ catchx inf(λyunit.throw x),

where catchx in · · · creates a local exception x which, when thrown, will result in a
jump out of the block.

4.3. Visibility

The remaining constraints to be discussed will have to do with the kind of memory
available to the program. Recall that justification pointers emanating from questions
have to point at earlier moves and these earlier moves must also enable the move
that will be played. Intuitively, this corresponds to making calls to functions that have
been generated during the current computation. However, can one assume that each
of them can be accessed and called? If the analysed programming language comes
equipped with a facility for recording functions (such as general references) then all
intermediate functional results can indeed be remembered for future access and calls.
However, if functional values cannot be stored, the program will be able to access only

ACM SIGLOG News 9 April 2016, Vol. 3, No. 2



the functional values that are “currently in scope”, for instance, because of being bound
to variables. In game semantics, the intuition behind “current scope” is captured by the
concept of view, defined as follows.

view(ǫ) = ǫ, view(m) = m, view(sm t n) = view(s)m n.

The condition of visibility stipulates that, for any prefix sm t n of a play, m must be
present in view(smt). The following play violates visibility in its sixth move.

⋆q ⋆a ⋆q,⋆ ⋆a,⋆ ⋆q,⋆ ⋆q,⋆,⋆

O P O P O P

This is because, after the fifth move is played, the view (equal to ⋆q ⋆a ⋆q,⋆) does not
contain the occurrence of ⋆q,⋆ pointed at by the last pointer.

The above play belongs to the strategy that denotes

⊢ leth = ref(λxunit.x) inλfunit→unit.((!h)();h := f) : (unit → unit) → unit.

In particular, the play describes a computational scenario in which the term is called
twice. As the first-order reference h is initialised to the identity function, the first call
returns immediately (move ⋆a,⋆). Note, though, that the argument of the call, which is
a function of type unit → unit, will be recorded in h (thanks to h := f ). Therefore, once
the function is used for the second time, the function recorded during the first call will
be called ((!h)()) rather than the current argument. That is why the last pointer points
at the third move rather than the fifth one.

4.4. Innocence

While visibility characterizes the absence of storage for higher-order values, innocence
is a property corresponding to absolute lack of storage. A strategy is called innocent if
and only if P ’s actions depend solely on the current view. Observe that this strengthens
visibility: not only must the pointer be directed into the view, but the view is the only
information available to P . The play given below violates innocence.

⋆q ⋆q ⋆q,⋆ 1q,⋆ ⋆q,⋆ 2q,⋆
O P O P O P

It is taken from the strategy that interprets the term

⊢ let y = ref(0) inλxunit.(y := !y + 1); !y : unit → int,

which returns the number of times the function has been called.
The play above violates innocence in the sixth move: after the fifth move the view is

the same as after the third one, but the respective following P moves are different (1q,⋆
and 2q,⋆ respectively). So, the strategy fails to behave uniformly with respect to views.

Let us finish this section with an example of an innocent strategy corresponding to
the successor function ⊢ λxint.x+1 : int → int. After O plays ⋆q at the start, the strategy
will respond with ⋆a. Afterwards, whenever O plays iq,⋆, P will reply with (i + 1)a,⋆.
Thus the strategy is completely determined by plays of the form

⋆q ⋆a iq,⋆ (i+ 1)a,⋆
O P O P

where i ∈ Z. Here is a typical play belonging to the strategy.

ACM SIGLOG News 10 April 2016, Vol. 3, No. 2



⋆q ⋆a 0q,⋆ 1a,⋆ 5q,⋆ 6a,⋆ 2q,⋆ 3a,⋆
O P O P O P O P

5. NOMINAL GAME SEMANTICS

Nominal game semantics is a recent branch of game semantics that provides faithful
models of generative effects, such as objects, references or exceptions found in ML-
and Java-like languages or the π-calculus. In particular, it uses a countably infinite
set of names to account for addresses of resources and the infinite cardinality can then
be used to model freshness: the generation of a fresh resource, which can be a new
memory cell, a new object or a new exception. The names are embedded in moves and
also feature in stores that are carried by moves in the game. Intuitively, the stores
correspond to the observable part of program memory. All artifacts in nominal game
semantics are closed under name-permutation. This reflects the fact that the concrete
nature of names is irrelevant: we assume the set of names lacks structure and names
can only be compared for equality. Thus, from a mathematical point of view, plays and
strategies in nominal game semantics will be nominal sets [Gabbay and Pitts 2002;
Pitts 2013], a topic explored in the previous issue of the Semantics Column [Pitts
2016].

In order to illustrate the spirit of nominal game semantics, we consider two sim-
ple terms that generate reference cells for storing integers, along with representative
plays. The first term creates only one reference at the very beginning, which it re-
turns in response to every call. In contrast, the second term generates a new reference
each time it is called. Note that moves can carry a store: once a new name has been
introduced into play, it is added to the domain of the store.

⊢ letn = ref(0) in (λxunit.n) : unit → int ref

⋆q ⋆a ⋆q,⋆ na,⋆
(n,0) ⋆q,⋆

(n,5) na,⋆
(n,5) ⋆q,⋆

(n,12) na,⋆
(n,12)

O P O P O P O P

⊢ λxunit.ref(0) : unit → int ref

⋆q ⋆a ⋆q,⋆ (n1)a,⋆
(n1,0) ⋆q,⋆

(n1,5) (n2)a,⋆
(n1,5)(n2,0) ⋆q,⋆

(n1,12)(n2,7) (n3)a,⋆
(n1,12)(n2,7)(n3,0)

O P O P O P O P

Observe that, in the two plays, the initial value of each cell is 0 (corresponding to
ref(0)) and that P never modifies the content of the cells afterwards. However, once the
corresponding names become part of play, O is free to modify them as the names are
now available to the environment.

The above approach can also be applied to higher-order storage, i.e. computational
scenarios in which functions can be stored. However, one cannot simply reveal the ex-
act values that are being stored, because they can only be observed to the extent to
which they are going to be used during the computation and cannot be readily com-
pared with other higher-order values. Accordingly, we shall use ⋆ to represent every

ACM SIGLOG News 11 April 2016, Vol. 3, No. 2



higher-order value and allow plays to explore stored values by playing moves with a
special pointer to the store rather than to another move. We shall use double lines
when drawing such pointers in figures. For example, the term

n : (int → int) ref ⊢ !n : int → int.

is modelled, among others, by the play given below.

nq
(n,⋆) ⋆a

(n,⋆) 1q,⋆
(n,⋆) 1q,⋆

(n,⋆) 3a,⋆
(n,⋆) 3a,⋆

(n,⋆)

O P O P O P

While the third move is of a similar kind to our previous examples and corresponds to
calling the evaluated term on argument 1, the fourth move could be viewed as forward-
ing the call to the value stored initially in the reference cell corresponding to n. Note
that the content of n can change throughout the computation, so P could also point at
stores associated with other moves, as in our next example. Here, the term is

n : (int → int) ref ⊢ λhint.(!n)h : int → int

and a call to the term must trigger a call to the latest value stored in the reference
rather than the initial one.

nq
(n,⋆) ⋆a

(n,⋆) 1q,⋆
(n,⋆) 1q,⋆

(n,⋆) 3a,⋆
(n,⋆) 3a,⋆

(n,⋆)

O P O P O P

This is reflected by the target of the pointer out of the fourth move, which points at the
store of the preceding move.

6. DIRECTIONS IN GAME SEMANTICS

The style of modelling sketched in our article is known as HO/N-games or pointer
games. The first papers propounding the approach were written to solve the full ab-
straction problem for the purely functional language PCF [Hyland and Ong 2000;
Nickau 1994]. Another solution to the problem was obtained at the same time using
AJM-games [Abramsky et al. 2000], which do not have pointers and rely on possibly
nested numerical indices to compensate for their absence.

The two ways of modelling subsequently led to a wealth of full abstraction results for
a whole variety of programming features, e.g. state [Abramsky and McCusker 1997b],
control constructs [Laird 1997], call-by-value evaluation [Abramsky and McCusker
1997a; Honda and Yoshida 1999]2, general references [Abramsky et al. 1998], nonde-
termism [Malacaria and Hankin 1999], probabilistic computation [Danos and Harmer
2000], exceptions [Laird 2001], concurrency [Ghica and Murawski 2008] and polymor-
phism [Hughes 1997; Laird 2013]. A tutorial overview of HO/N-game semantics can be
found in [Abramsky and McCusker 1998] and both approaches are discussed in [Hy-
land 1997].

Nominal game semantics [Laird 2008; Abramsky et al. 2004; Tzevelekos 2008] was
introduced about 10 years after the original models of PCF and made it possible to
eliminate a number of imperfections in modelling reference types, known as the bad-
variable problem [Abramsky and McCusker 1997b; Abramsky et al. 1998]. In particu-
lar, it opened up the way to faithful models of name-based programming abstractions

2All of our examples of arenas and plays are couched in the call-by-value framework from [Honda and
Yoshida 1999].

ACM SIGLOG News 12 April 2016, Vol. 3, No. 2



such as threads [Laird 2006], references [Murawski and Tzevelekos 2009; 2011a] and
objects [Murawski and Tzevelekos 2014]. A tutorial account of nominal game seman-
tics can be found in [Murawski and Tzevelekos 2016].

We conclude our article with a concise overview of some recent directions within
game semantics.

Operational game semantics. Research into understanding the operational flavour
of game semantics has revealed numerous connections to executions of abstract ma-
chines [Danos et al. 1996; Curien and Herbelin 1998]. There also exist full abstraction
results obtained using operational (rather than denotational) techniques, e.g. [Jeffrey
and Rathke 1999; Laird 2007; Lassen and Levy 2008]. These are based on ingenious in-
strumentations of labelled transition systems that capture equivalence through traces.
In some cases, e.g. [Laird 2007] and [Murawski and Tzevelekos 2011b], it has been
shown that the traces and game semantics coincide [Jaber 2015]. However, it is still
not clear how to transfer results between the two methodologies seamlessly and, most
interestingly, how to derive compositional definitions from non-compositional opera-
tional descriptions. A first step to investigate such connections was recently made
in [Levy and Staton 2014].

Algorithmic game semantics. The concrete nature of game semantics makes it an
appealing framework for deriving program analyses (see e.g. [Malacaria and Hankin
1999]). Since plays can be viewed as words over a suitably chosen alphabet, one can
use automata-theoretic techniques to represent game models and scrutinise them in an
automated fashion [Ghica and McCusker 2003]. This creates scope for applying game
semantics as a compositional foundation for a wide range of verification tasks [Abram-
sky et al. 2004]. For nominal games (see e.g. [Murawski and Tzevelekos 2012; Mu-
rawski et al. 2015]), one can then tap into the vast literature on automata theory over
infinite alphabets [Neven et al. 2004; Segoufin 2006]. Intuitions from game seman-
tics have also played a crucial role in the first proof of decidability of MSO (monadic
second-order logic) over trees generated by higher-order recursion schemes [Ong 2006].

Concurrrent games. Although concurrent computation can be expressed in game se-
mantics via interleaving, it would be highly desirable to establish a dedicated frame-
work for modelling concurrency directly, in the spirit of true concurrency. This goal
has been pursued in the early days of the field in the context of linear logic [Abramsky
and Melliès 1999]. More recent developments include asynchronous games [Melliès
2006; Melliès and Mimram 2007] and concurrent games [Rideau and Winskel 2011;
Castellan et al. 2015]. In particular, the latter framework uses event structures as
the underlying theory. The success of partial-order methods in verification provides
another, more practical, motivation for developing games in this direction.

REFERENCES

S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. 2004. Nominal Games and Full
Abstraction for the Nu-Calculus. In Proceedings of LICS. IEEE Computer Society Press, 150–159.

S. Abramsky, K. Honda, and G. McCusker. 1998. Fully Abstract Game Semantics for General References.
In Proceedings of IEEE Symposium on Logic in Computer Science. Computer Society Press, 334–344.

S. Abramsky, R. Jagadeesan, and P. Malacaria. 2000. Full Abstraction for PCF. Information and Computa-
tion 163 (2000), 409–470.

S. Abramsky and G. McCusker. 1997a. Call-by-value games. In Proceedings of CSL (Lecture Notes in Com-
puter Science), Vol. 1414. Springer-Verlag, 1–17.

S. Abramsky and G. McCusker. 1997b. Linearity, Sharing and State: a fully abstract game semantics for
Idealized Algol with active expressions. In Algol-like languages, P. W. O’Hearn and R. D. Tennent (Eds.).
Birkhaüser, 297–329.

ACM SIGLOG News 13 April 2016, Vol. 3, No. 2



S. Abramsky and G. McCusker. 1998. Game semantics. In Logic and Computation, H. Schwichtenberg and
U. Berger (Eds.). Springer-Verlag. Proceedings of the 1997 Marktoberdorf Summer School.

S. Abramsky and P.-A. Melliès. 1999. Concurrent Games and Full Completeness. In Proceedings, Fourteenth
IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 431–442.

S. Castellan, P. Clairambault, and G. Winskel. 2015. The Parallel Intensionally Fully Abstract Games Model
of PCF. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015. 232–243.

P.-L. Curien and H. Herbelin. 1998. Computing with abstract Böhm trees. In Proceedings of Third Fuji
International Symposium on Functional and Logic Programming, Kyoto, April 1998. World Scientific.

V. Danos and R. Harmer. 2000. Probabilistic game semantics. In Proceedings of the IEEE Symposium on
Logic in Computer Science. Computer Science Society, 204–213.

V. Danos, H. Herbelin, and L. Regnier. 1996. Game semantics and abstract machines. In Proceedings of 11th
Annual IEEE Symposium on Logic in Computer Science. Computer Society Press.

M. J. Gabbay and A. M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal
Aspects of Computing 13 (2002), 341–363.

D. R. Ghica and G. McCusker. 2003. The Regular Language Semantics of Second-Order Idealized Algol.
Theoretical Computer Science 309 (2003), 469–502.

D. R. Ghica and A. S. Murawski. 2008. Angelic Semantics of Fine-Grained Concurrency. Annals of Pure and
Applied Logic 151(2-3) (2008), 89–114.

K. Honda and N. Yoshida. 1999. Game-theoretic analysis of call-by-value computation. Theoretical Computer
Science 221, 1–2 (1999), 393–456.

D. H. D. Hughes. 1997. Games and definability for System F. In Proceedings of 12th IEEE Symposium on
Logic in Computer Science. IEEE Computer Science Society.

J. M. E. Hyland. 1997. Game semantics. In Semantics and Logics of Computation, A. Pitts and P. Dybjer
(Eds.). Cambridge Univ. Press, 131–182.

J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I. Models, observables and the full
abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal
game model. Information and Computation 163(2) (2000), 285–408.

G. Jaber. 2015. Operational Nominal Game Semantics. In Proceedings of FOSSACS. 264–278.

A. Jeffrey and J. Rathke. 1999. Towards a Theory of Bisimulation for Local Names. In Proceedings of LICS.
56–66.

J. Laird. 1997. Full Abstraction for Functional Languages with Control. In Proceedings of 12th IEEE Sym-
posium on Logic in Computer Science. 58–67.

J. Laird. 2001. A fully abstract games semantics of local exceptions. In Proceedings of 16th IEEE Symposium
on Logic in Computer Science. IEEE Computer Society Press.

J. Laird. 2006. Game Semantics for Higher-Order Concurrency. In FSTTCS (Lecture Notes in Computer
Science), Vol. 4337. 417–428.

J. Laird. 2007. A Fully Abstract Trace Semantics for General References. In Proceedings of ICALP. Lecture
Notes in Computer Science, Vol. 4596. Springer, 667–679.

J. Laird. 2008. A game semantics of names and pointers. Annals of Pure and Applied Logic 151 (2008),
151–169.

J. Laird. 2013. Game semantics for a polymorphic programming language. J. ACM 60, 4 (2013), 29.

S. B. Lassen and P. B. Levy. 2008. Typed Normal Form Bisimulation for Parametric Polymorphism. In
Proceedings of LICS. IEEE Computer Society, 341–352.

P. B. Levy and S. Staton. 2014. Transition systems over games. In Proceedings of CSL-LICS. 64:1–64:10.

P. Malacaria and C. Hankin. 1999. Non-deterministic games and program analysis: an application to secu-
rity. In Proceedings of LICS. IEEE, 443–452.

Paul-André Melliès. 2006. Asynchronous games 2: The true concurrency of innocence. Theor. Comput. Sci.
358, 2-3 (2006), 200–228.

P.-A. Melliès and S. Mimram. 2007. Asynchronous Games: Innocence Without Alternation. In Proceedings
of CONCUR’07 (Lecture Notes in Computer Science), Vol. 4703. Springer, 395–411.

R. Milner. 1977. Fully Abstract Models of Typed Lambda-Calculi. Theoretical Computer Science 4, 1 (1977),
1–22.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. 2015. Game Semantic Analysis of Equivalence in IMJ. In
Proceedings of ATVA’15 (Lecture Notes in Computer Science), Vol. 9364. Springer, 411–428.

A. S. Murawski and N. Tzevelekos. 2009. Full Abstraction for Reduced ML. In Proceedings of FOSSACS.
Lecture Notes in Computer Science, Vol. 5504. Springer-Verlag, 32–47.

ACM SIGLOG News 14 April 2016, Vol. 3, No. 2



A. S. Murawski and N. Tzevelekos. 2011a. Algorithmic nominal game semantics. In Proceedings of ESOP.
Lecture Notes in Computer Science, Vol. 6602. Springer-Verlag, 419–438.

A. S. Murawski and N. Tzevelekos. 2011b. Game Semantics for Good General References. In Proceedings of
LICS. IEEE Computer Society Press, 75–84.

A. S. Murawski and N. Tzevelekos. 2012. Algorithmic games for full ground references. In Proceedings of
ICALP. Lecture Notes in Computer Science, Vol. 7392. Springer, 312–324.

A. S. Murawski and N. Tzevelekos. 2014. Game Semantics for Interface Middleweight Java. In POPL. 517–
528.

A. S. Murawski and N. Tzevelekos. 2016. Nominal Game Semantics. Foundations and Trends in Program-
ming Languages 2, 4 (2016), 191–269.

F. Neven, T. Schwentick, and V. Vianu. 2004. Finite state machines for strings over infinite alphabets. ACM
Trans. Comput. Log. 5, 3 (2004), 403–435.

H. Nickau. 1994. Hereditarily sequential functionals. In Proceedings of the Symposium of Logical Founda-
tions of Computer Science. Springer-Verlag. LNCS.

C.-H. L. Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In Proceed-
ings of LICS. Computer Society Press, 81–90.

A. M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoreti-
cal Computer Science, Vol. 57. Cambridge University Press.

A. M. Pitts. 2016. Nominal Techniques. ACM SIGLOG News 3, 1 (Jan. 2016), 57–72.

S. Rideau and G. Winskel. 2011. Concurrent Strategies. In Proceedings of LICS’11. IEEE Computer Society,
409–418.

L. Segoufin. 2006. Automata and Logics for Words and Trees over an Infinite Alphabet. In Proceedings of
CSL (Lecture Notes in Computer Science), Vol. 4207. Springer.

N. Tzevelekos. 2008. Nominal Game Semantics. (2008). D.Phil. thesis, Oxford University Computing Labo-
ratory.

ACM SIGLOG News 15 April 2016, Vol. 3, No. 2


