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Abstract. This paper presents an embedded domain-specific language for building
massively concurrent systems. In particular, we demonstrate how ultra-lightweight
cooperatively-scheduled processes and message-passing concurrency can be provided
for the Scala programming language on the Java Virtual Machine (JVM). We make
use of a well-known continuation-passing style bytecode transformation in order to
achieve performance that is several orders of magnitude higher than native JVM
threads. Our library is capable of scaling to millions of processes and messages on a
single virtual machine instance, and our runtime system will detect deadlock should
it occur. Message-passing is over 100 times faster than Erlang, and context switching
is 1000 times faster than native Java threads. In benchmarks, the performance of our
library is close to compiled code.

The 2015 revision of the paper brings the notation for guarded events into line with
the most recent implementations. The account of CSO [1] has been revised likewise,
and the most recent implementations of CSO and CSO2 are intended to be functionally
interchangeable with minimal notational effort, though CSO2 has many performance
advantages.
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Introduction

Concurrent programming is often considered error-prone and difficult to scale. However, it is
our belief that these problems are due to the prevalence of shared-memory concurrency and
not due to the multiple threads of control.

Hardware is becoming increasingly parallel, with the number of cores taking the place
of clock speed as the specification of first interest when describing a processor [2,3]. The
massively parallel architectures of the future are unlikely to have uniform memory access [4],
and thus shared memory will not be a good abstraction. Message-passing concurrency, on
the other hand, models the world as a collection of independent parallel processes that share
nothing and interact only by passing messages [5].

Message-passing programs can be built from millions of extremely lightweight pro-
cesses that can run on a single processor, a multi-core processor, or on a network of proces-
sors [6]. Thus message-passing is appropriate for both local and distributed algorithms [7,8].
In contrast, the idioms of shared-memory concurrency are substantially different from those
of distributed programming [7,9].

By exposing the potential parallelism as small well-defined and encapsulated logical
tasks, existing programs built using message passing are able to scale with the increasing
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parallelism of the hardware on which they are run [10,11,12]. Experience has shown that this
is not equally true of programs built with shared-memory concurrency.

It is also extremely difficult to prove correctness or to reason about fairness and effi-
ciency in the presence of fine-grained locks and access to shared data structures [13]. In par-
ticular, reasoning about memory corruption and deadlock in shared memory systems is diffi-
cult. For message passing, there exist well-developed mathematical models and robust tools
for formal verification of design [14].

In this paper, we present an embedded domain-specific language (DSL) for message-
passing concurrency, called CSO2, which provides a judicious combination of the ideas from
Hoare’s CSP [5,14] and Milner’s π-calculus [15] for the Scala programming language. In a
similar way to the original CSO [1,16] and JCSP [17,18], it follows many of the principles
of the occam-π [19,20] programming language, exchanging compiler-enforced safety for
programmer checked rules, but allowing the model to be used in a mainstream programming
language. In contrast to these previous approaches, however, our library offers low process
management and communication overheads, all without any modification to the Java Virtual
Machine (JVM).

In order to make message-passing concurrency and process-oriented programming a
compelling alternative to shared-memory concurrency, we need fast inter-process commu-
nication and lightweight threads. The JVM, arguably the most widely deployed and tar-
geted virtual machine, supports many languages, including Java [21], Scala [22], and Clo-
jure [23]. However, unlike in Erlang [6] or occam-π [19], the JVM does not natively sup-
port lightweight threads or message-passing: a JVM thread corresponds to a thread provided
by the operating system [24]. Thus, Java threads are too heavyweight to assign per HTTP
connection in a web server or per transaction in a database.

Our library provides lightweight and fast cooperatively scheduled user-level processes.
The speed of context-switching of CSO2 processes is far superior to a mainstream concurrent
programming language, and close to compiled native code. We achieve this performance by
transforming the bytecode produced by the Scala compiler using a well-known continuation-
passing style (CPS) transformation [25,26,27,28]. This transformation is necessary in order
to achieve good performance when many more JVM threads are used than there are avail-
able processors. We also provide a lightweight runtime system, which includes support for
deadlock detection, similar to that available for the Go programming language [29].

The syntax of our embedded DSL was inspired by that of CSO [1] (which has itself been
revised so that the two notations are essentially the same). In our view the syntax is concise
enough to be used for the construction of serious systems, and the semantics of its constructs
correspond closely enough to that of their CSP counterparts that CSP can be usefully used
as a design and proof notation. Feedback from taught courses at the University of Oxford has
reinforced this view.

Outline of the Paper

It is our intention that this paper be self-contained. In Section 1, we introduce the syntax of
CSO2 and, in Section 2, provide our rationale for implementing it as an embedded DSL. In
Section 3 we describe the post-compilation CPS bytecode transformation. We describe our
user-level scheduler in Section 4, report on our implementation of message-passing channels
in Section 5, and provide details of our implementation of runtime deadlock detection in
Section 6. In Section 7 we benchmark the performance of our concurrency library in three key
aspects: (i) the ability to create many processes, (ii) speed of process creation, and (iii) speed
of message passing. A survey of related work, considerations for possible future work, and
concluding remarks are provided in Sections 8 through 10.
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1. Introducing the Syntax of CSO2

Owing to space constraints, we introduce only the principal constructs of CSO2. However, we
will demonstrate their use on a parallelised implementation of Quicksort. Since our syntax is
similar to CSO [1], this section may be skipped should the reader already possess familiarity
with this syntax.

1.1. Simple Processes

A process is constructed using the notation

def ExampleProcess(x1: T1, ..., xn: Tn) = proc (name) { body }

where name is an optional1 String used to identify the process, body is a sequence of statements
(called the process body) to be executed when the process is run, and x1, . . . , xn are the
arguments to body with the respective types T1, . . . , Tn. Any of the Ti may be ports (discussed
below in Section 1.3).

If P is a process, then run P executes P in the current thread, whereas fork P executes P
in parallel and allows the caller to continue.2

Our library is capable of multiplexing millions of these processes onto as many JVM
threads as there are available hardware threads, in the manner described in Section 3. Each
JVM thread is in turn mapped onto a kernel thread [24].

1.2. Parallel Composition

The parallel composition of processes is achieved using the || operator. For example, the
composition of the four processes P1, P2, P3 and P4 is given as follows:

val comp = P1 || P2 || P3 || P4

A composition of parameterised processes P(0), P(1), . . . , P(n) is denoted by

|| (i <− 0 to n) (P(i))

where n may be determined at runtime.
If Q = P1 || P2 || ... || Pn, then run Q causes each of the processes P1, P2, . . . , Pn to be run

in parallel. The process Q terminates when all of the components Pi of its composition have
terminated.

It is important to reaffirm the distinction between a thread and a process: a process is
a lightweight object of type Process that is a specification of runtime behaviour, whereas
a thread is a JVM thread running the body of some process. For example, the statement
run (P || P) results in the execution of a parallel composition of two separate instances of the
body of process P.

1.3. Ports and Channels

Processes communicate via channels. A channel on which values of type T may be read or
written is an instance of a subclass of Chan[T] and consists of one output port of type ![T] and

1If name is not supplied, then the name of the process defaults to that of the method where it is defined. For
example, def P = proc { ... } is equivalent to def P = proc (”P”) { ... }.

2In the original CSO syntax, one would write P() to run P, and this notation has been preserved, for it
supports the illusion that a process is a form of Unit=>Unit function.
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one input port of type ?[T]. Processes are parametrised with the ports on which they may read
or write data, as described in the previous section.

Input ports and output ports are named from the perspective of the process. Therefore,
an output port provides a method !(T): Unit to write values to the channel. Similarly, an input
port provides a method ?(): T to read values from the channel.

Channels are either synchronous or buffered. For a synchronous channel, termination of
the execution of a ! at the output port is synchronised with the termination of the execution of
a corresponding ? at the input port. A buffered channel, however, does not synchronise any
execution of ! with ?.

A OneOne[T] channel is a synchronous channel where no more than one process at a time
may access its output port or its input port. Similarly defined are the channels ManyOne[T],
OneMany[T], and ManyMany[T], where the naming convention is the restriction on sharing
of the output port followed by that of the input port. Each of these channels have the
following buffered counterparts: OneOneBuf[T](n), ManyOneBuf[T](n), OneManyBuf[T](n) and
ManyManyBuf[T](n), respectively, where n is the buffer capacity.

Our library supports changing process topology by the communication of ports, as is
available in occam-π [19], JCSP [30], and CSO [1]. This is equivalent to the mobility of
channel names in the π-calculus [15].

Finally, a channel is closed by invoking its close method. Closing a channel enforces the
contract that the channel will never be read from or written to again.

1.4. Alternation

A guarded output event is a construct of the form (guard &&& outport) =!=> { expr }, where
guard is a Boolean expression, outport is the output port of some channel, and expr is an
expression. We say that the event is ready when guard evaluates to true and outport is ready
to perform a !.3 When a ready output event is executed, its expression is evaluated, and the
resulting value is written to the outport.4

A guarded input event is an expression of the form (guard &&& inport) =?=> { bv => cmd }
and is ready when guard evaluates to true and inport is ready to perform a ?. When a ready
input event is executed, its inport is read, and the function { bv => cmd } is applied to resulting
value.

An alt consists of a collection of guarded events

alt ( (guard1 &&& port1) =X=> { ... }
| ...
| (guardn &&& portn) =X=> { ...}
)

where each (guard &&& port) =X=> { ... } can be either a guarded input or output event.
A process executing an alt waits until it finds an event that is ready (though it evaluates

the guard expressions no more than once) and then executes the event, after which the alt
terminates. If more than one event is ready, then the choice between them is made nondeter-
ministically.

1.5. Example: Quicksort using Recursive Parallelism

We illustrate the use of the CSO2 library with the application of the recursive parallelism
pattern to Quicksort, whereby recursive method calls in the sequential code are replaced by

3Our terminology deviates slightly from that of Sufrin [1] for sake of clarity.
4Two additional forms of guarded output event are described in the revised CSO paper, and these are also

implemented in CSO2.
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a composition of parallel processes with the same effect [31]. In the base cases, the result is
computed directly.

The base case of the Quicksort process is when the input channel contains no data, in
which case we just close the output channel. Otherwise, if the input channel is non-empty,
we choose the first element as the pivot, and recursively use two copies of QSort to sort the
data that is less than the pivot, and greater than or equal to the pivot, respectively.

def QSort(in: ?[ Int ], out: ![ Int ]): Process = proc {
attempt {

val pivot = in?
val toHigher, toLower, fromHigher, fromLower = OneOne[Int]

def Partition = ... // As defined below

// Compose the system and run it
run ( Partition || QSort(toHigher, fromHigher) || QSort(toLower, fromLower))
}{

out.close // Close once all data has been received
}
}

The construct attempt P Q executes P, and if P throws a Stop exception (for example, if
a channel is closed), then it executes Q.

To perform the partitioning of elements, we define a nested process called Partition that
is responsible for passing data to the correct recursive copy of the QSort process, and then
reading back the sorted data from the recursive processes.

def Partition = proc {
// Partition the data received around the pivot
repeat {

val n = in?
if (n < pivot) toLower ! n else toHigher ! n

}
// Close channels to recursive processes once the final input is received
toHigher.close; toLower.close

// Now output the results
Copy(fromLower, out); out ! pivot ; Copy(fromHigher, out)
out.close
}

where the construct repeat { body } will repeatedly execute the statements of body until it
invokes an operation on a closed channel, and Copy is an auxiliary process that repeatedly
copies values from in to out:

def Copy(in: ?[Int], out: ![Int]) = repeat { val n = in?; out ! n }

Of course, in practice, one would use limited recursive parallelism, whereby recursive
processes are only spawned to a maximum depth; however, we have elided the logic necessary
to achieve that for brevity.

2. Why an Embedded Domain-Specific Language?

In this section, we motivate our decision to design an embedded DSL [32] for Scala, as
opposed to implementing (yet another) standalone programming language.
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The historically prevalent approach has been to build standalone languages, with their
own custom syntax. This has the advantage that the syntax and semantics of the language can
be designed specifically for message passing. Go and occam-π are notable examples of this
approach [19,29].

Conversely, implementing a new standalone language is a significant undertaking, in-
volving a separate parser and compiler, and perhaps an interactive editor too. Considerable
effort is spent implementing the common features of a general purpose programming lan-
guages, including variables, definitions, conditionals, and so on. The custom syntax for these
common features also increases the learning curve of the new language.

The alternative approach to is implement message-passing concurrency as an embedded
DSL within an existing host language, and thus retaining as much as possible of the existing
syntax and language features, without having to go to the trouble of defining a separate lan-
guage. The DSL is then implemented as a library of definitions written in the host language,
and familiarity with its syntactic conventions can be carried over to the DSL. Furthermore,
this approach overcomes need to implement compiler optimisations for the sequential code
in addition to the message passing code. In some benchmarks, the lack of compiler optimisa-
tions for sequential code has led to reduced performance for occam-π [7].

However, there are some downsides. It requires great care to preserve the abstract bound-
ary between the DSL its host, and useful error messages may be more difficult to implement.
In spite of this, it turns out that the Scala programming language is particularly well suited for
hosting embedded DSLs, in particular because of four language features: higher-order func-
tions, a rich type system supporting type inference, macros supporting compile-time meta-
programming, and a lightweight syntax supporting customisation.

Taken together, these features have allowed us to design an embedded DSL with syntax
close to what one might provide for a corresponding standalone language. For the majority of
the message-passing constructs in our DSL, we hope that the syntax bears close resemblance
to its occam-π counterpart.

3. Lightweight Processes

In this section we describe our implementation of lightweight processes. We begin by giv-
ing an overview of the runtime system before presenting the bytecode transformation, with
additional details of the scheduler and message-passing channels provided in later sections.

Our user-level scheduler is responsible for multiplexing possibly millions of Process
objects onto as many JVM threads as there are hardware threads. In this way, we view each
java.lang.Thread as a virtual processor. Each process is cooperatively scheduled.

The idea is as follows: Each process has an internal execute() method which is invoked
by the user-level scheduler whenever the process is to begin running from a waiting state.
Further, each process has an internal pause() method that moves the process from a running
state to a paused state, and an internal resume() method that moves the process from a paused
state to a waiting state; see Figure 1.

For example, when a process attempts to write to a buffered channel that is full, the
pause() method of that process will be called. Later, when space is available, another process
will invoke the corresponding resume(). Intuitively, pause() and resume() are similar to wait()
and notify(), respectively, except that pausing does not block the underlying thread.

It is our user-level scheduler that is responsible for automatically managing the stacks of
our processes. This cooperative scheduling is achieved through a continuation-passing style
(CPS) transformation and so works by rewriting the bytecode that is produced by the Scala
compiler,5 as is described in Section 3.1.

5We have developed a plugin for the Simple Build Tool (SBT), the de facto build tool for Scala projects, that
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Figure 1. The various process states defined by the user-level scheduler with arrows indicating the possible
transitions between states.

Optimisations employed in our implementation are discussed in Section 3.2. Difficulties
arising in the implementation owing to restrictions placed upon us by the JVM are reported
in Section 3.3, and difficulties caused by Scala’s functional style are reported in Section 3.4.
Performance considerations are discussed in Section 3.5, and issues relating to shared mem-
ory are detailed in Section 3.6.

3.1. Bytecode Transformation

The transformation described in this section is applied statically to the bytecode generated
by the Scala compiler for the source program.

In accordance with previous work [25], we say that a method is pausable if it either
directly or transitively (with respect to the call graph) invokes the pause() method.

The first step in the post compile-time transformation is to annotate each pausable
method with the Pausable annotation. Furthermore, if a method overrides another method an-
notated as Pausable, then that method must also be annotated as Pausable. This is necessary
because methods annotated as such will be subsequently transformed as described below, and
this transformation involves the modification of method signatures. Clearly, the application
of these annotations requires whole-program analysis.

Next, the resulting bytecode is further transformed using a well-known CPS transfor-
mation [25,26,27,28]. The technique we employ is a simple variant of single-shot delimited
continuations [33] and largely identical to that of Srinivasan [25], and we give a brief account
of that technique here.

A continuation represents the remainder of a computation from a given point in a pro-
gram; hence, by using CPS, we can effectively suspend a process at the user level in order to
resume it later. We use a restricted form of continuations that always transfer control back to
their caller but maintain an independent stack.

The signature of every method annotated as Pausable is transformed to include an extra
parameter: the continuation object, known as a Fiber [34,35]. Each instance of a process has a
Fiber associated with it. Whenever pause() is called from within such a method, the isPausing
flag of the Fiber is set. This flag is later cleared by the scheduler when another process calls
the corresponding resume().

In addition to the extra argument, each method annotated as Pausable has a so-called
prelude block injected at the start, and each call site of a method annotated as Pausable is
surrounded by both pre- and post-call sections. This is illustrated in Figure 2.

The purpose of these blocks can be understood as follows: Each pre-call block captures
the current state of the activation frame, including the values of local variables and the pro-
gram counter, and stores them in the Fiber passed as argument. In the corresponding post-
call block, the isPausing flag of the Fiber is inspected: If unset, execution can continue unaf-
fected. Otherwise, the process is pausing and hence the current method must return immedi-

launches the bytecode rewriter after compilation. Both the library and this plugin are available from the project
website: http://www.cso.io.
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(a) Before transformation.
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��

pausing

||��

BB

Return

(b) After transformation.

Figure 2. A sample control flow graph of a pausable method that calls another pausable method, before (a) and
after (b) the transformation. The transformation adds the prelude basic block (as described in the text) and two
possible jumps in control flow (shown by dashed edges) for each pausable method n: one from the prelude to
the call site of n that is to be followed when n is being restored onto the stack, and another from the call site of
n to the end of the method that is to be followed when n is pausing.

ately (possibly with a dummy return value; see Section 3.3). This continues recursively all
the way up until the internal execute() method of the process has been popped off the stack.
Afterwards, the process is no longer running and is now paused.

The process will move from the paused state to the waiting state when another process
calls the corresponding resume(). It then waits to be scheduled, at which point the user-level
scheduler invokes the execute() method once again.

This causes the process to be wound back onto the thread, one activation frame at a time,
as follows: Each prelude section inspects the Fiber, detects that the stack is being rewound,
restores the local state of the method, and jumps to the call site of the method that most
recently triggered the pause. Thus the prelude section contains a sequence of conditional
jumps to each call site of a method annotated as Pausable. After each frame has been restored,
the process is in the running state once again and can continue execution where it left off.

Since all necessary logic is injected at the bytecode level, our library manages the stack
with no changes to the source code. Thus our library is entirely portable, and is agnostic of
any particular JVM implementation. For example, our approach is equally targetable towards
any of the Oracle Hotspot, Oracle JRockit, IBM J9, or Google Dalvik virtual machines.

Previous work has shown that this technique, known as stack-ripping, allows for faster
stack switching than any implementation based on the throwing and catching of excep-
tions [34,25].

3.2. Implementation Details and Optimisations

The bytecode rewriter is written in Scala and makes use of the ASM 4 library for bytecode
transformation [36] which is the library used by the Scala compiler for bytecode generation.

In our implementation, we follow the ideas of Srinivasan [35], and optimise the trans-
formation described in the previous section as follows: On the return of a method marked as
Pausable, the caller examines the Fiber to determine whether the isPausing flag is set. If so,
then the caller will store the local state needed upon resumption in the Fiber only if this has
not already been done on an earlier pause/resume cycle, and then itself return control to its
caller. This is more efficient then storing the state eagerly in the pre-call section.
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Hence, if a method pauses for a second time, the states of intermediate frames are already
stored in the Fiber and are not stored again. This explains the need for the four cases in the
post-call section of Figure 3: the caller’s behaviour depends on both whether the callee is
pausing or returning normally, and whether the local state of the caller has or has not already
been captured on an earlier pause/resume cycle.

void a() throws Pausable {

x = ...

b(); // b is pausable

c(x); // c is not pausable

}

(a) Before transformation.

void a(Fiber f) {
switch (f.pc) { // prelude

case 0: goto START;

case 1: goto CALL_B;

}
START: x = ...

CALL_B: f.down(); // pre-call

b(f);

f.up(); // post-call

switch (f.status) {
case NOT_PAUSING_NO_STATE:

goto RESUME;

case NOT_PAUSING_HAS_STATE:

restore state;

goto RESUME;

case PAUSING_NO_STATE:

capture state;

return;

case PAUSING_HAS_STATE:

return;

}
RESUME: c(x);

}

(b) After transformation.

Figure 3. Example method before (a) and after (b) the insertion of logic for suspending and resuming the stack,
using the optimisations described in the text. The transformation is on bytecode, hence the presence of goto
statements. Example adapted from [35].

Another optimisation in this technique over traditional CPS transformations is that, be-
cause only those method signatures annotated as Pausable are rewritten, only those call sites
that correspond to pausable method calls (i.e. those that may involve stack switching) need
be transformed and added to the prelude. This allows external libraries that do not use CSO2

constructs (including the Scala standard library) to be used without modification (but certain
restrictions apply, as detailed in Section 3.4).

We also use two important optimisations employed by Srinivasan [35]: firstly, we use
live variable analysis to store in the Fiber only the values of variables which are to be used
again after the restoration point, and secondly we do not store the values of constants or
variable aliases in the Fiber.

Evaluation has shown that the runtime overhead of the additional code injected to imple-
ment the prelude and all pre- and post-call blocks is low, and is certainly outweighed by the
increased performance in context switching (see Section 7).

3.3. Living with the JVM Verifier

The JVM does not permit a method to inspect the stack frame of its caller, thus necessitating
the design described in this paper. Nonetheless, as reported in Section 7, the performance of
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this technique is far in excess of Java primitives.
Furthermore, the JVM verifier requires that the operand stack is always the same size

and contains the same types of values, irrespective of the code path that is taken to reach
any particular point [37]. Therefore it is necessary to push onto the stack as many (dummy)
constants of the expected types in the correct order as is required before issuing the jump in
the prelude. For example, we push iconst 0 whenever an int is expected.

After transformation, it is necessary to recompute the stack map table of each modified
class file. These tables were introduced with Java 6 in order to speed up the runtime verifi-
cation of classes by caching type information known to the compiler. The table records the
type of values of local variables and the types of each operand stack slot immediately before
specific bytecode instructions [37].

The jsr bytecode instruction, used to jump to a local subroutine defined within the
body of a method, has caused implementation difficulties for previous bytecode rewriting
frameworks [35,38]. However, the Scala compiler and all modern Java compilers no longer
emit the jsr instruction (i.e. those that target bytecode version 51.0 and higher [37]), and
thus our bytecode rewriter does not include logic for handling jsr.

3.4. Interaction with Functional Expressions

The Scala programming language offers both imperative and functional language fea-
tures [22]. As of the current version of Scala (2.10.x), functional expressions, including for
comprehensions, are implemented as standard library method calls. For example,

for (i <− 0 until n; j <− i until n) println(i)

is compiled to:

intWrapper(0).until(n).foreach(i: Int => intWrapper(i).until(n).foreach(j: Int => println(i)))

A difficulty arises when pausable methods are called from within anonymous functions
passed to such standard library methods or external libraries. This would require those exter-
nal methods to already have the Pausable annotation and the CPS transformation applied.

Our (partial) solution is to rewrite commonly used functional expressions, such as for
comprehensions, as the equivalent imperative code at compile time using Scala macros. Since
macros define abstract syntax tree transformations, they operate at the abstract source level
rather than at the object code level, and so should be preferred wherever possible over byte-
code transformation. For example, if we change the above expression to

for (i <− 0 until n optimized; j <− i until n optimized) println(i)

our code is now compiled to

var i : Int = 0
while ( i < n) {

var j : Int = i
while ( j < n) { println ( i ); j += 1 }
i += 1

}

where i and j are fresh variable names. As a side benefit, the performance of the source
program is optimised.

Nevertheless, there will always be pathological cases where such ad-hoc program trans-
formations are unable to avoid delegation to library routines. In these cases, the transforma-
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tion attempt will fail. Accounts of real user experience are needed to determine whether such
rewritings alone are sufficient in practice. An alternative design, which would lift all afore-
mentioned restrictions, would employ bytecode rewriting at runtime using a custom class
loader. However, this could impact on performance.

3.5. Performance Considerations

Support for tail-call optimisations in the Scala compiler, which are unavailable in all Java
compilers of which we are aware, are of great benefit in this setting: the storing and restoring
of call stacks will obviously degrade performance when recursion is deep or call chains are
large; tail-call optimisations can transform some recursive functions into equivalent iterative
code, thus eliminating repeated passing of continuations.

Moreover, in process-oriented programming, systems are often built by the composition
of processes, each of which have a specific well-defined task [39]. Thus, the lengths of call
chains, and hence the depths of activation frames that are to be unwound and rewound, are
expected to be shorter if process-oriented patterns are employed in users’ programs. There-
fore we expect the techniques outlined above to perform well in practice. Of course, however,
benchmarks and case studies of real systems are needed.

3.6. Support for Shared Memory

Although we are primarily concerned with message-passing concurrency, for the reasons
outlined in the introduction, our library also allows for shared-memory concurrency. This
requires some additional changes to the bytecode in the post-compilation stage: If a pausable
method calls another pausable method from within a synchronized block, then all usages of
that object’s monitor must be replaced with a newly introduced explicit lock which sets the
thread affinity of the process to the current thread, and any call to wait(), notify() or notifyAll()
must be replaced with the equivalent to calls to pause() and resume(). These changes are
necessary to ensure that, after a call to resume(), a process is rewound back onto the same
thread when it holds a lock.

4. Scheduling

The user-level scheduler is provided by our small runtime system. The scheduler manages the
states of processes as described in the introduction of Section 3 and illustrated in Figure 1. We
have experimented with two different scheduler algorithms, as reported below. The relative
performance of these two schedulers is considered in Section 7.

Empirical evaluation has shown us that the best scheduling performance is achieved
when one scheduler is responsible for each JVM thread (as opposed to one scheduler multi-
plexing processes across many threads). Thus, each thread has its own scheduler in an effort
to improve cache affinity. Furthermore, previous work shows us that throughput is increased
when the number of JVM threads matches the number of hardware threads on the system:
more threads will likely result in a high context switching overhead, and fewer threads could
result in higher cache misses due to the increased possibility of a thread being rescheduled
on a different core [40].

4.1. Naı̈ve First In, First Out Scheduler

The implementation of the FIFO scheduler is quite simple: the running process occupies the
JVM thread; the processes that are paused have called pause() but no corresponding resume()
has yet been invoked; and the processes that are waiting are placed in a queue. Processes
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1: function WRITETOBUFFEREDCHANNEL(msg)
2: // The ENQUEUE operation atomically stores a message in the ring buffer,
3: // returning FALSE iff the buffer was full.
4: while not ENQUEUE(msg) do
5: // The PAUSE operation causes the current stack to unwind.
6: PAUSE
7: r := GETPAUSEDREADER
8: RESUME(r)

Algorithm 1. Writing to a buffered channel.

enter the queue when a resume() is called, and leave once the JVM thread is unoccupied. In
this scheme, processes do not migrate between threads when a resume() is invoked.

The scheduler is fair in that processes are scheduled in first in, first out order. One could
experiment with different scheduling disciplines by specifying a process priority function and
using a priority queue.

4.2. Multi-Core Batch Scheduler

This scheduler is a simplified implementation of that provided by the occam-π runtime. It
is intended that in a future release, we will provide a scheduler that implements both the
work-stealing algorithm and all of the runtime heuristics detailed in [7].

The scheduler instance maintains a run queue, which is a linked list of batches. Each
batch is a linked list of processes. The scheduler executes each batch by moving the processes
it contains to the active queue. The dispatch count is calculated as a constant multiple of
the batch size, bounded by a fixed constant. The dispatch count is decremented each time a
process is taken from the active queue and executed. When the dispatch count reaches zero
(or the active queue is empty), the processes in the active queue form a new batch which is
appended to the end of the run queue (if non-empty), and the head of the run queue is moved
to the active queue for execution. Since these data structures are manipulated only by the
current thread, they can be maintained without locking.

When a process is resumed, and the dispatch count is non-zero, it is added to the end
of active queue of the rescheduling thread, otherwise it is added to a new batch which is
appended to the end of the run queue of the rescheduling thread. In this way, a process can
migrate between threads during execution (unless prohibited by an explicit affinity setting, as
detailed in Section 3.6).

The use of batches addresses the issue of cache thrashing that can occur with process-
oriented designs [7]. By partitioning the run queue, we reduce the size of the working set
for each thread, which should fit within the processor cache. Performance is improved by
repeated execution of batches within the cache.

5. Channel Communication

Our library, CSO2 provides all of the message-passing capabilities of the original CSO
library [1], including synchronous and buffered channels, extended rendezvous, barriers,
and port type variance. In particular, it provides a CSP-style generalized alt, borrowing the
provably-correct implementation of Lowe [16]. Future work will consider how the perfor-
mance of this primitive can be optimised in our setting of cooperative yielding.

Intuitively, the implementations of channels are as usual, except with calls to wait() and
notify() replaced with calls to pause() and resume() on the appropriate processes. Owing to
space constraints, we have illustrated this for the case of buffered channel communication
only, in Algorithms 1 and 2.
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1: function READFROMBUFFEREDCHANNEL
2: // The ENQUEUE operation atomically fetches a message from the ring buffer,
3: // returning NIL if the buffer was empty.
4: msg := DEQUEUE
5: while msg = NIL do
6: // The PAUSE operation causes the current stack to unwind.
7: PAUSE
8: msg := DEQUEUE

9: r := GETPAUSEDWRITER
10: RESUME(r)
11: return msg

Algorithm 2. Reading from a buffered channel.

For a single-core machine, since there will be only one JVM thread onto which all pro-
cesses are cooperatively scheduled, it is safe to eliminate the locking used in the ENQUEUE
and DEQUEUE operations because there will be no preemption.6

Our library makes use of the specialization of primitives on the parametric polymorphic
types of channels. In Scala, type specialization allows the compiler to generate primitive-
specific versions of classes that have type parameters [41]. This feature is similar in spirit, al-
though not identical, to that of C++ templates. Therefore the performance of communicating
primitives is optimised in CSO2 compared to CSO. For example, this feature is of particular
use when building a concurrent solution to numeral integration.

One last feature of interest is the possibility of optimising extended rendezvous in our
framework. Given a channel c that can communicate values of type T and a function f : T⇒ U,
an extended rendezvous is of the form c?f, and is evaluated by pausing the caller until a value
v can be read from c and then computing f(v) before allowing the writer process to continue.
However, this is existentially equivalent to f(c?) provided f does not perform any channel
operations nor accesses shared memory. Since channel operations are tagged in the bytecode,
we are able to optimise the former into the latter. The user needs to be aware however that
with these optimisations switched on, should f perform any I/O, then this may occur in a
different order.

6. Runtime Deadlock Detection

Our runtime system also includes deadlock detection for global deadlocks, similar to that
available for the Go programming language [29]. Informal benchmarking showed that this
feature adds little to no overhead to the runtime performance since our scheduler records
those lightweight processes currently paused.

Once all processes are paused, we run the deadlock detection algorithm shown in Algo-
rithm 3, which is due to [42]. In the algorithm, we say that process u is waiting for process
v when u is attempting to communicate with v across some channel. The runtime reports the
cycle of ungranted requests that caused the deadlock. For example, the output provided for a
deadlocking run of the dining philosophers problem is as follows

Deadlock detected! The cycle of ungranted requests is:

Philosopher0 =!=> Fork4 Fork0 =?=> Philosopher0

Philosopher1 =!=> Fork0 Fork1 =?=> Philosopher1

6We did experiment with several lock-free algorithms for buffered channel communication, but were unable
to find an algorithm that outperformed the use of locks. We conjecture that this is a result of instantiating only
as many JVM threads as there are hardware threads, and thus the contention for locking is low. This is a topic
for future work, especially as the number cores on commodity hardware increases.
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1: // Input: contention network G = (V,E) where
2: // V is the set of nodes representing processes, and
3: // E contains all edges (u, v) such that u is waiting for v.
4: // Returns: TRUE if some sub-network is deadlocked.
5: function CHECKDEADLOCK(nodes,edges)
6: interiorNodes := {u | (u, v) ∈ edges}
7: // The leaves are the processes not waiting for any other process
8: leaves := nodes \ interiorNodes
9: // If a non-empty graph contains no leaf nodes then all nodes are waiting

10: if (nodes 6= ∅ ∧ leaves = ∅) then return true
11: else
12: // Construct the adjacency list
13: Adj := {u 7→ {v | (u, v) ∈ edges} |u ∈ nodes}
14: // Maintain set of visited nodes (processes known not to be deadlocked)
15: visited := leaves
16: // Starting from the leaves, perform a backwards mark and sweep
17: q := MAKEQUEUE(leaves)
18: while q 6= ∅ do
19: next := DEQUEUE(q)
20: for all n ∈ Adj [next] do
21: if n /∈ visited then
22: visited := visited ∪ {n} // Mark n as deadlock free
23: ENQUEUE(q,n)
24: // Graph is acyclic iff we have visited all nodes
25: return nodes = visited

Algorithm 3. Deadlock Detection [42].

Philosopher2 =!=> Fork1 Fork2 =?=> Philosopher2

Philosopher3 =!=> Fork2 Fork3 =?=> Philosopher3

Philosopher4 =!=> Fork3 Fork4 =?=> Philosopher4

where the left-hand column shows the ungranted write requests and the right-hand column
shows the ungranted read requests.

This level of diagnostics is not available without great effort when using native Java
threads and shared memory, and is of particular importance given that such software errors
are inherently difficult to reproduce.

7. Performance Evaluation

In this section we evaluate the performance of our library against competing solutions.
Erlang is a concurrent message-passing functional language [6], and Go is a compiled

language that natively supports message-passing concurrency [29]. JCSP is a library which
provides CSP-style concurrency primitives for Java [17], and occam-π is a concurrent pro-
gramming language [19]. All are therefore suitable candidates for benchmarking our library
against. The Scala Actors library is the language designers’ recommendation for concurrency
in Scala [22], and is thus also a suitable candidate.

The first performance benchmark measures the total time for n processes to each com-
municate a single message to every other process, for several values of n. Thus each test in-
volved O(n2) messages in total. The relevant parts of the benchmark code for each language
are provided in the appendix.
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The benchmarks were performed on a server with two 3.06 GHz Intel Xeon X5667 pro-
cessors (each with four cores) and 96GB RAM running Windows Server 2008 R2 Enterprise
x64, with JVM 1.7 update 21, Scala 2.10.1, JCSP 1.1-rc4, Erlang R16B and Go 1.0.3. For the
benchmarking of occam-π we installed CentOS 6.4 and KRoC 1.6.0 on the same hardware.
Fifty times were recorded for each experiment, after allowing virtual machines to warm up.
Some Erlang experiments reported very high times, which we believe, having inspected the
memory graph in the task manager, were due to the garbage collector. These times were ex-
cluded; the variances of the remaining results in all experiments were small enough to be
ignored. The times reported are the mean wall times in milliseconds and include the time for
context switching and process start-up.

The results show that our library and Go scales linearly in n2 when communicating
n2 messages amongst n processes, and that our library achieves the best performance when
using the batch scheduler.

From the graph, we can read off that the performance of the internal mechanism of
the library, whereby processes are unwound from the stack whenever they need to pause
and rewound back onto the stack when they are later able to continue, is almost as good as
compiled Go code and well in excess of 100 times faster than Erlang.

When we inspected the raw data we found that our library, and also Go, provides excep-
tionally consistent timings even under heavy loads. In the case of our library, we attribute this
both to the uniform way in which methods that perform concurrency operations are trans-
formed in our framework and to the reliability of the JVM, particularly the engineering effort
to reduce pauses during garbage collection [43].

We also timed the performance of both synchronous and buffered channel communica-
tions between exactly two processes, both with and without the use of an alt at either end of
the channel. We found that the number of communications per second achieved by our li-
brary was equal to that of the original CSO library. Therefore we conclude that the chief util-
ity of CSO2 is when the programmer requires many more processes then there are available
processors.

In the second benchmark we measured the mean wall time in milliseconds for n pro-
cesses, whose communication graph formed a ring, to communicate a single message around
the ring 300 times. As before, fifty times were recorded for each experiment, after allowing
the JVM to warn up. The results are shown in Figure 5. It can be seen that in this benchmark
the performance of our library is far in excess of Java primitives. However of greatest interest
is the influence of the scheduler on the runtime performance: It demonstrates that grouping
processes into cache affine batches and allowing processes to migrate between worker threads
can result in greater throughput.

One should not place too much reliance on micro-benchmarks; however, this evaluation
demonstrates that our library is capable of achieving excellent performance. Whilst we seek
real experience with CPU-intensive applications, we feel that it is a safe conjecture that our
library provides better performance than any other competing message-passing solution on
the JVM.

8. Related Work

The work presented here builds on the ideas of [25,44,35,26,27,28]. A good survey of related
techniques appears in [35].

Srinivasan implemented a similar continuation-passing style transformation for the Java
Kilim actors library [35]. One significant difference is that Srinivasan requires that pausable
methods be explicitly annotated in the user’s source code. Our view is that these additional
annotations clutter the source code of methods that need to perform concurrency operations
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Figure 4. Benchmarking the performance of our CSO2 library, using both the FIFO and batch scheduler,
against several alternatives for speed of message passing. Time is the mean wall time in milliseconds for fifty
runs on a logarithmic scale (lower is better).

regardless, and in Scala where lambda functions are supported as first-class citizens, this is
not always possible. We do acknowledge, however, that the use of explicit annotations does
alert the programmer to the potential cost of message passing and stack switching [25].

Thus our approach is similar to Apache Javaflow [27], which transforms a method if
it can reach an operation that causes the owner thread to suspend. However, in contrast to
our approach, Javaflow unnecessarily transforms all methods reachable from that method,
irrespective of whether or not those methods perform thread suspending operations. This can
lead to a substantial increase in the size of the bytecode.

There have also been a number of projects to develop lightweight threads at a lower level
than we have investigated here. One example is the Capriccio project [45], a modified ver-
sion of POSIX threads that is capable of scaling to hundreds of thousands of preemptively-
scheduled user-level threads. The Native POSIX Thread Library also offers lightweight
threads with greatly improved performance over the original LinuxThreads implementa-
tion [46].

Pettyjohn et al. [47] demonstrate how continuations can be supported in environments
that allow neither stack inspection nor manipulation, such as the JVM or the CLR. However,
their approach relies on tail-call optimisations, which are unavailable on the JVM (as of
version 1.7, but are available in the Scala compiler). They also use exceptions to capture state
and their transformations result in loops being split into several method invocations, which
is likely to be expensive on the JVM [34]. Furthermore, since their transformation changes
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access modifiers to increase visibility of private methods, the transformed code is unsuitable
for linking against by other developers.

Of particular importance is occam-π and the Kent Retargetable occam Compiler [19].
Occam natively supports lightweight threads and combines many of the features of both CSP
and the π-calculus. The runtime overheads are low enough to support millions of concurrent
processes. The occam-π scheduler groups processes into cache affine batches of communi-
cating processes using runtime heuristics and process migration. It has been demonstrated
that these techniques can lead to superior communication times [7].

9. Future Work

One interesting future direction for our library would be to allow the developer to define a
user-level scheduler. These have proven to be of particular use in the performance tuning of
applications that deal with database transactions, through the use of an earliest-deadline-first
scheduler [25].

A formal verification of design for our library, as has been done for core components of
CSO [16] and JCSP [48], is needed, and this is a consideration of future work.

In the long term, support for lightweight threads on the JVM at the execution engine
layer is needed. The JVM does not permit any form of stack manipulation, and thus we have
been forced to follow the design described in this paper. Whilst our approach is close in per-
formance to a compiled concurrent programming language, it is clear that direct access to
memory would allow for more efficient support of continuations. A lower-level implementa-
tion of these techniques would also allow for more efficient jumps to call sites within meth-
ods, as arbitrary jumps are disallowed by the bytecode verifier (as explained in Section 3.3).
Support for lightweight threads in the JVM could improve context switching by a further two
orders of magnitude [25].

An important area of work is to support distributed programming. Such an extended li-
brary would provide a uniform interface for both local concurrent and distributed program-
ming, allowing systems to scale from one machine to many, with no architectural changes to
the user’s code.
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Another area of future work will be in an improved runtime, supported with the use of a
debugger. This will largely be a port of our existing work described in [42]. We believe that
the performance and usefulness of this debugging tool will be even greater in this setting,
owing to the cooperative yielding of user processes. In particular, we would expect a reduc-
tion in the reordering of atomic actions caused by the overhead of the instrumentation of the
debugger.

Finally, it should be relatively straightforward, if not development intensive, to bring
many of the features of Erlang [6], such as process-linking and supervisor processes to our
library, with good runtime performance.

10. Conclusions

We have presented an embedded domain-specific language for building massively concurrent
systems using Scala on the JVM. The technique we have described here offers performance
that is over 100 times faster than Erlang, and context switching that is 1000 times faster than
competing libraries and native JVM threads. The performance of our library is also close to
that of compiled Go code.

The traditional threading facilities available on the JVM are tied to kernel resources,
which limits their scalability and the efficiency of context switching. Using the techniques
described in this paper, we are able to map millions of processes onto only as many threads
as there are hardware threads. We achieve this by a CPS transformation of bytecode produced
by the Scala compiler and through the use of a user-level scheduler that supports process
migration. The approach described in this paper is entirely portable and can target any JVM.
Our runtime system also supports deadlock detection, reporting it to the user should it occur.

We have demonstrated that message-passing concurrency can be realised in both a
portable and a pragmatic way. We have done so by leveraging an existing body of work, and
extending it to full message-passing concurrency and functional programming while main-
taining excellent performance.
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and Andrè W. P. Bakkers, editors, Communicating Process Architectures 2000, pages 275–301, September
2000.


