
Eclectic CSP

Bernard Sufrin and Quentin Miller∗

December 1998
(Revision 3.2, April 2002)

Abstract

In this note we introduce the main features of Eclectic CSP — an exper-
imental language, based on the Occam 3 model of communication.

∗Programming Research Group, Oxford University Computing Laboratory, OX1 3QD, UK.

Contents

1 Introduction 1

2 The Core Language 2

2.1 Types . 2

2.1.1 Simple Types and Built-in Type Constructors 2

2.1.2 Type Synonyms . 3

2.1.3 Free Types . 4

2.1.4 Record Types . 4

2.1.5 Free Type Extension and Subtyping 5

2.1.6 Record Type Extension and Subtyping 5

2.1.7 Port Types . 6

2.1.8 Complementary Port Types 6

2.2 Processes . 7

2.2.1 Skip . 7

2.2.2 Assignment . 7

2.2.3 Output . 7

2.2.4 Bracketed Processes . 7

2.2.5 Composite Processes . 8

2.2.6 Guarded Case Iteration 10

2.2.7 Subtype Matching . 11

2.2.8 Specified Actions . 11

2.2.9 Input . 12

2.2.10 Input Alternation . 13

2.2.11 Distributed Alternation 15

2.2.12 Iterated Alternation . 16

2.2.13 Parallel Composition . 16

2.2.14 Distributed Parallel Composition 17

2.2.15 Variable and Constant Declarations 17

2.2.16 Channels . 19

2.3 Procedures and Process Families 20

i

2.3.1 Composite Channel Structures 22

2.3.2 Procedures with results 23

2.4 Sharing Resources . 28

2.4.1 Static Communication Structures 28

2.4.2 Dynamic Communication Structures 29

2.4.3 Alternation and Iteration of Granting Processes 32

2.4.4 Dynamic Processes . 33

2.5 Syntactic Sugar . 33

2.5.1 Strings . 34

2.5.2 Disjunctive Patterns . 34

2.5.3 Bounded Iteration . 35

2.5.4 “Bidirectional” Ports and Channels 36

2.5.5 Remote Procedure Call 36

3 The Module Language 38

3.1 Modules and Interfaces . 38

4 Services 43

4.1 Introduction . 43

4.2 Example: A “Follow Me” Service 43

4.3 Database access optimisation . 45

ii

Acknowledgements

Our intellectual debt to Tony Hoare and David May will be evident: the concep-
tual clarity offered by CSP, and the semantic coherence offered by the Occam
programming language have been an inspiration to us and provided a secure
base from which to explore. The essence of the design of the shared channel
and remote procedure call features of eCSP are due to Geoff Barrett, (formerly
of INMOS) with whom Bernard Sufrin was privileged to collaborate on aspects
of the design of Occam 3 in 1989/90. Professor Jifeng He was a patient sounding
board for many of the novel features described here.

Financial support for the research programme towards which this work was
originally directed was provided by GPT (GEC-Plessey Telecommunications).
During the course of the programme that company went through several reor-
ganizations that culminated in it becoming part of Marconi Ltd. We gratefully
acknowledge the heroic efforts of our original collaborators within GPT to pro-
vide continuity of liaison with us throughout.

Warning: The language description herein is subject to change at any
time.

iii

1 Introduction

In this note we introduce the main features of Eclectic CSP — an experimen-
tal specification and programming notation whose semantic features have been
borrowed from many sources — including OCCAM [1, 2], CSP [2], Z [3], Polyá,
and the Refinement Calculus [4].

The language was originally designed to implement telephone network services
within an intelligent Networking server. But we also expected and hoped that
the language would be more generally useful in situations where concurrency is
of the essence, and where the ideals of predictability and correctness of programs
are important.

Our purpose in offering eCSP as an implementation language for telephony ser-
vices was speculative: we wanted to see whether its support for concurrency
would facilitate the construction of new and more imaginative services, and
whether service designers would accept eCSP as an adjunct to, if not a replace-
ment of, the notations based on finite state machines that they were then using.

We did not expect the final form of the language to have all the features de-
scribed here — but language design is a hard process, and the world of comput-
ing is littered with attempts to build application-specific languages by starting
with an inadequate base and adding features ad-hoc. It also seemed to us that
concurrency was far too important a feature to be provided without also making
it possible to provide some compile time support for a discipline of councurrent
programming. So we started by designing a full-featured concurrent language,
intending to see what had to be removed.

Happily it turned out that very little needed to be removed, and that our ex-
pectation that the language would be more generally useful has proven to be
realistic.

The presence of specification constructs in the language means that not every
program or system described in it will be directly translateable into code. The
process of transforming a pre-program (or specification) into a program is called
refinement, and the language has features that make certain aspects of this
transformation fairly easy.

All eCSP programs can be implemented straightforwardly by translating them
into a language that is powerful enough to support concurrent threads — and
we originally implemented it by translating it more or less directly into Java.

Note: In the body of this text we use two forms of the language: the publi-
cation form — which uses sophisticated typography including ordinary mathe-
matical symbols and is intended to be easy on the eye, and the machine-oriented
form — which is expressed entirely in the ISO-Latin-1 alphabet.

1

2 The Core Language

2.1 Types

2.1.1 Simple Types and Built-in Type Constructors

The built-in simple types of eCSP are the integers, reals, characters, and booleans
— denoted respectively INT, REAL, CHAR, BOOL. The unit type () has a single ele-
ment, written ().

Note that characters are delimited by single quotes (e.g. ’a’). Escape sequences
for denoting unprintable characters are the same as those used in C.

To assert that an expression E has type T we write (E:T).

If T1, ..., Tn are types then (T1, ..., Tn) denotes the type of n-tuples, which are
written (E1, ...En) (where each expression Ei has type Ti). If v:(T1, ..., Tn) =
(v1, ...vn), and i is a constant in the range 1..n, then v.i denotes the ith compo-
nent of v.

If T is a type, then [T] denotes the type of (finite, origin 0) vectors of T and {T}
denotes the type of (finite) sets of elements of T . If, in addition, E is a constant
integer-valued expression, then [T]#E denotes the type of (finite, origin 0, size
E) vectors of T : this is a subtype of [T]. Moreover {T}#E denotes the type of
finite sets of elements of T with at most E elements: this is a subtype of {T}.

If v:[T] then #v denotes its size, and v(i) denotes the element with index i (if
i < #v). A variety of additional operations on vectors are provided, including
catenation (written +).

If v:{T} then #v denotes its size. The usual operations on sets are provided,
including union (written +), intersection (written ∗), and difference (written
−). The membership test and its negation are is written ∈ and /∈ respectively
(or in Latin-1, MEM and NOTMEM).

Expressions of the following forms denote sets and vectors respectively

{E1, ..., En} (where all Ei:T)
[E1, ..., En] (where all Ei:T)

Notations for set and vector comprehension take the following forms

{ (for v1:T1 in E1|B1; ...; for vn:Tn in En|Bn) E}
[(for v1:T1 in E1|B1; ...; for vn:Tn in En|Bn) E]

where the E are expressions representing each element, the vi are variable
names, the Ti are types, the Ei are expressions of type {Ti} or [Ti], and the Bi

are boolean expressions which may be omitted if identically true.

2

Operator Latin-1 Variant Explanation
dom DOM Domain
ran RAN Range
⊕ ++ Relational overriding
∪ + Relational union
. |> Range Restriction
/ <| Domain Restriction

Table 1: Relational Operators

The (for...) construct in a comprehension is called a generator. If one of the
binary operators +, ×, ∨, or ∧ appears in parentheses in front of a generator
and an expression, this operator will be used to combine the generated values
into a single value. For example, if v is a vector of integers,

(+) (for n in v) (n× n)

yields the sum of the squares of the values in v; and if s is a set of boolean
values,

(∨) (for b in s) b

calculates whether at least one of its elements is true.

Contiguous vectors of integers have a special notation

m..n means the vector of numbers from m to n inclusive
m#n means the vector of numbers from m to m+n−1 inclusive

The type of (finite) mappings from elements of domain type D to elements of
range type R is denoted D →| R, and the type of (finite) binary relations between
these types is denoted D ↔ R. The type D →| R is a subtype of D ↔ R, which
is a synonym for {(D,R)}. The usual relational operators are available; they
are listed in table 1.

2.1.2 Type Synonyms

The name nm may be given to type T by a declaration of the form

type nm = T

For example,

type Coord = (INT, INT)

type Polygon = [Coord]

3

2.1.3 Free Types

A free data type named nm with constructors k1, ...kn over types T1, ..., Tn is
defined by

data TypeName = k1 T1 + ... + kn Tn

The constructors k1, ... are functions used to map values of the given types
T1, ... into the data type TypeName that is being defined.

Recursive types can be specified this way, and the new type name may appear
on the right hand side of the definition.

Example 1 Free Type definition: Binary Trees with integer leaves

DATA BT = Leaf Int + Branch (BT, BT)

A mutually recursive collection of free types Ta, Tb, ... is defined by

data Ta = ka1 Ta1 +...

and Tb = kb1 Tb1 +...

...

A constructor may be declared without an associated value field, as in the type
of lists of integers declared in example 2.

Example 2 Free Type definition: Lists of integers

DATA IntList = Nil + Cons (INT, IntList)

Example 3 Mutually recursive Free Type Definition

DATA BT = Atom ST + Branch (BT, BT)

AND ST = Empty + Vec [BT]

Note that free data types may not be anonymous — i.e. a type expression of
the form

ka1 Ta1 + ... + kan Tan

may be used only in the declaration of a new named type.

2.1.4 Record Types

If T1, ...Tn are types, and ii, ...in are names, then the type expression

{|i1:T1, ..., in:Tn|}

4

denotes the type of records with fields named i1, ... which have types T1, ...
respectively.

If E = {|i1 = E1, ..., in = En|} then E.i1 = E1, ..., E.in = En.

Example 4 A record type: Account and an instance of that type

TYPE Account =

{| balance: INT,

overdraft: INT

|}

{| balance = - 50, overdraft = 50 |}: Account

Example 5 Declaration of a record type: Bank

TYPE Bank =

{| account: Person +> Account,

balance: INT

|}

2.1.5 Free Type Extension and Subtyping

It can be convenient to define a free data type by extending an existing free
type. If nm is the name of an existing free type, then the free type ext defined
by

data ext = data nm + k1 T1 + ... + kn Tn

is an extension of the type nm which has all the constructors of nm together
with the additional constructors k1, ...kn.

The type nm is said to be a subtype of the extended type, and a value of type
nm may appear wherever a value of type of ext is required.

Example 6 A free type with two extensions

DATA SmallNum = Zero + One + Two

DATA MedNum = DATA SmallNum + Three + Four + Five

DATA Num = DATA MedNum + Big INT

2.1.6 Record Type Extension and Subtyping

It can be convenient to define a record type by extending an existing record
type. If T1 and T2 are two record types, with disjoint field names then the type
T1 + T2 is a record type which has all the fields of T1 and all the fields of T2.

5

T1 + T2 is an extension of T1 and an extension of T2. It is a subtype of T1, and
a value of type T1 + T2 may appear whenever a value of type T1 is expected.
For reasons of implementation efficiency, T1 + T2 is not considered a subtype of
T2, although the gods of symmetry would no doubt be better pleased if it were.

2.1.7 Port Types

If T is a type, then ?T is the type of port from which values of type T can be
input, and !T is the type of port to which values of type T can be output. A
port of type ?T and a port of type !T may be joined by a channel of type T ,
through which data may be transferred in one direction. Ports are first-class
values, in the sense that they can be passed as parameters, delivered as results,
and communicated over channels.

A port of type ?T or !T is always implemented by a channel of type T (see
2.2.16). In fact the only reason for distinguishing between ports and channels
is that a port embodies an undertaking to use the channel that implements it
in only one direction. Both these types are simple port types.

If PT is a port type, then the type [PT] is a port vector type — the type of
vectors of ports which all have the specified port type. Such types are composite
port types, and their values are implemented by channel vectors (see 2.3.1).

If PT1, ..., PTn are port types, then the type {|i1:PT1, in:PTn|} is a port record
type — the type of records whose fields have the specified port types. Port
record types are also composite port types, and their values are implemented
by channel records (see 2.3.1).

If PT1, ..., PTn are port types, then the type (PT1, ..., PTn) is a port tuple type
— the type of tuples whose components have the specified port types. Port
tuple types are also composite port types, and their values are implemented by
channel tuples (see 2.3.1).

2.1.8 Complementary Port Types

If a process communicates using a port of type PT , then it is sensible, indeed
essential, to run it in parallel with a process that communicates using a port of
the complementary port type.

If PT is a port type, then its complementary port type is written as −PT .
Complementary port types are defined as follows:

−?T = !T for any type T

−!T = ?T for any type T

−[PT] = [−PT] for any port type PT

−(PT1, ..., PTn) = (−PT1, ...,−PTn) for any port types PT1, ...

−{|i1:PT1, ..., in:PTn|}= {|i1:− PT1, ..., in:− PTn|} for any port types PT1, ...

6

2.2 Processes

eCSP programs are built from processes, the simplest of which are called actions.
An action may be a skip, an exception, an assignment, an output, or a specified
action. It will shortly become clear why an input is not simply an action.

2.2.1 Skip

A skip, written skip, has no effect on the program. A skip is typically used to
convey explicitly a programmer’s intention that nothing be done at a particular
point in the program. See Example 25 for a typical situation.

2.2.2 Assignment

An assignment takes the form

v1, v2, ..., vn := e1, e2, ..., en

where the vi are variables (or, more generally, expressions denoting locations),
and the ei are expressions. The expressions must be assignable to the variables,
and this is so only if the type of each expression ei is a subtype of the declared
type of the corresponding variable vi.

The list of expressions is evaluated in parallel, and the resulting values are
assigned in parallel to the variables.

Example 7 Rotating three variables in a single assignment

a,b,c := b,c,a

2.2.3 Output

An output takes the form
p!e

where p is an output port, and e is an expression. The type of the expression
must be a subtype of the type of the port.

The expression is evaluated, and its value transmitted via the port to another
process; the action is not complete until that process has input the value.

2.2.4 Bracketed Processes

A process p may be enclosed in brackets begin p end without changing its
meaning.

7

2.2.5 Composite Processes

The usual forms of sequential process composition are available:

Sequential composition a1; a2; ...

Alternation if e1 → a1 or ... or en → an fi
Iteration do e1 → a1 or ... or en → an od

In these forms the ei are boolean expressions, called guards, and the ai are
processes.

An alternation evaluates each of the guards. If none is true then the program
aborts. If any are true, then one of the processes corresponding to a true guard
is executed.

An iteration evaluates each of the guards. If none are true then the iteration
terminates. If any are true, then one of the processes corresponding to a true
guard is executed, and the iteration as a whole is repeated.

If I is the process

do e1 → a1 or ... or en → an od

then I is equivalent to

if e1 → a1; I or ... or en → an; I or ¬e1 ∧ ... ∧ ¬en → skip fi

An alternation or iteration may use “else” (everywhere) to separate alternatives
instead of “or”. In this case the guards are evaluated in sequence, and the
process corresponding to the first true guard is executed.

Example 8 Two ways to calculate the maximum of m, n

IF m>n -> max := m

ELSE TRUE -> max := n

FI

IF m>=n -> max := m

OR m<=n -> max := n

FI

Example 9 Calculate Greatest Common Divisor of m and n

DO m>n -> m:=m-n

OR m<n -> n:=n-m

OD

8

There are also two forms of composition that perform case-analysis by pattern-
matching:

Case alternation if e is π1 → a1 or ... or πn → an fi
Case iteration do e is π1 → a1 or ... or πn → an od

In these forms the e is an expression, the πi are patterns, and the ai are
processes.

A pattern is either a variable name1, a literal constant, a defined constant, a
record or tuple of patterns, a free data constructor applied to a pattern, or
the wildcard pattern “ ”. A pattern that contains literal constants or free data
constructors is called a refutable pattern.

A case alternation evaluates the expression e, and matches the value against
the patterns πi. If any patterns match, then one of them (πm say) is chosen
and the corresponding process am is executed. If no pattern is matched then
the program aborts. Alternates may be separated by “else” rather than “or”,
in which case the patterns are matched in sequence.

If I is the case iteration

do e is π1 → a1 or ... or πn → an od

then I is equivalent to

if e is π1 → a1; I or ... or πn → an; I or → skip fi

When a case pattern contains variables then a successful match will result in
those variables being bound to parts of the structure (value) being matched.
The scope of such a binding is the rest of the pattern and the corresponding
process.

The pattern [] matches an empty vector, while patterns of the form

[π1, ..., πn] + π

match vectors whose first n elements match π1, ...πn, and whose remaining ele-
ments match π. Similarly,

π + [π1, ..., πn]

will match vectors whose last n elements match π1, ...πn.

The pattern {} matches an empty set, while the patterns {v1, ..., vn} + vs and
vs + {v1, ..., vn} (where the vi, and vs are variable names) match a set with at
least n elements, making an arbitrary choice of elements from the set to bind
to the vi and binding the remaining elements of the set to vs.

1Which should not, in this context, be the same as that of any nullary free data constructor
or defined constant.

9

Example 10 Destructively make a set from a vector

set := {};

DO vec IS [hd]+vec’ -> set,vec := {hd}+set,vec’ OD

Example 11 Destructively make a vector from a set

vec := [];

DO set IS {hd}+set’ -> vec,set := vec+[hd],set’ OD

Patterns may be associated with filter expressions — boolean-valued expressions
which may contain variables bound in the pattern. Identical patterns may guard
different branches of a case composition, providing their filters are distinct.2

Example 12 Calculate the number of positive and negative elements in a list

ps,ns := 0,0;

DO list IS

Cons(hd, tl) | hd>0 -> list,ps := tl,ps+1

OR Cons(hd, tl) | hd<0 -> list,ns := tl,ns+1

OR Cons(hd, tl) | hd=0 -> list := tl

OD

2.2.6 Guarded Case Iteration

It can sometimes be helpful to terminate a case iteration early. To this end, if
G is a boolean expression the form

do G & E is π1 → a1 or ... or πn → an od

is defined to be equivalent to the following (where continue is a fresh variable
which does not appear in G, E, the πi or the ai):

let var continue = G in
do continue →

if e is
π1 → a1; continue := G

or ...

or πn → an; continue := G

else → continue := false
fi

od
end

2Distinctness is not a statically decideable property, and a simplistic compiler may not be
able to warn of overlapping filters.

10

Example 13 Calculate the number of positive and negative elements in a list

ps,ns := 0,0;

DO list IS

Cons(hd, tl) ->

IF hd>0 -> list,ps := tl,ps+1

OR hd<0 -> list,ns := tl,ns+1

OR hd=0 -> list := tl

FI

OD

2.2.7 Subtype Matching

A case pattern may consist of a variable annotated with a type, in which case
the pattern will only match values of that exact type and its subtypes. This is
the means by which a down cast (i.e. a cast from a type to one of its subtypes) is
implemented. For example, suppose that the variables n, m, b are respectively
declared to be of types Num, MedNum, INT (see example 6), then the following
case alternation is well-typed and never aborts.3

IF n IS (v:MedNum) -> m:=v

OR Big i -> b:=i

FI

2.2.8 Specified Actions

Not implemented in Version 1.

A specified action (henceforth spec) is a way of describing what one wishes to
achieve without explaining how to achieve it. It takes the form:

w:[P,Q]

where w is a list of variables, and P,Q are predicates over the program state.
This action will change the state of the process so that the predicate Q becomes
true, providing that the predicate P is true. If P is not true, then the action
may do anything at all. The only variables that change are those named in w.
It is often convenient to be able to name the original values of the variables
in the frame (w). For any such variable v, the form ‘v (pronounced “original
v”) denotes its original value. There is, therefore, an implicit conjunct in the
precondition of each spec, namely w = ‘w.

3The type of the variable n is still Num, even though its value has type MedNum, so replacing
the assignment m:=v with m:=n would result in an ill-typed program.

11

Example 14 Increase the value of x if it is negative, otherwise do anything.

x:[x<0, x>‘x]

A spec is not executable, but it may be replaced by a spec that refines it,4 or
by executable code that refines it, without changing the meaning of the context
in which it appears.

Example 15 Two processes — each of which refines the spec of Example 14

x:=0;

IF x>=0 -> x:=x-4 OR x<0 -> x:= 0 FI

The spec w:[P,Q] is feasible if (P ∧ w = ‘w) ⇒ ∃w@Q. Infeasible specs are, of
course, unimplementable and no refinement of an infeasible spec can be feasible.

Example 16 A feasible spec: choose an element of a nonempty set

x:[S 6= ∅, x ∈ S]

Feasible because
S 6= ∅ ∧ x = ‘x ⇒ ∃x@x ∈ S

2.2.9 Input

An input action takes the form

p?π → a

where p is an input port, π is a pattern (possibly type-annotated), and a is
a process. This action waits until there is input available from the port, then
executes the process a providing the input matches the pattern. If the input
does not match the pattern, then the program aborts.

Ports are statically typed, and the purpose of a type-annotation in a pattern, if
one appears, is to make explicit the type of value carried by the port.

When π is a refutable pattern, the input action p?π → a is equivalent to

p?v → if v is π → a fi

where v is a variable which appears neither in π nor a. So if a value that doesn’t
match the pattern is input from p then the program will abort.

4In the sense of the Morgan/Back refinement calculus [4].

12

Example 17 An infeasible spec: choose an element of a set

x:[true, x ∈ S]

Infeasible because
x = ‘x 6⇒ ∃x@x ∈ S

Example 18 Assign the next value input from the integer port left to v

left?(x:INT) -> v:=x

2.2.10 Input Alternation

A process may wait for input on more than one port at once. An input alter-
nation process takes the form

if e1 & p1?π1 → a1

or e2 & p2?π2 → a2

...

or en & pn?πn → an

fi

where the ei are boolean expressions, known as guards, (which may be omitted if
identically true), the pi are ports (not necessarily distinct), the πi are patterns,
and the ai are processes. This process first evaluates all the boolean expressions,
then waits until input is available on one of the ports corresponding to the true
guards; an input from one such port is then matched against the pattern(s)
corresponding to the port, and the processes corresponding to those it matches
are considered eligible for execution. If one or more processes are eligible, then
one of them is chosen for execution.

Example 20 Merge input from two ports

DO TRUE ->

IF left?x -> output!x

OR right?x -> output!x

FI

OD

Example 19 Abort unless TRUE is read from ack

ack?TRUE -> SKIP

13

Example 21 Interleave input from two ports

l,r := TRUE,TRUE;

DO l \/ r ->

IF l & left?x -> l,r := FALSE,TRUE; output!x

OR r & right?x -> l,r := TRUE,FALSE; output!x

FI

OD

A special port called timer has type ?int. This port may be read at any point
in a program, and it is always ready to input an integer representing the current
time in milliseconds. Such a port can be used with the after n pattern, which
will allow input of any integer representing a time later than n. For example,
we may use the following to limit the time that a process waits for input on
channel ichan before going on to do something else.

Example 22 Wait 20 seconds for an input, then give up.

TIMER ? n ->

IF TIMER ? AFTER n+20000 -> result:=GIVEUP

OR ichan ? x -> result:=x

FI

A pi?πi combination may be replaced by a wildcard (“ ”). If this is the case,
and the corresponding guard yields true, then the wildcard is treated as if it
were a ready input port with a matching pattern and the corresponding process
is eligible for execution. The process in Example 23 copies an input item to the
output if there is input available when it starts, and rushing is false. If rushing
is true and no input is available, then NONE is send to the output; if rushing is
true and input is available, then one of the outcomes above is chosen.

Example 23 Copy input to output, or send NONE to output

IF input?x -> output!x

OR rushing & _ -> output!NONE

FI

14

An input alternation may separate its alternatives with “else” rather than “or”.
In this case, if more than one port is (or becomes) ready to communicate, then
input is taken from the leftmost ready port. The pattern/filter combinations
for that port are then matched against the input in the sequence in which they
appear: if none succeeds then nothing more happens, otherwise the process
corresponding to the first successful match is executed.5

Example 24 Input from left in preference to right

IF left?x -> result:=x

ELSE right?x -> result:=x

FI

Example 25 Absorb all input until a control signal appears

DO absorb ->

IF control?_ -> absorb:=FALSE

ELSE input?x -> SKIP

FI

OD

Example 26 Count the number of odd and even numbers on a port

DO TRUE ->

IF input?x | odd x -> odds :=odds +1

OR input?x | even x -> evens:=evens+1

FI

OD

2.2.11 Distributed Alternation

If G(i) is an input guard in which the name i appears, P (i) is a process in which
the name i appears, and E is a set or vector containing elements E1, ...En then
the form

or (for i inE) G(i) → P (i)

means
G(E1) → P (E1) or ... or G(En) → P (En)

when it appears within an input alternation. Similarly,

else (for i inE) G(i) → P (i)

can be used to mean

G(E1) → P (E1) else ... else G(En) → P (En)
5More discrimination can be exercised here by factoring a combined input/match/filter

alternation into a nest of input, then match, then filter alternations.

15

Example 27 Same as example 26

DO TRUE ->

IF input?x -> IF odd x -> odds :=odds +1

OR even x -> evens:=evens+1

FI

FI

OD

Example 28 Same as example 26

DO TRUE ->

IF input?x -> IF odd x -> odds :=odds +1

ELSE TRUE -> evens:=evens+1

FI

FI

OD

2.2.12 Iterated Alternation

It is frequently desirable to execute an input alternation repeatedly whilst one of
its guards is enabled. The form on the left below provides a convenient syntactic
sugar for the common idiom on the right.

do e1 & p1?π1 → a1

or e2 & p2?π2 → a2

...

or en & pn?πn → an

od

do e1 ∨ e2 ∨ ... ∨ en →
if e1 & p1?π1 → a1

or e2 & p2?π2 → a2

...

or en & pn?πn → an

fi
od

Example 29 Merge input(0), ..., input(9)

DO OR (FOR i IN 0#10) input(i)?x -> out!x OD

2.2.13 Parallel Composition

The parallel composition of processes p1, ..., pn takes the form

p1 || p2 || ... || pn

The component processes are started at the same time, and the composite pro-
cess terminates when all its components have terminated.

16

Example 30 Merge input(0), ..., input(9) until control signals Stop

DO

go & control?Stop -> go:=FALSE

OR

OR (FOR i IN 0#10) go & input(i)?x -> out!x

OD

Example 31 Parallel computation of three function values

a:=f(a) || b:=f(b) || c:=f(c)

A variable (or component of an array) that is assigned to in one of the compo-
nents of a parallel composition must not appear in any of the other components.

Example 32 An improper use of variables in a parallel composition

x := 2;

BEGIN x:=3 || y:=x END

-- At this point the value of y may be 2 or 3!

2.2.14 Distributed Parallel Composition

If P (i) is a process in which the name i appears, and E is a set or vector
containing elements E1, ...En then the form

||(for i inE) P (i)

means
P (E1) || ... || P (En)

2.2.15 Variable and Constant Declarations

New variables and constants are introduced by declarations at the head of a
block that takes the form

let ∆1 ∆2 ... ∆m in p end

Where p is a process — which is known as the body of the block — and each ∆i

takes one of the forms

var name:Type = Expression

con name:Type = Expression

def name:Type = Expression

17

Example 33 Parallel computation of n then of 2n function values

|| (FOR i IN 0#n) result(i):=f(i);

|| (FOR i IN 0#n) result(i):=f(i)

||

|| (FOR i IN n#n) result(i):=f(i)

The expression — whose type must be consistent with the declared type6 — is
evaluated, and in the con or def form is associated directly with the name. The
:Type may be omitted, in which case it is taken to be the type of Expression.
The expression may be omitted in a variable declaration, in which case the type
must be given.

In the var form the value is stored in a memory location that is associated with
the name, and subsequent assignments may change the value stored in that
location. The special expression any may be used in this form (and this form
only) — in which case an unspecified element of the appropriate type is used as
the value.

The expression in the con form is evaluated at run-time, when the corresponding
block of code is executed. Note that the name will not be treated as a constant
in patterns; for example, in example 34 the pattern-matching on the input will
always succeed and n will take the input value in p(n). A name that is to be

Example 34 Run-time constant declaration

LET CON n = 0 IN

ichan?n -> p(n)

END

used as a constant pattern must be declared as a compile-time constant, using
the def form. In example 35, only a 0 may be input and hence p(n) will always
be p(0). The scope of the association between the name and value (or location)

Example 35 Compile-time constant declaration

LET DEF n = 0 IN

ichan?n -> p(n)

END

that is established by a declaration is the text of subsequent declarations in the
block, and the text of the block’s body. The usual scope rules for nested blocks
apply: an association for a name i established in an outer block b is superseded
by an association for i established in a block nested within b.

6i.e. of the same type or a subtype.

18

Note however that processes which are the operands of (‖) or fork cannot
use variables which were declared in an enclosing block — this is to prevent
synchronisation problems of shared variables. This hiding is easy to get around
by declaring a constant with the same name, and using that within the inner
processes.

Example 36 Declarations, a legal and an illegal assignment

LET

CON thirtyfour: INT = 34 -- Constant declaration
VAR forty: INT = 40 -- Variable declaration

IN

forty := 34; -- This assignment is legal
thirtyfour := 34 -- This assignment is illegal

END

2.2.16 Channels

A channel implements point to point communication between two parallel pro-
cesses by providing an output port for one of the processes and an input port
for the other. A unidirectional channel name suitable for communicating values
of type Type is constructed by the declaration

chan name:Type

Such a channel is used to connect a process that writes to its !Type port to a
process that reads from its ?Type port

The composite parallel process in Example 37 implements a one-place buffer,
whose producer client writes to it using left!data and whose consumer client
reads from it using right?data. The middle channel implements an output
port for the left parallel component and an input port for the right component.

Example 37 A one-place buffer process

LET CHAN middle:INT IN

DO left?x -> middle!x OD || DO middle?y -> right!y OD

END

A composite channel may be used to connect two composite ports. Because the
constituent ports in a composite might not all communicate in the same direc-
tion, the declaration of a composite port must indicate this. The declaration

channels name:PType

19

where PType is a (possibly composite) port type produces a channel whose
two ends have type PType and −PType.

Example 38 shows a simple process farm built by parallel composition. The
top process accepts raw data from its left:?RAW port if either of the worker
processes are free, then it immediately transmits it to a free worker. It will
accept cooked data back from a worker it believes is busy and transmit it to the
right:!CKD port.

Example 38 Simple process farm using ports left:?RAW, right:!CKD

LET

VAR free = (TRUE, TRUE)

CHANNELS to : (!RAW, !RAW)

CHANNELS from : (?CKD, ?CKD)

IN

DO free.1\/free.2 & left?x -> -- Farmer

IF free.1 -> free.1:=FALSE; to.1!x

OR free.2 -> free.2:=FALSE; to.2!x

FI

OR ~free.1 & from.1?y -> free.1:=TRUE; right!y

OR ~free.2 & from.2?y -> free.2:=TRUE; right!y

OD

|| DO to.1?x -> from.1!cook(x) OD -- Worker 1

|| DO to.2?x -> from.2!cook(x) OD -- Worker 2

END

2.3 Procedures and Process Families

The two worker processes in Example 38 have the same structure, but use dif-
ferent input and output ports. This common structure can be made explicit by
defining a named family of processes with the same structure, using a declara-
tion of the form

proc name(Φ1, ..., Φm) is p

where p is a process, and each Φi is a value parameter declaration of the form
name:Type. The type of the resulting process is written

(T1, ..., Tn) → ()

where Ti is the type of the ith parameter. (The () indicates that a call to this
procedure yeilds no result value.)

An instance of the family is built (and started) using the notation

name(E1, ..., Em)

20

Each Ei must be a value of the specified type, or one that implements the
specified type.7

In Example 39 we present a generalisation of the process farm, with the roles of
farmer and workers being played by instances (invocations) of process families.
Here Farm, farmer, and worker are families of processes.

Example 39 The process farm revisited

PROC worker(in:?RAW, out:!CKD) IS

DO in?x -> out!cook(x) OD

PROC farmer(in:?RAW, to:(!RAW,!RAW), from:(?CKD,?CKD), out:!CKD) IS

LET

VAR free = (TRUE, TRUE)

IN

DO free.1\/free.2 & in?x -> IF free.1 -> free.1:=FALSE; to.1!x

OR free.2 -> free.2:=FALSE; to.2!x

FI

OR ~free.1 & from.1?y -> free.1:=TRUE; out!y

OR ~free.2 & from.2?y -> free.2:=TRUE; out!y

OD

END

PROC Farm(in:?RAW, out:!CKD) IS

LET

CHANNELS to : (!RAW, !RAW)

CHANNELS from : (?CKD, ?CKD)

IN

farmer(in, to, from, out)

|| worker(to.1, from.1)

|| worker(to.2, from.2)

END

Both the farmer and the worker processes defined in Example 39 can be used in
other settings, and it is worthwhile considering whether the Farm process can
itself be restructured so as to support re-use. Happily it can, and the result is
shown in Example 40.

The type definitions in Example 40 associate names Farmer and Worker with pro-
cess types. The declaration of GenFarm organizes its parameters systematically
into two groups: the left hand group describes its value parameters (in this case
they have process types), and the right hand group describes its port parame-
ters. To create a member of such a process family, connect it to its environment
and start it, all its parameters must be provided.

For example, a replica of the process farm of Example 38 could be created and
started using the notation

7Recall that a channel of type T implements ports of type ?T and !T .

21

Example 40 A generic process farm

TYPE Farmer = (?RAW, (!RAW,!RAW), (?CKD,?CKD), !CKD) -> ()

TYPE Worker = (?RAW, !CKD) -> ()

PROC GenFarm(farmer:Farmer, worker:Worker, in:?RAW, out:!CKD) IS

LET

CHANNELS to : (!RAW, !RAW)

CHANNELS from : (?CKD, ?CKD)

IN farmer(in, to, from, out)

|| worker(to.1, from.1)

|| worker(to.2, from.2)

END

GenFarm(Farmer, Worker, left, right)

To refine (or specialize) a process family it is only necessary to provide an initial
subtuple of its parameters. Example 41 shows how to name specialized variants
of a process family. Each family defined there takes its input from a port of
type ?RAW and sends its output to a port of type !CKD — the families have
(respectively) up to twice, four times and eight times the capacity of a single
worker.

Example 41 Process families defined by specialization

CON TwoWorkers: Worker = GenFarm(Farmer, Worker)

CON FourWorkers: Worker = GenFarm(Farmer, TwoWorkers)

CON EightWorkers: Worker = GenFarm(Farmer, FourWorkers)

When the remaining parameters of a refined (or specialized) process family are
provided, a member of the family is created and started. For example, on a
computer system with enough processors, a farm with (up to) four times the
capacity of that in Example 38 can be created and started using the notation

EightWorkers(left, right)

2.3.1 Composite Channel Structures

Examples 42 and 43 show two ways of building a variadic process farm that uses
composite channel structures to implement port types.

In Example 42 we define the interface to a worker as a pair of ports. A farmer
is given a vector of raw output ports to write to, and a vector of cooked input
ports to read from. It is assumed that these vectors are of the same size.

In Example 43 we define the interface to a worker as a port type Window — a
worker reads raw material from the raw port of a window, and writes cooked

22

Example 42 A variadic process farm

TYPE Farmer = (?RAW, [!RAW], [?CKD], !CKD) -> ()

TYPE Worker = (?RAW, !CKD) -> ()

PROC GenFarm (size:INT, farmer:Farmer, worker:Worker,

in:?RAW, out:!CKD) IS

LET

CHANNELS raw : [RAW]#size

CHANNELS ckd : [CKD]#size

IN

farmer(in, raw, ckd, out)

||

||(FOR i IN 0#size) worker(raw i, ckd i)

END

PROC farmer(in:?RAW, raw:[!RAW], ckd:[?CKD], out:!CKD) IS

LET VAR free = [(FOR i IN 0#size) TRUE]

IN

DO

OR (FOR i IN 0#size)

~free(i) & ckd(i)?y -> free(i):=TRUE; out!y

OR

OR (FOR i IN 0#size)

free(i) & in?x -> free(i):=FALSE; raw(i)!x

OD

END

material to the ckd port of the same window. A farmer is given a vector of
window complements: it writes raw material to their raw ports, and reads cooked
material from their ckd ports.

2.3.2 Procedures with results

So far we have seen only families of processes that communicate with their
environment by means of channels, and which never terminate.

Most ordinary sequential programming languages also provide support for fam-
ilies of sequential processes called procedures, and eCSP is no exception. A
procedure is simply a process family whose members are intended to terminate.

Example 44 shows a procedure that calculates the GCD of its two integer argu-
ments, and assigns the result to the variable gcdanswer.

23

Example 43 The variadic process farm revisited

TYPE Window = {| raw:?RAW, ckd:!CKD |}

TYPE Farmer = (Window, [-Window]) -> ()

TYPE Worker = (Window) -> ()

PROC worker(env: Window) IS

DO env.raw?x -> env.ckd!cook(x) OD

PROC GenFarm (size:INT, farmer:Farmer, worker:Worker, env:Window) IS

LET CHANNELS chans : [{|raw=CHAN RAW, ckd=CHAN CKD|}]#size

IN

farmer(env, chans)

||

||(FOR i IN 0#size) worker(chans(i))

END

PROC farmer(env: Window, chans:[-Window]) IS

LET VAR free = [(FOR i IN 0#chans) TRUE] IN

DO

OR (FOR i IN 0##chans)

~free(i) & chans(i).ckd?y -> free(i):=TRUE; env.ckd!y

OR

OR (FOR i IN 0##chans)

free(i) & env.raw?x -> free(i):=FALSE; chans(i).raw!x

OD

END

The effect of the process gcd(e1, e2) is the same as the effect of the process

LET

VAR m:INT=e1

VAR n:INT=e2

IN

DO m<n -> n:=n-m OR m>n -> m:=m-n OD;

gcdanswer := m

END

In other words, the body of the procedure is executed in an environment in which
its formal parameter names are associated with variables which are initialised
to the values of its actual parameters.

The experienced reader will no doubt be grumbling that it is not very satisfac-
tory for a procedure to communicate its result by assigning to a global variable
in this way. In this she would be in line with our own thinking, for firstly, the
relationship between the procedure name and the variable in which the answer
is placed is not made explicit at the site of the call, and secondly the definition
of recursive procedures is made more complicated.

24

Example 44 A GCD Procedure

VAR gcdanswer: INT

PROC gcd(m:INT, n:INT) IS

BEGIN

DO m<n -> n:=n-m OR m>n -> m:=m-n OD;

gcdanswer := m

END

The problem is resolved by a form of procedure definition and invocation in
which the variable into which the result will be placed can be named explicitly.
In example 45 we present a revised version of the procedure definition, in which
a “result parameter” is named explicitly.

Example 45 A GCD Procedure with a result parameter

PROC gcdanswer:INT := gcd(m:INT, n:INT) IS

BEGIN

DO m<n -> n:=n-m OR m>n -> m:=m-n OD;

gcdanswer := m

END

The GCD procedure is invoked using the notation variable := gcd(e1, e2) and
the effect of this is the same as the effect of the process

LET

VAR m:INT=e1

VAR n:INT=e2

VAR gcdanswer:INT IN

DO m<n -> n:=n-m OR m>n -> m:=m-n OD;

gcdanswer := m;

variable := gcdanswer

END

Those familiar with the academic literature on programming languages will
recognise that the semantics of this form of parameter passing is that known
as “call by result”. The definition and invocation notations have the advantage
that a simple inspection of the call site demonstrates that a variable can be
altered by a procedure call, and a simple inspection of the signature of the pro-
cedure demonstrates that it has result parameters as well as value parameters.
Furthermore there is no need to introduce words describing the modes in which
parameters are passed.8

Procedures may have multiple result parameters, as in example 46
8These notations for procedure definition and invocation were first used by Bernard Sufrin

in his 1971 implementation of a dialect of John Reynolds’s experimental language Gedanken.

25

Example 46 A Procedure with two result parameters

PROC min:INT, max:INT := order(left:INT, right:INT) IS

IF left>=right -> max,min := left,right

ELSE TRUE -> max,min := right,left

FI

The names of one or more value parameters may also appear as result param-
eters, as in example 47. In such cases, we have the mode of parameter passing
known in the literature as “call by value-result”.

Example 47 A Procedure with two value-result parameters

PROC left:INT, right:INT := reorder(left:INT, right:INT) IS

IF left>right -> left,right := right,left

ELSE TRUE -> SKIP

FI

When a procedure with value-result parameters is invoked, the actual parame-
ters in the corresponding value and result positions must be identical variables.
For example, the reorder procedure is invoked using the notation

v1, v2 := reorder(v1, v2)

and the effect of this is the same as the effect of the following process — in
which left, and right are variables distinct from v1 and v2.

LET

VAR left: INT = v1

VAR right:INT = v2

IN

IF left>right -> left,right := right,left
ELSE TRUE -> SKIP

FI;

v1,v2 := left,right
END

We denote the type of this process as

(int, int) → (int, int)

where the tuple on the left of the arrow represents the value parameters and
the tuple on the right represents the result parameters.

A procedure with a result parameter may be invoked in a context where an
expression is expected. In this case the effect is the same as if a new variable
had been declared and used as an output parameter before being substituted
for the procedure invocation. For example

26

.... print(gcd(39,45))

is equivalent to

LET VAR v:INT IN

v := gcd(39,45);

.... print(v)

END

If more than one procedure invocation appears in a single expression, then the
order in which the procedures are invoked is not specified. For example

.... print(gcd(39,45)+gcd(45,98))

is equivalent to one of the following

LET

VAR v:INT
VAR w:INT

IN

v := gcd(39,45);

w := gcd(45,98);

.... print(v+w)

END

LET

VAR v:INT
VAR w:INT

IN

w := gcd(45,98);

v := gcd(39,45);

.... print(v+w)

END

Likewise, a procedure with a result parameter may be invoked as part of a
variable declaration: for example

LET

VAR v = gcd(39,45)

VAR w = gcd(45,98)

IN

.... print(v+w)

END

is equivalent to

27

LET VAR v:INT

IN

v := gcd(39,45);

LET VAR w:INT

IN

w := gcd(45,98);

.... print(v+w)

END

END

The use of such procedures in constant declarations is also permitted, in which
case the effect is the same as if new variables were declared and initialised, then
new constants declared with the same values. For example

LET

CON v = gcd(39, 45)

CON w = gcd(45, 98)

IN

.... print(v+w)

END

is equivalent to

LET VAR v:INT IN

v := gcd(39, 45);

LET VAR w:INT IN

LET CON v=v, w=wi IN

w := gcd(45, 98);

.... print(v+w)

END

END

END

2.4 Sharing Resources

2.4.1 Static Communication Structures

Many systems are organised along client/server lines — where a server offers a
resource to several clients. Whilst it is possible to model this kind of system in
the language introduced so far, one of the constraints on such models is that
they are static.

For example, in Example 48 we present a system composed of a token-granting
server and 42 token-requesting clients. A client can ask for as many tokens as it
wishes, and the server hands out a token to a client whenever one is requested.
Each client’s interface to the token-granting service is described by the port
type TokenService, defined as

28

{| ask:!(), answer:?INT |}

and the server’s interface to each of its clients is described by the complementary
port type -TokenService, defined as

{| ask:?(), answer:!INT |}

We describe the system as static because the server is equipped in advance with
communication channels to and from all its potential clients, and the clients are
all started at the same time as the server.

Example 48 A Static Client/Server System

TYPE TokenService = {| ask:!(), answer:?INT |}

PROC Server(clients: [-TokenService]) IS

LET VAR counter = 0 IN

DO

OR (FOR i IN 0##clients)

clients(i).ask?() ->

clients(i).answer!counter;

counter:=counter+1

OD

END

PROC Client(server: TokenService) IS

LET VAR token:INT IN

...

...

server.ask!();

server.answer?n -> token := n;

...

...

END

-- The system

LET

CHANNELS chans : [TokenService]#42

IN

Server(chans) || ||(FOR i IN 0##chans) Client(chans(i))

END

2.4.2 Dynamic Communication Structures

Although there are many inherent strengths in organising a system statically
there are a couple of weaknesses. The first weakness is that there are as many

29

channels as there are potential clients, even though only one client can be serviced
at a time. The second weakness is that the server and all its clients must
be started simultaneously — there is no way of starting a new client when it
becomes necessary to do so, and terminating it when it has served its purpose.
The third weakness is that there is an absolute upper bound on the number of
clients that can ever be offered service.

We need something a little more flexible than this in order to describe the way
in which a server that doesn’t know about all its clients in advance can offer
services to them. The mechanism that is behind our solution is the shared
channel structure. The declaration

shared chan name:Type

creates a shared channel whose port ends have type shared ?Type and shared
!Type. These ports may be used by any number of processes — though only one
inputting and one outputting process may communicate through the channel at
a time. Shared composite channels also may be declared; for example

SHARED CHANNELS c: {| ask: SHARED ?(),

answer: SHARED !INT

|}

constructs a shared channel structure c with a unit channel called ask and an
integer channel called answer.

Just as there are two ports associated with every channel (the input port and
the output port), there are two interfaces to every shared channel:9 the server
interface and the client interface. Every time a client needs to use a shared
channel for communication with a server it must ensure that no other process
is using it as a client by waiting until it can become the owner of the client
interface to the channel. Once the communication has finished the client must
renounce ownership of the channel. This is accomplished by a process of the
form

client n in communications with server end

where n is the name of the shared channel or one of its ports.

Likewise, whenever a server uses a shared channel for communicating with a
client it must wait until it can become the exclusive owner of the server interface
to the channel, then give up ownership when communication with the client has
finished:

server n in communications with client end

For example, within the scope of the declarations

TYPE SineService = {| input:!REAL, output:?REAL |}

SHARED CHANNELS sine : SineService

9Here and subsequently we abbreviate “shared channel structure” to “shared channel”.

30

the client interface to the shared channel is claimed, used and then renounced
by the process

CLIENT sine IN

sine.input!34; sine.output?n -> ...

END

It will be delayed until the shared channel structure is free, after which it com-
municates using the given ports before once again freeing the channel structure
for re-use.

Within the scope of the same declarations, the server interface is claimed, used,
and then renounced by a granting process

SERVER sine IN

sine.input?n -> sine.output!SINE(n)

END

The granting process is synchronised with the claiming process at the point at
which the bodies of the processes begin, and the termination of the bodies of
the granting and claiming processes is also synchronised.

In example 49 we present a revised version of a server offering the same func-
tionality as example 48, but which expects to offer its services to clients that it
doesn’t know about in advance. The body of a corresponding client is shown in
example 50. The synchronization between client.ask?() and server.ask!()
in example 48 is no longer necessary, since SERVER client in the server and
CLIENT server in the client synchronise with each other.

Example 49 A Dynamic Server

TYPE TokenService = ?INT

PROC Server(client: SHARED -TokenService) IS

LET VAR counter = 0 IN

DO

SERVER client IN

client!counter;

counter:=counter+1

END

OD

END

A token service is set up and offered by declaring a shared channel and running
the server in parallel with the clients.

31

Example 50 A Client for the Dynamic Server

PROC Client(server: SHARED TokenService) IS

LET VAR token: INT IN

...

...

CLIENT server IN

server?n -> token:=n

END

...

...

END

LET SHARED CHANNELS tokenservice : TokenService IN

Server(tokenservice)

||

||(FOR i IN 1..42) Client(tokenservice)

END

Although one might usually expect to find many clients meeting a single server
at a shared channel, in fact it can act as a meeting-place for any number of
clients and any number of servers, as in example 51.

Example 51 Three clients using two servers

LET SHARED CHANNELS service : Interface IN

ServerA(service)

|| ServerB(service)

|| ClientX(service)

|| ClientY(service)

|| ClientZ(service)

END

2.4.3 Alternation and Iteration of Granting Processes

If c1, ...cn are shared port structures, then a process may use them as part of
a server alternation or iteration

A server alternation takes the form

if e1 & server c1 in a1 end
or e2 & server c2 in a2 end
or · · ·

or en & server cn in an end
fi

32

where the ei are boolean expressions, known as guards, (which may be omitted
if identically true), and the ai are processes. Such a process first evaluates all
the guards, then waits until a client claim is made for at least one of the shared
channels corresponding to the true guards — at which point one of the claims
is granted.

A server iteration takes a similar form

do e1 & server c1 in a1 end
or e2 & server c2 in a2 end
or · · ·

or en & server cn in an end
od

It is equivalent to

do e1 ∨ e2 ∨ · · · ∨ en →
if e1 & server c1 in a1 end
or e2 & server c2 in a2 end
or · · ·

or en & server cn in an end
fi

od

2.4.4 Dynamic Processes

A shortcoming of the arrangement in example 51 is that the processes must
be completely specified at compile time. An alternative scheme is to create
processes dynamically as they are needed. This is done using the fork construct.

If p is a process of type t → () and (v) has type t, then fork p(v) invokes p(v) as
a separate process (we call this a child process) that runs concurrently with the
process that invoked it (the parent process). Note that if the child process dies,
the parent will continue to run; but if the parent process dies all its children
will also stop running.

Example 52 shows a process farmer which creates a new server process each
time a request comes on the req channel from one of the client processes.

2.5 Syntactic Sugar

In this section we outline some convenient notational features of eCSP whose
meanings are defined in terms of the core language. The term “syntactic sugar”

33

Example 52 Dynamic server creation

PROC client (req: SHARED !(), service: SHARED Interface) IS

...

END;

PROC server (service: SHARED -Interface) IS

...

END;

PROC farmer (req: SHARED ?(), service: SHARED -Interface) IS

DO

SERVER req IN req?() -> FORK server(service) END

OD

LET

SHARED CHANNELS service: Interface;

SHARED CHANNELS request: ?()

IN

client (request, service)

|| client (request, service)

|| farmer (request, service)

END

is due to Christopher Strachey and describes convenient high-level notations
whose meanings are defineable in terms of core language features — the idea is
that “syntactic sugar” can render “semantic spice” more palatable.

2.5.1 Strings

Strings are vectors of characters, and type STRING is a built-in synonym for
[CHAR]. Literal strings can be denoted using the usual square bracket notation
for vectors, or by delimiting the string with double quotes. The two forms are
interchangeable:

"Hello, world!" ≡ [’H’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,’!’]

"" ≡ []

2.5.2 Disjunctive Patterns

When the same action is associated with more than one guard/pattern in an
alternation it is a tedious and error-prone task to write out the action repeatedly.

A multiple pattern of the form

G & π1 or π2 or ... or πn → a

34

may appear in an iteration or alternation. It is equivalent to

G & π1 → a or G & π2 → a or ... or G & πn → a

The patterns in such a construct must not contain variable names, hence they
will not bind any new values. They may however contain wildcard () patterns.

Similarly,
G & c?π1 or π2 or ... or πn → a

is equivalent to

G & c?π1 → a or G & c?π2 → a or ... or G & c?πn → a

Example 53 A disjunctive pattern

IF

input ? Yes OR Maybe -> GoAhead()

OR

input ? No -> Retreat()

FI

2.5.3 Bounded Iteration

If E:[T] is a vector, G is a boolean expression (which may be omitted, if iden-
tically true, together with the &), and P is a process, then the form

do G & (for i inE) → P od

means “While G is true, execute P with i bound to successive elements of E.”
More formally, it can be translated into the following (where v′, v′′ are fresh
variables which do not appear in G, i, P):

let var v′:[T] = E in do G & v′ is [i] + v′′ → P ; v′ := v′′ od end

Similarly if E:{T} is a set then the form

do G & (for i inE) → P od

means “Choosing each element of E at most once, and while G is true, bind i to
the chosen element and execute P .” More formally, it can be translated into

let var v′:{T} = E in do G & v′ is {i}+ v′′ → P ; v′ := v′′ od end

35

2.5.4 “Bidirectional” Ports and Channels

Not implemented in Version 1.

When a process communicates with a peer process via an input and an output
port, it can be useful to give both ports the same name, rather than having to
invent two names.

If T1, T2 are types, then ?T1!T2 denotes the port tuple type (?T1, !T2), and
!T1?T2 denotes its complement tuple type (!T1, ?T2). If c:?T1!T2 then the ac-
tion c.1?x → a may be abbreviated to c?x → a, and the action c.2!v may
be abbreviated to c!v; likewise if c:!T1?T2 then c.1!v is abbreviated to c!v
and c.2?x → a to c?x → a. The pair of channels that implement the requi-
site ports and their connections may be created by either of the delcarations
channels n:?T1!T2, channels n:!T1?T2.

2.5.5 Remote Procedure Call

Not implemented in Version 1.

The shared channel machinery is a relatively low-level mechanism. Typically it
will be used for providing a service to any of a number of client processes. With
this in mind we introduce a slightly more memorable notation.

The shared channel is declared as a remote procedure — perhaps with some
result parameters.

shared proc RT1, ..., RTn := name(V T1, ..., V Tm)

This means

shared channels name : (?(RT1, ..., RTn), !(V T1, ..., V Tm))

A server process grants the channel with a server process:

server r1:RT1, ...rn:RTn := name(v1:T1, ...vm:Tm) in
body

end

This means
server name in

name.2?(v1, ..., vm) →
let var r1:RT1, ..., rm:RTn in

body

name.1!(r1, ..., rn)
end

end

36

The channel is claimed using a syntax that is no different from that of an
ordinary procedure call:

ar1, ..., arn := name(e1, ..., em)

In the given context, this means

client name in
name.2!(e1, ..., em);
name.1?(v1, ...vn) → ar1 := v1; ...; arn := vn

end

In example 58 (on page 42) we present part of an alternative implementation of
the sine computation service presented earlier.

37

3 The Module Language

3.1 Modules and Interfaces

The simplest forms of module provide a way of packaging a data structure
with a particular behaviour whilst hiding its implementation. The declaration
in example 54 declares a module type, known as Tokens, which exports the
type Token, the constant limit, and the procedures newToken and freeToken,
while forbidding any process using these procedures to take advantage of the
knowledge that Token is implemented as INT.

Example 54 A module that hides its implementation

MODULE Tokens IMPLEMENTS

TYPE Token

CON limit: INT

PROC Token := newToken()

PROC freeToken(Token)

WITH

TYPE Token = INT

CON limit = 42

VAR unused : [BOOL] = [(FOR i IN 0#limit) TRUE]

PROC tok:Token := newToken() IS

LET VAR search = TRUE IN

DO search & (FOR i IN 0#limit) ->

IF unused(i) -> unused(i),tok,search := FALSE,i,FALSE FI

OD

END

PROC freeToken(tok:Token) IS

unused(tok) := TRUE

END

The set of exported types and values is called the module’s interface. It can
be declared independently of the module declaration, thus allowing more than
one module to implement an interface. Example 55 shows the same interface as
before, but with different implementations based on different Token types.

In some cases it is advantageous to parameterise modules or interfaces by types
and/or values. In example 56 we define a parameterised interface Atom describ-
ing modules that administer collections of atoms, and a parameterised module
which implements the interface by administering a set of atoms which are sup-
plied in advance.

To create an instance of this module we use an INSTANCE declaration, e.g.

INSTANCE x:AtomInterface <INT> IS Atoms <INT> ({(FOR i IN 0#42) i})

38

Example 55 Two modules implementing the same interface

INTERFACE TokenInterface IS

TYPE Token

CON limit: INT

PROC Token := newToken()

PROC freeToken(Token)

END;

MODULE IntTokens IMPLEMENTS TokenInterface WITH

TYPE Token = INT;

...

END;

MODULE StringTokens IMPLEMENTS TokenInterface WITH

TYPE Token = STRING;

...

END

This instance of the module is called x, and it exports the type x.Atom (which
in this case will be INT), the constant x.limit (42 in this instance), and the
procedures x.newAtom and x.freeAtom.

We can create any number of instances of a parameterised module, and the spec-
ification of the interface in an instance declaration (e.g. “:AtomInterface<INT>”)
is optional.

Example 57 shows another implementation of TokenInterface. It introduces
a parameterised module, called RemoteTokens, which can be instantiated by a
declaration of the form

INSTANCE tokeninstance IS RemoteTokens(sharedchannel)

where sharedchannel is a shared channel to a remote token server. The INITIALLY
process gets run when tokeninstance comes into existence — it is analogous to
the initialising expression of an ordinary constant or variable. The FINALLY pro-
cess gets run after termination of the body of the block in which tokeninstance

is declared.

In example 58 we present another parameterised module which, when instanti-
ated, offers a sine-computation service.

39

Example 56 Parameterised interface and module

INTERFACE AtomInterface <Atom> IS

CON limit: INT

PROC Atom := newAtom()

PROC freeAtom(Atom)

END

MODULE Atoms <Atom> (original: {Atom})

IMPLEMENTS AtomInterface <Atom>

WITH

VAR unused : {Atom} = original

CON limit = #original

PROC tok:Atom := newAtom() IS

IF

unused IS {sometok}+rest -> tok,unused := sometok,rest

FI

PROC freeAtom(tok:Atom) IS

unused := unused + {tok}

END

40

Example 57 An Implementation Description

TYPE TokenDatabasePort =

{| begin: ?INT;

newtoken: !()?INT;

freetoken: !INT;

end: !()

|}

MODULE RemoteTokens(db: SHARED TokenDatabasePort)

IMPLEMENTS TokenInterface

WITH

TYPE Token = INT

CON limit:INT = 42

PROC tok: Token := newToken() IS

BEGIN

db.newtoken ! ();

db.newtoken ? n -> tok:=n

END

PROC freeToken(tok: Token) IS

db.freetoken!tok

INITIALLY

db.begin ? n -> limit:=n

FINALLY

db.end ! ()

END

41

Example 58 A sine server type with usage reporting

MODULE SineService(report: !INT) IMPLEMENTS

SHARED PROC REAL := sine(REAL)

WITH

VAR usage: INT = 0

PROC result:REAL = SINE(value: REAL) IS

INITIALLY

DO

SERVER output:REAL := sine(input: REAL) IN

output := SINE(input);

usage := usage + 1

END

OD

FINALLY

report!usage

END

42

4 Services

Note that Version 1 implements the Core and Module languages of
eCSP; but not the Service language described here.

4.1 Introduction

The conceptual architecture behind the provision of services is rather simple. A
service (for example: number translation), will in general have several aspects
(for example: client customisation, call handling, statistics reporting). Each
invocation of every aspect of every service is handled in the INS by spawning
an aspect-specific process in response to the initial call.

This handler process oversees the entire life of the invocation. It may call on
facilities provided by other processes — either other evanescent handlers or
long-lived utilities provided as part of the INS infrastructure such as databases
and network adapters. Note that the distribution of messages from the network
amongst currently-active processes, and the multiplexing of messages intended
for the network will be implemented by a network adapter layer.

4.2 Example: A “Follow Me” Service

We begin with an example of a simple service in which calls to the subscriber’s
number are rerouted to another number. When the subscriber rings a dedicated
number, he is prompted for information for a new routing. Thus, as the sub-
scriber makes his way from office to customer to restaurant and back to office,
he rings the special number upon his arrival at each place so that he can receive
his calls on that phone. (Of course a full version of such a service would need
more features to make it really useful, but this will suffice to show how a service
is implemented.)

At the topmost level of description, we note that there are two aspects to this
service: the routing of calls to the subscriber, and the changing of routing target.
Although these aspects are processes that are run independently of each other,
they may share some common resources — in particular they will need to refer
to the same mapping from the subscriber’s ordinary number to his new number.

43

The overall structure of the service is as follows:

SERVICE FollowMe IS

VAR translate : Number +> Number

ASPECT Route (caller:Number, callee:Number; sw:Switch) IS

...

END

ASPECT Edit (caller:Number, callee:Number; sw:Switch) IS

...

END

END

The translate function is a finite mapping from Number (i.e. a telephone num-
ber) to Number, which implements the current routing for all subscribers to this
service. Although it will be implemented using database access, the service de-
scription uses it only at this abstract level. This has important implications for
efficiency which we discuss below.

Route and Edit are processes, instances of which are created dynamically when
the appropriate trigger is detected. For Route this will be the dialling of a
subscriber’s number; for Edit it will be the dialling of the dedicated number for
changing the routing. Triggers are set when these service aspects are installed;
they are not part of the description of aspects.

The parameter list of a service aspect implements the interface between an
instance of the aspect and the environment that created it and with which it
interacts. In this example, each aspect is provided with the dialling number, the
dialled number, and a port through which it communicates with the network.
In practice this will be a process that provides the aspect with a simple and
standardised view of network interaction.

First let us look at the body of the Route aspect:

ASPECT Route (caller:Number, callee:Number; sw:Switch) IS

LET VAR callee’:Number

IN

IF callee MEM DOM translate -> callee’ := translate(callee)

ELSE TRUE -> callee’ := callee

FI;

sw!Connect (caller,callee’)

END

If the called function is in the domain of translate — i.e. translate includes
a mapping from that number — we use translate to find the new destination;
otherwise we use the number originally dialled. An instruction is then sent
to the switch asking for the connection to be made; this instruction will not
require a reply, as there is no special action to be taken on a successful or

44

unsuccesful connexion. There is nothing further for the aspect instance to do,
so it terminates.

Now consider the Edit aspect:

ASPECT Edit (caller:Number, callee:Number; sw:Switch) IS

sw!GetSubNumber;

IF

sw?Number sub

-> sw!GetDestNumber;

IF sw?Number dest -> translate(sub) := dest

ELSE sw?_ -> SKIP

FI

ELSE

sw?_ -> SKIP

FI

END

The switch is instructed to perform whatever actions are required to obtain the
subscriber number and the destination number from the caller. (Note that the
caller and callee numbers are not actually used in this process.) If numbers
are yielded as a result of both these requests, the translate mapping is updated
accordingly; otherwise no action is performed.

4.3 Database access optimisation

Consider a slightly more elaborate routing service than that described above,
where routing can depend upon such things as the day of the week or the caller’s
area code, and may yield a sequence of alternative numbers to try. The abstract
interface to the database used by such a service would, of course, be described
by a more elaborate translation mapping – perhaps

translate:Number →| (UserData →| [Number])

It is important that the underlying database accesses are performed as efficiently
as possible, so we almost certainly want to avoid generating multiple database
accesses to retrieve the number sequence.

The problem may seem like one whose solution demands that the service de-
signer deal with database access at a lower level. We wish to avoid this solution
because not only does it make the programmer’s task more difficult, it also
makes the result less portable because it depends on the relative efficiencies of
basic actions, and these may vary from machine to machine, from library to
library, or from one version of a library to the next.

We choose instead to leave the optimisation to the compiler. While this would
allow a programmer to inadvertently implement a service with unnecessarily
expensive database access, the compiler would be able to detect this (it knows

45

what patterns of access it can generate efficient code for) and warn the program-
mer at compile time. Should the set of desirable patterns change, perhaps owing
to a library re-implementation, the compiler can identify any existing service
programs whose database requirements will need to be restructured if they are
to remain efficient.

It is, desirable, of course that the compiler be highly configurable with respect
to the database access library, so a notation will have to be designed that can be
used to describe that library succinctly. It seems unnecessary to burden service
designers with the task of learning and using the configuration notation – we
expect this to be the province of a database specialist.

References

[1] INMOS Ltd., occamTM 2 Reference Manual, Series in Computer Science,
Prentice-Hall International (1988).

[2] G. Jones & M. Goldsmith, Programming in occamR 2, Series in Computer
Science, Prentice-Hall International (1988).

[2] C.A.R. Hoare, Communicating Sequential Processess, Series in Computer
Science, Prentice-Hall International (1985).

[3] J.M. Spivey, The Z Notation: A reference manual, Series in Computer
Science, Prentice-Hall International (1992).

[4] C. Morgan, Programming from Specifications (2nd edn.), Series in Com-
puter Science, Prentice-Hall International (1994).

46

