
10 Teaching at Belfast and Oxford†

Bernard Sufrin

Nine years is a long delay for an inaugural lecture; but it has taken all
those nine years to introduce an undergraduate curriculum in
Computing at Oxford.

C.A.R. Hoare

The Mathematics of Programming. An Inaugural Lecture delivered
before Oxford University, 17th October 1985.

10.1 Introduction

Although as a youth he had been known as ‘the Professor’ by his younger siblings, Tony
Hoare’s first academic appointment was in 1968, as Professor and Head of the Department
of Computer Science at Queen’s University Belfast. His second was in 1977 as Professor of
Computation and Head of the Programming Research Group of the Computing Laboratory
at the University of Oxford — until 2011 the closest thing that the University had to a
Department of Computer Science.

Queen’s and Oxford were fortunate to appoint a pioneer with Tony’s tastes, experience,
and temperament to departments whose tradition of teaching had hitherto been mainly in
numerical computing, for he revolutionised each of them intellectually during his tenure.

He has occasionally been a bit too modest when he speaks about his own role in these
transformations: ‘I just found some really good people, then I let them get on with it.’ In
fact his extraordinary inventiveness and his talent for exposition meant that good people
sympathetic to his approach flocked towards him; and he has always had a remarkable
capacity for evoking in his collaborators the sense that they are part of a shared scientific
and educational mission.

† This is an expanded version of the identically-named chapter in the ACM-published volume: Theories of program-
ming: the life and works of Tony Hoare, edited by Cliff B. Jones and Jayadev Misra.

1



2 Chapter 10 Teaching at Belfast and Oxford†

Figure 10.1 Until 1982 the Programming Research Group was located in a Victorian semi-detached house

He made it clear what was expected of his ‘good people’, and always took an active interest
in their teaching and in the progress of their research. He published jointly with many of
them, and encouraged some to develop academic textbooks of their own. In these endeavours
his inability to overlook a clumsy piece of prose or an insufficiently tractable theory was
complemented by his skill at making pointed editorial annotations; although the people on
the receiving end always knew that he thought of them as peers in the search for clarity, not
subordinates over whom he was pulling rank. This view is confirmed by Jones and Roscoe in
[26].

Here we give an account of his role in the introduction of masters and undergraduate pro-
grammes in computing at Queen’s and at Oxford. The challenges he faced were different in
the two universities. At Queen’s he was fresh to academic leadership, and there was not yet
a well-developed approach to treating computing as a science. But he was starting with an
adequately-staffed department in a university committed to teaching computer science de-
grees. And the Queen’s organizational structure was simple, so it was straightforward for him
to identify and convince the people whom he had to enlist in support of his initiatives.

On the other hand, by the time he reached Oxford many of the ideas that would naturally
be included in the core curriculum had already evolved — several under his own influence.
But taught degrees in computing were unheard of, he inherited premises in a cramped and



10.2 Queen’s University Belfast 3

ill-equipped Victorian semi-detached house,1 and he had just a single academic colleague
in his subject. And in contrast to Queen’s, Oxford was organizationally complex with some
decision-making loci inhabited by people whose willingness to cooperate with initiatives was
unpredictable at best. As Tony puts it:

When I got to Oxford, everything was turned on its head. In Belfast, one could make
an argument based, for example, on the public perception. [...] Or you could base it
on the potential benefits of the successful application or exploitation of the research.
These arguments carried no weight at all in the Faculty of Mathematics at that time.
Starting up a new course was something that the University was able to contemplate
sort of — I exaggerate slightly — once every decade. [22]

Acquiring the staff, the space, and the resources to transform this nucleus into a broad and
successful research department that could also deliver undergraduate and masters degrees
would require a good deal of his patience and diplomatic skill, as well as an ability to navigate
external constraints and exploit external opportunities as they arose.

10.2 Queen’s University Belfast

10.2.1 Background

The history of automatic numerical computation at Queen’s had begun in the early 1860s when
James Thomson invented the mechanical analogue integrator — the basic mechanism of the
Differential Analyser built for computing tide tables by his younger brother, Lord Kelvin.
The tradition of computational invention was continued in the 1930s by the distinguished
mathematical physicist Harrie Massey, whose design for a differential analyser is reported to
have been built at a cost of only £50.

A sub-Department of Digital Computing appeared in the Department of Applied Mathematics
and Theoretical Physics in 1959, and the Computing Laboratory was established in 1960.
In 1965 the first Professor of Computer Science, Jim Browne, a theoretical physicist from
Texas, was appointed and the Department of Computer Science was established a couple
of years later. The emphasis in the new department was naturally on numerical analysis, and
programming was in FORTRAN. Browne himself began the switch of emphasis to computing
as a science in its own right, before returning to the U.S.

1 Photocopying was done onto chemically-developed single photosensitive sheets. There was no direct access to
the University Computing service, and the only directly-accessible computing service in the house ran on a shared,
superannuated 32K Modular One [40].



4 Chapter 10 Teaching at Belfast and Oxford†

10.2.2 Appointment

Tony’s transition from industry to academia had started when he left the UK company into
which Elliott Brothers, his original firm, had been absorbed to take up a Senior SRC2 Research
Fellowship at the UK National Computing Centre in Manchester. He applied for the Belfast
chair soon after he arrived there. To paraphrase him:

It occurred to me, perhaps a little late, that maybe the best way of finding out about
the academic computing scene was to go for a few interviews for posts. So I rather
tentatively drafted a letter of application and wondered if I would finish it in time
to catch the post. I said to myself that if I could catch the post then I’d submit the
application. Well I did catch the post! I went for an interview, and to my intense
surprise I was chosen for it. [22]

But

when I returned to my office in Manchester my boss at the NCC was furious with
me. I had only worked for six weeks [there]. He was the external assessor for the
post at Belfast, and he assured me that I would not get the post because there was a
far better candidate. [...] I served out the remaining three months of my probationary
period [at the NCC having given notice].

In retrospect it is easy to see that Queen’s showed great foresight, but the appointment was
then unconventional in that Tony’s background was entirely in industry, he had no doctorate,
and he had never before held an academic post. The fact that he had earlier been invited
to apply for chairs in Oslo and in Manchester puts his ‘rather tentatively’ into perspective,
and if Queen’s had any qualms at all, they must have been allayed by the knowledge
of his achievements while in industry. These included inventing his Quicksort algorithm
then analysing its performance in detail [14, 15], leading the team that produced the first
commercial ALGOL compiler, and jointly publishing a proposal, implemented later, for the
design of a successor to ALGOL 60[47]. His membership of IFIP WG2.1 provided ample
additional evidence of peer esteem.

He describes what it felt like to be parachuted in to his first academic post this way

It’s quite an experience coming in at the top, as it were.
[...]
I was a bit shocked when one of the first things I had to do when I arrived in October

2 The UK Science Research Council; now the Engineering and Physical Sciences Research Council. This research
funding body has had a variety of names since its inception as the Department of Scientific and Industrial Research
(DSIR). In this chapter we shall continue to use the initials SRC.



10.2 Queen’s University Belfast 5

was to decide something about the syllabuses for the following year’s courses. We
never thought that far ahead in industry.
[...]
The other thing was getting used to academic politics, which is quite different from
industrial politics. I realised that all professors were equal under the vice-chancellor,
but that you had to understand which of the professors were more equal than the
others. [22]

As was not uncommon at the time, Queen’s ran a computing service from the Computing
Laboratory, and its direction was delegated ex-officio to Tony. He took this responsibility
seriously, but being faced with a genuine computing scientist may have been more than a
couple of his colleagues on the management committee for the service could stomach.

Well it was pretty unpleasant for the first two years actually. [...] The manager of the
Computing Laboratory and the Professor of Medical Statistics, who was chairman
of the computing services committee, attempted to dislodge me. [...] In the end I
went to the vice-chancellor and said ‘Am I the Director or am I not the Director?’
He said ‘You are the Director.’ Anyway I explained the problem to him and he said
he’d look into it, and he came back with the right decision: I was not the Director.
It was a great relief. [22]

Tony was never one for getting involved in fruitless altercations, and it is now evident that he
put the energy liberated by this decision to much better use.

10.2.3 Taught Degrees

By 1970 an M.Sc. and a graduate Diploma in Computer Science and Applications had been
established — at first with substantial numerical analysis content. The Department also began
to establish Computer Science as an undergraduate subject in its own right, and Tony’s
inaugural lecture, delivered three years after he took up his appointment, made it clear that he
saw programming as its core discipline.

Having surveyed the relationships of computer science with other disciplines, it
remains to answer the basic questions: What is the central core of the subject? What
is it that distinguishes it from the separate subjects with which it is related? What is
the linking thread which gathers these disparate branches into a single discipline?
My answer to these questions is simple — it is the art of programming a computer.
It is the art of designing efficient and elegant methods of getting a computer to solve
problems, theoretical or practical, small or large, simple or complex. It is the art of
translating this design into an effective and accurate computer program.[16]



6 Chapter 10 Teaching at Belfast and Oxford†

His colleague Jim Welsh has written of Tony’s time at Belfast:

Tony’s first day at Queen’s, 1st October 1968, was also my first day as an Assistant
Lecturer. The undergraduate course offerings were only just getting under way at
that point, so he inevitably had a major influence on the content, if not on the initial
framework. Initially we used an interpretive language, QUBAL, (a thinking man’s
BASIC which I had developed as part of my PhD) for the introductory programming
courses, but under Tony’s influence the goal was to get to a proper structured
programming language as soon as possible. So as soon as Wirth’s team had the
first self-compiling Pascal compiler running on the CDC machine in Zurich, Tony
set me the task of bootstrapping it onto the ICL 1900 series. That was the most
challenging but most rewarding project I’ve had in my entire career, and its success
laid the foundation for the strong Pascal orientation of all teaching and research at
Queen’s for the next ten years.

A research grant on program proving funded Maurice Clint, Peter Lauer and myself,
though I dropped out of that pretty quickly when the Pascal compiler opportunity
arose. The underlying specification and verification theme quickly permeated much
of the department’s research interests, and to a lesser extent the undergraduate
curriculum, much earlier than occurred in most universities.

At the undergraduate level, the Dahl/Dijkstra/Hoare/Wirth school of structured
programming was incorporated early and with enthusiasm, putting us well ahead
of the pack in that regard. [...] The incorporation of formal methods was more
nuanced, but Tony’s presence and enthusiasm ensured that every staff member took
their relevance to heart.

His colleague Mike McKeag has described how some fundamental topics were approached.
Tony’s influence and his approach to teaching is evident here.

Practical work: A significant practical element (20% of the final assessment) featured in every
course.

Computer Programming: having worked closely with Niklaus Wirth, Tony initiated the teach-
ing of programming through the medium of Pascal, thereby encouraging a disciplined struc-
tured approach. From 1972 the seminal text on Structured Programming that he edited along
with E. W. Dijkstra and O. J. Dahl [9] provided important background reading — and also
helped students understand that a language used to convey computational ideas need not be
the same as the language in which they are expected to program their practicals.

Compiler Construction: this covered the construction in Pascal of a complete compiler for a
subset of Pascal and was based on the effective recursive descent ALGOL compiler developed



10.2 Queen’s University Belfast 7

at Elliott Bothers. The practical work entailed extending the language and its compiler, and
the goal was for students to learn how to work with a complete substantial program.

Parallel Programming: a departmental research project with ICL had studied the engineering
of successful operating systems, and Tony himself had learned some hard lessons in this field
while in industry[17]. Lessons learned from the Burroughs B5500 Multiprogramming System
and from Dijkstra’s THE Multiprogramming System influenced the syllabus for this course, in
which a model operating system was developed in the Pascal-Plus language[45]. Its monitor
construct was used to facilitate safe synchronization between parallel processes.

Theory: Tony’s research interest in formal program specification and rigorous verification
led to several courses on these topics appearing. Both axiomatic and denotational semantics
were taught, and the connection, through Peter Lauer, with IBM Vienna eventually led to the
teaching of a course on VDM.

Algorithms: given Tony’s reputation as the designer of Quicksort and the developer of con-
vincing proof techniques, as well as his interest in parallelism, it is not surprising that the
results of research in sequential and parallel algorithm design also found their way into the
curriculum.

Indeed, as a matter of policy, research results in all areas quickly found their way into most
parts of undergraduate curriculum.

Tony’s undergraduate tutorials at Oxford, in which a student prepared weekly or biweekly
essays on topics of their tutor’s choosing, may well have inspired the style of the General
Paper taken in the final year. This comprised the supervised study of a topic selected by
a tutor, the preparation of an essay, and its oral delivery to the Head of Department. The
written part of the paper consisted of open-ended questions, challenging students to develop
their writing skills and to marshal coherent and convincing arguments in support of their
views on topics not covered explicitly in lecture courses. Joint degrees were developed with
several departments in the Science Faculty; and, unusually for that period, Computing was
also offered in the Arts Faculty for students who wished to combine it with study of the
humanities.3

Relationships with industrial practitioners were promoted by an external education pro-
gramme in which the department’s course material was presented to professionals, usually
as five-day residential courses.The success of this programme prefigured a more extensive
programme of continuing education for software engineers that was eventually to develop in
Oxford.4

3 The presence of someone with a Classics degree must have been reassuring to Tony’s humanities colleagues when
he first explored the prospect of this with them.
4 Computing undergraduates were also required to work in industry for a full year before their final year, and this
‘sandwich scheme’ eventually expanded to include employers in Europe, America, and parts of Asia. On their



8 Chapter 10 Teaching at Belfast and Oxford†

10.2.4 Northern Ireland’s ‘Troubles’

Northern Ireland’s very violent 30-year ‘Troubles’ began very shortly after Tony arrived at
Queen’s. To paraphrase his view of the effect on his family:

Yes, of course it had quite a strong effect. To begin with it seemed rather distant and
was over the other side of the province in Londonderry. But it moved to Belfast and
it moved to the areas that you would expect in Belfast: the Falls Road and Shankill
Road. And it did go on getting worse year by year until about 1972, and so we
were always wondering whether we’d made the right choice and when we would be
running for our lives.

But it was such a friendly place, such a lovely place to be, and the job and my
colleagues [and neighbours] were so wonderful that we really enjoyed it. The only
time that Jill was really worried was when I was told that I had been appointed
[without applying] to another post [in London] and [asked] would I come and talk
to the vice-chancellor about it? I probably would not have gone unless I’d been
invited to be the Professor. So I went for an interview and I turned them down. And
Jill says that was the only time that she was really worried when I was in Belfast:
that she might have to come back to London.[22]

Yet because of his burgeoning reputation, and despite the increasingly dangerous reputation
of the province, he was able to attract large numbers of leading computer scientists to the
department as visitors.5

Although he has described a few close shaves during the troubles, what sounds like one of
the closest happened during an academic symposium that had attracted wide international
participation. Sessions were held in Belfast’s City Hall, and as one of the sessions was drawing
to a close a very loud bang was heard nearby. Fortunately nobody but the locals had recognised
the sound of the bomb explosion for what it was, and he was able to shepherd everyone into
the bus that had been scheduled to take them on a sightseeing tour of the city, and to persuade
the bus driver to take them on a less troubled and more scenic route around the province. He
says that if any of the attendees had realized what had actually happened it would have been
impossible to persuade any more academic visitors to come in future. Ironically there was

return they would give a presentation to the whole department that had to include remarks on the relevance of their
undergraduate modules in their employment. Their real-world experience of the employment of informatics yielded
a noticeable increase in their maturity. Their suggestions for extending or deepening the curriculum were taken very
seriously.
5 Among those who visited were Robin Milner, Peter Landin, E.W. Dijkstra, John Reynolds, Rod Burstall, Brian
Randall, David Cooper, Per Brinch Hansen, Michael Jackson, Jean Ichbiah, and Michael Melliar Smith. Some, for
example Niklaus Wirth, Peter Lauer, Willem de Roever, and Nissim Francez, stayed for longer periods to collaborate
on research and teach short courses.



10.2 Queen’s University Belfast 9

a second loud bang as the bus approached the coast, but this was a sonic boom caused by
Concorde, which at the time was being flight-tested over the Irish Sea.

10.2.5 Adieu

Tony’s time in Belfast coincided with a sustained period of broadening and deepening of
computing as an academic discipline, and of the department he led as one of the most
energetic and innovative departments in the world. It also confirmed him as a leading figure of
the movement to establish programming and programming language design as theoretically
coherent engineering disciplines. It would be hard to exaggerate the sense of liberation from
fruitless reductive arguments felt by programmers, and teachers of programming, as they came
to understand the ideas behind data abstraction, prealgorithmic specification, and what is now
called refinement that he had played such an important part in clarifying and promulgating.



10 Chapter 10 Teaching at Belfast and Oxford†

10.3 University of Oxford

10.3.1 Background

It was only with the founding of the Computing Laboratory in 1957 that Oxford finally
committed itself to providing centralized support for numerical computing in the sciences.6

This followed a campaign by distinguished mathematicians and scientists that began in the late
1940s.7 At first Oxford hedged its bets over the extent to which electronic computers would
be needed,8 but by 1960, under the direction of the distinguished numerical analyst Leslie
Fox, the laboratory was running courses and summer schools on scientific computing, and a
modern digital computing service for the whole university. It had also become a leading centre
for research in numerical analysis and scientific computation. By 1963 numerical computing
had received recognition by the university as an academic discipline in its own right, with the
appointment of Leslie Fox as Professor of Numerical Analysis.9 It eventually took its place in
the undergraduate Mathematics curriculum after the appointment of a handful of academics
able to teach it in tutorials in the colleges — no easy matter in the Oxford of the mid-1960s,
or since.10

A radical broadening of the research scope of the laboratory in the direction of non-numerical
computing began in 1965, with the foundation within it of the Programming Research Group
(PRG), funded with a fixed-term grant from the immediate precursor of the SRC and led by
Christopher Strachey, long celebrated as a pioneering programmer and computer designer.11

6 By way of comparison, Cambridge’s Computer Laboratory was founded, as the Mathematical Laboratory, in 1937.
Its staff had designed and built one of the earliest digital computers — EDSAC — and had been running a computing
service on it since 1949 [46].
7 Campaigners eventually included Charles Coulson FRS, and Dorothy Hodgkin, who was later to win the Nobel
Prize for Chemistry.
8 Tabulators were also funded, as well as hand calculating machines. Posts were established for a professorially-sala-
ried Director, ‘a suitable number of non-graduate (girl) computers’ and two graduates — one a programmer, the
other a numerical analyst. The ‘girl computers’ must have had their hands full for a while: the first modern electronic
computer, a Ferranti Mercury, was not delivered until 1959. Until then there was just an obsolete HEC computer ‘the
Monster in the Basement’, donated by the British Tabulating Machine company, capable of sterling arithmetic but
without a multiplier.
9 Fox was also elected a Fellow of Balliol College. At the time a college fellowship was sine qua non for somebody
expecting to be able to take academic initiatives within the university.
10 Oxford has a federal structure, being a collegiate university composed of self-governing constituent colleges —
more than 35 at the time. All students must be members of a college, and undergraduate teaching is organised around
tutorials at the undergraduate colleges, which are complemented by classes, lectures, seminars, and practical work
provided by university departments. So a new academic subject cannot be part of the undergraduate curriculum at
Oxford until colleges can offer tutorials in it. At the time it was unthinkable that tutorials be given by someone
of lesser standing than a University Lecturer (=Associate Professor) and election to a college tutorial fellowship
was made simultaneously with the University appointment. The main desideratum for the University appointment
was nearly always research prowess, while that for the tutorial fellowship was appetite and aptitude for teaching.
That these talents could not always be found in appropriate measure in a single individual occasionally gave rise to
protracted negotiations over appointments between departments and colleges.
11 Canvassing for a college fellowship for him at the time of his appointment, The Earl of Halsbury, a leading figure
in the UK scientific establishment wrote: ‘If you are to assess Strachey for a Fellowship you will have to start straight



10.3 University of Oxford 11

He moved from Cambridge to Oxford and was appointed Reader in Computation.12 In 1971,
when the university took over the funding of the PRG from its own resources, he was given
the title Professor of Computation.

His founding vision for the PRG had been clear, and Tony would eventually quote it in his
own inaugural lecture.

It has long been my personal view that the separation of practical and theoretical
work is artificial and injurious. Much of the practical work done in computing, both
in software and in hardware design, is unsound and clumsy because the people
who do it have not any clear understanding of the fundamental design principles
of their work. Most of the abstract mathematical and theoretical work is sterile
because it has no point of contact with real computing. One of the central aims
of the Programming Research Group as a teaching and research group has been to
set up an atmosphere in which this separation cannot happen.

By the time of Strachey’s early and unexpected death in mid-1975 the PRG had acquired a
leading reputation for research in computing. His pioneering work on programming language
semantics, and his later collaboration with Dana Scott,13 had been enormously influential
[30–32, 34, 35, 41, 42],14 as had the group’s practical research [33, 38–40].15

Although it had also taught the Theory of Programming Languages and Computation subject
stream of a Diploma in Advanced Mathematics16 to handfuls of students a few times, the PRG
had remained essentially a research-only establishment since its foundation, and had only
ever provided supervision for very small numbers of doctoral students.17 So its continuing

from the admission that he is an unusual kind of person who does not fit into any kind of formal classification. To say
that he has not got the formal qualifications for a fellowship is merely to decline to discuss the question. Strachey has
not got a higher degree for the simple reason that he has been too busy developing the pioneer phase of a completely
new technique, and his work has issued in practical forms which do not lend themselves to publication as scientific
papers.’
12 The rank of Reader in Oxford was generally held by scholars with a distinguished research record. It is equivalent
to full professor in the US.
13 Scott had been appointed Professor of Mathematical Logic in the Philosophy Faculty in 1972.
14 Lengthier tutorial treatments of the Scott-Strachey approach to semantics were published soon after Strachey’s
death [28, 37, 44]
15 For example, Peter Mosses had built the prototype of a system for executing programs based on their denotational
semantics [32, 33], and Strachey and Stoy had published the annotated BCPL source code of OS/6 — an operating
system that anticipated some aspects of UNIX [38–40] (BCPL was a precursor of C)
16 Joe Stoy writes: ‘Esoteric fact: it couldn’t be a master’s course, because in those days we still adhered to the rule
of the mediæval University that the top degree in each Faculty was either the Doctor or the Master, and you couldn’t
have both in the same Faculty. So Master of Arts, Doctor of Medicine, Master of Surgery, Doctor of Science etc. That
finally broke down, probably in the 70s, when the Americans said they were damned if they were coming to Oxford
for a one or two year graduate course and going back with just a B.Phil or a B.Litt or whatever. So we could finally
have an MSc.’
17 But Stoy writes: ‘Yes, it was a small number; though we were quite pleased with ourselves when one year we
produced something like 2% of the country’s doctoral output with just 0.02% of the country’s computing staff’



12 Chapter 10 Teaching at Belfast and Oxford†

existence was by no means assured after Strachey’s death. In fact it took a lengthy and
concerted campaign to persuade the University to commit funds to establish a statutory (i.e.
permanent) chair in computation — the only way to prevent the extinction of the group.18

10.3.2 Appointment

Tony’s election as Professor of Computation and Fellow of Wolfson College came as no
surprise to the computing community: nearly everyone had been thinking of him as the
obvious successor to Christopher Strachey.19 But he has written of being perplexed at how
long it took for Oxford to act on his inclination to move there once he made them aware of
it.20 To paraphrase him:

I applied for an advertised Chair in Oxford in the standard way, and the application
was acknowledged. I kept hearing rumours that I had been appointed. [But] I think
there was a two-year delay before the vice-Chancellor21 wrote to offer me the
job and an opportunity, if I wished, to talk to him. I took the opportunity, and
attempted to squeeze out of him an additional lecturer post, which had sometimes
been accounted as a perk of an incoming science professor. No such luck! I wanted
the job too much.

Joe Stoy had been despatched from Oxford to Belfast to see him at some point.22 He writes:

18 This was not easy during the financial retrenchment then taking place in the UK University system. The prime
movers were Dana Scott and Leslie Fox: they first had to overcome some parochial opposition within the Board of
the Mathematics Faculty and then to persuade the General Board of the Faculties — the body that had the final say.
19 Coincidentally the man who as Director of the Computing Laboratory would formally become Tony’s head of
department was Leslie Fox, who had introduced Tony to programming — in Mercury Autocode — on his return to
Oxford in 1958 to study Statistics for a year. Although Fox could occasionally present as somewhat gruff, he was
completely in sympathy with the aims of the PRG, in whose founding he had played a decisive role after earlier being
sceptical about the prospects for non-numerical computing [11, 43].
20 Perhaps that is partly explained by the time it had taken to secure permanent funding for the chair. Oxford was,
anyway, operating in an adverse economic and financial climate: the UK was in mid-recession and there was a high
(double-digit) rate of inflation. It would not have been beyond the Oxford of that period to advertise the Chair before
committing the funds — in order to see if there were any distinguished applicants to bolster the case for commitment.
Access to the archive of the electoral board and the General Board of the Faculties might settle this question: but they
are presently inaccessible due to pandemic disruption.
21 The (elected) highest functionary of the University, equivalent to the President of a US University, The Chancellor
plays a purely ceremonial role. In recent times the vice-Chancellors of some other UK Universities have insisted on
their post being called ‘vice-Chancellor and President’. Apparently this started when a very grand vice-Chancellor
was told by an even grander potential donor that he wanted to talk to his ‘boss.’
22 Stoy likes to joke that he was simultaneously the most senior and the most junior member of the PRG at the time.
But he was also a Research Fellow of Balliol College and had been the Chair of the Mathematics Faculty’s sub-Faculty
of Computation — established in 1969 in response to a governmental initiative proposing that all undergraduates
should in future be taught to appreciate the potential of computers, if not to program. The sub-Faculty was the first
place that matters relating to any form of teaching of computing anywhere in the university would be discussed. Joe
was both well-connected and familiar with Oxford’s complicated committee structures, so Tony would sometimes
turn to him for help with piloting degree legislation through (or around) the arcana, and he was once heard saying that
he would have to consult ‘Regulation Joe’ over a particularly recalcitrant problem. The sub-faculty had accumulated



10.3 University of Oxford 13

I don’t remember whether it was Tony or someone in Oxford who suggested I go; I
was to give him some insight into the PRG at the time, I suppose, and hoped to talk
him into letting his name be considered by the electors to the Chair.

Tony had already been working for several years on the challenges posed by concurrent
programming and was attracted to the idea of moving to Oxford and working on the semantics
of concurrency.

I had written a paper on CSP and published it in the Communications of the ACM,
in the standard style of the time, as an informal description illustrated by a great
many simple but obviously seminal examples. But in fact one of the reasons why I
wanted to move to Oxford was to learn the technology of giving a formal definition
to a programming language from Joe Stoy and Dana Scott in order to be able to
redress the deficiency and make a formal model. [22]

He also wanted to start a taught master’s programme directed at professionals working in
industry — something that would not have been feasible at Queen’s.23 But as he arrived in
Oxford in October 1977 the academic staff of the PRG consisted just of himself and Joe Stoy
— then a senior research officer. They were supported by two programmers, and a PA; with
a ‘schoolboy programmer’ in post during the Cambridge summer vacations.24 It was evident
that before such a programme could be delivered it would be necessary to find more people
able to teach courses, better accommodation, and much better computing facilities for those
who felt they needed them.2526

10.3.3 Towards a Viable M.Sc. in Computation

It is not clear how Tony eventually managed to convince the powers that be that the PRG was
capable, with an official teaching staff of only two, of sustaining a master’s course that could

many contingent responsibilities, including overseeing the management of the University Computing Service which
had grown very large. In addition to providing the service suggested by its name, it provided the venue and the
instructors for a host of courses directed at academics and students who expected to use computers in their work.
Among the earliest things Tony did on arrival was to successfully argue for the sub-Faculty to divest itself of this
responsibility while still keeping an eye on the academic direction of the service’s courses.
23 The Irish software industry was of negligible size, and the ongoing ‘Troubles’ would have made it particularly hard
to attract potential students from elsewhere.
24 This was John Hughes, who was to join the group later as a D.Phil student; and still later for a brief stint as
University Lecturer in Computation and Tutorial Fellow of St. Edmund Hall
25 Some colleagues who arrived at the PRG after Tony had been used to using powerful interactive systems for
document production and programming, and were surprised by how primitive the in-house facilities had remained.
Tony took their expressed needs seriously, though he himself didn’t need computing facilities at all. But after 1979
the computing facilities improved dramatically; and until the late 1980s some of their features were still considered
quite advanced — a beneficial outcome of Tony’s encouragement of research that fused practice with theory [12].
26 Details of the successive enhancements to the group’s accommodation in Tony’s time would be out of place here. So
would an extensive account of how the Computing Laboratory evolved to the point where it became the Department
of Computer Science in 2011; but a narrative overview can be found on the Department’s website [2].



14 Chapter 10 Teaching at Belfast and Oxford†

start in 1979-1980, but there is evidence that it was an uphill struggle.27 What is clear is that
every experienced teacher who came to work or study at the PRG as a student, a visitor, or
a researcher for the first few years after October 1978 was invited to teach a course to the
group’s (by now numerous) research students and on a master’s course. And who could think
of saying no to such an invitation from Tony? By this means he soon gathered enough teachers,
enlisting Jean-Raymond Abrial,28 Cliff Jones,29 Jim Kaubisch,30 and the present author31 in
his enterprise from Oxford, as well as the eminent software industry figures Michael Jackson,
John Barnes, and John Buckle. Perhaps the anticipated presence of this voluntary cadre had
gone some way to reassuring the powers that be.

He set about recruiting the first student cohort. They had to be self-funding or sponsored by
their employers, since no SRC grants had yet been made available for the degree. The publicity
material explained the background and why experienced programmers ought to attend:

The discovery of the mathematical basis of computer programming now permits
construction of programs that are proved to meet their specification, and promises
to transform programming from an arcane and error-prone craft into a modern
engineering profession.
[...]
Most programmers now active began before [this revolutionary development] and
many now stand in need of professional reorientation. The need is being met in part
[by commercial organizations selling short courses based on proprietary methods]
But there is still a need for a smaller number of more senior programmers to obtain
a broader and deeper understanding [from] a more extended course at a University.

as well as what could be expected of them afterwards by their employers:

A graduate [...] on return to his employer, should be able to achieve a rapid transfer
of the new technology; he would select techniques most appropriate to his envi-
ronment, adapt them and improve them as necessary, establish appropriate design
standards [...] inspire and train his colleagues and subordinates in the observance of
sound practices, and [...] keep abreast of future research and development.

27 An early sub-faculty minute reports that disquiet about staffing levels had earlier been expressed at the University’s
Graduate Studies Committee and by the Science Research Council. Another minute reports Tony’s frustration that
priority for a new University Lectureship had been withdrawn from the PRG and transferred to Logic.

28 Who came to Oxford as a senior SRC-funded research fellow.
29 Who came to Oxford to take his first degree, a D.Phil, under Tony’s supervision.Having taken this degree he was
appointed directly to a Chair at Manchester University.
30 His former doctoral student.
31 The latter two both came to Oxford as SRC-funded research fellows, originally with a brief to work on the
construction and publication of high-quality software.



10.3 University of Oxford 15

As for the students, they:

will obtain a practical understanding of the entire development task, from abstract,
user-oriented, specification, through concrete programming, down to [...] the deliv-
ered system. Thus we hope not to perpetuate problems of inadequate software.

Formal teaching was to take place in the first six months, leading to an examination with two
three-hour papers. Students who passed the examination would spend the second six months
on a project and the writing of a dissertation.

A glance at the curriculum and the teachers for the first year the degree was delivered will
confirm that Tony was indeed ‘letting good people get on with it.’ and that he was not short of
further volunteers. The content and style would set the tone for the degree for many years.

Program Specification: In this course Jean-Raymond Abrial used the earliest (pre schema-
calculus) variant of the evolving Z specification notation [1] to introduce logic, typed set
theory, and the theory of relations, as well as material on ordering, domains, and fixed
points. The course advocated constructing and reasoning about the properties of abstract
specifications of a system before beginning to think about the details of its implementation,
and a few case studies were presented.32

Functional Programming: In this course Joe Stoy used a dialect of Scheme to ‘Describe the
semantics of programming languages and to describe and solve other computing problems.’
The lecture synopses included ‘Fixed points and recursion. Lists and data structures.’

Principles of Programming: Cliff Jones taught this course, in which he introduced the rigorous
approach of the Vienna Development Method expounded in his book [25]. Key aspects of the
course were the abstract modelling of the state of a system, including any invariants; the
prealgorithmic specification of operations by pre- and post- conditions; the notion of data
refinement, and the rules for validating refinements.

Distributed Computing: Tony himself taught this, based on the synopsis: ‘Processes, commu-
nication, process structures, proof techniques, localisation, sharing, nondeterminism, discrete
event simulation.’ His lecture notes would eventually be developed into his CSP book [19].

Programming Language Definition and Implementation: Joe Stoy and the present author
taught this two-part course.33 The first part used the methods of denotational semantics to
consider the validity of proof rules and the principles for establishing the correctness of a
compiler. The second part presented a couple of compilers targeted at abstract stack machines.

32 In the second and subsequent years the present author would deliver a follow-on course consisting entirely of case
studies, including a batch operating system, a reliable block storage system, and a WYSIWYG text editor.
33 Students were encouraged, but not required, to attend Dana Scott’s Programming Language Theory course shared
with undergraduate mathematicians that presented the foundations of Denotational Semantics.



16 Chapter 10 Teaching at Belfast and Oxford†

Software Management: John Buckle taught this course and its successors for several years. It
was based on the synopsis: ‘Project phases, tools, plans, budgets, reviews, changes, documen-
tation, staffing, interfaces.’ [7]

Miscellaneous Applications: This was an optional supplementary course. Four topics had to be
chosen from: Pattern Recognition34; Control Systems;35 Real-time Programming (in Ada);36

Data Processing;37 Numerical Algorithms Libraries.38

Microprocessor Software and Hardware: This was an optional supplementary course with
two practically-based parts:39 (1) High Level Language Programming — the construction
of modular systems in UCSD Pascal to run on DEC LSI/11 computers. (2) Machine Level
Programming — on the architecture and machine-coding of a Research Machines RM380Z,
based on a Z80 processor.

The first cohort consisted of ‘a communications engineer, a data-processing manager, a
computer-science graduate, and two programmers with industrial experience.’ The second
cohort had ‘four overseas and four UK students, with a remarkable spread of expertise —
three being sponsored by the software house SPL.’ The success of all but one of these
students, and the quality of some of their projects (e.g. [10]) demonstrated that an M.Sc. was
viable. But it was apparent quite early that a voluntaristic approach to teaching and project
supervision would not be sustainable if the course was ever to be expanded further or to play
an economically useful role in the UK.

10.3.4 Microprocessors to the Rescue

During the first year of the M.Sc. government funds became available for UK universities
to ‘Strengthen the teaching of the applications of microelectronics and microprocessors at
undergraduate and postgraduate levels, particularly to engineers and scientists.’ Tony seized
this opportunity, and arranged for a joint bid to be forwarded by the University from the
PRG and the Digital Design Group of the Engineering Science Department, for a university
lectureship each.40

34 Taught by Frank Harris, director of the High-Energy Physics imaging laboratory, on a variety of applications
that were being pursued in the Physics Department, namely map data processing; scanning and interpretation of
engineering drawings; bubble-chamber image processing.
35 Taught by David Clarke, Reader in Engineering Science and head of the Digital Design group.
36 Taught by John Barnes: designer of the real-time programming language RTL/2, and primary inventor of the Ada
Rendezvous mechanism.
37 Taught by Michael Jackson using his (now-classic) book: Principles of Program Design [24].
38 Taught by Bryan Ford, managing director of the Numerical Algorithms Group.
39 Taught by Jim Kaubisch
40 The fact that a timely and successful bid was made is testament to Tony’s organisational skill and powers of
persuasion. The departments were in different faculties — Mathematics, and Engineering and Physical Sciences —
both of which needed to be convinced of its worth; and a college fellowship had to be brokered in advance for each



10.3 University of Oxford 17

The successful bid had committed the PRG and the engineers to teach microprocessor
applications to the M.Sc. students. Tony deftly revised the publicity material accordingly

The past decade has seen two major revolutions in computing, one in hardware and
one in programming.

1) The invention of the microprocessor has reduced the unit cost of a stored-program
computer by several orders of magnitude, with a corresponding increase in the range
of its potential applications.

2) The discovery of the mathematical basis of computer programming now permits
construction of programs that are proved to meet their specification, and promises
to transform programming from an arcane and error-prone craft into a modern
engineering profession.
[...]
Thus we hope not to perpetuate on microprocessors the problems of unreliable and
inadequate software sometimes associated with the use of conventional computers.

The curriculum was now reorganised under three main headings: Programming Methodol-
ogy, Microprocessor Applications, and Project Management. Tony located his CSP course
Distributed Computing under Microprocessor Applications, with a prophetic rationale:

In large scale applications it is expected that microprocessors will be connected in
networks cooperating on a common task. Traditional methods of system design can
be extended to take advantage of these possibilities.

The three Programming Methodology courses: System Specification, Programming Language
Principles, and Program Correctness and Validation were to be revised variants of earlier
courses.41

Students’ employers were encouraged to discuss project topics with the Director of the course;
though there were a couple of safeguards against employer-funded student-programmers
being hauled back to do their old job in the old way

The student will be expected to put into practice [in the project] the principles and
techniques learned during the [lectures]. The project will usually involve micropro-
cessors, of which there is a plentiful supply. The choice of project may be made in

of the lecturers. Eventually Peter Henderson was appointed to the PRG post — nominally as Director of the M.Sc.,
and to a fellowship of the all-graduate St. Cross College. Arthur Dexter was appointed to the engineering post and to
a tutorial fellowship in Engineering at Worcester College.
41 The optional courses of the earlier curriculum were replaced by optional short introductory courses in Pascal,
Electronics for Microprocessors, and Microprocessor Coding offered during the first couple of weeks of term, along
with a lengthier course in Functional Programming.



18 Chapter 10 Teaching at Belfast and Oxford†

consultation with the student’s employer; and where convenient the latter part of the
work can be carried out away from Oxford.42

The 1981-1982 cohort attracted by the new curriculum consisted of sixteen students —
particularly good in view of the fact that all the UK students were self-funded or supported by
their employers.43

But with several more doctoral students and research staff, the PRG had by now overflowed its
allocated space. Tony warned the powers that be: ‘Plans for a move to more spacious accom-
modation in Keble Road were made a long time ago, and have been frequently reconsidered
and reconfirmed. They must not now be put into doubt. It is bad policy to accept students and
house them in substandard accommodation.’ Happily, the University stuck with the plans, and
by late 1982 the entire Computing Laboratory had been rehoused in four huge refurbished
terraced houses at 8-11 Keble Road.44

10.3.5 An Engineering Profession

In 1982, concluding his widely circulated 23-page manifesto Programming is an Engineering
Profession[18] written, among other reasons, to attract students and employers to the course,
Tony compared the modern profession of programming to the earlier profession of Civil
Engineering:

Computer programmers work with neither energy nor materials, but with a more in-
tangible concept. We are concerned with the capture, storage, and processing of in-
formation. When the nature of our activities is more widely understood, both within
our profession and outside, then we shall deservedly be recognised and respected as
a branch of engineering. And I believe that in our branch of engineering, above all
others, the academic ideals of rigour and elegance will pay the highest dividends in
the practical terms of reducing costs, increasing performance, and in directing the
great sources of computational power on the surface of a silicon chip to the use and
convenience of man.

By 1983-1984 the M.Sc. had Specialist and Conversion streams: the former for professionals
or graduates in computing (the taught material was seen as advanced by comparison with most

42 Several employers took advantage of this offer. Some companies would later subscribe to a scheme which allowed
them, for a fee, to propose projects that any M.Sc. student could pursue with a suitable supervisor, and be rewarded
by a significant (£500 or so) bursary.
43 In this period fees and living expenses for UK graduate students were funded by the SRC if they were awarded
Advanced Course Studentships by their host department; departments were allocated a fixed number of studentships
(sometimes zero) in advance each year by the council for courses that it approved; determined by a policy that
appeared inscrutable and capricious. The department could appeal for an off-quota studentship for particular students,
but the appeals were dealt with in first-come first-served order, following an even less scrutable policy.
44 They still form part of its premises today.



10.3 University of Oxford 19

computing degrees), the latter for mathematics and science graduates. As well as making it
attractive to a wider range of potential students, this made it easier for the PRG to get SRC
scholarships for UK students as government funding preferences oscillated between ‘training’
and ‘retraining’; and for a while every UK student who attended the course had their fees and
a living allowance paid. The programme would continue its early growth and its appeal to
overseas students, and many of the large numbers of students who now attend are sponsored
by employers.

10.3.6 Breaking the Ice: Towards Undergraduate Degrees

By 1981 Tony was becoming frustrated with the difficulties he was having in trying to
establish an undergraduate degree:

Do you remember when the vice-Chancellor visited 45 Banbury Road to just
look around? John Barnes (of Ada fame) told him that Oxford should develop its
Computer Science degrees. He turned to me and said ‘That’s the job for you, Tony’.
After five years we had an established MSc already, but I had abandoned hope of an
undergraduate course. Until [Prime Minister] Mrs. Thatcher came to the rescue!

The root of the problem was the strict limit then placed by government, its primary source of
funds, on the total number of undergraduates Oxford was allowed to admit, which translated
into strict quotas on numbers of undergraduates in each college. After a new degree proposal
had been agreed as a matter of faculty and university policy,45 colleges had to be found
that would commit places and fellowship stipends to it. The protocol was for the University
secretariat to describe it, along with any additional resources and student quota that would
go with it, in an invitation for ‘Expressions of Interest’ (i.e., bids) sent to the undergraduate
colleges. If no new resources or student quota came with the degree, then a zero-sum game was
played out in each college as its governing body considered making a bid. Established subjects
had the advantage in this game: existing tutorial fellows would have the voting strength to veto
an innovation that they thought would pose a challenge to the college quota of students in their
favoured subjects, however economically or intellectually important the innovation was. All
the incentives favoured slow change if not outright stasis: a reduction in numbers could lead
to the eventual loss of a tutorial position, or even of a whole subject.46

45 By the General Board of the Faculties, a body elected by the Congregation (≈ all tenured academics) that was
responsible for the academic and educational policy of the University.
46 The colleges are self-governing and independent of the University. The governing bodies of undergraduate colleges
would have a majority of tutorial Fellows in existing subjects. Many were sceptical that computing could be treated
rigorously, even if they didn’t feel threatened by it. And as if this were not enough of a hazard, faculty boards and the
General Board were reluctant to agree to initiatives that ran the risk of attracting no bids, and their more conservative
members would use that risk as a counterargument to the innovation. Seventy five years or so earlier, Engineering
had to overcome analogous hazards to gain acceptance.



20 Chapter 10 Teaching at Belfast and Oxford†

Prime Minister Thatcher’s unwitting rescue came in the form of the substantially funded
Alvey Programme,47 which changed the way computing research was organised and financed
in the UK for a few years. The immediate benefit to Oxford was the funding of several ‘new
blood’ University Lectureships in computation, as well as a game-changing commitment
by government to expand student numbers by ten places for each college that appointed a
tutorial fellow in Computation.48 A few colleges got the message, and by 1985 eight university
lecturers with tutorial fellowships were in post. This made a joint degree in Mathematics &
Computation feasible.49

It also broadened the existing research interests and expertise of the group to include algo-
rithms and hardware.

10.3.7 Curriculum Innovation in the Honour School of Mathematics & Computation

Tony chaired the first meeting that considered the PRG contribution to the curriculum of the
Mathematics & Computation degree in detail. As was typical for him, everyone who might
have something interesting to say was invited, not just the teaching staff. In a passionate
though good-tempered discussion that everybody present knew would have big ramifications,
the group considered how programming would be approached ab initio in the first year. It
would have been easy to emulate Belfast, adopt what had become the standard pattern of
a CS curriculum, and teach programming in Pascal. But most agreed that something more
radical would be possible, especially in light of the expertise in functional programming and
its implementation present in the group.50

The argument for teaching functional programming first was straightforward: the overall
approach to computation was to be constructive, not reductive; about information structures,
not just bits and bytes and arrays. There would be no harm at all in students with no computing
experience approaching computing this way; and as for those who would arrive at Oxford

47 The Alvey Programme was worth £350m at 1982 prices
48 Tony says he received the news by telegram from Oxford while visiting Wollongong University during a trip to
Australia. Tony’s 1982 election as a Fellow of the Royal Society, and the increasing success of the PRG in working
with industry may have played a catalytic role in this: industry leaders frequently talked to senior civil servants.
49 The first colleges to appoint tutorial Fellows were Balliol (Joe Stoy), University (Bill Roscoe), and Worcester (the
present author) — in 1983. Over the next two years Lady Margaret Hall (Mary Sheeran, soon to be succeeded by
Jeff Sanders), Pembroke (Carroll Morgan), St. Edmund Hall (John Hughes, soon to be succeeded by Mike Reed),
St. Hugh’s (Ian Page), and Wadham (Bill McColl) followed — each of the latter group had partnered with another
college prepared to pay half the tutorial stipend in exchange for being allowed to admit two students per year. Richard
Bird, and Ib Holm Sørensen were also appointed to University Lectureships in Computation in 1983: the former to
replace Peter Henderson as Director of the M.Sc. with a fellowship at St. Cross; the latter to pursue Industrial Liaison,
with a fellowship at Wolfson.
50 Richard Bird, Geraint Jones, John Hughes, Phil Wadler, and Joe Stoy were all at the PRG, as was Martı́n Raskovsky.
Quentin Miller, and Peter Hancock were soon to join. Richard’s principled approach to constructive functional
programming had already been very influential[5, 6], as had Peter Henderson’s pragmatic approach [13]. The present
author had been using ML, CAML, and Scheme for several years in projects, and had supervised John Hughes’s
D.Phil.



10.3 University of Oxford 21

with basic (or Basic) computing experiences from school or recreational computers, it was
important to dispel the idea that university computing was much the same as they had already
experienced, but on bigger and faster machines. By the end of the discussion it had been
decided to teach functional programming in the first term, using a lazy functional language.

Tony enthusiastically supported the decision: he would go on to devote significant resources
to the development of a new polymorphically-typed lazy functional language, Orwell, to be
used for teaching. Richard Bird and Phil Wadler wrote a textbook for the course ([4]) while
the language was being implemented by Quentin Miller and Martı́n Raskovsky. 51 52

When it came to imperative programming the consensus was that programming could be
treated as a rigorous calculational discipline, and it was decided to delay the associated
course, Software Engineering, until the start of the second year, when the students would
be mathematically more mature. It would use the refinement calculus notation then being
developed by Carroll Morgan.

The first year computation section of the course — a fifth of the material — would also include
an elementary computer architecture course that discussed topics ranging from the structure
of a simple computer, through data representations, and instruction sets, to basic (CMOS)
digital circuits.53 Other courses were shared with Mathematics, including an eight-lecture
course on propositional and first-order logic. For the first couple of years the lecturer was the
distinguished logician Robin Gandy, a former doctoral student of Turing.

The second year computation sections of the course — two fifths of the material — would
be examined on two papers: Software Engineering and VLSI Design, and Algorithm Design
and Distributed Computing, and a short section on computability was shared with the math-
ematicians. The VLSI Design course was based on Mead & Conway’s textbook [27]. The
Algorithm Design course was based on Robert Sedgewick’s textbook, Algorithms, and the
syllabus for the Distributed Computing course shows that it was based on CSP and that its
practicals used the FDR refinement-checker. The Software Engineering course would have
practicals in Modula II, but no formal instruction in the language. It demonstrated for some
years that someone who has grasped the ideas of data abstraction and program refinement
can easily pick up the specifics of a particular imperative programming language and use it to
write reliable programs; but its approach to the refinement of programs from their specifica-
tions was (mistakenly) seen as too rigorous for the less calculationally inclined students, and
was eventually moderated.

51 Orwell was a precursor of Haskell. The language, indeed the whole approach, was influenced by David Turner’s
work, but the local functional programmers had a distinctive view about notational and semantic details.
52 Orwell and the Bird&Wadler text were used after the course had been taught for the first time by Joe Stoy using a
Scheme dialect, called T, for which an implementation and detailed tutorial materials were immediately available.
53 Are you thinking ‘So much for eschewing a reductive approach?’ Interestingly, the practicals for this course
required the students to simulate hardware ... in the functional language they had been taught.



22 Chapter 10 Teaching at Belfast and Oxford†

The idea of starting the degree with a functional programming course would be seen as
intrepid at the time, when not attacked openly as folly, by Oxford’s ‘competitors’.54 But good
students have usually thrived on it; because it soon shows how they can use straightforward
methods of calculation and proof, analogous to those they are familiar with from school, to
derive and/or verify serious and interesting programs and circuits.

10.3.8 A Delayed Inaugural

Oxford duly went about recruiting undergraduates: the first admissions interviews were held
in December 1984,55 and in the first week of the Michaelmas term of 1985 Tony delivered
his long-delayed inaugural lecture, The Mathematics of Programming, to the first cohort
of students and an assortment of colleagues and invited grandees[20]. Those present in the
University Museum for the lecture still remember Tony’s slow-burn prelude to the technical
section, concluding:

Our principles may be summarized under four headings.

1. Computers are mathematical machines. ...

2. Computer programs are mathematical expressions. ...

3. A programming language is a mathematical theory. ...

4. Programming is a mathematical activity. ...

These are general philosophical and moral principles, and I hold them to be self-
evident — which is just as well, because all the actual evidence is against them.
[...]
Many programmers of the present day have been educated in ignorance or even fear
of mathematics. Of course there are many programmers who are university gradu-
ates in [mathematics]. They may have acquired a good grasp of topology, calculus,
or group theory. But it never occurs to them to take advantage of their mathematical
skills to define a programming problem and search for its solution.

54 The attacks now seem quaintly rooted in earlier machinery and sensibilities: programs would be ‘too inefficient’,
inductive reasoning and polymorphic types would be ‘too hard’, ‘try and persuade someone in industry to program
this way’. Nevertheless a year later the present author would be teaching 5-day functional programming courses
twice a year to senior IBM programmers, as part of their continuing professional development. The second cohort
were so enthusiastic that they adapted a mainframe IBM operating system so that Orwell could be used as one of its
shell/job-control languages. Nowadays functional programming is widespread in industry and commerce.
55 This wasn’t completely straightforward! At first no college was allowed to admit more than two Mathematics &
Computation students per year. Although the subject tutors would normally have interviewed candidates in their
colleges and made their own admissions decisions, a cumbersome ‘quota panel’ was set up by the faculty board to
interview them again at the PRG — nominally to ensure consistency of the college decisions. The panel had been
established because some mathematicians feared that computation would not be a rigorous enough subject to attract
students of comparable intellect to their mathematics students — a case of unfamiliarity breeding contempt. But
Tony’s powers of persuasion, helped by the very strong academic performance of many of the earliest students of the
joint school, would eventually convince the doubters that this administrative albatross could be dispensed with.



10.3 University of Oxford 23

[...]
What, then, are the laws of programming that help the programmer to control the
complexity of their task? Many programmers would be hard pressed to name a sin-
gle law. Those who have suffered from bad programs might claim that programmers
are such an undisciplined crew that even if they knew any laws they would instantly
violate them.

Thirty five years later this marvelously comprehensive and farsighted lecture is well worth
re-reading.

10.3.9 From Computation to Computer Science: Two New Degrees

Once the ice had been broken in Oxford, and the high quality of the students wanting to study
computing had been definitively established, two new honour schools were straightforwardly
established over the next five years, and new staff appointed to support their teaching.

The increasing role played by digital systems in engineering, and the founding of an influential
Information Engineering group56 within the Department of Engineering Science had provided
many opportunities for research collaboration, and it became obvious that the collaboration
could be beneficially be extended to undergraduate teaching. Negotiations between the PRG
and Engineering Science led to the founding of a new, 4 year, honour school of Engineering
and Computer Science (ECS). A new statutory professorship was established in the laboratory
in 1988 to support this school,57 and the first students were admitted in 1987.58

The honour school of Computer Science was established a few years later. Agitation by North
American colleagues, though resisted by PRG traditionalists, had led inexorably to the use of
‘Computer Science’ rather than ‘Computation’, or ‘Computing Science’ in the names of all
the honour schools in whose teaching the PRG was involved.

56 Led by J.M. Brady, a polymath mathematician, computing scientist, and engineer, who has since his formal
retirement been Professor of Oncological Imaging at Oxford.
57 The first incumbent was Joseph Goguen, of SRI International. The second was Richard Brent of the Australian
National University.
58 ECS students only received their first lectures in computer science in the second year of their degree, and this
hampered their capacity to use sophisticated computational thinking in later parts of that degree. The Engineering
Science Department’s long-established doctrine that all its undergraduates must take a common first year of instruc-
tion, with topics rooted in the material and physical aspects of engineering, including Soil Mechanics, had — despite
Tony’s negotiating skill — proven non-negotiable. Although it seems that tradition eventually gave way to logic, this
wasn’t in time to save the joint degree, which despite the brilliance of its students had proven unpopular with some
unreconstructable ‘old-school’ engineering tutors: the Degree was quietly abolished after less than a decade.



24 Chapter 10 Teaching at Belfast and Oxford†

10.4 Valediction

In 1995, four years before he retired from Oxford and went to work for Microsoft Research,
Tony reflected on the original assumptions behind the programme of research and education
that had been one of the mainstays of his department.

Ten years ago, researchers into formal methods (and I was the most mistaken
among them) predicted that the programming world would embrace with gratitude
every assistance promised by formalisation to solve the problems of reliability that
arise when programs get large and more safety-critical. Programs have now got
very large and very critical — well beyond the scale which can be comfortably
tackled by formal methods. There have been many problems and failures, but these
have nearly always been attributable to inadequate analysis of requirements or
inadequate management control. It has turned out that the world just does not suffer
significantly from the kind of problem that our research was originally intended to
solve. [21]

Although very carefully worded, Tony’s original remark gained long-term prominence59 and
was taken by too many computing educators as a licence to drop the study of all but the
dampest of formal development methods from the core computing science curriculum.60

Reflecting on the same issue in 2006 in light of subsequent developments he described the
changed situation brought about by the ubiquity of computing and importance of security:

I thought that when I retired, it would be very interesting to see whether the positive
side of my prediction would also come true, that these ideas would begin to be
applied. And indeed, even since I’ve joined Microsoft in 1999, I’ve seen quite
a bit of expansion in their use of assertions and other techniques for improving
confidence in the reliability of programs. There are program analysis tools now that
stop far short of actually proving correctness of programs, but they’re very good
at detecting certain kinds of errors. Some quite dangerous errors, which make the
software vulnerable to intrusions and virus attacks, have been detected and removed
as a result of the use of formal techniques of program analysis.

The idea of verifying computer programs is still an idea for the future, although
there are beginnings of using scientific technology to make the programs more
reliable. The full functional verification of a computer program against formally
specified requirements is still something we have to look forward to in the future.

59 Inter alia by being quoted in the ‘Apologies and Retractions’ section of his Wikipedia entry in which, surprisingly,
it has remained without further comment.
60 Carroll Morgan has since shown very effectively how a start can be made at reversing this. [29].



10.5 Acknowledgements 25

But the progress that we’ve made has really been quite spectacular in the last 10
years. [36]

The revolution since brought about by the increasing dependence of society on distributed
applications based on Cloud infrastructure led to providers turning to formal verification on
a very large scale

Firstly many security-focused customers (e.g. financial services, government, phar-
maceutical) are moving workloads from their own data centers to AWS. Formal ver-
ification provides customers from these industries with concrete information about
how security is established in Amazon Web Services. Secondly, automatic and con-
tinuous formal verification facilitates rapid and cost-efficient development by a dis-
tributed team of developers. [3, 8]

The intellectual tools underpinning this turn have not been superseded; indeed they have
become increasingly useful as tool support for them has become more effective. There really
is no good reason now for serious students of computing, or students of serious computing to
be denied the insights and creative leverage they provide.

So we can imagine what Tony would do now if given a free hand in the design of a modern
undergraduate computing curriculum incorporating the ideas and laws he played such an
important role in discovering and promulgating, as scientist and as educator.

But perhaps we should ask him!

10.5 Acknowledgements

Many thanks to Tony Hoare for sharing reminiscences of his personal and professional history
with me. Jim Welsh and Mike McKeag, Tony’s colleagues at Queen’s, provided invaluable
information about their department during Tony’s time there. Joe Stoy generously recollected
the prehistory of Tony’s appointment to Oxford. The transcript [22] of Cliff Jones’s 2016
interview with Tony [23] provides horse’s-mouth witness for some anecdotes related here,
and will perhaps thereby endow others with the sheen of verisimilitude. The 1969 — 1984
minute book of Oxford’s sub-Faculty of Computation, and its 1985 Examination Decrees and
Regulations provided authoritative information about Oxford organization and curriculum.
Unattributed quotes are either from the above-mentioned minute book, or from my personal
correspondence with Tony during 2019.





Bibliography
[1] J.-R. Abrial, S. Schuman, and B. Meyer. 1980. Specification language. RM McKeag and AM

MacNaughten, editors On the Construction of Programs: An Advanced Course, p. 343.

[2] Anon. ABOUT THE (UNIVERSITY OF OXFORD) DEPARTMENT OF COMPUTER SCIENCE.
http://www.cs.ox.ac.uk/aboutus/cshistory.html.

[3] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S. Luckow, N. Rungta, M. Schaef, C. Schlesinger,
R. Tanash, C. Varming, and M. Whalen. 2019. One-click formal methods. IEEE Software, 36(6):
61–65. https://doi.org/10.1109/MS.2019.2930609. DOI: 10.1109/MS.2019.2930609.

[4] R. Bird and P. Wadler. 1988. Introduction to Functional Programming. Prentice Hall International
Series in Computer Science. Prentice Hall.

[5] R. S. Bird. Oct 1986. An Introduction to the Theory of Lists. Technical Monograph PRG56, Oxford
University Computing Laboratory, Programming Research Group, Oxford, England.

[6] R. S. Bird. Oct 1988. Lectures on Constructive Functional Programming. Technical Monograph
PRG69, Oxford University Computing Laboratory, Programming Research Group, Oxford, Eng-
land. https://doi.org/10.1007/978-3-642-74884-4-5. DOI: 10.1007/978-3-642-74884-4-5.

[7] J. K. Buckle. 1977. Managing Software Projects. Macdonald.

[8] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. MacCárthaigh, S. Magill, E. Mertens,
E. Mullen, S. Tasiran, A. Tomb, and W. E. 2018. Continuous formal verification of Amazon s2n.
In International Conference on Computer Aided Verification, pp. 430–446. Springer.

[9] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds. 1972. Structured Programming. Academic
Press Ltd., England. ISBN 0122005503.

[10] E. Fielding. 1980. The Specification of Abstract Mappings and their Implementation as B Trees.
Technical Monograph PRG18, Oxford University Computing Laboratory, Programming Research
Group, Oxford, England.

[11] L. Fox. 1966. Advances in Programming & Non-Numerical Computation (Proceedings of a
Summer School). Pergamon Press.

[12] R. Gimson and C. Morgan. 1985. The Distributed Computing Software Project. Technical
Monograph PRG50, Oxford University Computing Laboratory, Programming Research Group,
Oxford, England.

[13] P. Henderson. 1982. Functional Programming — Application and Implementation. Prentice Hall
International Series in Computer Science. Prentice Hall.

[14] C. A. R. Hoare. 1961. Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm 65, Find.
Communications of the ACM, 4(7): 321.

[15] C. A. R. Hoare. Jan. 1962. QUICKSORT. The Computer Journal, 5(1): 10–16. ISSN 0010-4620.
https://doi.org/10.1093/comjnl/5.1.10. DOI: 10.1093/comjnl/5.1.10.

27

https://doi.org/10.1109/MS.2019.2930609
https://doi.org/10.1007/978-3-642-74884-4-5
https://doi.org/10.1093/comjnl/5.1.10


28 BIBLIOGRAPHY

[16] C. A. R. Hoare. 1971. Computer Science: an inaugural lecture delivered before the Queen’s
University of Belfast on 10 February 1971. Queen’s University.

[17] C. A. R. Hoare. Feb. 1981. The Emperor’s Old Clothes. Communications of the ACM, 24(2):
75–83. ISSN 0001-0782. https://doi.org/10.1145/358549.358561. DOI: 10.1145/358549. 35856.

[18] C. A. R. Hoare. 1982. Programming is an Engineering Profession. Technical Monograph PRG27,
Oxford University Computing Laboratory, Programming Research Group, Oxford, England.

[19] C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall, Englewood Cliffs, NJJ. ISBN 978-0-13-153271-7.
http://www.usingcsp.com/cspbook.pdf.

[20] C. A. R. Hoare. 1986. The Mathematics of Programming. Oxford University Press.

[21] C. A. R. Hoare. 1995. Unification of theories: A challenge for computing science. In Recent Trends
in Data Type Specification, pp. 49–57. Springer.

[22] C. A. R. Hoare and C. B. Jones, Nov 2015. Transcript of an interview with Tony
Hoare, ACM 1980 Turing Award Recipient (Interviewer: Cliff Jones, Newcastle University).
https://amturing.acm.org/pdf/HoareTuringTranscript.pdf.

[23] C. A. R. Hoare and C. B. Jones, November 2015. An interview with Tony Hoare,
ACM 1980 Turing Award Recipient (Interviewer: Cliff Jones, Newcastle University).
https://www.youtube.com/watch?v=tAl6wzDTrJA.

[24] M. A. Jackson. 1975. Principles of Program Design. Academic Press.

[25] C. B. Jones. 1980. Software Development: a Rigorous Approach. Prentice Hall International Series
in Computer Science. Prentice Hall.

[26] C. B. Jones and A. W. Roscoe. 2010. Insight, inspiration and collaboration. In A. Roscoe,
C. B. Jones, and K. R. Wood, eds., Reflections on the Work of C.A.R. Hoare, pp. 1–32. Springer
London, London. ISBN 978-1-84882-912-1. https://doi.org/10.1007/978-1-84882-912-1 1. DOI:
10.1007/978-1-84882-912-1 1.

[27] C. Mead and L. Conway. 1980. Introduction to VLSI Systems. Addison-Wesley, Reading,
Massachusetts.

[28] R. Milne and C. Strachey. 1976. A Theory of Programming Language Semantics. Chapman and
Hall, London.

[29] C. Morgan. 2016. (In-)Formal Methods: the Lost Art. In Engineering Trustworthy Software
Systems, pp. 1–79. Springer.

[30] P. Mosses. 1974. Commentary on the Mathematical Semantics of Algol 60. Technical Monograph
PRG12-Commentary, Oxford University Computing Laboratory, Programming Research Group,
Oxford, England.

[31] P. Mosses. 1974. The Mathematical Semantics of Algol 60. Technical Monograph PRG12, Oxford
University Computing Laboratory, Programming Research Group, Oxford, England.

[32] P. D. Mosses. 1975. Mathematical Semantics and Compiler Generation. D.Phil Thesis, University
of Oxford, Oxford, England.

[33] P. D. Mosses. 1979. SIS—semantics implementation system. Reference Manual and user guide.
Report DAIMI MD-30, Univ. Aarhus.

https://doi.org/10.1145/358549.358561
http://www.usingcsp.com/cspbook.pdf
https://doi.org/10.1007/978-1-84882-912-1_1


BIBLIOGRAPHY 29

[34] D. S. Scott. 1970. Outline of a Mathematical Theory of Computation . Technical Monograph
PRG2, Oxford University Computing Laboratory, Programming Research Group, Oxford, Eng-
land.

[35] D. S. Scott and C. Strachey. 1971. Toward a Mathematical Semantics for Computer Languages.
Technical Monograph PRG6, Oxford University Computing Laboratory, Programming Research
Group, Oxford, England.

[36] L. Shustek. 2009. An interview with CAR Hoare (Interview conducted by J.P. Bowen in late
2006). Communications of the ACM, 52(3): 38–41. https://doi.org/10.1145/1467247.1467261.
DOI: 10.1145/1467247.1467261.

[37] J. E. Stoy. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, Cambridge, MA, USA. ISBN 0262690764.

[38] J. E. Stoy and C. Strachey. 1972. OS6—An experimental operating system for a small computer.
Part 1: General principles and structure. The Computer Journal, 15(2): 117–124. https://doi.org/
10.1093/comjnl/15.2.117. DOI: 10.1093/comjnl/15.2.117.

[39] J. E. Stoy and C. Strachey. 1972. OS6—An experimental operating system for a small computer.
Part 2: Input/output and filing system. The Computer Journal, 15(3): 195–203. https://doi.org/10.
1093/comjnl/15.3.195. DOI: 10.1093/comjnl/15.3.195.

[40] J. E. Stoy and C. Strachey. 1972. OS/Pub (text and commentary). Technical Monograph PRG9,
Oxford University Computing Laboratory, Programming Research Group, Oxford, England.

[41] C. Strachey. 2000. Fundamental Concepts in Programming Languages (republished 1967 lecture
notes). Higher-order and Symbolic Computation, 13(1-2): 11–49.

[42] C. Strachey and C. P. Wadsworth. 2000. Continuations: A mathematical semantics for handling
full jumps (republished 1974 monograph). Higher-order and Symbolic Computation, 13(1-2): 135–
152.

[43] B. Sufrin, 2007. Oxford University Computing Laboratory: an informal prehistory –
a lecture given at the 50th anniversary celebration of the founding of the laboratory.
https://www.cs.ox.ac.uk/people/bernard.sufrin/personal/historyfortalk.pdf.

[44] R. D. Tennent. Sept. 1976. The denotational semantics of programming languages. Communica-
tions of the ACM, 19(8): 437–453.

[45] J. Welsh and D. Bustard. Sept. 1979. Pascal Plus - another language for modular multipro-
gramming. Software: Practice and Experience. https://doi.org/10.1002/spe.4380091109. DOI:
10.1002/spe.4380091109.

[46] M. V. Wilkes, D. J. Wheeler, and S. Gill. 1951. The Preparation of Programs for an Electronic
Digital Computer, With Special Reference to the EDSAC and the Use of a Library of Subroutines.
Addison-Wesley.

[47] N. Wirth and C. A. R. Hoare. June 1966. A contribution to the development of ALGOL.
Communications of the ACM, 9(6): 413—-432. ISSN 0001-0782. https://doi.org/10.1145/365696.
365702. DOI: 10.1145/365696.365702.

https://doi.org/10.1145/1467247.1467261
https://doi.org/10.1093/comjnl/15.2.117
https://doi.org/10.1093/comjnl/15.2.117
https://doi.org/10.1093/comjnl/15.3.195
https://doi.org/10.1093/comjnl/15.3.195
https://doi.org/10.1002/spe.4380091109
https://doi.org/10.1145/365696.365702
https://doi.org/10.1145/365696.365702


30 BIBLIOGRAPHY

Biographical Note

Bernard Sufrin is currently an Emeritus Fellow of the Department of Computer Science and
of Worcester College in Oxford – where in 2018 the senior Tutorial Fellowship in Computer
Science was permanently endowed, and named after him.

Between 1982 and 2010 he was University Lecturer in Computation and Tutorial Fellow in
Computation at Worcester College. Since his first approximation to a formal retirement, in
2011, he has lectured in his former department on formal proof and on concurrent program-
ming, supervised occasional research projects, and been tutor in Computer Science at Mag-
dalen College.

He spent 1973-74 at Bolt, Beranek, and Newman in Cambridge, Mass. where he participated
in the development of the second generation Arpanet. He returned from the US to the
University of Essex as Chief Research Officer, then moved to Oxford in 1978 as an SRC
Research Fellow.


	Teaching at Belfast and Oxford
	Introduction
	Queen's University Belfast
	Background
	Appointment
	Taught Degrees
	Northern Ireland's `Troubles'
	Adieu

	University of Oxford
	Background
	Appointment
	Towards a Viable M.Sc. in Computation
	Microprocessors to the Rescue
	An Engineering Profession
	Breaking the Ice: Towards Undergraduate Degrees
	Curriculum Innovation in the Honour School of Mathematics & Computation
	A Delayed Inaugural
	From Computation to Computer Science: Two New Degrees

	Valediction
	Acknowledgements


