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Abstract

Web Services is an important new XML-based architecture in which security

is increasingly important. The WS-Security specification defines mechanisms for

securing the SOAP messages. We show how those messages can be mapped to

Casper notation and therefore be analysed with FDR. We show two attacks on

proposed protocols and lastly discuss informally some ramifications of the use of

the WS-Security specification.

1 Introduction

Web Services is an XML-based architecture that has been developed in order to make the
coupling between distributed components looser. In the last few years, with the growth
of the popularity and importance of the Web Services architecture, more and more
standards have been defined for extending the functionality and for dealing with different
concerns. Due to its growing importance, Web Services requires rigorous security.

A common way for achieving it is relying on a secure transport layer, typically SSL
as was studied and analysed in [3]. Apart from the fact that this technique provides
security only in a secure channel (and not in files or databases), it does not correspond
with the WS architecture in which the intermediaries can manipulate the message on
its way. Once using a secure transport layer intermediaries are not able to control the
messages.

A more suitable way is using the WS-Security specification [1] that by using the
XML-signature [7] and XML-encryption [8] specifications, deals with and defines stan-
dards and ways of securing SOAP messages [6] without relying on a secure transport
layer. In effect it creates a new sphere for cryptographic protocols in terms of design
and implementation.

The theoretical community has been very successful in the last decade in developing
methods for analysing cryptographic protocols. One of these, based upon Hoare’s CSP
[10] is Casper [15], supported by the FDR refinement checker [17]. This approach has
proved to be very successful for modelling security protocols: firstly in finding attacks
(e.g. [14] and [16]) and more recently providing general proofs (e.g. [4].) This paper
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reports the preliminary results of an exercise in applying Casper to check Web services
protocols secured by the WS-Security specifications. The only comparable work we are
aware of is that of [2].

Our paper is structured as follows. In Section 2 we give short overview of Web
Services. In Section 3 we indicate how the syntax of a SOAP message that uses the
WS-Security may be transformed into Casper input. In Section 4 we show some results
on the examples from [13], in particular, demonstrating two related attacks. In section
5 we discuss some reflections of using WS-Security. Finally we conclude and give the
outline of our planned work in this area.

We recognise that our work is at an early stage, but given our success (see 4) in
finding attacks on a proposed standard protocols, we feel it is appropriate to publish
this version.

2 Web Services Background

2.1 Motivation

In IT today one often faces the need to integrate different computing systems within
an organization, perhaps even running on different platforms, for consolidated decision
making or central monitoring.

The integration task is frequently challenging, largely due to the fact that tradi-
tional application are statically bound, namely the parameters, objects’ types and the
programming language are agreed upon during their individual designs. Service Ori-

ented Architecture is a concept which addresses this issue.

2.2 SOA - Service Oriented Architecture

“SOA is an approach to build distributed systems that deliver application
functionality as services to end user applications or to build other ser-
vices”(IBM).

A service is a package of functions the do not depend on the context or state of other
services. Each service can publish its functionality, while other services are capable of
discovering and binding dynamically to this functionality.

Web Services adopt the SOA concept using XML-based message layer (called SOAP)
and can use any transport layer such as HTTP [18] and SMTP [12]. The main signifi-
cance of Web Services technology is that is has been embraced by the entire industry.

2.3 SOAP - Simple Object Access Protocol

SOAP was proposed originally by Microsoft and DevelopMentor to provide a way to
package information using XML for exchange between different computing systems.
Today it is a W3C recommendation.

A SOAP message consists of two main parts:

• Header is an open element for extra application requirement. It is used by other
specifications for expanding SOAP. For example, it can contain information about
routing, context or security.
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• Body contains the main applicative payload and can also include an optional fault
element.

In addition, the SOAP specification defines how to exercise intermediaries and RPC
conventions for allowing a client to call a remote function using the SOAP mechanism.

3 Modelling WS-Security protocols

In common with most modern work on cryptographic protocols, we study the WSS ones
using the Dolev-Yao model [9]. In this model the network is controlled by the intruder
who has the following abilities when attacking a set T of trusted agents. (i) overhearing
all the messages flowing through the network, (ii) intercepting messages, (iii) faking
messages based on what he knows limited only by cryptography, and (iv) behaving as
any agent outside of T . This model is particularly appropriate in the Internet context
of Web Services, since there is no sense in which users have any control over the medium
which connects them. We claim that in this model the syntax of the SOAP message
has relatively1 little effect on the security of the protocol and therefore an abstracted
view of the protocol (in the way we will present here) taken that it encapsulates all the
security elements, provides an accurate model.

We construct a mapping φ from SOAP messages to Casper input, such that if a
WS-security protocol contains the messages m1,m2...,mn then,

1. If an attack is found on φ(m1), φ(m2), . . . , φ(mn) then a corresponding attack can
be reproduced on m1,m2, . . . ,mn.

2. If an attack exists onm1,m2, . . . ,mn then it also exists on φ(m1), φ(m2), . . . , φ(mn)

We suggest that if the intruder possesses φ(m), then he can create (perhaps with some
reasonable guesses) a message m′ which has the same security behaviour as m. Further-
more, the security checks performed during the execution of the original protocol are
equivalent to those in the abstracted protocol.

The first property can be achieved by defining φ−1. In case an attack is found in the
model then φ−1 can be used to map it back to the original protocol space. We indicate
briefly how φ−1 can be constructed.

More important of the above properties is (2), since we definitely do not want to
generate a false “proof” of correctness using the translation.

3.1 Constructing φ

In this preliminary study we address relatively simple WS-Security protocols; in par-
ticular we will assume for now that the messages contain only a security header and a
body. Furthermore, we will also assume that encryption can be performed only in the
body. In future work we will extend φ such that it will support more complex messages.

For clarity, we will use an example taken from [13] to demonstrate the way φ works.
For convenience, we have removed the Namespaces from the message (creates no ambigu-
ity since we are dealing here only with security related information items). In addition,

1An interesting way in which SOAP can help will be discussed later, but in fact this just increases

the faithfulness of the translation described below.
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since the TimeStamp element is ignored in the proposed protocol we have also removed
it. The following message is the first of a protocol. We will see the rest of the protocol,
and its purpose, later.

In the following the values BV1, . . . , BV6 denote boolean strings holding data (signa-
tures, encryptions, etc).

<Envelope>

<Header>

<Security mustUnderstand="1">

<BinarySecurityToken ValueType="x509v3" Id="myCert"> BV1

</BinarySecurityToken>

<Signature>

<SignedInfo>

<CanonicalizationMethod Algorithm=.... />

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig\#rsa-sha1"/>

<Reference URI="#body">

<Transforms>

<Transform Algorithm=.... />

</Transforms>

<DigestMethod Algorithm=... />

<DigestValue> BV2 </DigestValue>

</Reference>

</SignedInfo>

<SignatureValue> BV3 </SignatureValue>

<KeyInfo>

<SecurityTokenReference>

<Reference URI="#myCert" />

</SecurityTokenReference>

</KeyInfo>

</Signature>

<EncryptedKey>

<EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<KeyInfo>

<SecurityTokenReference>

<KeyIdentifier ValueType="X509v3"> BV4

</KeyIdentifier>

</SecurityTokenReference>

</KeyInfo>

<CipherData>

<CipherValue> BV5 </CipherValue>

</CipherData>

<ReferenceList>

<DataReference URI="#enc" />

</ReferenceList>

</EncryptedKey>

</Security>

</Header>

<Body Id="body">

<EncryptedData Id="enc" Type="http://www.w3.org/2001/04/xmlenc#content">

<EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

<CipherData>

<CipherValue> BV6 </CipherValue>
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</CipherData>

</EncryptedData>

</Body>

</Envelope>

Message: M

The syntax and content of message M are built from BV1-BV6 using the structuring
mechanisms of XML complying to the Web Services Security specification.

The crucial observation we make is that anyone who possesses the values BV1 . . . BV6
in fact possesses the entire message from the point of view of security, since all of
the structuring mechanisms and other values such as URL’s are essentially public and
guessable. In particular an intruder who possesses these values can create the whole
message. We conclude that, from the point of view of maintaining security, it is only
these values that can matter.

Furthermore, careful inspection reveals that BV1 and BV4 are not really secret at all
and we would expect any attacker to possess them since they are public certificates. So
in fact the only “novel” parts of M are (BV2, BV3, BV5, BV6). The rest of the syntax
simply puts them in context and indicates what they are.

What we will therefore do is demonstrate a mapping φ which reduces M to a repre-
sentation of this quadruple, presenting them in the form used by Casper.

We now define the function φ. However the definition of φ we present in this paper
does not cover all structures defined by [7, 1, 8] (for example we do not deal here
with all the Security and KeyInfo optional children defined by [7]). Nevertheless,
our definition is adequate for the protocols presented in this paper. We will provide a
complete definition in a later paper.

We adopt the following general principles:

• φ can be applied to a valid, parsed XML document (we use the XML infoset
recommendation [5])

• φ is a mapping that works on an element information item as a function of its
children.

Note that φ might ignore children when they are not important security-wise.
Since φ cannot comprehend some of the elements’ content (e.g. binary data) it

uses the function ψ that “knows” the protocol specification to retrieve the necessary
information that φ needs. The automated version of φ will have to get as an input some
information about the protocol specification so that ψ will be able to work as described
later. In addition, since φ might return different outputs for the same input depending
on its context, ψ is also used to retrieve the context. More details are given later in this
paper.

3.1.1 Envelope element

The result of applying φ to the Envelope element is the Envelope element’s children
list where φ is applied to every element in the list. In the Example.

φ(M ) =φ(〈Header〉...〈/Header〉),φ(〈Body〉...〈/Body〉).
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The inverse of φ in this case is obvious. The original message can be constructed by
putting the elements from the sequence one after the other inside an envelope. Note
that different messages can be semantically equivalent because the order of the element
does not necessarily change the semantic of the message. One can observe that the
abstracted messages will be semantically equivalent as well.

3.1.2 Header element

In a similar way φ creates a sequence of the children of the Header element.

φ(〈Header〉...〈/Header〉) = φ(Child1 ), φ(Child2 ), ..., φ(Childn )

3.1.3 Security element

φ is defined very similarly when it is applied to the Security element, except for a slight
change which is swapping the signature and the encryption elements. The reason for this
swap is that [1] specifies that if the designer of the message wants to sign an element after
encrypting it, the Signature element should be followed by the Encryption element
and vice versa (i.e. the order of the operation is right to left.) Since φ works from left
to right we need to swap their places to preserve the semantics.

φ(〈Security〉...〈/Security〉) = φ(〈BinarySecurityToken〉...〈/BinarySecurityToken〉),
φ(〈EncryptedKey〉...〈/EncryptedKey〉), φ(〈Signature〉...〈/Signature〉)

Again, the inverse of φ can be constructed similarly to the way it was constructed in
3.1.1.

3.1.4 BinarySecurityToken element

The BinarySecurityToken contains binary data. The ValueType attribute indicates
what is encoded (e.g. X.509 certificate or Kerberos ticket.) In the example the BinarySecurityToken
contains X.509 certificate. In this case, since the certificate is public, there is no need
to model it. Therefore, the φ function will not return a value in this case.

When the X.509 BinarySecurityToken is referred to by another element, φ returns
the public or the secret key corresponding to the certificate.

φ(Ref ) = {A,PK (A)}SK (CA)

φ(Ref ,ENC ) = PK (A)
φ(Ref ,SIG) = SK (A)

Here, Ref is the value of the Id attribute of the BinarySecurityToken

and A = ψ(〈BinarySecurityToken...〉...〈/BinarySecurityToken〉).
ψ is responsible for returning the identity of the holder of the certificate. When

automating φ and ψ, ψ will not be designed to extrapolate the identity of the certificate
holder out of the binary data. Instead will create (with user assistance if necessary) a
symbolic name for a typical agent in this role of the protocol.
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3.1.5 Signature element

The φ function creates an abstracted signature of the Signature element in the following
way.

φ(〈Signature〉...〈/Signature〉) = {φ(〈Reference...〉...〈/Reference〉),
φ(〈Reference...〉...〈/Reference〉)...}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG)

3.1.6 Reference element

We are distinguishing between two cases. The first is when the Reference is obliged to
contain the DigestMethod element (when it appears in the signature element by [7])

φ(〈Reference URI = ”Ref ”〉...〈/Reference〉) = φ(DigestMethod)(φ(Ref ))

In the rest of the cases,

φ(〈Reference URI = ”Ref ”/〉) = φ(Ref )
φ(〈Reference URI = ”Ref ”/〉,ENC ) = φ(Ref ,ENC )
φ(〈Reference URI = ”Ref ”/〉,SIG) = φ(Ref ,SIG)

3.1.7 DigestMethod element

In this case φ returns the name of the abstracted hash function. See [15] for details of
abstracting hash functions. In our example:

φ(〈DigestMethod algorithm = “http : //www .w3 .org/2000/09/xmldsig#sha1”/〉) = sha1

3.1.8 KeyInfo element

The φ function returns the abstracted key that the KeyInfo represents. Here are two
examples of possible scenarios:

φ(〈KeyInfo〉...〈/KeyInfo〉,T ) =φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,T )
or
φ(〈KeyInfo〉...〈/KeyInfo〉,T ) =φ(〈KeyName〉...〈/KeyName〉,T )

3.1.9 SecurityTokenReference element

The SecurityTokenReference provides a way for referencing a security token by direct
reference, key identifier, key names and embedded references. φ works as follows:

φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,T ) = φ(Child ,T )

3.1.10 KeyName element

KeyName contains a string that uniquely defines a cryptographic key. φ returns an
abstracted version of the key that the KeyName element stands for. Once φ is automated,
the user will have to supply the abstracted key. For example, if the KeyName contains a
“distinguished name” of an X.509 certificate, the user will have to supply the identity
of the certificate holder.
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• If the string defines a symmetric key, then

φ(〈KeyName〉...〈/KeyName〉,T ) = K

Where K = ψ(〈KeyName〉...〈/KeyName〉)

• If the string defines an asymmetric key then,

φ(〈KeyName〉...〈/KeyName〉, SIG) = SK(A)
φ(〈KeyName〉...〈/KeyName〉, ENC) = PK(A)

Where A = ψ(〈KeyName〉...〈/KeyName〉) is the identity of the certificate holder.

3.1.11 KeyIdentifier element

The KeyIdentifier is a value that uniquely identifies a security element (cryptographic
key in our example). The value type and the way to process it can vary and is defined
by the designer and not by [1]. In our example the KeyIdentifier contains an X.509
certificate of the responder.

φ(〈KeyIdentifier〉...〈/KeyIdentifier〉,SIG) = SK (A)
φ(〈KeyIdentifier〉...〈/KeyIdentifier〉,ENC ) = PK (A)

where A = ψ(〈KeyIdentifier〉...〈/KeyIdentifier〉) is the identity of the certificate holder.

3.1.12 ReferenceList element

φ is defined over ReferenceList element in the following way,

φ(〈ReferenceList〉...〈/ReferenceList〉) = φ(〈DataReference.../〉)...φ(〈DataReference.../〉)
φ(〈ReferenceList〉...〈/ReferenceList〉,A) = φ(〈DataReference.../〉,A)...φ(〈DataReference.../〉,A)

3.1.13 DataReference element

When φ gets the DataReference element as an input, it does not return a value, instead
it creates a context for φ that can be retrieved later by ψ (see 3.1.14 for example.)

φ(〈DataReference URI = Ref /〉) = Context(Ref )
φ(〈DataReference URI = Ref /〉,A) = Context(Ref ,A)

where Ref is the context name and A is the set of values of the context.

3.1.14 EncryptedKey element

The EncryptedKey element provides a way to encrypt a symmetric key with the re-
cipient’s public key. Once again, when automating the mapping, the user will need to
supply the abstraction of the key that this element holds. We will mark this key K. In
this case,

φ(〈EncryptedKey〉...〈/EncryptedKey〉) = φ(〈ReferenceList〉...〈/ReferenceList〉, {K}),
{K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC )

where K = ψ(〈EncryptedKey〉...〈/EncryptedKey〉).
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3.1.15 EncryptedData element

The value of φ of the EncryptedData element depends on the context of φ. The context
is retrieved using ψ and affect φ in the following way:

• If ψ(Ref ) is not defined (in case the context Ref does not exist), then
φ(〈EncryptedData Id = Ref 〉...〈/EncryptedData〉) is also not defined.

• If ψ(Ref ) is defined and the EncryptedData element has a KeyInfo element child
then,
φ(〈EncryptedData Id = Ref 〉...〈/EncryptedData〉) = φ(〈KeyInfo〉...〈/KeyInfo〉,ENC )

• If ψ(Ref ) is defined and the EncryptedData element does not have a KeyInfo

element child then,
φ(〈EncryptedData Id = Ref 〉...〈/EncryptedData〉) = A

where A is the set of values of the context.

3.1.16 Body element

The body is abstracted in the following way:

• If the Body element has no EncryptedData element child then,
φ(Body) = Body

• If φ of the EncryptedData element is defined and it is the only child of the Body

element then,
φ(Body) = {Body}{φ(〈EncryptedData...〉...〈/EncryptedData〉)}

• If φ of the EncryptedData element is not defined and it is the only child of the
Body element then,
φ(Body) = Body

• If EncryptedData is one of the elements in the body then the designer will have
to supply the applicative structure of the body and only the relevant part will be
dealt with. More details will be given in future work.

3.2 Example

We will now demonstrate the complete derivation of φ(M).

φ(M)
⇒ φ(〈Header〉...〈/Header〉),φ(〈Body〉...〈/Body〉)

⇒ φ(〈Security〉...〈/Security〉),φ(〈Body〉...〈/Body〉)

⇒ φ(〈BinarySecurityToken〉...〈/BinarySecurityToken〉), φ(〈EncryptedKey〉...〈/EncryptedKey〉),
φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)

⇒ φ(〈EncryptedKey〉...〈/EncryptedKey〉), φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)
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⇒ According to the protocol specification [13], ψ of the EncryptedKey element is a
random generated symmetric key. We will give it the conventional name K. ⇒
φ(〈ReferenceList〉...〈/ReferenceList〉,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC),
φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)

⇒ φ(〈DataReference URI=#enc /〉,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC),
φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC), φ(〈Signature〉...〈/Signature〉),
φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,ENC),
φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}φ(〈KeyIdentifier〉...〈/KeyIdentifier〉,ENC), φ(〈Signature〉...〈/Signature〉),
φ(〈Body〉...〈/Body〉)

⇒ According to the designer’s specification, ψ of the KeyIdentifier element is the re-
ceiver’s X.509 certificate. We will give the receiver the conventional name B. ⇒
Context(enc,{K}), {K}PK(B), {φ(〈Reference URI=#body〉...〈/Reference〉)},
{φ(〈KeyInfo〉...〈/KeyInfo〉),SIG}, φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B), {φ(〈DigestMethod.../〉)(φ(body))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG),
φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B), {sha1(φ(body))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG), φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B),
{sha1({Body}φ(〈EncryptedData Id=“enc”〉...〈/EncryptedData〉))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG),
φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG), φ(〈Body〉...〈/Body〉)

⇒
Context(enc,{K}), {K}PK(B), {sha1({Body}K)}φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,SIG),
φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}φ(〈Reference URI=#myCert.../〉,SIG),
φ(〈Body〉...〈/Body〉)

⇒ The Reference element points to the BinarySecurityToken element. According to
[13], the holder of this certificate is the sender. We will give him the conventional name
A⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}SK(A), φ(〈Body〉...〈/Body〉)

⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}SK(A), {Body}K
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⇒ {K}PK(B), {sha1({Body}K)}SK(A), {Body}K

4 Results of analyzing example protocols

We now quote message M’, taken from [13] with slight changes: namely, we removed the
Namespaces and the TimeStamp element since it was ignored.

<Envelope>

<Header>

<Security mustUnderstand="1">

<Signature>

<SignedInfo>

<CanonicalizationMethod Algorithm=.... />

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig\#rsa-sha1"/>

<Reference URI="#body">

<Transforms>

<Transform Algorithm=.... />

</Transforms>

<DigestMethod Algorithm=... />

<DigestValue>... </DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>...</SignatureValue>

<KeyInfo>

<SecurityTokenReference>

<KeyIdentifier ValueType=X509v3>...

</KeyIdentifier>

</SecurityTokenReference>

</KeyInfo>

</Signature>

<BinarySecurityToken ValueType="x509v3" Id="myCert"> ...

</BinarySecurityToken>

<EncryptedKey>

<EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<KeyInfo>

<SecurityTokenReference>

<Reference URI="#myCert" />

</SecurityTokenReference>

</KeyInfo>

<CipherData>

<CipherValue>...</CipherValue>

</CipherData>

<ReferenceList>

<DataReference URI="#enc" />

</ReferenceList>

</EncryptedKey>

</Security>

</Header>

<Body Id="body">

<EncryptedData Id="enc" Type="http://www.w3.org/2001/04/xmlenc#content">
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<EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

<CipherData>

<CipherValue>...</CipherValue>

</CipherData>

</EncryptedData>

</Body>

</Envelope>

Message: M’

In scenario #6 in [13] the following protocol is proposed.

1. A→B: M

2. B→A: M’

After applying φ to both of the messages we get the following protocol.

1. MSG 1 .A→B : {K}PK(B), {sha1({Body}K)}SK(A), {Body}K

2. MSG 2. B→A : {K2}PK(A), {sha1({Body2}K2)}SK(B), {Body2}K2

Here A is an initiator who seeks to transfer some applicative data in Body to B and
receive a response in Body2. A sends his certificate, a key K that he freshly generated
signed with B’s public key, the Body encrypted with K and a signature of the encrypted
Body. When B receives the message he checks the certificate in order to make sure that
A is an authorized user, he decrypts the second element using his private key to get K,
ensures that the signature is correct and then use K to decrypt the last element to get
Body. B then applicatively creates Body2 and sends it back in MSG 2.
The author of [13] claim that the response (MSG 2) is authenticated.2

We checked this protocol with the following Casper authentication specification:

Agreement(B,A, [Body2])

This specifies that if A thinks he has successfully completed a run of the protocol with
B, then B has previously been running the protocol, apparently with A, and B was the
one who sent Body2 to A. Using FDR the following authentication attack was found.

1. MSG 1. I → Bob : {K}PK(Bob), {sha1({Body}K)}SK(I), {Body}K

2. MSG 2. Bob → I : {K2}PK(I), {sha1({Body2}K2)}SK(Bob), {Body2}K2

3. MSG 1. Alice → IBob : {K3}PK(Bob), {sha1({Body3}K3)}SK(Alice), {Body3}K3

4. MSG 2. IBob → Alice : {K2}PK(Alice), {sha1({Body2}K2)}SK(Bob), {Body2}K2

On receiving the final MSG 2 (step 4), Alice believes she has completed a run of the
protocol with Bob. The truth is that Bob was never actually running the protocol with
her. The Intruder successfully impersonated him: there is therefore no reasonable sense
in which Bob’s response to Alice is authenticated.

This attack relies on a previous run of the protocol (steps 1,2) which may take place
long before steps 3,4. The intruder uses an old MSG 2 to attack the protocol in the

2The author emphasizes that the scenarios in the paper have not been extensively vetted for attacks.
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second run by encrypting K2 with the public key of Alice, replacing the certificate to
the one of Alice and sending it in step 4 as a message from Bob. An inverse attack in
which the intruder is the initiator of the protocol in step 3 is also feasible.

We also analysed scenario #7 in [13] in which FDR found a similar attack. The protocol
after applying φ looks like this:

1. MSG 1. A→B : {sha1({A,PK(A)}SK(CA)), sha1(Body)}SK(A), {K}PK(B), {Body}K

2. MSG 2. B→A : {sha1(Body2)}SK(B), {K2}PK(A), {Body2}K2

We again used Casper to create the CSP model of the proposed protocol. FDR then
found a similar attack:

1. MSG 1. I→Bob : {sha1({I,PK(I)}SK(CA)), sha1(Body1)}SK(I), {K1}PK(Bob), {Body1}K1

2. MSG 2. Bob→I : {sha1(Body2)}SK(Bob) , {K2}PK(I), {Body2}K2

3. MSG 1. Alice→IBob : {sha1({Alice,PK(Alice)}SK(CA) ), sha1(Body3)}SK(Alice),
{K3}PK(Bob), {Body3}K3

4. MSG 2. IBob→Alice : {sha1(Body2)}SK(Bob), {K2}PK(Alice), {Body2}K2

The vulnerability of both the protocols is caused by the fact that neither of the messages
in the first protocol and the second message in the second protocol are bound correctly
to the sender. The intruder can use this fact for re-sending those messages, pretending
they came from him. A simple solution to correcting the flaw is adding the sender
identity to the signature (his certificate for example.) This prevents the above attacks
because then the intruder will not be able to produce a valid MSG 2 (in step 4) since
Alice will be expecting it to contain Bob’s identity signed in the message.

We analysed the fixed protocols and FDR then failed to find an attack. However they
are safe only for a single run. When Bob receives a message from Alice he still has no
guarantee that the message was recently sent by her. The protocol can be strengthened
further by using nonces or timestamps to prevent the intruder re-sending messages.

Those attacks are analogous to many found on protocols outside the WebServices
area. For example, the attack on the Needham-Schroeder Public Key protocol described
in [14] takes advantage of a similar flaw (the flaw in this protocol is that the identity of
the responder is not bound to the message.)

5 Reflections on WS-Security

It appears that at present SOAP Message Security is used for the purpose of setting the
parts of messages which convey actual security in context, namely allowing the receiver
to see details of what the bit strings constituting signatures, encryptions, hashes etc are
meant to be. We have seen that because this formatting is public it is as easily created
by an intruder.

We indicated earlier that there is an interesting way in which SOAP can assist
security. This is because there are two examples of possible forms of attack that the
Web Services Security mechanism provides extra strength against, both of which have
been studied in the literature of cryptographic protocols.
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• Type-flaw attacks, where an intruder persuades a legitimate user that a value is
of a different type to what it really is, and exploits this in an attack. So for
example the intruder might persuade agent A to sign a value which A thinks is
a nonce or a hash value, but which in fact has other structures that the intruder
can then use to impersonate A in some run with (say) B. The avoidance of this
type of problem (see [11]) for example, depends on the nature of the cryptography
involved, how it is used – for example whenever one signs something one adds
the signer’s interpretation of what it is signing – and protocol design. In XML-
signature, the tag name of the element that is signed provides information about
the type of the element. Similar things are true about values that are encrypted
or hashed. Therefore, SOAP messages that are protected by the Web Services
specification are relatively resistant to type-flaw attacks, with two caveats:

– In order for the above mechanism to work, the signed/hashed/encrypted
object must contain a sufficient description of the type so as not to leave any
ambiguity.

– This mechanism only prevents type confusion by trusted agents of data which
is received by them protected by a cryptographic device they can understand.

• Protocol interference, where information gleaned from running one protocol can be
used to attack another. To avoid this type of attack the best approach is to use the
principle of explicitness within the encryptions and signed data, and ensure hash
functions are context dependent. This would mean that instead of encrypting,
signing or hashing X, one does the respective thing to (T,X) where the tag T
includes information such as which protocol this was done for, and which field in
what message. By signing/encrypting/hashing a value in a SOAP context we have
the machinery here to create excellent de facto tags.

We emphasise that the SOAP mechanism do not in general prevent these forms of
attack, but they do provide some protection implicitly. We hope it might be possible
to strengthen the SOAP standard so as to guarantee absence of these forms of attack.
This will be subject of further work.

6 Conclusion

We have demonstrated that the security of SOAP based protocols is essentially the
same problem as the traditional form of cryptographic protocol. We have demonstrated
the correspondence for a few protocols and presented preliminary work on the general
mapping.

The main advantages of this translation are firstly clarity in the sense that the
abstract descriptions are far more concise, and secondly the availability of tools such as
Casper to analyse the WS-Security protocols.

The usefulness of our method was immediately shown by the attacks we discovered.
It seems clear to us that our methods or something very similar need to be adopted in
the Web Services community when security is a concern.
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We note that because our methods give a translation to Casper notation where
the whole area of protocol verification is well understood, they do not suffer from the
restriction to only authentication specifications reported in [2].

7 Future work

In the future we will present the complete formalised mapping between the Web Services
notation and Casper input.

We expect that most or all of this process can be automated, so that in effect one
can simply input a WS-Security protocol to an extended Casper and obtain a model
that we can input to FDR to test its security.

As far as we know, intermediaries is a poorly understood area in Web Services
Security. We are interested in “internalising” potential intermediaries in the style of
[4] and believe we then be able to model and check protocols with arbitrary number of
intermediaries.

Of course the question remains of how we can draw inferences about general imple-
mentations from checks of small examples. The fact that we have translated WS-Security
into equivalent Casper input means we can expect the body results that already exists
for standard protocols to apply here as well.

Lastly, we would like to look into SAML and extend φ such that we will be able to
reason about protocols that contain messages with SAML assertions.
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