
Exploiting Empirical Engagement in
Authentication Protocol Design�

Sadie Creese1, Michael Goldsmith2,3, Richard Harrison1, Bill Roscoe2,4,
Paul Whittaker2, and Irfan Zakiuddin1

1 QinetiQ, Malvern, UK
{S.Creese, R.Harrison}@eris.QinetiQ.com

I.Zakiuddin@signal.QinetiQ.com
2 Formal Systems (Europe) Ltd

{michael, paulw}@fsel.com
http://www.fsel.com

3 Worcester College, University of Oxford
4 Oxford University Computing Laboratory

Bill.Roscoe@comlab.ox.ac.uk

Abstract. We develop the theme of an earlier paper [3], namely that
security protocols for pervasive computing frequently need to exploit
empirical channels and that the latter can be classified by variants of
the Dolev-Yao attacker model. We refine this classification of channels
and study three protocols in depth: two from our earlier paper and one
new one.

1 Introduction

1.1 Pervasive Computing Environments and Security

The pervasive computing paradigm predicts a future in which wireless communi-
cating and computing devices are ubiquitous throughout our environment. This
will in turn facilitate the formation of dynamic networks operating independently
of back-bone infrastructures, offering the capacity for short-lived relationships
operating over hybrid resources and perhaps utilising local distributed process-
ing services. It will also offer the ability to connect to infrastructures where they
exist via a wide variety of means, providing major opportunities for service-based
business models. The exact form of such devices will vary from the embedding
of such functionality within already commonplace electronic objects, to enhanc-
ing the functionality of previously non-electronic devices, and to the creation of
new bespoke devices designed to offer specific communications and computing
services (perhaps on a nano scale).

� This research is conducted as part of the FORWARD project which is supported by
the U.K. Department of Trade and Industry via the Next Wave Technologies and
Markets programme: www.forward-project.org.uk.

D. Hutter and M. Ullmann (Eds.): SPC 2005, LNCS 3450, pp. 119–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



120 S. Creese et al.

It is clear that the pervasive computing paradigm offers huge opportunity,
as evidenced by the level of international research being focused on the do-
main. Successful exploitation of such opportunity will require both a trust in
the technologies on the part of the user community, and that the technologies
are dependable and worthy of such trust. Information security is a fundamental
component of dependability in pervasive computing environments.

However, it is also clear that there are significant challenges to be addressed
if we are to secure information in such potentially complex computing envi-
ronments. The connectivity offered and required in order to benefit from the
pervasive nature of computing resources and services may also offer a mali-
cious intruder more options for unauthorised access. Services offering bespoke
functionality and information may in turn require access to increased stores of
personal or organisation details, which once networked may potentially be ac-
cessible from an unknowable set of interfaces and users. Information may exist
in unknown locations for indeterminate durations.

A key concept in security of any type is authentication: you must be able to
decide whether a user (human or otherwise) is authorised to access a resource.
Without the ability to authenticate we would be unable to implement a useful se-
curity policy1. It is likely that we will require mechanisms both for authenticating
the identity of a device or user (“which” or “who”), and for authenticating how a
device or user will behave (“what”). We are concerned here with the former, the
challenge of identity authentication in pervasive computing environments and in
particular where no previous knowledge of the device or user exists.

This is a particularly challenging problem as it necessitates either:

– that there exists an accessible trusted third party who can vouch for a
claimed identity based upon some pre-agreed information or token (such
as a public-key or a biometric),

– or that there is some mechanism for bootstrapping trust between strangers
(human or devices) where there exists no trusted third party who can verify
identities.

Neither of these options are entirely unproblematic. To implement a trusted
third party solution one would first need to ensure that all devices can be guar-
anteed access when they require it. It would not be possible to construct a
centralised model, where there exists one such authority, as the number of de-
vices to be verified may be so large that it becomes impossible to guarantee
bandwidth, freshness of mirror sites and even the existence of unique naming
policies. If we are to implement many such identity verification authorities then
we will require interoperability between authorities, and associated access. Fi-
nally, even if a device has a unique name it may not be possible for another user
or device to establish what that name is, and so to refer to the device.

The FORWARD project is investigating how we might bootstrap security by
utilising authentication protocol services built upon empirically verified proper-

1 A security policy which simply specifies that everyone or anything has access would
of course not require an authentication mechanism.



Exploiting Empirical Engagement in Authentication Protocol Design 121

ties of our local environment. This has the benefit both of reducing overheads
associated with network communications, and that users will be interacting as
part of the service via their primary senses collecting empirical evidence (such
as feeling, hearing, seeing)2. Core to our design methodology is the use of for-
mal analysis in order to better understand protocols’ behaviour and facilitate
high-assurance design.

We previously presented [3] a variant hybrid threat model precisely for rea-
soning about and analysing such services. The threat model includes mechanisms
for representing the various types of security property that we might assume of
the various empirical communications. This in turn enables the formal analysis
of any authentication protocols developed, and an understanding of the corre-
sponding levels of resilience offered by such authentication methods. Whilst in
[3] we presented a number of suggested protocols for example pervasive com-
puting scenarios, we had at that time not utilised the variant threat model to
formally analyse their behaviours.

In this paper we present refinements to the variant threat models, report on
our analysis of two protocols specifically for authentication between two devices
in a local (line-of-sight) environment, and present an overview of the method-
ology for formally analysing authentication protocols utilising such empirical
engagements between two devices.

We begin with a discussion of formal analysis in general, and the refinements
to the variant threat models. In §3 we present an overiew of variants of the two
protocols designed for device authentication in local environments (presented
in [3]), and discuss the potential for design modifications. In §2.1 we briefly
discuss our chosen formalism for analysis – the process algebra CSP (Hoare’s
Communicating Sequential Processes [5, 7]), and the accompanying tool support
from FDR and Casper [8] – we outline our analysis methodology, and we present
the results of such analysis on these protocols. Finally, we present our conclusions
and directions for further work.

2 Refinements to the Variant Threat Models

Formal analysis itself depends on a (formal) representation (viz. a model) of the
subject that is both3:

– faithful in the sense of capturing the behaviour that needs to be analysed in
a traceable way; and

– clear to an analyst that the model is correct and the analysis useful.

2 The use of such human verifiable properties should help make the experience of using
such services more intuitive and perhaps easier.

3 Tractability of the model is an important concern as well; but tractability is closely
linked to the verification technology that is used. Moreover, an unfaithful and
tractable model is useless; and a faithful, tractable, but unclear model is only a
little better.



122 S. Creese et al.

If we do not achieve this then the benefits of the analysis may not be realised
in the design.
Any solution that we might propose must be flexible enough to capture:

– The varying assumptions that determine how users and electronic devices
may interact to ensure successful initialisation of the link.

– The range of entities that can form the participants in the protocol, and
their associated behaviours.

As formal specification and analysis depend crucially on capturing these as-
sumptions and the objectives that the protocol is trying to achieve, the first of
these points is particularly important. A fundamental requirement in any formal
analysis of security properties is to construct an appropriate threat model for
the environment in which the system is designed to operate. The threat model
encapsulates the capabilities of an attacker, and so an incorrect threat model
may lead to either:

– too weak an attacker where security can be proven in the formal model, but
does not hold in the actual implementation environment; or

– too strong an attacker, which can then place restrictive constraints on the
design that impact resource usage and overall functionality, when that could
have been avoided.

The type of security service with which we are concerned is that of authenticated
cryptographic key agreement. Currently, the de facto standard threat model for
analysing key-agreement protocols is the Dolev-Yao model [4].

The Dolev-Yao model supposes an intruder who effectively controls the com-
munications network, and is therefore capable of

– overhearing messages between legitimate principals
– intercepting messages and preventing their delivery to their intended recip-

ient
– synthesising – within the limitations of the cryptographic mechanisms in-

volved – messages from data initially known to him together with fragments
of any previous messages and delivering them, apparently originating either
from an identity under his control, or indeed from any other principal.

In essence this is the most potent malicious attacker that a protocol can possibly
need to cope with; in effect the worst-case scenario. However, designing protocols
which can withstand attack of this nature is certainly erring on the safe side:
a protocol which exhibits no flaws under these assumptions will a fortiori be
secure against a less potent attacker.

Here we are concerned with the ubiquitous arena, where most communica-
tions are through the essentially broadcast medium of wireless. The attacker can
interfere with communications, attempting to subvert or disrupt the protocol
that the principals are using for authentication. The facilities at the attacker’s
disposal depend very much on the nature of the communications that he is try-
ing to attack. When two people physically exchange PGP keys4 (and thus use

4 www.pgpi.org



Exploiting Empirical Engagement in Authentication Protocol Design 123

empirical engagement to initialise an authenticated link), the scope for disrup-
tion of that authentication protocol is very limited. It is in effect assumed that
the two participants share a “channel” that has very few vulnerabilities. If the
keys were exchanged in a digital communication using clear text then the scope
for disruption would be much wider. So, in this case, empirical engagement has
been used as a secondary channel for bootstrapping security. We may remark
that this approach is consonant with many less theoretically-inspired suggestions
in the literature [9, 1, 2, 6–etc].

In [3] we observed that this type of empirical engagement may be increas-
ingly possible for bootstrapping security in the pervasive computing environ-
ment. There we presented a series of protocols which depend upon the existence
of such engagements for their correctness. The scenarios envisaged all relied on
locally-verifiable empirical data, and accompanying assumptions regarding the
restricted powers of the attacker.

When considering how empirical engagement might be used as part of an au-
thentication protocol, it is clear that the vulnerabilities associated with empirical
engagement are likely to be diverse and context-specific. Thus our strategy for
developing clear and faithful models of empirical engagement in authentication
starts by noting that such interactions can be captured as a form of communica-
tion channel with specific properties, and for security analysis the most impor-
tant of these properties are the channel’s vulnerabilities. From the viewpoint of
formal analysis these vulnerabilities are equivalent to the attacker’s capabilities.

We incorporate the vulnerabilities of a channel into a modified threat model,
which restrains the capabilities of an attacker appropriately. In the pervasive
computing environment we observe that there are potentially two types of com-
munications channel:

– A high bandwidth bidirectional medium with low or unreliable security. This
represents the network wireless communications medium, such as wireless
LAN, Bluetooth, or IrDA.

– The second type represents empirical channels, such as reading a message
on the printer display panel, physically punching in a code on the printer
control panel, or checking that the flashing light is present as in the first
example below.

We shall call the high-bandwidth digital communications channel N (for “net-
work”) and the “empirical” channel E. This channel can be considered more
costly, as a human is necessarily “in the loop” and the channel is therefore low-
bandwidth and consumes the scarce resources of intellect and attention. However,
the E-channel can thus offer various forms of higher security; it may, according
to the details of the scenario, operate in either or both directions.

The two (or more, if multiple empirical mechanisms are available) channels
can be supposed vulnerable according to a different threat model. This flexibility
can be exploited to develop cryptographic protocols which are secure where they
would not be under standard Dolev-Yao assumptions.

By varying how the attacker can manipulate these two channels (the at-
tacker’s capabilities on E being the more limited), a variety of hybrid threat



124 S. Creese et al.

models can be created. In [3] we identified a number of reduced-threat variants,
each specifying a restriction placed on the powers of the Dolev-Yao attacker:

– AOTC : the attacker cannot both block and hear messages at the same time
on channel C, where AOT stands for Atomicity of Transmission.

– NSC : the attacker cannot spoof messages on channel C, where NS stands
for No Spoofing .

– NOH C : the attacker cannot overhear messages over channel C, where NOH
stands for No OverHearing .

To this list we may add NBC : the attacker cannot block messages on channel
C, where NB stands for No Blocking .

These restrictions are not entirely independent of one another. Indeed, we
may form a small lattice, making explicit the modality over time (or messages):

�(NB ∧ NOH) (≡ �NB ∧ �NOH)

�� ��

�NB �NOH

����

�(NB ∨ NOH) (≡ �AOT �≡ �NB ∨ �NOH)

true

Here the top of the lattice is reliable and confidential, while the bottom allows
the full Dolev-Yao powers over these aspects, with varying degrees of security in
between; higher properties imply the lower. Adding NS along another dimension
yields a rich variety of channel types that may be available5. A later paper will
populate this design space with illustrative protocols.

The idea behind AOT , which is a dynamic blend of NOH and NB , is that
in some circumstances it may be impractically hard for an attacker to “jam” a
signal and at the same time hear the message that was being conveyed. We have
received more feedback on this item than any other, mostly suggesting cunning
noise-cancellation schemes which make it hard to justify the assumption that
this property holds of radio traffic. We stand corrected, and seek to reduce our
reliance on the notion.

2.1 Formal Analysis of Variant Threat Model Cryptographic
Protocols

Our analysis is based around use of Formal Systems’ refinement checker FDR,
with the CSP models of the agents and the attacker typically generated by Lowe’s
Casper front-end tool. Space precludes a full presentation of the technology: the
reader is referred to [8] for a complete exposition.

5 Especially as NS is not as simple a concept as it may seem at first sight; see below.



Exploiting Empirical Engagement in Authentication Protocol Design 125

Casper takes as input descriptions of security protocols written in a “journal”
notation, together with specifications that assert the security properties claimed
for the protocol. Casper compiles a given protocol description to CSP processes
representing the possible behaviours of the agents when run in the presence of the
Intruder – standardly a Dolev-Yao attacker. The security specifications are also
compiled to CSP processes. These processes – representing the implementation
and specifications of the protocol – can then be automatically compared using
the CSP refinement checker FDR2.

The Casper model of the Intruder is that of the standard Dolev-Yao model,
modulo perfect encryption: collision-free hash functions, strong message types,
and so on. The Intruder is given complete control over the network and may
overhear , intercept , re-route, delay , reorder , replay , fake or obliterate a message.
Although this default model of the Intruder is sufficient for most analysis work,
the tool is very flexible as regards deductions on the part of the Intruder and the
user may easily extend the threat model to weaken the assumptions of perfect
cryptography. However, it is harder to change the model to weaken the attacker
as regards control over the network simply because the Intruder and network
are one and the same entity within Casper. Lowe is working on incorporating
(at least some of) the notions required here into the tool, but in the interim we
have worked by modifying the resultant CSP scripts directly.

The special channel properties AOT , NS, and NOH that define the new
variant threat models have been implemented approximately as recommended
in [3] – we curb the powers of the Intruder by limiting its ability to take, fake,
and overhear certain messages on the network.

The first step in implementing the special channels is to (re-)introduce, at
least conceptually, a channel comm to represent direct, uninterrupted commu-
nication between agents. The Intruder has no control over this channel and may
only overhear messages. This separates out the Intruder from the network and
allows us to limit its powers by modifying the mapping of send/receive events
for those messages sent over the special channels. To add the new channel we
must first endow both agent processes and the Intruder process with the event.
For agent processes, we add the channel by mapping send/receive events to both
send/receive and comm events. For the Intruder process we do the same but for
only the hear channel as the Intruder may only overhear the comm channel.

In this context it is straightforward to modify the definition of the intruder
to reflect restricted powers:

– leaving the intruder’s knowledge unchanged after a take gives the AOT se-
mantics;

– barring communications on a subset of the message space on fake can model
a reliable one-way NS channel;

– disconnecting both take and the tap on comm on a subset of the message
space captures the confidentially of NOH transmission.

In practice for various technical reasons we in fact replace the synchronous comm
channel with two counterparts scomm and rcomm representing the sending and
receiving of a direct, uninterrupted communication. These channels have the



126 S. Creese et al.

Fig. 1. Restrictions on the Intruder with a benign network process

same profiles as send and receive and are connected together with a new be-
nign network process that adds some buffering and reordering of messages as in
Figure 1. Finally, we modify the construction of the complete system process to
ensure that agents and Intruder communicate over the new channels.

The next step is to define the set of network messages for each channel
property AOT , NS, and NOH. As Casper provides names for the sets of in-
put/output messages for each step of the protocol it is straightforward for the
user to define a set-union for each property.

3 Example Protocols

In [3] we presented three protocols, addressing two different usage scenarios. Here
we consider further the first of these scenarios, namely The Wireless Printer Sce-
nario, the subject of the first two protocols there; and also present a variation
on the first of these. This is the case of a user wishing to print a confidential
document, residing on a PDA, on a public printer – imagined, for the sake of ar-
gument, to be located in an airport lounge. Communication between the printer
and the user’s PDA is via a wireless connection of some type (the precise commu-
nications technology is not relevant here). The user requires some assurance that
the printer they are sending the document to is indeed the one they are looking
at, as opposed to some other device elsewhere within communications range, and

Net BA

Intruder

Net BA

Intruder

Net BA

Intruder

AOT

NS

NOH

receive

rcommrcomm

scomm scomm

send

send

rcommrcomm

scomm scomm

receive

rcommrcomm

scomm scomm

send



Exploiting Empirical Engagement in Authentication Protocol Design 127

that that printer will be the only agent capable of successfully decyphering (in
both the technical and colloquial senses of the word) the document.

3.1 Protocol 1.1 (NSE[+AOTN?])

We begin by assuming that all suitable printers are manufactured with a generic
public/secret key pair. This does not offer any particular additional security in
the worst case, since we assume that an intruder may have access to a suitable
printer, and possibly be able to subvert it; but it clearly makes life more difficult
for an attacker in practice. There is clearly plenty of scope for research into
desirable degrees of assurance and the related question of the cost-benefit trade-
offs for the attacker, but we do not address that issue here. Throughout we also
make the assumption that the user A has a unique key certificate, kc(A); and
that the printer is manufactured with knowledge only of the generic key pair
associated with the class of printers to which it belongs, P .

Moreover we assume that it is fitted (in a reasonably tamper-proof way) with
a light which flashes while (and only while) it is printing data that it itself is
communicating as part of a protocol run. This effectively gives a no-spoofing
assurance that the printer expelling the paper is the one generating the contents
of the paper; we discuss below, when we come to the formal analysis (§3.1),
the question of the printer itself being spoofed into doing so inappropriately. An
alternative mechanism might be to use the LCD panel on the printer as a reliable
medium between the printer and its user. Without some such facility, it would
be hard to avoid the possibility of a suborned device-in-the-middle engaging in
the protocol and simply using the intended printer as a slave to reprint what the
protocol requires.

A wants to check that the printer she is communicating with over the N -
channel is indeed the printer B that she can see, as in Figure 2.

More specifically, the security goal is to establish a shared secret known only
to the user and that specific printer (which may then be used as a symmetric-
encryption key for the document, for instance).

Fig. 2. A unspoofable channel E exists between the printer and the user; the network
N gives a bidirectional link

E

N



128 S. Creese et al.

Our first protocol depends on the channel E, running from the printer to the
user, being impervious to spoofing, NSE . The protocol proceeds as described
below (the N or E subscript on the arrow denoting the channel over which
the communication event occurs). If, however, at any stage before the protocol
has completed either the user or the printer receives additional Messages 1 to 4
directed to them then the protocol will abort.

1. A →N P (B) : {A, kc(A), NA}pk(P )
2. B →E A : print A, NA

3. B →N A : {K, NA, NB}pk(A)
4. A →N B : {NB , N ′

A}K

5. B →E A : print N ′
A

Informally, the protocol proceeds as follows: In Message 1 A sends the printer
her name, her key certificate and a random nonce, all encrypted with the generic
printer public key. The printer then prints both A’s name and the nonce, which
A verifies empirically over channel E. At this stage, given that an attacker can-
not spoof messages on channel E, A knows that the printer she is looking at has
received Message 1 and is a printer, but she cannot exclude a corrupt printer-
in-the-middle having overheard and understood Message 1. Assuming that the
certificate kc(A) is unforgeable, an honest B will only proceed to print a Mes-
sage 2 acceptable to A if he received the intended Message 1 (from somebody).

In Message 3 the printer sends A a session key, K, the previous nonce NA from
Message 1, and a new nonce NB , all encrypted using A’s public key, extracted
from the kc(A) received in Message 1. A then sends a message to the printer
which contains the second nonce NB and a new nonce N ′

A, encrypted using the
key sent in Message 3. Since only A can have read the contents of Message 3 (it
was encoded using her unique public key), it follows that only A and the device
which sent Message 3 know the key K. However since an intruder knows NA and
may have blocked Message 3 from B and sent his own, A does not know that
the Message 3 that she heard was actually from B.

The printer then prints the new nonce N ′
A, which A verifies over channel

E. Since this new nonce was sent in Message 4 and was encrypted using the
key K in a message containing NB , the printer would not print N ′

A unless the
Message 3 that A received really was from B. It follows that at this point A is
certainly connected to B (the desired printer).

Note that the first printed output also serves to guard against spoofing on
channel N , since if an attacker were to force B to abort after this point in the run,
then the attacker could not get beyond this point without a further Message 2
being spotted, which A could see. This observation is somewhat application-
specific, since it may not always be the case that the E-channel that B would
use with an intruder would be observed by A. For this reason we additionally
require that any entity in the role played by the printer here which aborts a run
after Message 2 should send an E-message to A saying so.



Exploiting Empirical Engagement in Authentication Protocol Design 129

Verification: As expected, under Dolev-Yao assumptions the protocol fails to
meet any of its goals. For the basic system of one user and one printer, Casper
finds an attack on secrecy in which the Intruder uses an honest printer to decode
Message 1 before spoofing Messages 2 and 5 in order to get the user to accept
his session key, KI . Interestingly, without corrupt printers it takes a more com-
plicated system (one in which the printer runs twice) for the Intruder to learn
a real session key and for the user to claim it as secret, i.e. to think she has
completed a correct protocol run.

For the authentication, Casper uses similar tricks to produce several attacks
on the basic system of one user and one printer. One attack fakes Message 3
to provide the user with the Intruders own session key and nonce, then again
spoofs Message 5 to convince the user that the session key originated from the
intended printer.

When we consider the possibility of corrupt printers and users (by giving the
Intruder appropriate secrets – namely the generic printer private key sk(P )),
Casper finds many more attacks and clearly does not need an honest printer to
learn the user’s nonce NA sent in Message 2.

Under the variant threat model with the special channel properties AOTN

and NSE , Casper fails to find any attacks on the protocol even in the presence
of corrupt users/printers, within the scope of two printers and two sequential
runs.

This initial modelling (naturally) used the interpretation of the NS property
as specified in [3], that is that a message received on a channel with this property
must have been freshly sent by its apparent sender to the recipient (although it
may be overheard, or indeed not received because blocked).

If, however, a weaker interpretation that omits the italicised phrase above
is adopted, and so allows a message to be diverted (or in this case, the re-
cipient to be deluded that a message physically directed to her was logically
intended by the sender to be so), we may uncover the following “printer-in-the-
middle” attack (assuming, perhaps unreasonably, that E-messages can also be
suppressed):

1. A →N B(P ) : {A, kc(A), NA}pk(P ) (overheard)
2. B →E A : print A, NA (overheard)
1′. I →N B(P ) : {I, kc(I), NA}pk(P ) (abort 1st run)
X. B →E A : print A, abort (suppressed)
2′. B →E I : print I, NI (suppressed)
3′. B →N I : {K, NA, NB}pk(I)

3. I(B) →N A : {K, NA, NB}pk(A)

4. A →N I(B) : {NB , N ′
A}K

4′. I →N B : {NB , N ′
A}K

5. B →E A(I) : print N ′
A

To avoid this problem, Message 5 should (of course, by all rules-of-thumb for
good protocol design) make explicit the identity A.



130 S. Creese et al.

Within the range of instances of the scenario analysed, the property NSE

alone is sufficient to ensure the security of the protocol, and this seems likely
to be the case in general; AOTN appears superfluous. If, however, we allow the
intruder to forge a key certificate for A (as would be the case if the association
between identity and key is self-certified, as it is with PGP), then this exposes
another printer-in-the-middle attack, which is ruled out by AOTN .

1. A →N I(P ) : {A, kc(A), NA}pk(P )
1′. I(A) →N B(P ) : {A, kcI(A), NA}pk(P )
2. B →E A : print A, NA

3. B →N I(A) : {K, NA, NB}pkI(A)
3′. I(B) →N A : {K, NA, NB}pk(A)
4. A →N I(B) : {NB , N ′

A}K

4′. I(A) →N B : {NB , N ′
A}K

5. B →E A : print N ′
A

3.2 Protocol 1.2 (NSE)

The above protocol requires two communications on the empirical channel. With
the same physical scenario, this can be reduced to one at the expense, potentially,
of making the task of the user harder (assuming that the user has a part in the
implementation of this channel, as is the case in these examples). In the example
above the user has to check that various pieces of data output on the printer are
correct and appear while the printer is in “security mode”. The main constituents
of this data are the two nonces NA and N ′

A. Conventional nonces consisting of
many characters of random data are not ideal for humans to check – and they
might quickly get fed up and not do it properly! However there is the opportunity
to use other types of values here, perhaps pictures, words and patterns, of a type
chosen to map better onto humans’ capabilities.

The following protocol requires only one communication on the empirical
channel, but that is a cryptographic hash value. If a human was involved in
implementing the empirical channel then we would have the following choices:

– Give the user a lot of tedious checking to do.
– Use relatively small hash values that humans can check conveniently6.
– Devise some form of hashing into user-supplied pictures, words or patterns

(or combinations of these) which enables a satisfactory range of values to be
discriminated between in a satisfactory manner.

Of course the practicality of doing this, and whether any consequent greater risk
is acceptable, would depend on the circumstances of the particular scenario. The
protocol itself is considerably simplified:

6 One can argue that the presence of a human in the loop makes this less dangerous
than in many circumstances, since he or she is likely to smell a rat (rather than just
resetting) if presented with an incorrect value.



Exploiting Empirical Engagement in Authentication Protocol Design 131

1. A →N B(P ) : {A, pkA, NA}pk(P )
2. B →N A : {A, B, pkA, NA, K}pkA

3. B →E A : print hash(Message 2)

As in the first example, this is reliant on a no-spoofing empirical channel. In the
above, NA is a nonce, pkA is a public key chosen by A (which may or may not
be the same for different sessions and other types of communication requiring
public-key cryptography), and K is a session key chosen by the printer.

When A sees Message 3 (and that it agrees with the value that A has herself
generated by hashing the Message 2 received), she can be sure that Message 2
really was from the printer she has the empirical channel with (namely the one
she wishes to communicate with, and trusts). For the trustworthy printer B
would not have sent this message (which she knows it has by non-spoofability)
unless it had sent M2, which firmly ties its interest to A (as it contains A and
pkA), and to this session (as it contains NA). Furthermore A knows that B
will only have sent K in Message 2, necessarily encrypted under pkA, and that
therefore K is a secret shared between A and B.

Notice that if we are free to use hashing on a non-spoofable empirical chan-
nel, then we can effectively convert any full Dolev-Yao channel C in the same
direction into a non-spoofable one by using the above trick. Namely each mes-
sage along C is followed up by a hash of that message plus enough information
to identify the recipient (if the latter is not already included). The message-
then-hash order has the advantage that it bounds the time available for any
intruder to look for hash collisions, unless the empirical channel is delayable.
This, of course, is an advantage if the hash range (thanks to the human-factors
argument above) is not as large as one would ideally like.

Here the explicitness in Message 2 is sufficient to establish the tie between A
and B as being intentional, and the question of AOTN and of the variability in
the notion of NSE does not impact the analysis.

3.3 Protocol 2 (NOHE)

As a variant of this scenario, illustrated by Figure 3, we now assume that the
printer has its own unique public/secret key pair, and that the E-channel com-
municates from the user to the printer (in the opposite direction to the first
example), perhaps by discreetly pressing buttons on a front panel. If we consider
a different threat model, namely that of no overhearing on channel E, we can
achieve the same goal by means of a different protocol.

1. A →N B(P ) : {A, kc(A), NA}pk(P )
2. B →N A : {B, kc(B), NA}pk(A)
3. A →E B : N ′

A

4. B →N A : hash(N ′
A, pk(A), kc(B), NA)

In Message 1 A sends a copy of her key certificate and identity, and a nonce,
encoded with the generic printer key, to the printer. The printer then replies in
Message 2 with a copy of its own unique key certificate and identity, and a copy



132 S. Creese et al.

Fig. 3. Channel E now runs from user to printer, unobservable by the attacker. Chan-
nel N is bi-directional with the standard Dolev-Yao vulnerabilities

of the nonce it received from A in Message 1, all encoded with A’s public key.
At this stage A knows that someone has received the original message, but she
cannot be sure that it is printer B.

In Message 3 A inputs a nonce N ′
A into the printer directly, over the E chan-

nel. In this threat model we are assuming that this input cannot be overheard,
and therefore only the printer physically interacted with can know N ′

A. So in
Message 4 the printer sends a hash of the nonce N ′

A, A’s public key, the printer’s
key certificate sent earlier in Message 2 and the first nonce, NA, sent by A. As
a result, A knows that the printer she is communicating with over N is also the
printer being communicated with on E. This message certainly originated at the
physically present hardware, since only one printer can know N ′

A; the inclusion
of evidence of the identities of both A and B in the hash is necessary to prevent
an intruder acting as a man-in-the-middle for Messages 1 and 2, and persuad-
ing each that they are engaged in the protocol with a different principal. If, for
example, we were to have encrypted Message 4 under pk(A), this would have
opened up a man-in-the-middle attack. Of course, it is essential in this protocol
that E cannot be overheard, as otherwise an imposter who had been taking part
in the rest of the protocol could forge Message 4.

Since N ′
A is a shared secret here, it can be used as a session key; alternatively

the protocol leaves each of A and B with knowledge of each other’s public keys,
so they can use these.

Verification: As expected, under Dolev-Yao assumptions the protocol again
fails to meet its goal. However, to find an attack Casper requires corrupt printers,
i.e. Intruder knowledge of the generic printer private key sk(P ). This is not
surprising as only Message 3 uses a special channel, and the nonce NA that
must end up in the final hash originates from the encrypted Message 1 (where
it is associated with the users identity). When we do allow for corrupt printers,
the Intruder overhears the nonce NA and has only to wait for the user to send
Message 3 (N ′

A) before faking the response in Message 4.
With the special channel property NOH E , Casper failed to find any attacks

on the protocol.

E

N



Exploiting Empirical Engagement in Authentication Protocol Design 133

4 Conclusions and Further Work

– We have established the utility and viability of mechanical checking of pro-
tocols using empirical engagement to bootstrap authentication.

– The multi-party scenario from [3] does not fit so neatly into the Casper
paradigm, and its verification will be the subject of a future report.

– Similarly, we plan a further paper on the population of the variant-threat
lattice with plausible mechanisms and illustrative protocols.

– All the mechanisms considered so far use locality (and location-limited chan-
nels) to establish firm identification of parties to one another. We also intend
to explore the possibility of using reduced-threat channels over a distance.

References

1. N. Asokan and Philip Ginzboorg. Key-agreement in ad-hoc networks. Computer
Communications, 23(17):1627–1637, 2000.

2. D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authenti-
cation in ad-hoc wireless networks, Feburary 2002. In Symposium on Network and
Distributed Systems Security (NDSS ’02), San Diego, California.

3. S. Creese, M. H. Goldsmith, Bill Roscoe, and Irfan Zakiuddin. The attacker in ubiq-
uitous computing environments: Formalising the threat model. In Theo Dimitrakos
and Fabio Martinelli, editors, Workshop on Formal Aspects in Security and Trust,
Pisa, Italy, September 2003. IIT-CNR Technical Report.

4. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2), 1983.

5. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

6. Tim Kindberg and Kan Zhang. Validating and securing spontaneous associations
between wireless devices. In 6th Information Security Conference (ISC’03), number
2851 in LNCS. Springer-Verlag, October 2003.

7. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998. ISBN
0-13-6774409-5, pp. xv+565.

8. P.Y.A. Ryan, S.A.Schneider with M.H. Goldsmith, G. Lowe, and A.W. Roscoe. The
Modelling and Analysis of Security Protocols: the CSP Approach. Addison-Wesley,
2001.

9. Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues for ad-
hoc wireless networks. In B. Christianson, B. Crispo, and M. Roe, editors, Security
Protocols, 7th International Workshop Proceedings, pages 172–194. Springer LNCS,
1999.


	Introduction
	Pervasive Computing Environments and Security

	Refinements to the Variant Threat Models
	Formal Analysis of Variant Threat Model Cryptographic Protocols

	Example Protocols
	Protocol 1.1 (NS$_E$[+AOT$_N$?])
	Protocol 1.2 (NS$_E$)
	Protocol 2 (NOH$_E$)

	Conclusions and Further Work

