
KAON - Towards a large scale Semantic Web

E. Bozak
�

and M. Ehrig
�

and S. Handschuh
�

and A. Hotho
�

and A. Maedche
�

and B.
Motik

�
and D. Oberle

�
and C. Schmitz

�
and R. Studer

��� �
and G. Stumme

�
and Y.

Sure
�

and S. Staab
�

and L. Stojanovic
�

and N. Stojanovic
�

and J. Tane
�

and R. Volz
��� �

and V. Zacharias
�

�
Forschungszentrum Informatik FZI, 76131 Karlsruhe,

http://www.fzi.de/wim�
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe,

http://www.aifb.uni-karlsruhe.de/WBS

Abstract. The goal of Semantic Web is to enrich the content of Web pages with
metadata, thus obtaining a well-defined semantic interpretation of content. Com-
mon language for concept description is provided by ontologies, that describe a
model of a particular application domain. However, creation and management of
ontologies has proven to be a demanding task. This paper introduces, KAON,
the Karlsruhe Ontology and Semantic Web framework, providing services for
ontology and metadata management and interfaces needed to create and access
Web-based semantics-driven E-Services.

1 Introduction

The Web in its’ current form is an impressive success with a growing number of users
and information sources. Tim Berners-Lee, the inventor of the WWW, coined the vision
of a Semantic Web in which unstructured content is enriched by metadata, obtaining a
well-defined semantic interpretation of content suitable for more automated informa-
tion processing. This is perceived as a key solution to the growing number of problems
of locating information in the constantly expanding Web space. Semantic interpreta-
tion of content is achieved by using ontologies - repositories of common vocabulary
and modeling constructs for content descriptions. Ontologies play a central role in pro-
viding interoperability between Web applications, e.g. B2B iontegration in the context
of E-Business or information and service discovery currently developed on top of the
emerging Semantic Web.

RDF (Resource Description Framework) provided by W3C has been identified as
a core data model and infrastructure for metadata representation on the Web. Several
RDF-APIs, parsers, schema and metadata editors, repositories, etc. have already been
developed within the Semantic Web community. However, to establish and use Seman-
tic Web technology as a basis for e-commerce, much more specialized, comprehensive
and integrated tools are required. The Karlsruhe Ontology and Semantic Web frame-
work (KAON) builds on available resources and provides tools for the engineering,
discovery, management, and presentation of ontologies and metadata. It establishes a
platform needed to apply Semantic Web technologies to e-commerce and B2B scenar-
ios. Because of that, important design goals were robustness and scalability, since these

are key quality factors for any enterprise application. In this paper the vision and the
current status of KAON are presented. The official KAON community web site 1 also
provides up-to-date information about the project and allows downloading the newest
version of the software.

Section 2 collects and summarizes requirements for a framework for semantics-
based E-Services. Section 3.1 presents conceptual architecture that fulfills the described
requirements. Section Section 3.2 presents the Web service interface to KAON and
lists examples using this interface. Section 3.3 discusses in detail the KAON API - the
most fundamental architectural element. Section 3.4 discusses the architecture and the
implementation of the KAON Server - a back-end system and application server for
RDF storage. Finally, a short overview of related work and next steps planned within
KAON project are presented.

2 Requirements

While building semantics-based applications within E-Commerce, Knowledge Man-
agement, Web Portals, etc. we have gained insight into application features that warrant
a success. Based on that experience and in order to enabling reuse across projects,
we have decided to build a framework addressing these issues. An extensive require-
ment gathering process was undertaken to come up with a set of requirements that such
framework must fulfill. The following key requirements were identified:

– Accessability: A framework should enable loose coupling, allowing access through
standard web protocols, as well as close coupling by embedding it into other appli-
cations. This should be done by offering sophisticated standard APIs.

– Scalability: As well for engineering, evolving and deploying ontologies, scalability
is an essential point for every kind of application.

– Consistency: Consistency of information is a critical requirement of any enterprise
system. Each update of a consistent model must result in a model that is also consis-
tent. In order to achieve that goal, precise rules must be defined for model evolution
and an evolution service implementing these rules has to be provided. Also, all up-
dated to the model must be done transactionally - either all model updates succeed,
or none do.

– Concurrency: It must be possible to access and modify information concurrently.
Modifications from concurrent users must be isolated from one another, preventing
several users modifying the same data at once. This can also be achieved using
transactional processing, where objects can be modified at most by one transaction
at the time.

– Persistent Storage: An almost trivial requirement easily accomplished by reusing
existing database technology. A sophisticated storage system must offer facilities
for replication: for often used RDF models redundant copies must be maintained to
address scalability and availability problems.

– Security: Information security means protecting information against unauthorized
disclosure, transfer, modification, or destruction, whether accidental or intentional

1 http://kaon.semanticweb.org

and is also a critical requirement. To realize it, any operation should only be acces-
sible by properly authorized agents. Proper identity of the agent must be reliably
established, by employing known authentication techniques. Sensitive data must
be encrypted for network communication and persistent storage. Finally, means for
auditing (logging) of sensitive operations should be present.

– Reasoning: There are many different reasoning engines with different underlying
semantics (e.g. frame-based logic, description logic, etc.) available. A comprehen-
sive framework should provide access to different reasoning engines providing flex-
ible means for switching between different semantics.

– Mediation: Often multiple ontologies (e.g. based on different product standards)
have to be supported by an ontology broker system. Therefore, means for mapping
and mediating between heterogeneous ontologies are required.

– Discovery: Metadata in the Semantic Web is typically distributed, so means for
ontology-focused and intelligent discovery of metadata are required. Based on a
semantic description of the search target, the system should be able to discover rel-
evant information on the Web. The same principle can be used to discover metadata
about E-Services.

– Usability: Tools built using the framework should be easy to use and provide com-
prehensive user interfaces tailored to needs of different user groups, such as domain
experts, ontology creators, business analysts and end users.

– Internationalization: The framework should allow users to create ontologies and
their instances in different languages and should support non-Latin character sets.

3 KAON

This section describes KAON, the Karlsruhe Ontology and Semantic Web framework,
that has been used to develop several semantics-based Web applications.

3.1 Conceptual Architecture

In this section we introduce the general architecture of KAON. The conceptual architec-
ture of KAON follows Layers and Model-View-Controller architectural patterns [10].
Components are organized in three layers: data and remote service layer, the middle-
ware layer and the applications and services layer, as shown in Figure 1.

Applications and Service Layer: Application clients can be stand-alone Java client
applications, Web applications and Web service-based clients. OntoMat application
framework can be used to provide integration of several components within a common
stand-alone application, whereas Web clients can be embedded into KAON-PORTAL
portal generation framework. Web service-based clients (e.g. realized within Microsoft’s
.NET platform) can access middleware layer via SOAP. All application clients connect
with the middleware layer via KAON API, an application programming interface ac-
cessing ontology elements. The API realizes the application model by providing a set
of object-oriented abstractions of ontology elements. Application clients provide views
and controllers for model realized by KAON API.

Fig. 1. KAON Architecture

Middleware Layer: The primary role of the middleware layer is to realize application
model and provide KAON API interface for model access. KAON API isolates clients
from different API realizations and provides a unified interface. Some implementations
of KAON API rely on a modified implementation of RDF API2 for access to RDF.
Default implementation is used for in-memory processing of ontologies stored in files.
KAON Server is an implementation of RDF API using an application server, allowing
concurrent model modification, transaction support and model persistence. Non-RDF
data sources may be accessed using another implementation of KAON API, thus cre-
ating an ontology-compatible view of data not in a format according to Semantic Web
standards. KAON API can be accessed through a local interface (API implementation is
embedded in the application), remote interface (API itself is realized on an application
server) or through Wed Service interface allowing access using SOAP.

As KAON API is extensible, we are currently working on an implementation of
KAON API that realizes virtual ontologies obtained by mapping or merging two intput
ontologies (represented through appropriate realizations of the API).

Data and Remote Service Layer: This layer is provided by relational database tech-
nology or a flat file system supporting different serialization syntaxes. Additionally,
several external services for reasoning, mapping and mediation services, etc. may be
connected.

2 http://www-db.stanford.edu/ melnik/rdf/api.html

3.2 Web Service Clients

The first Web Service client we developed within KAON has solved the following prob-
lem: KAON is a framework that is completely based on Java. However, using its SOAP
interface it is not limited to usage in Java projects only. In order to provide interoper-
ability with other platforms, the SOAP-based Web service interface is provided, making
KAON accessible from virtually any distributed computing platform and client technol-
ogy. Thus, the KAON’s Web service API is strategically important in providing inter-
operability with Microsoft’s .NET platform.

The Web service interface has been applied to create a Web based ontology brows-
ing and querying system built on IIS/ASP technologies. Also, a dedicated plug-in has
been created for Microsoft Office to provide metadata extraction from MS Office doc-
uments connecting to KAON ontologies3.

3.3 KAON API

KAON API is the focal point of the KAON framework architecture, since it defines
the model portion of a Model-View-Controller architecture. It provides objects repre-
senting various pieces of an ontology, such as Concept, Relation, Attribute or Instance,
objects for creating and applying changes to ontology entities as well as objects pro-
viding query facilities. KAON API itself doesn’t realize persistence, concurrency or
security. Rather, it relies on lower layers to provide these features. KAON API may be
accessed in following ways:

– For single-user scenarios with ontologies stored in XML files, KAON API imple-
mentation may be embedded in the application. This results in compact and easily
deployable applications.

– If concurrent access of multiple users or ontology persistence is needed, an imple-
mentation relying on KAON Server may be used. KAON API may also be imple-
mented remotely on an application server and accessed using CORBA-IIOP pro-
tocol. In this case, KAON API is also responsible for synchronizing actions of
multiple users, while KAON Server is responsible for providing transactions, con-
currency and security mechanisms.

– KAON API may be accessed through SOAP, allowing easy construction of ontology-
enabled Web services.

– In peer-2-peer environments, KAON API may be used through Java JXTA pro-
tocol4. We refer the interested reader to the Edutella project5 where we focus on
connecting KAON with P2P networks.

The Observable design pattern [3] is used for notifications about model changes,
thus achieving low coupling between model and associated views. All changes to appli-
cation model, whether local or remote, are propagated to registered listeners allowing
them to display model updates immediately as they happen. Java Messaging Service

3 Further information is available at http://www.ontologging.org
4 http://www.jxta.org
5 http://edutella.jxta.org

(JMS) is used to propagate change notifications in distributed environment. The API is
entirely based on interfaces, allowing users to choose the appropriate implementation,
depending on his needs

– Default implementation using RDF API as storage facility. A local or KAON Server
based implementation of the API may be used.

– To provide ontology-compliant access to data stored in existing systems, such as
relational or XML databases, special mapping implementations may be used. These
implementations generates ontologies from respective data sources. The conversion
is dynamic - all modifications to the ontology and all queries are transformed and
propagated to the underlying data source.

– As metioned earlier, we are working on a extensions of KAON API dedicated to
ontology mapping. It takes two ontologies and a set of mapping rules (expressed as
an instance of a predefined mapping ontology) and creates a new virtual ontology
according to specified mapping rules. This mapping between ontologies is also
dynamic - a change in any of the underlying ontologies is immediately reflected in
the virtual ontology and vice versa.

KAON API is responsible for providing consistency of the underlying ontology. All
access to the API is performed through a dedicated evolution strategy whose purpose
is to define and implement a set of change rules. For example, when a concept is re-
moved from an ontology, it must be decided what to do with its subconcepts - they may
be deleted, attached to the parent of the deleted concept or attached to ontology’s root
concept. Several evolution strategies have been implemented for each of these policies,
allowing the user to choose the appropriate one when the ontology is instantiated. Fi-
nally, in order to improve performance, KAON API allows using a pluggable caching
scheme. In that way many costly requests to the application server may be avoided and
the overall application performance increased. The caching scheme is responsible for
maintaining cache coherency in case of distributed operation.

3.4 KAON Server — RDF Application Server

As experience gathered in first Semantic Web applications shows, ontologies and meta-
data are usually created in a collaborative and incremental way, creating a need for con-
current updates of ontologies and metadata. KAON Server is responsible for providing
a persistent, transactional and secure RDF repository accessible by multiple users are
the same time. It is realized within J2EE framework, thus making the server deployable
on any compliant EJB application server. KAON Server has been tested with JBOSS6

- Open Source application server. The conceptual architecture of the system follows a
Layers architectural pattern, as presented in Figure 2.

Fig. 2. RDF Application Server

API layer allows accessing the KAON
Server. A modified version of RDF API
is used for modifying RDF models, and

6 http://www.jboss.org/

querying API based on Edutella QEL lan-
guage is used for model querying and in-
ferencing. Since KAON Server is realized
within J2EE framework, API layer is im-
plemented using CORBA-IIOP protocol.

Security layer makes server operations
available to the client only if the caller
is properly authenticated and authorized
to access them. Authentication and au-
thorization are implemented using Java
Authentication and Authorization Service
(JAAS) allowing easy integration to any
existing security services. Using JAAS au-
thentication scheme identities are mapped
into abstract roles, and for each role a set

of privileges is determined.

Data access layer layer allows management of RDF model elements, inferencing
and querying. Queries are supported using RDF-QEL query language designed in the
Edutella project [4], while updates are possible via a modified version of RDF API.
KAON Server does not implement inference itself but interfaces to other systems. The
integration with these systems is seamless - the users of KAON Server do not distin-
guish between inferred and ground facts.

Management layer encapsulates all ”basic” services such commonly found in infor-
mation systems. Transaction management system is responsible for ensuring the com-
monly known ACID transaction properties. The replication service must ensure all ex-
ternal systems work with the same data sets (e.g. inference engine must be kept in
synchrony with the persistent storage). By interplaying with the naming service, the
replication service can also manage duplicate RDF models to enhance scalability and
availability. The naming service maps model identifiers (as presented by URIs) to per-
sistent identifiers (URNs) and keeps information about the location of the information.
Finally, system configuration modules are realized in this layer.

External services are systems and services external to KAON Server. Databases are
used for persisting RDF model data. Inference engines are reused to offer reasoning
capabilities. Transaction Processing Monitors ensure transactional integrity if data is
replicated to external systems.

4 Related Work and Conclusion

This section gives a short overview on related work and an outlook on the next steps
that are to be carried out within the Karlsruhe ontology and semantic web infrastructure
project. With the upswing and proliferation of ontologies and metadata, the need for

comprehensive managing infrastructure has been recognized recently. A comprehen-
sive overview and state-of-the-art survey on ontology library systems with respect to
the dimensions management, adaptation and standardization has been provided by [2].
Whereas these ontology library systems mainly focus on ontology storage and reuse,
our approach provides a RDF-based framework including ontology management for
semantics-driven applications. Comparing to available RDF data stores7 our apporoach
is also the only available RDF data store dealing with replication and connectable in
a peer-to-peer manner. An approach that comes close to our open-source framework
is the commercial system, ontology builder and server, proposed in [1]. Nevertheless,
in contrast to this system, our approach is completely based on RDF and is therefore
Semantic Web conform.

In this paper we have introduced KAON, the Karlsruhe Ontology and Semantic Web
framework. Ontologies and metadata are important means for realizing the vision of the
Semantic Web. In this paper it has been argued that the visionary goal of E-Services to
providing interoperability between heterogeneous information providers and consumers
requires practical and research experience gained in Semantic Web. Since Semantic
Web is a vision of providing meaning to Web content, similar principles can be used
and provide E-Service communication with formal semantics. KAON is a framework
that allows to establish a connection between Semantic Web technology with the Web
Service world.

Acknowledgements: The research presented in this paper has been partially funded
by EU-IST in the Ontologging project and EU-FET in the WonderWeb project.

5 Appendix

Definition 1. A core ontology is a structure

��� 	�

�����������������������
consisting of

– two disjoint sets
�

and
�

whose elements are called concept identifiers and relation identi-
fiers, resp.,

– a partial order
���

on
�

, called concept hierarchy or taxonomy,
– a function

�����! "�$#
called signature,

– a partial order
� �

on
�

, called relation hierarchy, where % � � � % � implies & �'
 % � � & 	& �'
 % � � & and (*)
+�,
 % � �-����� (*)
+�,
 % � �-� , for each . �0/�� & �'
 % � � & .

Remark 1. Often we will call concept identifiers and relation identifiers just concepts and rela-
tions, resp., for sake of simplicity.

7 http://www.w3.org/2001/05/rdf-ds/DataStore lists existing RDF data stores.

Definition 2. For a relation %21 �
with & �'
 % � & 	"3

, we define its domain and its range by46587
 % ��� 	 (�
+�,
 % �-� and 9�:<;>=8?
 % ��� 	 (�
+�,
 % �-� .
If @ � ��� @ � , for @ � � @ � 1 � , then @ � is a subconcept of @ � , and @ � is a superconcept of @ � . If% � ��� % � , for % � � % � 1 � , then % � is a subrelation of % � , and % � is a superrelation of % � .
If @ ��A � @ � and there is no @�BC1 � with @ ��A � @�B A � @ � , then @ � is a direct subconcept

of @ � , and @ � is a direct superconcept of @ � . We note this by @ ��D @ � . Direct superrelations and
direct subrelations are defined analogously.

Definition 3. Let E be a logical language. A E -axiom system for an ontology
�F� 	G

�H�I�H��-���-���������

is a pair J � 	K
 J�L �NM��
where

–
JOL

is a set whose elements are called axiom identifiers and
–
M�� JOL E is a mapping.

The elements of
J � 	PMQ
 JOL �

are called axioms.

An ontology with E -axioms is a pair

�R� J �
where

�
is an ontology and

J
is a E -axiom system for

�
.

Definition 4. An ontology with E -axioms

�R� J �

is consistent, if
J0SUT�VXW � W 1Y@ � W 1Z@ � &@ � � @ �\[S]T�V*^ � ^ 1_% � ^ 1`% � &<% � � % �\[is consistent.

Remark 2. In the sequel, ontology stands for either a core ontology or an ontology with E -
axioms.

Definition 5. A lexicon for an ontology
��� 	K

�������Q���a�����������

is a structurebdc-e � 	�

f � ��f � �hg cji � �Ig cji � �
consisting of

– two sets
fk�

and
fl�

whose elements are called signs for concepts and relations, resp.,
– a relation

g cji �nm f �po �
called lexical reference for concepts, where

 @ � @ � 1 g cji �
holds for all @H1 �rq`fk� .

– a relation
g cji �sm fk� o �

called lexical reference for relations, where

 % � % � 1 g cji � holds

for all %a1 �0q_fk� .

Based on
g cji �

, we define, for tH1 f � ,g cji �
 t ��� 	 T @H1 � &
 t � @ � 1 g cji � [
and, for @H1 � , g cjivu ��
 @ ��� 	 T t$1 f &
 t � @ � 1 g cji � [0wg cji �

and
g cji u �� are defined analogously.

An ontology with lexicon is a pair

�x� bdc-e �
where

�
is an ontology and

bdc-e
is a lexicon for

�
.

Definition 6. A knowledge base is a structure

yHz � 	�

�|{*}����H{*}�� L ��~��Q��~N���
consisting of

– two sets
�|{*}

and
��{*}

,
– a set

L
whose elements are called instance identifiers (or instances or objects for short),

– a function
~������|{*}U ��`
 L �

called concept instantiation,
– a function

~ � ��� {*} "�_
 L # �
called relation instantiation.

Definition 7. An instance lexicon for a knowledge base
yHz � 	�

� {*} ��� {*} � L ��~ � ��~ � �

is a pair

��b � 	�

f��8�����<�
consisting of

– a set
fl�

whose elements are called signs for instances,
– a relation

��� m f�� o L
called lexical reference for instances.

A knowledge base with lexicon is a pair

 y�z � ��b �
where

yHz
is a knowledge base and

��b
is an instance lexicon for

yHz
.

References

1. Aseem Das, Wei Wu, and Deborah McGuinness. Industrial strength ontology management.
In Proceedings of the First Semantic Semantic Web Working Symposium, SWWS-01, Stanford,
USA, August 2001, 2001.

2. Ying Ding and Dieter Fensel. Ontology library systems — they key to successful ontology
re-use. In Proceedings of the First Semantic Semantic Web Working Symposium, SWWS-01,
Stanford, USA, August 2001, 2001.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns. Addison-
Wesley, 1995.

4. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjoern Naeve,
Mikael Nilsson, Matthias Palmer, and Tore Risch. Edutella: A p2p networking infrastructure
based on rdf. In In Proceedings of the 11th World Wide Web Conference — WWW-11, Hawaii,
USA, 2002, 2002.

