The Energy Management Adviser at EDF

Pierre Chaussecourte?, Birte Glimm?, Tan Horrocks', Boris Motik!, and
Laurent Pierre3

1 University of Oxford, Oxford, UK
2 University of Ulm, Ulm, Germany
3 Electricité De France R&D, Clamart, France

Abstract. The EMA (Energy Management Adviser) aims to produce
personalised energy saving advice for EDF’s customers. The advice takes
the form of one or more ‘tips’, and personalisation is achieved using se-
mantic technologies: customers are described using RDF, an OWL on-
tology provides a conceptual model of the relevant domain (housing,
environment, and so on) and the different kinds of tips, and SPARQL
query answering is used to identify relevant tips. The current prototype
provides tips to more than 300,000 EDF customers in France at least
twice a year. The main challenges for our future work include providing
a timely service for all of the 35 million EDF customers in France, simpli-
fying the system’s maintenance, and providing new ways for interacting
with customers such as via a Web site.

1 Introduction

The EMA (Energy Management Adviser) has been under development at Elec-
tricité De France (EDF) R&D for several years. It aims to produce personalised
energy saving advice for individual customers. This advice is in the form of one
or more ‘tips’ that depend on customer specific factors, such as housing and elec-
tricity consumption, as well as environmental factors, such as weather conditions
during the relevant period. For example, a customer whose energy consumption
during the summer is higher than was forecast, whose home is air conditioned,
and who lives in a region where, during the relevant period, the weather was
warmer than expected, might be advised that their increased consumption was
probably caused by increased use of air conditioning due to the warmer weather;
furthermore, the customer might be offered advice for reducing their reliance on
air conditioning.

EMA is implemented as a web service that is passed a set of parameters
describing customer circumstances, and that returns suitable advice text. Thus,
other systems at EDF can use EMA to obtain energy saving advice for customers
as needed. Currently, EMA is primarily used by the EDF billing system in order
to provide energy saving advice on customers’ bills, but it is envisaged that
the service will be used more extensively in the future, such as for improving
customer experiences when interacting with EDF’s web site.

The production of such personalised customer tips is achieved using semantic
technologies: facts about customers are represented using RDF triples (equiva-
lently, OWL assertions), OWL ontologies are used to provide a conceptual model
of the relevant domain (housing, environment, and so on) and different kinds of
tips, and SPARQL queries are used to identify relevant tips. For example, given
OWL assertions describing the circumstances of the above mentioned customer
(whose energy consumption during the summer is higher than was forecast), an
OWL reasoner is used to answer a SPARQL query that retrieves classes that
represent relevant tips, and one of these classes is associated with the appropri-
ate advice about air conditioning. In contrast, if the customer’s circumstances
were described using a set of assertions stating that the weather was cooler than
expected, then the query would retrieve different classes, and the system would
produce different advice. In general, advice may identify causes of increased con-
sumption such as changes in living habits, increased use of electrical devices, or
keeping devices on standby.

Basing the system on semantic technologies has many advantages: OWL pro-
vides a rich, flexible, and fully declarative language for modelling customers and
customer environments; infrastructure such as ontology editing and reasoning
tools is readily available for OWL, and it can be used to support ontology de-
velopment as well as for identifying relevant tips; and the behaviour of EMA
can be adapted, extended and maintained without coding. By using SPARQL
queries to identify relevant tips, it is even possible to provide a useful form of
nonmonotonic behaviour, where otherwise relevant tips can be ‘cancelled’ by
the existence of some special client circumstances, such as age or disability (see
Section 3.4). Finally, future enhancements of the system could involve storing
customer data directly in highly scalable RDF stores.

The latest version of the ontology and the reasoning system is the result of an
ongoing collaboration between EDF and the University of Oxford that started
in 2011. The current version of EMA provides tips to more than 300,000 EDF
customers in France at least twice a year. The main challenges for our future
work include providing a timely service for all of the 35 million EDF customers
in France, simplifying the system’s maintenance, and providing new ways for
interacting with customers such as via a Web site.

In the rest of the paper we assume basic familiarity with RDF, OWL, and
SPARQL; readers are referred to [8, 5, 1] for suitable primers.

2 EMA Architecture

Customer information is stored in various databases that are independent of
the EMA web service. Therefore, to use the EMA, a client must retrieve the
relevant information, invoke the EMA web service—passing the information as
parameters—and then receive the relevant tips from the service (see Fig. 1).

heating |

indDeltaAvgHeat 2.3
realConsumption 5000
estimatedConsumption 4500

i You can see that
Consumption Data Ny /
=

Fig. 1. EMA Web Service Architecture

2.1 Describing Customer Circumstances

Within EMA, the job of determining which tips are appropriate to a given cus-
tomer is delegated to an ontology reasoner; the current implementation uses the
Hermit* reasoner developed at the University of Oxford. In an earlier prototype
of EMA, a new reasoning process was launched for each web service call. This,
however, turned out to be very inefficient as it required reloading all the relevant
ontologies in addition to reasoning about the given customer’s circumstances. In
order to improve the performance, we have extended HermiT to support incre-
mental reasoning and batch processing of customers (see Section 4).

In order to use ontology reasoning, EMA describes the relevant circumstances
of each customer using OWL assertions. For brevity, in this paper we use the
Manchester syntax [7], which is also supported in the ontology editor Protégé;
however, one could equivalently write down all of our examples using RDF
triples. A given customer and the home that they live in are modelled using
assertions of the following form:

Individual: a_client Types: ClientSituation
Individual: a_house Types: Home

Individual: a_client Facts: livesln a_house

These assertions state that a_client is customer situation, a_house is a home,
and a_client lives in a_house. Please note that we use ‘client’ and ‘customer’
interchangeably; moreover, please note that we actually model customer situa-
tions, rather than customers. In order to identify relevant tips, the individual
that represents a customer situation (a_ client in this case) is also connected via

4 http://www.hermit-reasoner.com/

lower higher

hasJemperatureSummer ‘ ‘ ‘
hasConsumptionComparedWithPrevious

B a_house
Ve) .
hasAirConditioned “~Jivesin hasTip
/ H M. a_tip
a_client
true
heatinglsTheBiggestPartOfTheBill

false «—

Fig. 2. Assertions describing a customer’s situation

the hasTip property to an individual that is an instance of the Tip class; this
individual will be used to determine which tips are applicable to a_client. The
resulting assertions are shown graphically in Fig. 2.

Customers and their homes are described using various parameters passed to
the EMA service; for example,

— the indAC parameter is set to one if the customer’s home is equipped with
an air conditioning system, and zero otherwise;

— the consElecAC parameter captures the estimated quantity of energy used
for air conditioning; and

— the consElecHeating parameter captures the estimated quantity of energy
used for heating.

Some of these parameters can be transformed directly into assertions and added
to the model. For example, the presence of air conditioning is represented using
the object property hasAirConditioning, and so the indAC parameter with value
one can be simply transformed into the following assertion:

Individual: a_house Facts: hasAirConditioning true

Note that, in the above assertion, true is an individual and not a data value; we
will discuss this in more detail in Section 3.2.

Other parameters may require more complex transformations. For example,
the object property consACvHeating is used to represent the relative amounts of
energy consumed for air conditioning and heating; for example, assertion

Individual: a_client Facts: consACvHeating Higher

represents the fact that the customer consumed more energy for air conditioning
than for heating. This assertion, however, does not correspond to a single param-
eter passed to the system; rather, it is produced through a numerical comparison
of the values of the consElecAC and consElecHeating parameters.

Higher

Warmer
hasConsumptionComp
Situation
£ N\

hasTemperatureSummer

aredWithPrevious

False

heatinglsTheBiggestPartOfTheBill

Fig. 3. Finding suitable tips

2.2 Identifying Appropriate Tips

Once a customer’s situation has been fully described using OWL assertions, an
OWL reasoner can be used to classify the a_client individual as an instance
of one or more of the customer situation classes described in the ontology. For
example, a_ client might be recognised as an instance of the situation class S, a
class of customers whose OWL definition includes the existence of a home with
air conditioning and so on. In addition, the a_tip individual will be recognised
as an instance of a class T; that represents tips relevant to situation S (see
Fig. 3). Relevant tips can then be identified by simply retrieving the classes that
the individual a_tip is an instance of; this can be achieved using the following
SPARQL query:

SELECT 7t WHERE { a_tip rdf:type 7t . 7t rdfs:subClassOf ActualTip . }

2.3 Retrieving Textual Tips

The result of the SPARQL query provides tips in the form of class names. To
complete its task, the EMA service transforms these names into text that can
be presented to the customer. Suitable text is associated with each of the tip
classes, and it may include special strings that are replaced with values from the
input parameters. The following is an example of a tip text:

Electricity consumption between %1 and %2 is higher than during the
same period last year. This increase may be caused by a higher out-
door average temperature (%3 degrees higher), which could have led to
increased use of your air conditioning system.

Strings %1, %2, and %3 are replaced by parameter values to provide the final
text. Thus, the above tip text would be converted into the following finished tip:

Electricity consumption between June 1st and September 30th is
higher than during the same period last year. This increase may be
caused by a higher outdoor average temperature (2 degrees higher),
which could have led to increased use of your air conditioning system.

3 Ontology Modelling

The EMA service uses OWL ontologies to model customer situations and their
relationships to relevant energy saving tips. An example of a customer situation
is ‘living in the North of France in a house with electric heating, and using more
electricity than in the same period in the preceding year’, and this situation
might be associated with the tip ‘check the temperature on the thermostat, and
consider reducing it by a couple of degrees’.

The system uses several ontologies in order to improve modularity and fa-
cilitate maintenance by a team of developers with different areas of expertise.
In particular, the core and bases ontologies define generic classes and properties
used to describe more complex situations; the ACS ontology describes situa-
tions relevant to customers for which EDF have a record of previous energy
consumption; the conseils (advice) ontology captures generic situations that re-
quire relatively little information about the customer; and the TPN ontology
describes ‘special situations’ in which the standard tips may not be appropriate.®
Examples of special situations include those arising from customer disabilities
or other special needs. The ACS ontology imports the core, bases, conseils, and
TPN ontologies. The ontologies use features such as disjunction (or), all values
from restrictions (only), and inverse properties (Inverse0f), and hence do not
conform to any of the OWL 2 profiles.

3.1 Customer Situation Ontologies

Home management specialists are responsible for providing advice relevant to dif-
ferent customer contexts. These specialists use decision trees to analyse different
situations that a customer might be in, with each situation being distinguished
by a range of features such as whether the customer owns their own home, what
kind of home they live in (house, apartment, and so on), and whether they are
a new customer. Home management specialists then associate tips with some
or all of the nodes in the decision trees. The original design goal for EMA was
to ensure that the system’s ontologies closely mimic the decision tree structure,
with the idea that this would allow for a rapid ‘bootstrapping’ of the ontologies
and reduce the chance of introducing errors during the conversion of decision
trees into ontologies. The resulting OWL modelling is sometimes rather stilted,
but the ontology is under constant revision to address these issues and to extend
the capabilities of the system.

® The TPN ontology is currently only a prototype and is being used in experiments
whose goal is to extend EMA so that it can deal with special situations; we discuss
the surrounding issues in more detail in Section 3.4.

Specifications Ontology

Fig. 4. From Paper Specifications to Ontology

Fig. 4 shows fragments of such decision trees and the mapping from decision
tree nodes into ontology classes. Although the structures are similar, decision
tree nodes are not in one-to-one correspondence with ontology classes. This is
because it was sometimes convenient to collapse multiple nodes in the tree into
one class expression, to introduce ‘intermediate’ classes so as to avoid repetition
in class expressions, and to introduce ‘structural’ classes that group together
related classes and improve the structure of the ontology hierarchy.

For example, S 4 is a ‘real’ class (i.e., a class that corresponds to a node
in a decision tree), while class A2 is an intermediate class (it captures a part of
the class expression used in the description of S_4). These classes are described
using the following axioms:

Class: A2 EquivalentTo:
heatinglsTheBiggestPartOf TheBill some False and
hasConsumptionCompareWithPrevious some Higher

Class: S_4 EquivalentTo:
A2 and
hasAirConditioning some True and
livesIn some (hasTemperatureSummer some Warmer)

Class A2 describes an intermediate situation in which electricity consumption is
higher than in the corresponding period of the previous year, and with heating
not making up the largest part of the bill. Class S_4 then refines A2 by addi-
tionally requiring that the client owns an air conditioning system and lives in a
house where the summer temperature was warmer than in the previous year.
The result of such a design is that customer situations are described in a
tree-like hierarchy of classes, the root of which is the CustomerSituation class.

Directly under CustomerSituation there are two classes, StandardSituation and
SpecialSituation, that split the situation hierarchy into two parts. The former
part (under StandardSituation) describes standard customer situations (such as
their home environment), while the latter part (under SpecialSituation) describes
customers with special needs (such as disabilities). Note that these two classifi-
cation hierarchies are not disjoint: a given customer situation could be classified
both as a standard situation (e.g., living in a home with air conditioning) and a
special situation (e.g., being disabled). We will say more about special situations
in Section 3.4.

3.2 Avoiding Value Class Expressions

In the StandardSituation hierarchy, classes are typically defined as a conjunction
of a more general situation class and a number of existential restrictions. In some
cases, these restrictions are simple attribute-value pairs, with the restriction class
being True, False, Equal, Higher, or Lower. In other cases, the restriction class is
itself a class description, often describing features of a customer’s home.

Earlier versions of the EMA ontologies used value restrictions (also known
as nominals) to encode such class descriptions. For example, the axiom

Class: S_2 EquivalentTo: S_1 and livesIn some (electricHeating value true)

was used to describe a situation S_2 as a refinement of S 1 with the addi-
tional feature that the client’s home is equipped with electric heating. Please
note that true in the above axiom is an individual used in a value restriction.
Such a modelling style, however, was found to be problematical: whenever the
assertions describing a customer were updated, the ontology hierarchy had to
be recomputed as well due to the usage of nominals in class descriptions, which
eventually proved to be a severe performance bottleneck.

In order to avoid these problems, we adopted a different modelling strategy
that simulates nominals using fresh classes [3]. In particular, the above axiom is
actually written in the EMA ontologies as

Class: S_2 EquivalentTo: S_1 and livesIn some (electricHeating some True)

where True is a ‘simulated nominal class’. We also introduce an individual true
and state it to be an instance of the True class. Then, given assertions

Individual: hl Facts: electricHeating true
one can now recognise individual hl as as an instance of the class
electricHeating some True

which can then be used to appropriately identify instances of class S 2. By
eliminating nominals from the EMA ontologies, we ensure that the ontologies
can be classified once upon the system startup, and not each time the customer
situation is updated, which has considerably improved the system’s performance.

3.3 Tips and GClIs

Textual tips are not stored directly in the ontology; rather, each tip is associated
with a class in the ontology. Tip classes are arranged in a simple hierarchy the
root of which is the Tip class; the hierarchy groups tips into various types (e.g.,
heating, air conditioning, summer), but without any further description.

Tip classes are associated with classes describing customer situations via the
isTipOf property, which is the inverse of hasTip. For example, axiom

Class: isTipOf some S_1 SubClass0f: T1

states that each individual related to an instance of the S 1 customer situation
class via the isTipOf property will be inferred to be an instance of the T1 tip
class. Unfortunately, Protégé—the ontology editor used to develop and maintain
the EMA ontologies—cannot represent such axioms since it does not allow for
class expressions on the left hand side of axioms (a kind of axiom known in
description logics as general concept inclusions, or GClIs).% To overcome this
deficiency, EMA uses ‘auxiliary tip recognition classes’: each class expression
used to recognise a tip is defined to be equivalent to a corresponding auxiliary
tip recognition class, and this auxiliary class is then used on the left hand side
of the relevant axiom. For example, the above axiom is transformed as follows:

Class: AT1 EquivalentTo: isTipOf some S_1
Class: AT1 SubClassOf: T1

Apart from working around the limitations of Protégé, this has the added ad-
vantage that it provides a separation between the situation ontology and the tip
ontology, allowing different people to work on different parts of the ontology.

The auxiliary classes are grouped under AuxiliaryTipRecognitionClass and
subdivided under its two subclasses AuxTip and AuxNotTip. Under the former
(AuxTip) are classes whose definitions recognise client situations for which par-
ticular tips are appropriate; and under the latter (AuxNotTip) are classes whose
definitions recognise client situations for which particular tips are inappropriate;
we discuss the distinction between these two in more detail in Section 3.4.

3.4 Special Situations

The special situation hierarchy is used differently from the standard situation
hierarchy in order to simulate a kind of nonmonotonic reasoning. This is achieved
by using classification of customer situations in the special situations hierarchy
to cancel tips that would otherwise be given as a result of classification in the
standard situations hierarchy. For example, the tip ‘check the temperature on the
thermostat, and consider reducing it by a couple of degrees’ may be considered
inappropriate for elderly customers, for whom keeping warm is a priority. In this

5 Note that the Manchester syntax also requires a class name as a subclass, so the
mentioned statement is actually not syntactically correct.

case, when a customer is recognised as being elderly, for example by satisfying
a data property restriction of the form

hasAge some integer [>= 75],

the system will ‘cancel’ the temperature reduction tip, even if the latter is ap-
plicable according to the standard situation hierarchy.

In practice, such a situation is modelled in the EDF’s ontologies using axioms
of the form

Class: NT1 EquivalentTo: notlsTipOf some S 2
Class: NT1 SubClass0f: T2

which state that each individual related to an instance of the S 2 customer
situation class via the notlsTipOf property will be inferred to be an instance of
the T2 tip class. In our example, S 2 would be the special situations class that
represents elderly customers, and T2 would be the tip class that the ‘check the
temperature ...’ tip is associated with. The modelling of individual customers is
correspondingly extended by connecting the individual that represents the cus-
tomer’s situation (a_ client in our running example) via the notHasTip property
to an individual that is an instance of the Tip class (we will call this individual
a_non_tip for the purposes of our example), where notHasTip is the inverse of
notlsTipOf. The individual a_non_tip can then be used to retrieve those tips
that are not applicable to a_ client, using the SPARQL query

SELECT 7t WHERE { a_non _tip rdf:type 7t . 7t rdfs:subClassOf ActualTip . }

Although OWL does not support negation as failure in class descriptions, the
use of negation as failure is possible in queries, as it amounts to subtracting the
answer to one query (the above inapplicable tips query in our case) from the an-
swer to another subquery (the applicable tips query from Section 2.2 in our case);
this subtraction process has been formalised in the EQL-Lite query language [2].
This can be achieved directly in SPARQL using the following query:”

SELECT 7t WHERE {
a_tip rdf:itype 7t . 7t rdfs:subClassOf ActualTip .
MINUS { a_non_tip rdf:type 7t . 7t rdfs:subClassOf ActualTip . }

}

Note that this procedure cancels tips only for customers known to be at least 75
years old, but not for customers whose age is unknown. Furthermore, one might
expect that the problem could be solved by defining a standard situation class
containing the not hasAge some integer[>= 75] restriction—that is, by using
OWL’s negation operator; however, this would not have the desired effect as the
tip would be applicable only to customers known to be less than 75 years old.

" The MINUS keyword is new in SPARQL 1.1; in SPARQL 1.0 one can simulate negation
as failure using a combination of OPTIONAL and FILTER keywords.

LI
L
-
---~
-—
L
LT .

-
o==" : =
<<Interface>> 1 Command Line
OWLReasoner 1 Interface
JAN . J
Y
Reasoner
| £ 5 Y |
. Deterministic K/P Property Instance
Rule Encoding Classification | | Classification [* Classification Manager
Loading Classification Realization
7 A 3 7
Tableau

easoning

Fig. 5. A schematic system architecture of the HermiT reasoner

In other words, the not operator does not have the semantics needed to model
exceptions and perform nonmonotonic reasoning, thus necessitating a solution
such as the one outlined above. An in-depth discussion of these issues is given
in [9)].

4 The HermiT Reasoner

In this section, we present a brief overview over the open-source HermiT OWL
reasoner, its reasoning algorithms, and relevant optimisations. HermiT is imple-
mented in Java, so it can be used on a wide range of platforms. It comprises
several modules that together realise a sound and complete OWL reasoning
system. Figure 5 gives a high-level overview of the main system components.
HermiT can be used via a command line interface, via its native Java inter-
face (the Reasoner component), or via the OWLReasoner interface of the OWL
API [6]. The EMA uses the OWLReasoner interface, thus allowing for easy sub-
stitution of different OWL reasoners. The main reasoning service in HermiT
is checking whether an ontology is satisfiable; this functionality is realised by
the Tableau component and its submodules. HermiT also supports many other
reasoning tasks, all of which can be reduced to ontology satisfiability more or
less straightforwardly, including ontology classification (i.e., the computation of
the subClass and subProperty hierarchies) [4], and ontology realisation (i.e., the
computation of all instances of all classes and properties). We next describe in
more detail HermiT’s reasoning algorithm and the realisation module since these
are particularly relevant for EMA.

In order to check whether an ontology O is satisfiable, HermiT uses the
hypertableau calculus [10], which first translates the TBox/schema axioms into

(derivation) rules (the Rule Encoding component in Figure 5). Then, starting
with the explicitly stated assertions (e.g., the facts about a_client and a_house),
by applying several derivation rules the reasoner tries to construct an abstraction
of a model of O. Derivation rules usually add new class and property assertions
and may introduce new individuals. For example, given axiom

Individual: hl Facts: electricHeating some True

the reasoner introduces a new instance of the class True and connects hl with this
new individual via the electricHeating property in order to satisfy the some exis-
tential restrictions. The derivation rules used in HermiT can be nondeterministic
(e.g., due to the use of disjunctive classes), and so the reasoner can often choose
between several derivations. The rules can also lead to a clash, which occurs
when the reasoner detects a logical contradiction. If the reasoner can construct
a clash-free set of assertions to which no more derivation rules are applicable, the
reasoner concludes that the ontology O is satisfiable; otherwise, if an attempt
to construct such a clash-free set of assertions fails, the reasoner concludes that
O is unsatisfiable. Each derived assertion is derived either deterministically or
nondeterministically. An assertion is derived deterministically if it is derived by
the application of a deterministic derivation rule from assertions that were all
derived deterministically; all other assertions are derived nondeterministically.

We illustrate the reasoning process employed in HermiT using the following
example ontology.

Class: D SubClassOf: E or B D(z) = E(x)V B(x) (1)
Class: A SubClassOf: r some B A(z) — Ir.B(z) (2)
ObjectProperty: r Domain: C r(z,y) — C(x) (3)
Individual: i Types: A (4)
Individual: j Types: D and not B (5)

Axioms (1)—(3) are TBox axioms, and their translation into rules is shown on
the right-hand side. Axioms (4) and (5) are ABox assertions. Figure 6 shows
a graphical representation of the initial ABox for assertions (4) and (5) on the
left-hand side and an extended ABox obtained by applying the rules (1) to (3)
on the right-hand side. The derivation that individual j is an instance of class
E is nondeterministic since rule (1) also allows for choosing B a possible type
for j. Individual n, is added due to rule (2); this makes rule (3) applicable, so
C is added to the types of i. At this point no more rules are applicable and the
constructed ABox is clash-free, so we conclude that the ontology is satisfiable.

In order to check whether O entails an axiom «, one typically checks whether
O extended with the negation of « is satisfiable. If that is not the case, then every
model of O satisfies a, and so O entails a. For example, to check whether an
individual i is an instance of a class C in O, one extends O with an assertion
stating that i is an instance of the negation of C and checks whether the extended
ontology is unsatisfiable. In our example, HermiT will fail to construct a clash-
free set of assertions, and so it will conclude that individual i is indeed an instance
of class C.

ieo A joD,not B ieo A C jo D, not B, E

Fig. 6. A graphical illustration of the initial ABox and an extended ABox obtained by
applying the rules (1) to (3)

Please note, however, that in the above example we have no choice but to
derive that i is an instance of C. This observation can be generalised as follows:
whenever we derive deterministically that an individual i is an instance of a
class C, then this holds in each model of O; in other words, we conclude that O
implies that i is an instance of C. Similarly, whenever we construct a clash-free
set of assertions in which i is not an instance of C, we conclude that O implies
that i is not an instance of C. Only if we derive nondeterministically that i is
an instance of C, we cannot be sure whether O really entails this fact, so we
have to actually perform a separate test. For example, in the model abstraction
shown on the right-hand side of Figure 6, the assertion that individual j is an
instance of class E was derived nondeterministically, so we do not know for
sure whether O implies that j is an instance of E, and so we must perform an
actual test; in this particular case, if we extend O with an assertion that j is
an instance of not E, we obtain a contradiction since have to choose the second
alternative B in rule (1), contradicting the fact that j has type not B due to
assertion (5). In order to realise an ontology efficiently, HermiT determines the
certain and possible instances of classes and properties from model abstractions
as described above, and it performs the remaining tests lazily (i.e., at query time
or when explicitly requested by the user). Furthermore, if the ontology does not
contain disjunctive information, then all assertions in a model abstraction are
derived deterministically, and so HermiT can determine all class and property
instances by performing a single ontology satisfiability test, thus considerably
improving the system’s performance.

4.1 Incremental Ontology Changes

Even with all the optimisations outlined so far, HermiT cannot process the in-
formation about all customers at once. Thus, the ontology has been designed
as follows: the TBox contains general statements about the domain (e.g., the
taxonomy of different kinds of heating systems), while the ABox contains simple
assertions that describe the situation of one or several customers. The customers
are independent of each other, so we can process them in batches, possibly even
on different reasoner instances in a cluster of machines. After loading, classifi-
cation, and realisation, we retrieve the types of each tip individual in the batch
(recall that each customer is connected via the hasTip property to an instance
of the Tip class) using a suitable SPARQL query (see Section 2.2), and then we
generate the appropriate tips based on the retrieved types.

Initially, HermiT did not support any form of incremental reasoning, so for
each batch of customers it was necessary to reload TBox and the ABox, reclas-
sify the ontology, and then realise the relevant instances. In order to improve
this process, we extended HermiT (v1.3.4 onwards) with a limited support for
incremental addition and retraction of axioms. In particular, HermiT supports
incremental changes only for class assertions with named or negated named
classes, and for property assertions; moreover, the TBox cannot contain nomi-
nals so that TBox classification becomes independent of the ABox. These criteria
are satisfied in the ontology used in EMA, which allows us to first load and clas-
sifying the TBox, and then iteratively load and realise an ABox for each batch
of customers. These changes to HermiT considerably improved the performance
of the EMA service.

5 Evaluation

To determine a good batch size, we tested how long it takes to compute tips for
10,000 customers by processing them in batches of 1, 2, 4, and 8 customers with
and without incremental reasoning support (i.e., when loading and classifying
the TBox for each customer). The results in Table 1 show that a surprisingly
small batch of 4 customers works best. The time is given in the format min:sec
and, apart from the total time, we also show the time for loading (including the
updates in the incremental mode), classification, and realisation. In the incre-
mental mode, the ontology is classified only once, which takes between 40 and
50 ms, which we round to 0 s. With smaller batch sizes, there is too much over-
head for loading, whereas with bigger batch sizes the time to realise the ABox
no longer outweighs the reduction in loading time.

The table also shows the results for 50,000 and 100,000 customers, where we
only compared the initial approach (processing each customer separately without
incremental reasoning) and the approach based on incremental reasoning with 4
customers processed at a time. Note that the overall processing time increases by
a factor of 5 and 10, respectively, which shows a linear increase in the number of
customers. Thus, by designing the ontology that allows independent processing
of customers, and by combining it with incremental loading of relatively simple
ABox assertions, we developed a system that can process a large number of
customers in a reasonable time. The overall time can further be reduced by
running several reasoner instances in parallel.

The tests were performed on a MacBook Air with an 1.8 GHz Intel Core i7
processor, and 4GB of main memory. We used Java 1.6 and allowed for 1GB of
Java heap space. The times shown are the average over two runs and have been
rounded to seconds.

6 Discussion and Future Work

The EMA is today used to produce tips only for about 300,000 of EDF’s cus-
tomers, each of whom receives energy saving advice twice per year. EDF’s goal,

Table 1. Results for computing tips for 10,000, 50,000, and 100,000 customers with
different batch sizes and with or without incremental reasoning

Customers 10,000 50,000 100,000
Batch Size 1 1 2 2 4 4 8 8 1 4 1 4
Incremental | v v v v v v
Loading | 19 18 9 9 5 5 3 | 1:27 24 | 2:47 53

Realisation | 10 9 9 12|11 17 |1 29 42 54 | 1:34 | 1:50
Total time | 30 56 | 18 35 | 16 30 | 2 36 | 4:27 | 1:18 | 8:50 | 2:43

3

Classification 0 28 0 15 0 8 0 4| 217 0 | 4:30 0
8
1

however, is to provide such advice to all of its 35 million customers in France.
This much larger customer base might require greatly extended modelling of
both situations and tips, which has prompted us to consider features for the
next generation of the Energy Management Adviser. We have identified several
directions for future research and enhancement.

6.1 Using Modular Tip Fragments

In the existing EMA service, tips are represented as single classes, and each tip
class is associated with an appropriate customer situation class. This leads to
a combinatorial explosion of tip and customer situation classes, and increases
development and maintenance cost for both the ontology and the tips.

For example, the ontology currently represents customer energy consumption
using classes highCons (high consumption), normCons (normal consumption) and
lowCons (low consumption); furthermore, it represents relevant environmental
conditions using classes warmSummer, normSummer and coolSummer. This gives
rise to nine distinct situations (highCons and warmSummer, ..., lowCons and
coolSummer), each of which may be associated with a different tip.

An alternative design might associate tip fragments with each elementary sit-
uation, use reasoning to determine the relevant elementary situations, and then
assemble the relevant fragments into a coherent tip. This, however, is nontrivial,
as different combinations of circumstances may require fragments to be assem-
bled in a different way. For example, given a customer who has air conditioning
and whose circumstances also include highCons and warmSummer, we might need
to combine the relevant tip fragments ‘high consumption’ and ‘warm summer’
into ‘high consumption explained by the warm summer’; however, after chang-
ing the circumstances to coolSummer, we might need to combine the relevant tip
fragments ‘high consumption’ and ‘cool summer’ into ‘high consumption despite
the cool summer’. Thus, the assembly of coherent tips will require sophisticated
natural language generation, which may itself depend on background knowledge
of the domain (e.g., that in an air-conditioned house a warm summer can explain
high consumption), possibly captured in an ontology.

6.2 Triple store

The EMA service currently provides tips by means of a web service, and infor-
mation about customers is stored elsewhere (typically in databases) and passed
to the service as needed. The reasoning process then analyses the data and com-
putes the relevant tips by classifying the individual customers.

A new version of EMA might store all relevant customer information in a
triple store and thus use reasoning also for other purposes than tip computation.
For example, the system could be used to compare different customers, analyse
historical energy consumption, and even integrate new data sources containing,
for example, spatial data. Furthermore, the information stored in such a system
could be used to drive customer interfaces that solicit (possibly over multiple
interactions) additional information about customer circumstances that allow
for more precision when identifying relevant tips.

Finally, SWRL reasoning capacities might allow us to capture in a declarative
way all formulae for the transformation of various parameters—e.g., comparing
the energy used for air conditioning and for heating (see Section 2.1). At present,
such transformations are managed programmatically, which makes maintenance
of the system more difficult.

References

1. SPARQL 1.1 Overview. 21 March 2013.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite:
Effective First-Order Query Processing in Description Logics. In M. M. Veloso,
editor, Proc. IJACI 2007, pages 274-279, Hyderabad, India, January 6-12 2007.

3. G. De Giacomo. Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Universita’ di
Roma “La Sapienza”, 1995.

4. B. Glimm, I. Horrocks, B. Motik, R. Shearer, and G. Stoilos. A Novel Approach
to Ontology Classification. Journal of Web Semantics, 14:84-101, 2012.

5. P. Hitzler, M. Krétzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, editors.
OWL 2 Web Ontology Language: Primer. 27 October 2009.

6. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web Journal, 2(1):11-21, 2011.

7. M. Horridge and P. F. Patel-Schneider, editors. OWL 2 Web Ontology Language:
Manchester Syntaz. 18 October 2012.

8. F. Manola and E. Miller, editors. Resource Description Framework (RDF): Primer.
10 February 2004.

9. B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Programming
Live Together Happily Ever After? In Proc. ISWC 2006, volume 4273 of LNCS,
pages 501-514, Athens, GA, USA, November 5-9 2006. Springer.

10. B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description
logics. Journal of Artificial Intelligence Research, 36:165—228, 2009.

