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The Web Ontology Language (OWL) and its revision OW
2 are widely used ontology languages whose formal unde
pinnings are provided by description logics (DI[Bpaderet
al., 2007—a family of knowledge representation formalisms
with well-understood formal properties. Ontologies aredys
for example, in several countries to describe electronic pa
tient records (EPR). In such a system, patients’ data tjipica
involves ontological descriptions of human anatomy, medi

Import-by-Query: Ontology Reasoning under Access Limitatons

Bernardo Cuenca Grau, Boris Motik, and Yevgeny Kazakov
Computing Laboratory
University of Oxford, UK

Abstract

To enable ontology reuse, the Web Ontology Lan-
guage (OWL) allows an ontologl, to import an
ontologyK;,. To reason with such &,,, a reasoner
needs physical access to the axiomskof. For
copyright and/or privacy reasons, however, the au-
thors ofKC;, might not want to publish the axioms of
Kr; instead, they might prefer to provide aracle
that can answer a (limited) set of queries ok&,
thus allowing/C, to importC;, “by query.” In this
paper, we studimport-by-quenalgorithms, which
can answer questions abddt U K;, by accessing
only K, and the oracle. We show that no such al-
gorithm exists in general, and present restrictions
under which importing by query becomes feasible.

Introduction

The vendor oftC,, however, might be reluctant to distribute
the axioms of}C;,, as doing this might allow the competitors
to plagiarizefC;,. Moreover,KC;, might contain information
that is sensitive from a privacy point of view and should not
be shared. Finally, the vendor &, might impose different
costs for reusing parts @y,. To reflect this situation, we say
that/C;, is hiddenand, by analogyC, is visible
This problem could be addressedAl, were made ac-
cessible via aroracle (i.e., a limited query interface), thus
allowing C,, to import IC;, “by query.” In this paper, we
study import-by-queryalgorithms, which can answer ques-
tions aboufC, U K}, by accessing onliC,, and the oracle. We
focus on schema reasoning problems, such as concept sub-
sumption and satisfiability, which are useful during ontylo
development; this is in contrast to the information inté¢igra
[Lenzerini, 2002 and peer-to-pediCalvanesest al, 2004
scenarios, which focus on the reuse of data.
We proceed as follows. In Section 3 we formalize the

L import-by-query problem and fix the appropriate query lan-

guage. Then, in Section 4 we show that no import-by-query

algorithm exists in general evenfi, andXC;, are expressed

in the light-weight description logi€ £ [Baadert al.,, 2004.

In Section 5, we present such an algorithm for the case when

IC, reuses only atomic concepts froff),, and this is done

in a modular way. Under certain assumptions, our algorithm

is worst-case optimal; however, it is unlikely to be suibl

épr practice. Therefore, for the case whi€p is expressed in

cal conditions, drugs and treatments, and so on. The latt
domains have already been described in well-establisfed
erence ontologiesuch SNOMED-CT and GALEN. In order
to save resources, increase interoperability betweencappl
tions, and rely on experts’ knowledge, an EPR applicatio
should preferably reuse these reference ontologies.

For example, assume that some reference ontotgggte-
scribes concepts such as the “ventricular septum defect.” A
EPR application might reuse the concepts and roles ftgm
to define its own ontologyC, of concepts such as “patients
having a ventricular septum defect.” It is generally acedpt S
that ontology reuse should be modular—that is, the axioms 02 Preliminaries
K., should not affect the meaning of the symbols reused fronThe formal underpinnings of OWL 2 are provided by the DL
K, [Lutz et al, 2007; Cuenca Graet al, 2009. SROZIQ [Kutz et al, 2004. The syntax ofSROZQ is de-

To enable reuse, OWL allows,, toimport . OWL rea-  fined w.r.t. asignatureX, which is the union of disjoint count-
soners deal with imports by internally merging the axiomsable sets otomic conceptsatomic roles andindividuals A
of the two ontologies; thus, to procef§s U K, an EPR ap- role is either an atomic role or anverse roleR~ for R an
plication would require physical access to the axiom&gf  atomic role. ForR and R; roles, arole inclusion axiorrhas

a Horn DL [Hustadtet al, 2004, we present a practical al-
gorithm that extends the state-of-the-art tableaux atlgms
[Kutz et al, 2004. Finally, in Section 6 we extend our re-
r§ults to the case whefi, also reuses roles froid;,, but this
Is done in a syntactically restricted way. Our results magp al
increase the performance of reasoningXif is non-Horn
but ICj, is, thenC, U K;, can be reasoned with by applying
a general-purpose tableau algorithm onlyktp and using a
more efficient algorithm foiCy, .



Table 1: Model-Theoretic Semantics®&ROZ O
Interpretation of Roles

(R ={{y,z) | (x,y) € R"}
Interpretation of Concepts
TI — AI
{a}! = {a'}
(Ccincy) =cinct
(3R.Self)! = {z | (x,z) € RT}
AR.C) ={z|3y: (z,y) € RT Ay e CT}
>nRC) ={z|t{y|(x,y) e R" Ay CT} > n}
Satisfaction of Axioms in an Interpretation
I=ECCD iff ¢ C D!
IER ...R,CRIff Rlo...ocR. CR!
I EDis(Ry,Ry) iff RINRE =19

IECla) iff ol €C!
I = R(a,b) iff (af,b') € BRI
ITEa#bd iff al £ b!

the formR; ... R, C R, and arole disjointness axionhas
the formDis(R1, R2). The set otonceptss the smallest set
containingT, A4, {a}, -C, C; N Cs, 3R.C, JR.Self, and
>n R.C, for A an atomic concepy an individual,C, C1,
andC- conceptsR a role, andch a nonnegative integer. Con-
cepts of the form{a} are callechominals Furthermore,L is
an abbreviation forT, C; U Cy for =(—=Cy M —=Cs), VR.C
for =(3R.~C), and< n R.C for =(=n+1 R.C). A concept
inclusion axiomhas the formC; C C5 for C; andC> con-
cepts, and @oncept equivalena€, = C is an abbreviation
for C; C Cy andCy C C;. A TBox 7 is a finite set of con-
cept inclusion, role inclusion, and role disjointness axgo
An assertionhas the formC(a), R(a,b), ora # b, for C' a
concept,R a role, andz andb individuals. An ABoxA is a
finite set of assertions. AROZQ knowledge base is a pair
K = (T, A) where7 is a TBox andA is an ABox. By a suit-
able syntactic test, certain roleskincan be identified as being

Table 2: Example Knowledge Bases
Hidden Knowledge Bask;,

v1 CHD_Heart = Heart M dcond. CHD
v2 VSD_Heart = Heart [ dcond.VSD
3 VSD C CHD
Y4 AS C CHD

Visible Knowledge Basé’,

01 CHD _Pat = Pat M dhasOrgan. CHD _Heart

02 VSD_Pat = Pat M JhasOrgan.VSD_Heart

ds AS_Pat = Pat N 3hasOrgan.(Heart M 3Icond.AS)
84 FEA_Pat = Pat M 3hasOrgan.(Heart M 3cond.EA)
05 EAC CHD

and R an atomic role, and it supports no axioms about roles.
Significant effort has been devoted to the development of DL
languages with good computational properties, sucb2s
DL-Lite [Calvaneset al., 2007, and HornSHZ Q [Hustadt

et al, 2005. Each knowledge basg€ expressed in one of
these languages Born in the sense that the intersection of
every compatible set of models kfis also a model oK.

For o a concept, a role, an axiom, or a knowledge base,
sig(«) is thesignatureof a—that is, the set of atomic con-
cepts, atomic roles, and individuals occurringan A po-
sition p is a finite sequence of integers. The empty posi-
tion is denoted withe. If a positionp; is a proper prefix
of a positionpy, then andp; is abovep,, andp, is below
p1. The subternu|, of a concept or axiona: at a position
p is defined as followsiy| = «; (C1 > Ca)|sp = Cil, for
e {M,C}andi € {1,2}; anda|y, = C|, for « of the form
-C,3R.C,2n R.C,orC(a). Theconcept closurels() of
K = (T, A) is the smallest set that contains all subterms of
-C U D foreachC C D € T and ofC for eachC(a) € A.

3 Importing Ontologies by Query

To illustrate the notion of import-by-query, Table 2 shows a

simple To ensure decidability of reasoning, the role axiomsreference knowledge bag@, whose axioms are to be kept
in 7 must satisfy a syntactic restriction which we omit for hidden, but that is reused in a visible knowledge bkse

brevity, and simple roles must not occucim R.C, 3R.Self,
and role disjointness axioms. The definition®IROZQ by
[Kutz et al., 2004 provides other constructs, all of which are
expressible by the ones presented above.

A interpretation] = (A, .T) consists of a nonemptyo-
mainsetA’ and a function! that assigns an objeat € A
to each individuak, a setA’ C A’ to each atomic concept
A, and a relatio?! C AT x AT to each atomic rol®. Ta-
ble 1 defines the extension df to roles and concepts, and
the satisfaction of axioms ih. An interpretatior/ is amodel
of K, written I |= KC, if I satisfies all axioms ifC; if such I
exists, theriC is satisfiable A conceptC is satisfiablew.r.t.
K if a model I of K exists such tha®’! # (). A nonempty
set of interpretation$' is compatibleif for eachI;, I, € S
we haveAs = A2 anda’ = a2 for each individuak; the
intersectionof suchs is defined in the obvious way.

SRZIQ is obtained fromSROZQ by disallowing nomi-
nals. ££ [Baaderet al., 2009 supports only concepts of the
form T, 1, A, C1 M Cq, and3R.C for A an atomic concept

The hidden knowledge bagg, provides concepts describing
organs such aHeart, and medical conditions such @HD
(congenital heart defect)y'SD (ventricular septum defect),
and AS (aortic stenosis). Furthermore, the ralend re-
lates organs to medical conditions and is used to define con-
cepts such a€HD _Heart (a heart with a congenital heart
disorder) andvVSD _Heart (a heart with a ventricular sep-
tal defect). The shared symbols kf, are written in bold
font. In addition to thesef’;, might contain nonshared sym-
bols; however, for the sake of brevity, we do not show any
axioms involving such symbols. The visible knowledge base
KC,, provides the conceftat representing patients, and it de-
fines various types of patients by relating the organs fkom
with the patients using theasOrgan role. In addition,/C,
extends the list of defects iK;, by EA (Ebstein’s anomaly).
The symbols private té&, are written in italic font.

When reusing ontologies, it is commonly accepted khat
should not affect the meaning of the symbols reused from
Kr—that is, K, U K;, = « should implyXC;, = « for each



axiom o containing only the reused symbdlsutz et al,
2007; Cuenca Graat al, 200d. This is guaranteed if the
TBox 7, of IC, is local w.r.t. the sef” of concepts and roles
imported fromK,—that is, if I = 7, for each interpretation
I in which, for each conceptor rol§ ¢ I', we haveX’ = ().
For exampley; is local w.r.t. {CHD _Heart} because);
is satisfied in any interpretation that interprets the nanesth
symbols ag). [Cuenca Graet al., 2004 have shown how to
check this condition using a DL reasoner.

To formalize the notion of import-by-query, we introduce
the notion of al’-oracle, which is responsible for advertising
the shared signatude of X;, and answering satisfiability of
(not necessarily atomic) concepts wk},. Concept satisfia-

bility is available in all DL reasoners known to us, so it pro-

vides us with a natural query languageffaoracles; we leave
the investigation of richer query languages to future work.
Definition 1. LetK be aKB and" C sig(K) a signature. The
T"-oraclefor K is the functior) defined for each concept
(in the same DL aX) withsig(C) C T" such thatx(C) =t
if C' is satisfiable w.r.tiC, andQx (C') = f otherwise.

An import-by-query algorithm checks whethiy, U K, is

satisfiable; other relevant reasoning problems, such as co

cept subsumption, can be solved using the well-known tran
formations. The notion of an algorithm in the following defi-
nition can be made precise using a formal computation mod
such as Turing machines in the obvious way.

Definition 2. Animport-by-query algorithntakes al’-oracle
O, and a KBIC, with sig(KC,) N'sig(Kr,) C T' as input, and

it terminates after a finite number of computation steps re

turning t iff IC,, U ICy, is satisfiable.

4 The Limits of Import-by-Query Reasoning

5 Importing Atomic Concepts

The proof of Theorem 1 relies on the fact tiatreuses arole
from KC;,. We now present an import-by-query algorithm for
the case when no role is reused. In our example, this allows
one to express axiom§, d», andds, which, together with
K, allow us to concludé/SD_Pat T CHD_Pat.

5.1 Interfacing Models Point-Wise

The following definition identifies valid inputs for our algo
rithm. In particular, we allowC, to be any OWL 2 ontology
that reuses the symbols &f;, in a local way; however, we
disallow the usage of nominals i6;, for technical reasons.

Definition 3. LetkC, = (7, A,) andC;, = (7}, A.,) be KBs
such thatl’ = sig(XC,)) N'sig(XC;,) contains only atomic con-
cepts. ThenlC, is safe for import-by-querinto I, if K, is
inSROZQ, Ky, isinSRIQ, and7, is local w.r.t.T'.

Our core observation is that a model 6f, U K}, can be
obtained by taking a modél of K, and extending it at each
point z € AT with a fresh model,, of K}, that contains a
pointy € A’= such thatz andy coincide on the interpre-

ﬁation of the concepts . This is a consequence of the

fact that {) KC,, uses the concepts fromin a local way, and

S('ii) K does not contain nominals, so the union of all models

» 1S also a model of;,. To formalize this idea, we use the
ollowing notion: forS = {Dy,..., D, } a nonempty finite
set of concepts, aelectionw.r.t. S is a concept of the form
Lym...ML, where eachl; is eitherD; or —D;; further-
more, T is the only selection w.r.S = (.

Lemma 1. Let K;, be safe for import-by-query intg,,, and
letT" = sig(KC,) Nsig(Kr). ThenC, U Ky, is satisfiable iff a
modell of K, exists such tha, (C') = t for each selection
C w.r.t.T such thatC'! # (.

We next show that no import-by-query algorithm exists even

for a light-weight DL such ag L.

Theorem 1. No import-by-query algorithm exists &, and
Ky are in£L, T' is allowed to contain at least one atomic
role, and the TBox of,, is local inT".

Proof. Consider an application of an import-by-query algo-

rithm to IC,, given in (1) andl’ = {R}. Clearly, the TBox of

K, is local inT". Since the algorithm terminates on all inputs,

the number of questions posed to droracle is bounded

by some integem and, consequently, the quantifier depth of

each concepf’ passed to th&-oracle is bounded by an inte-
gern, where bothn andn depend only oi” andiC,. Let K7,
andk’? be as in (2) and (3), respectively.

Ko = {A(a), AC 3R.A} (1)
Kh=0 (2)
K?={3R...3R.TC L} a)

n + 1 times
For eachE L conceptC of quantifier depth at most with
sig(C) CT, we havek; ECC L iff K =CLC L, so
Q1 (C) = Qx2(C). Thus, when applied t&C, and Q. ,

Proof. (=) If I is a maodel ofC,, U K, then clearlyl E K,
andQy, (C) = t for each selectiot’ w.r.t. T with CT # 0.

(<) LetI = (AL,-) be a model ofC, and consider each
z € AT and the selectiod” w.r.t. T such that: € C1. Since
Qx, (C) =t, an interpretation, = (A=, .7=) exists such
that J, = K, andy € C’/= for somey € A'=. W.lo.g.
we assume that = z; A N AT = {z}; ATsr N ATea =)
for eachz, zy € AT with 2, # z5; and X /= = () for each
X €sig(K,) \T. Let M = (AM M) pe such that

AM — U AJ"
zeNT

XM = |J X7- for each atomic concept or rol§, and
zeNT

aM = o’ for each individuak and some (arbitrarily
chosen) interpretatios, .

SRIQ does not allow for nominals, so it isvariant under
disjoint unions—that is, the union of any number of disjoint
models ofK;, is also a model ofC;, [Baaderet al., 2002;
thus,M = K. Furthermore, sincé, is local inT', we have
M = T, U Ky, Finally, let N = (AN, .V be an interpreta-

the algorithm returns the same value as when it is apﬁlied tgon defined byA™ = AM and

K, andQy:. SincekC, U K3 is satisfiable bufC, U K3 is
not, the algorithm does not satisfy Definition 2. O

XN _ X1 foreachX € sig(KC,)\T
“ | XM foreachX ¢ sig(Ky)



Algorithm 1 Import-by-Query Algorithm

Algorithm: ibq(C., 2k, , S)
Inputs: a knowledge bask&,, aI-oracleQy, , and a set of con-
ceptsS over the signatur&

1 Compute the seV of all axioms of the fornC' C L such thatC
is a selection w.r.tS with Qg (C) = f.
2 Returnt iff the SROZQ knowledge bas&’, U N is satisfiable.

N and M have the same domains and they coincide o
the interpretation of the symbols sig(KC1,), SON |= K. To
show thatV |= KC,,, we first prove the following claimx): for
eachC € cls(K,), we haveCN = CTu (CM\ Al). The
proof of (x) is by induction on the structure of concepts, so
consider eaclt € cls(KC,).

If C'is an atomic concept withi' € T', then by the defini-

tion of M we haveC’ — CM 0 AT, soCT U u(CM\ A =
CcMnahHu(CM\ Al = CM; by the definition ofN,
we haveC™ = CV, which implies ).

If C is a nominal or an atomic concept with ¢ T", then
CM = andCV = C!, which trivially imply (x).

If C = -D, thenCN — (AT U(AMN\ AD)\ DN =
(AN DNy U (aM\ A\ DY), By applying the in-
duction hypothesis, the f|rst disjunct reduces/Ad \ DY,
and, since, AM> = AM\ (DU (DM\ AD))

(AM \ D)\ \ AI AM \ DM, the second one re-
duces to(AM \DM \AI But then, €) holds.

If C = Dy M Dy, thenCY = DV n DY, whichis equal to
(DI U(DM\ AT)) 1 (D1 U (DM \ AT)) by the induction
hypothesis; bu(DM \ A;) N D% (DY\ AN DI =0,
soCN = §D1 OD%) U (DM AI) N (DY ADY); finally,
(DM \ A1) (DY AT) = (DM A D)\ AL,

If C =>nR.DorC =3R.Self, sinceR ¢ sig(K), we
have RM = () and CM = (); furthermore, RN = R! and
DT C DY by the induction hypothesis, 8"V = C. This
completes the proof of{.

Consider now each axiomin /C,. For« a concept inclu-
sion axiom, we assume w.l.0.g. that it is of the fofnic C.
By (%), oN =cTu U (CM\ Af). Sincel = «a, we have
CT = A'; furthermore, sinceZ,, is local w.r.t.T', we have
M = a, SOCM = AM: thus, CN — AN, soN = a. Fora
arole assertion, a role inclusion, or a role disjointnegsrax
we haveN | « becauseV coincides withI on the inter-
pretation of all roles fromig(KC,)). Fora = C(a), we have

N e CN by (x) anda ¢ T'. Finally, fora = a % b, we have
a™ # bN becausda,b} NT = (). Thus,N |= K,. O

Lemma 1 motivates Algorithm 1.

Theorem 2. Let K, be safe for import-by-query intét,,

I =sig(K,) Nsig(Ky), andQy, theT-oracle forC;,. Then,
ibq(KC,, Qx,,, ') is an import-by-query algorithm, and it can
be implemented such that it runsNR2EXPTIME with an ex-
ponential number of calls tQy, .

Proof. That ibq(C,, Qk,,T') is an import-by-query algo-

rithm is a direct consequence of Lemma 1. Furthermore

the number of selections w.rk. is exponential in the size

calls toQy, . Letria(-) be the transformation bjKazakov,
2004 for eliminating role inclusion axioms frolSROZQ
KBs. Then ia(/C,) is equisatisfiable with and exponentially
larger thaniC, [Kazakov, 2008 Furthermore,N contains
the same concepts &sa(XC,) and no role inclusions axioms,
soria(K, UN) =ria(K,) UN = K’. Thus,K’ is equisatis-
fiable with and exponentially larger thaf,. We can check
satisfiability of ' by transforming/C’ polynomially into an
equisatisfiable formula of the two-variable fragment with
counting, and deciding the satisfiability gfin NEXPTIME

NPratt-Hartmann, 2045 Clearly, the overall algorithm runs

in N2EXPTIME with exponentially many calls tQx,. O

5.2 Importing Horn Ontologies

Algorithm 1 is unlikely to be suitable for practice because
Step 1 is exponential in the size bf In this section, we
present a practical algorithm for the case wignis Horn?
This algorithm calls thé&-oracle “on demand,” which makes
it “more goal-oriented.” The correctness of the algorittem i
based on the following observation about Horn KBs.

Proposition 1. Let K be a Horn knowledge basé€; a con-
junction of atomic concepts, antl , . . ., A,, atomic concepts
such thatC M —A; is satisfiable w.r.tKC for eachl < i < n.
Then,C M —A; M...M=A4A, is satisfiable w.r.tIC as well.

Proof. Let K; = KU {C(a),—A;(a)} for 1 <i<n anda
an individual not occurring irC. Let I; be a model of each
K;; w.l.o.g. we assume that the s&t={I;, | 1 <i <n}is
compatible (e.g., we can selektto be Herbrand models of
KC;). Let J be the intersection of. SinceX is Horn, we
haveJ |= K. Furthermoreq” € C7 anda’ ¢ A/ for each
1 <i < n;thereforea” € (CM—-A;M...M-A4,)7. O

We extend the tableau algorithms used in many state-of-
the-art DL reasoners. Our extension, however, is largely in
dependent from the intricacies of these algorithms, so we
introduce an abstraction of tableau algorithmas a tuple

= (C, R) with the following structure.

o C assigns to each ABox a value from{t, f} such that
C(A) =t only if A is unsatisfiable.A contains eclash
if C(A) = t; otherwise,A is clash-free

e R is a set ofderivation rules where eachy € R assigns
to each pai(7,.A) a set ofn-tuples of ABoxes (tuples
in this set can vary in arity). A rulg is applicableto 7
andA if p(7,A) # 0.

A derivation for £ = (7, A) by T=(C,R) is a pair
(0, o) where® is a finitely branching tree andlabels each
nodewv of © with an ABox o(v) such thati) o(v) = A
for v the root of ©; (i) if C(c(v)) =t or no derivation
rule in R is applicable to(7, o(v)), thenv is a leaf of©;
(i) if C(o(v)) =f and a derivation rule irR is applica-
ble to (7,0(v)), thenwv has childrenvy, ..., v, such that
(o(v1),...,0(vy)) € p(T,o(v)) for some (arbitrarily cho-
sen) derivation rule € R.

T is terminatingif, for each/C, each derivation fofC by
T can be constructed using finitely many stefisis sound

!From the infrastructure point of view, thE-oracle for KCs

of I, so N can be computed by an exponential number ofshould indicate to clients i€, is (known to be) Horn.



if, for each modell of each(T,.A), each derivation rule
p € R, and eachl A, ..., A,) € p(T,A), an interpretation
I’ exists such thak ! = X!’ foreachX ¢ sig(A4;) \ sig(A),
andI' = (T, A;) for somel <i<n. T is completeif a
partial functionM mapping ABoxes to interpretations ex-
ists such that, in each derivati¢®, o) for K by T, and for
each leafv of (6, 0) such thatd’ = o(v) is clash-free, the
value of M(A’) is defined andM(A") = K. Furthermore,
we assume thatl(A') = (AL, 1) always satisfies the fol-
lowing property (): for each conjunction of atomic concepts
C=AMN...MA, suchthaC! # () and(C 1 B)! = () for
each atomic conceg? not occurring inC, an individuals ex-
ists such thatl;(s) € A’ for eachl <1i < n,andB(s) ¢ A’
for each atomic conceg not occurring inC'. Intuitively, (¢)
ensures that conjunctive concepts are interpretéd(id’) in
accordance with their instantiations.iti. Most tableau algo-

on which each node is labeled with an ABgX such that
(T,,, A') U K, is satisfiable; thus, eachf’ is clash-free.
(Claim 2) Let. A’ be a clash-free ABox labeling a leaf of
a derivation forkC, by Trq, , and letM(A") = (A',.1).
Furthermore, let be a selection w.r.f° such thatC? # 0,
and letD be the conjunction of all atomic concepts that occur
positively in C. By (¢) and the fact thaC is maximal, an
individual s in A exists such tha#,(s) € A’ for each4; in
D, andB;(s) ¢ A’ for each atomic concef®;,1 < j <n
that occurs negatively i@. Since the ask-rule is not appli-
cable toA’, thenD M —B; is satisfiable w.r.tiC;, for each
1 < j < n. Sincek;, is Horn, by Proposition 1 we have that
DM =B;Mn...M=B, =C is satisfiable w.r.txC;, as well.
But then,[C, U K}, is satisfiable by Lemma 1. O

Each derivation fofC, by TF_’Q)Ch is clearly finite. Further-

rithms used in practice are sound, complete, and termipatin more, the value oésk(7,.A) can be determined by asking

furthermore, all such algorithms known to us satis§y. (

We now show how to extend to an import-by-query al-
gorithm for the case wheky;, is Horn.

Definition 4. LetT = (C,R) be a sound, complete, and ter-
minating tableau algorithml a set of atomic concepts, and
Q, aT-oracle. The tableau algorithrmr,n,ch is obtained

by extendingl’ with theask-ruleas follows:ask(7', A) is de-

fined for each(7T, A) as the smallest set such that, for each g

individual s in A, the concepC obtained as the conjunction
of all A4, € " with A;(s) € A, and eachB € I' U { L} with
Qk, (C 1 —-B) =f, we have

(AU{B(s)}) € ask(T, A).

Intuitively, the ask-rule deterministically add@¥ s) to each
ABox that contains assertiond;(s)..., A, (s) such that
KnlkE Ain...MA, = B.

Theorem 3. LetK;, = (7}, A;,) be a Horn knowledge base
that is safe for import-by-query intdC, = (7., A,), let
I =sig(K,) Nsig(Ky), letQyx, be thel-oracle fork;, and

let T be a sound, complete, and terminating tableau algoT-modal concept’ e cls(KC,)

rithm. Then,TnQKh satisfies the following two claims:

1. if K, U K}, is satisfiable, then each derivation fii, by
Trax, contains a branch on which all nodes are la-
beled with clash-free ABoxes; and

2. if a derivation for/C, byprg,ch’ contains a leaf labeled
with a clash-free ABox, thei, U IC;, is satisfiable.

Proof. (Claim 1) Assume thaf is a model oftC,, U K, and
consider each derivation fo€, by TF_’Q)Ch. We assume
w.l.o.g. that the derivation rules dTF_VQKh do not introduce
assertions involving symbols frosig(X,) \I'. Consider
now the tuple(A4,,...,A,) obtained fromA, by an appli-
cation of a derivation rule OTF_’Q)Ch. If the derivation rule
is from T, sinceT is sound,I can be extended to a model

I' of some(7,, A;); since this extension does not involve

the symbols irsig(Cr,), we havel’ |= K, as well. For the
ask-rule;n = 1 ands! € C7, soQy, (C 11 —-B) = f implies
s € Bl andI = (7,, A1) U K},. By repeating this claim in-

ductively, we conclude that the derivation contains a binanc

Q, (C) for each selectiod w.r.t. T occurring inA. There-
fore, a derivation foC, by TF_’Q)Ch can be constructed by a
finite number of steps, which provides us with an import-by-
query algorithm. Such an algorithm may, in the worst case,
make an exponential number of calls to the oracle; however,
such calls are made as needed, which makes this algorithm
more amenable to implementation than Algorithm 1.

Importing Atomic Roles

We now extend the results from Section 5 and allow the reuse
of roles under the following syntactic restriction.

Definition 5. ForI" a set of atomic concepts and roles, we say
that a concept id’-modalif it is of the form3R.Self, IR.C,
or>nR.C,forReTl.

Let I, and KC;, be KBs such thal' = sig(KC,,) N sig(Kr)
contains both concepts and roles. Thil,is safe forimport-
by-queryinto I, if, in addition to the conditions from Defi-
nition 3, roles froml™ do not occur in role inclusion and dis-
jointness axioms iiC,,; for eachdR.Self or > n R.C'in IC,,
if R €T thenR is simple ink;; andsig(C) C T for each

For satisfiability ofIC, U K, to be decidable, only simple
roles fromK;, can occur in certain conceptsi, [Horrocks
et al, 200d. Thus, the-oracle forXC,, should also advertise
to clients which roles i are simple. This is a syntactic
check that is provided by most DL reasoners.

In our example, Definition 5 allows us to expregs the
role cond from C;, occurs in d-modal concepficond. A S,
but AS is from C;, as well. This is in contrast té,, in which
Jeond.FA containsFEA that is not from/C;,. Note thatd,
03, andKC;, allow us to concluded S_Pat T CHD _Pat.

By using the appropriate sét, Algorithm 1 is an import-
by-query algorithm for the case of shared roles as well. In
the following theorem, we say that positiprin a concept or
axiome is I'-outermosif «|, is aI-modal concept, and|,
is not al’-modal concept for each positigrabovep.

Theorem 4. LetC,, I, andQ)k, be as in Theorem 2 with the
difference thail" can also contain atomic roles, and let

S ={A €T | Aisanatomic conceptu
{a|, | a € K, andp is T-outermost im}.



Then,ibq(KC,, 2k, , S) is an import-by-query algorithm, and 8 ~ Conclusion
it can be implemented such that it runsN2EXPTIME with |4 this paper, we have studied the problem of importing an on-
an exponential number of calls fo,, . tology without knowing its axioms. We have shown that this

Proof. Let Qp be a fresh atomic concept uniquely assOci_proble_zm d(_)gS not have a general solqtion. Furthermore, we
ated with eachD € S. Furthermore. lefC’ be the knowl- have identified solvable cases, for which we have presented
. , .

edge base obtained frofi, by replacing in each axiom WO algorithms. In future work, one might consider relaxing
a € K, the conceptal, with Q, for eachT-outermost the syntactic restrictions on the usage of roles, partituifa
position p in . Also, let K, bé obtained fromk, by one were to extend the query language of the oracle.
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