Acyclicity Conditions and their Application to

Query Answering in Description Logics

Bernardo Cuenca Grau, Ian Horrocks, Markus Krotzsch, Clemens Kupke,

Despoina Magka, Boris Motik, and Zhe Wang
Department of Computer Science, Oxford University
Oxford, United Kingdom

Abstract

Answering conjunctive queries (CQs) over a set of facts ex-
tended with existential rules is a key problem in knowledge
representation and databases. This problem can be solved us-
ing the chase (aka materialisation) algorithm; however, CQ
answering is undecidable for general existential rules, so the
chase is not guaranteed to terminate. Several acyclicity con-
ditions provide sufficient conditions for chase termination. In
this paper, we present two novel such conditions—model-
faithful acyclicity (MFA) and model-summarising acyclicity
(MSA)—that generalise many of the acyclicity conditions
known so far in the literature.

Materialisation provides the basis for several widely-used
OWL 2 DL reasoners. In order to avoid termination problems,
many of these systems handle only the OWL 2 RL profile of
OWL 2 DL; furthermore, some systems go beyond OWL 2
RL, but they provide no termination guarantees. In this pa-
per we investigate whether various acyclicity conditions can
provide a principled and practical solution to these problems.
On the theoretical side, we show that query answering for
acyclic ontologies is of lower complexity than for general
ontologies. On the practical side, we show that many of the
commonly used OWL 2 DL ontologies are MSA, and that the
facts obtained via materialisation are not too large. Thus, our
results suggest that principled extensions to materialisation-
based OWL 2 DL reasoners may be practically feasible.

Introduction

Existential rules are positive, function-free first-order impli-
cations that may contain existentially quantified variables
in the head. In databases, they are known as dependencies
(Abiteboul, Hull, and Vianu 1995) and are used to capture a
wide range of schema constraints; in particular, they are used
as declarative data transformation rules in data exchange—
the process of transforming a database structured accord-
ing to a source schema into a database structured accord-
ing to a target schema (Fagin et al. 2005). They also provide
the foundation for several prominent knowledge representa-
tion formalisms, such as Datalogi (Cali, Gottlob, and Pieris
2010; Cali et al. 2010).

Answering conjunctive queries (CQs) over a set of facts
extended with existential rules is a fundamental reasoning

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem in both database and KR settings. This problem
is undecidable (Beeri and Vardi 1981) in general, and it
can be characterised using chase (Johnson and Klug 1984;
Maier, Mendelzon, and Sagiv 1979), a technique closely re-
lated to the hypertableau calculus (Motik, Shearer, and Hor-
rocks 2009). The chase extends in a forward-chaining man-
ner the original set of facts by introducing facts implied
by the rules. The result of the chase is called the universal
model, and an arbitrary conjunctive query can be answered
over the original set of facts and the rules by simply evaluat-
ing the query in the universal model.

Rules with existentially quantified variables in the head—
so-called generating rules—require the introduction of fresh
individuals, and cyclic applications of generating rules may
lead to non-termination; moreover, determining whether
chase terminates on a set of rules and facts is undecidable.
However, several decidable classes of existential rules have
been identified, and the existing proposals can be classi-
fied into two main groups. In the first group, rules are re-
stricted such that their (possibly infinite) universal mod-
els can be represented using finitary means. This group in-
cludes rules with universal models of bounded treewidth
(Baget et al. 2011), guarded rules (Cali et al. 2010), and
‘sticky’ rules (Cali, Gottlob, and Pieris 2011). In the second
group, one uses a sufficient (but not necessary) acyclicity
condition that ensures chase termination. Roughly speaking,
acyclicity conditions analyse information flow between the
rules to ensure that no cyclic applications of generating rules
are possible. Weak acyclicity (WA) (Fagin et al. 2005) was
one of the first such notions, and it was extended to safety
(SF) (Meier, Schmidt, and Lausen 2009), stratification (ST)
(Deutsch, Nash, and Remmel 2008), acyclicity of a graph of
rule dependencies (aGRD) (Baget, Mugnier, and Thomazo
2011), joint acyclicity (JA) (Krotzsch and Rudolph 2011),
and super-weak acyclicity (SWA) (Marnette 2009).

Acyclicity conditions are relevant for at least two rea-
sons. First, unlike guarded rules, acyclic rules can axioma-
tise structures of arbitrary shapes, as long as these structures
are bounded in size. Second, the chase result for acyclic rules
can be stored and manipulated as if it were a database. This
is important in data exchange, where the goal is to materi-
alise the transformed database.

In this paper, we argue that acyclicity is also relevant
for description logics (DLs), the KR formalisms underpin-

ning the OWL 2 DL ontology language (Cuenca Grau et al.
2008). CQ answering over DL ontologies is a key reason-
ing service in many DL applications, and the problem was
studied for numerous different DLs (Calvanese et al. 2007,
Krotzsch, Rudolph, and Hitzler 2007; Glimm et al. 2008;
Ortiz, Calvanese, and Eiter 2008; Lutz, Toman, and Wolter
2009; Pérez-Urbina, Motik, and Horrocks 2010; Rudolph
and Glimm 2010; Kontchakov et al. 2011).

Answering CQs over expressive DLs, however, is quite
technical and of high computational complexity. Therefore,
practical applications often solve this problem using ma-
terialisation, in which ontology consequences are precom-
puted using forward-chaining and stored in a semantic data
store; examples of such systems include Oracle’s Seman-
tic Data Store (Wu et al. 2008), Sesame (Broekstra, Kamp-
man, and van Harmelen 2002), Jena (Carroll et al. 2004),
OWLim (Kiryakov, Ognyanov, and Manov 2005), and DLE-
Jena (Meditskos and Bassiliades 2008). This approach is
possible if (i) the ontology is Horn (Hustadt, Motik, and Sat-
tler 2005), and (ii) forward-chaining is guaranteed to termi-
nate. In practice, condition (ii) is achieved by computing the
materialisation only w.r.t. the inference rules that correspond
to the part of the ontology in the OWL 2 RL profile; this
systematically excludes generating rules and is thus termi-
nating, but incomplete in general. Generating rules are par-
tially supported in systems such as OWLim (Bishop and Bo-
janov 2011) and Jena; however, such support is typically ad
hoc and provides no completeness and/or termination guar-
antees. Acyclicity conditions can be used to address these
issues: if a Horn ontology is acyclic, a complete materialisa-
tion can be computed without the risk of non-termination.

Motivated by the practical importance of chase termina-
tion, in this paper we present two new acyclicity conditions:
model-faithful acyclicity (MFA) and model-summarising
acyclicity (MSA). Roughly speaking, these acyclicity con-
ditions use a particular model of the rules to analyse the im-
plications between existential quantifiers, which is why we
call them model based. In particular, MFA uses the actual
‘canonical’ model induced by the rules, which makes it a
very general condition. We prove that checking whether a
set of existential rules is MFA is 2EXPTIME-complete, and
it becomes EXPTIME-complete if the predicates in the rules
are of bounded arity. Due to the high complexity of MFA
checking, MFA may be unsuitable for practical application,
so we introduce MSA. Intuitively, MSA can be understood
as MFA in which the analysis is performed over models that
‘summarise’ (or overestimate) the actual models. Checking
MSA of existential rules can be realised via checking en-
tailment of ground atoms in datalog programs; we use this
close connection between MSA and datalog to prove that
checking MSA is EXPTIME-complete for general existen-
tial rules, and that it becomes coNP-complete if the arity of
rule predicates is bounded. Finally, we prove that MSA is
strictly more general than SWA—one of the most general
acyclicity conditions currently is use.

Both of these conditions can be applied to general exis-
tential rules without equality. Equality can be incorporated
via singularisation (Marnette 2009)—a technique that trans-
forms the rules to encode the effects of equality, but does not

prevent the evaluation of a conjunctive query in the univer-
sal model. Singularisation is orthogonal to acyclicity: after
computing the transformed rules, one can use MFA, MSA,
or in fact an arbitrary acyclicty notion to check whether
the result is acyclic; if so, the chase of the original set of
rules will terminate. Unfortunately, singularisation is non-
deterministic: some ways of transforming the rules may pro-
duce acyclic rule sets, but not all ways are guaranteed to do
so. Thus, we refine singularisation to obtain an upper and a
lower bound for acyclicity. We also show that, when used
with JA, the lower bound coincides with WA.

Finally, we consider various theoretical and practical is-
sues surrounding the use of acyclicity for CQ answering
over DL ontologies. On the theoretical side, we show that
checking MFA and MSA of Horn-SHZQ ontologies is
PSPACE- and PTIME-complete, respectively, and that an-
swering CQs over acyclic Horn-SHZQ ontologies is in
PSPACE. The latter problem is EXPTIME-hard for general
(i.e., not acyclic) Horn-SHZ Q ontologies (Ortiz, Rudolph,
and Simkus 2011), so acyclicity makes the problem eas-
ier. Furthermore, Horn ontologies can be extended with ar-
bitrary SWRL rules (Horrocks and Patel-Schneider 2004)
without affecting neither decidability nor worst-case com-
plexity, provided that the union of the ontology and SWRL
rules is acyclic; this is in contrast to the general case, where
SWRL extensions of DLs lead to the undecidability.

On the practical side, we explore the limits of reasoning
with acyclic OWL 2 DL ontologies via materialisation. We
checked MFA, MSA, and JA for 149 Horn ontologies; fur-
thermore, to estimate the impact of materialisation, we com-
pared the size of the materialisation with the number of facts
in the original ontologies. Our experiments revealed that
many ontologies are MSA, and that some complex ones are
MSA but not JA; furthermore, the universal models obtained
via materialisation are typically not too large. Thus, our re-
sults suggest that principled, materialisation-based reason-
ing for ontologies beyond the OWL 2 RL profile may be
practically feasible.

Preliminaries

We use the standard notions of constants, function sym-
bols, and predicate symbols, where = is the equality pred-
icate. Each function or predicate symbol is associated with
a nonnegative integer arity. Variables, terms, substitutions,
atoms, and first-order formulae, sentences, interpretations
(i.e., structures), and models are defined as usual. We abbre-
viate with # a vector of terms t1, . .., t, and define || = n.
With ¢(Z) we stress that ¥ = x4, ..., z, are the free vari-
ables of a formula ¢, and with o we denote the result of
applying a substitution o to ¢. A term, atom, or formula is
ground if it does not contain variables; a fact is a ground
atom. The depth dep(t) of a term ¢ is defined as 0 if ¢ is a
constant or a variable, and dep(¢) = 1 + max" , dep(t;) if
t = f(t). Satisfaction of a sentence ¢ in an interpretation I
(written I |= ¢), and entailment of a sentence v from a sen-
tence o (written ¢ = 1)), are defined as usual. By a slight
abuse of notation, we identify a conjunction of atoms with a
set of atoms. A term ¢’ is a subterm of a term ¢ if t' = t or

t = f(t) and ¢’ is a subterm of some ¢; € £; if additionally
t' # t, then t' is a proper subterm of ¢. An atom P(t) con-
tains atermtift € f: and a set of atoms I contains t if some
atom in I contains ¢.

An instance is a finite set of function-free facts. An exis-
tential rule (or just rule) is a sentence of the form

VEVZ.[p(Z, 2) = 3G9 (T,)] M

where ¢(Z, Z) and (&, §) are conjunctions of atoms, and
the tuples of variables Z, ¥/, and 2 are pairwise disjoint. For-
mula ¢ is the body and formula v is the head of the rule. For
brevity, quantifiers VZ'VZz are often omitted. If /' is empty, the
rule is called a datalog rule. In database theory, satisfaction
and entailment are often considered only w.r.t. finite inter-
pretations under the unique name assumption (UNA), where
distinct constants are interpreted as distinct elements; in con-
trast, such assumptions are not customary in KR. Since we
study rules that can be satisfied in finite models, the restric-
tion to finite satisfiability is immaterial; also, we do not as-
sume UNA, which can be axiomatised if needed.

A conjunctive query (CQ) is a formula Q(Z) of the form
37.0(Z, 9), where o(Z,¢) is a conjunction of atoms; the
query is Boolean if Z is empty. A substitution § mapping
Z to constants is an answer to Q(Z) w.r.t. a set of rules
and instance [if X U I |= Q(Z)0. Answering CQs is a fun-
damental reasoning problem in many applications of exis-
tential rules.

In first-order logic, the equality predicate = is commonly
assumed to have a predefined interpretation. The semantics
of ~, however, can be axiomatised explicitly. Let > be an
arbitrary set of rules; w.l.o.g. we assume that no rule in X
contains ~ in the body. Then, ¥~ = () if ~ does not occur
in X; otherwise, X~ contains rules (2)—(4) and an instance
of rule (5) for each predicate P occurring in ..

TR 2)
T1 R To — Tog X X1 3)
T1 R To NIy RT3 — T~ T3 “4)

P@)ANx; =~ a) — P(x1,..., 25, ...,x,) (5)

The consequences of ¥ (where ~ is treated as having a well-
defined interpretation) and ¥ U ¥, (where = is treated as an
ordinary predicate) coincide.

Sometimes we use skolemisation to interpret rules in
Herbrand interpretations—possibly infinite sets of ground
atoms. In particular, for each rule r of the form (1) and each
variable y; € ¥, let f be a function symbol that is globally
unique for r and y;; furthermore, let € be the substitution
such that 0(y;) = fi(¥) for each y; € 7. Then, the skolemi-
sation sk(r) of r is the rule

(&, 2) = P(Z,9)0 (©6)

The skolemisation sk(X) of a set of rules X is obtained by
skolemising each rule in 3. For each CQ Q(Z), instance I,
and substitution o, we have ¥ U I = Q(Z)o if and only if
sk(Z)UXL UT E Q(Z)o.

Answering CQs can be characterised using chase, and we
use the skolem chase variant (Marnette 2009). The result of

applying a skolemised rule » = ¢ —) to a set of ground
atoms [is the smallest set (/) that contains o for each
substitution ¢ from the variables in r to the terms occurring
in I such that po C T; furthermore, for €2 a set of skolemised
rules, (1) = J,cq (/). Let I be a finite set of ground
atoms, let ¥ be a set of rules, let X' = sk(X) U X, and let
¥’ and X}, be the subsets of ' containing rules with and
without function symbols, respectively. The chase sequence
for I and X is a sequence of sets of facts I, I, ... where
I¢ = I, and I for i > 0 is defined as follows:

. lf E'/n(‘[;;l) Z I;rl, then IlE = Igfl U E;(Iéfl)’
o otherwise I = I5 ' U Z/f(léfl)‘

The chase of I and ¥ is defined as Is = |J; I%; note that
I3° can be infinite. Chase can be used as a ‘database’ for an-
swering CQs: a substitution o is an answer to () over X and
T'iff IY® |= Qo. Chase of I and X terminates if i > 0 exists

such that I é =1 % for each j > i; chase of X terminates uni-
versally if the chase of I and X terminates for each . If the
skolem chase of I and X terminates, then the nonoblivious
chase (Fagin et al. 2005), and the core chase (Deutsch, Nash,
and Remmel 2008) of I and 3 terminate as well.

The critical instance I3, for a set of rules X contains all
facts that can be constructed using all predicates occurring
in X, all constants occurring in the body of a rule in 3, and
one special fresh constant *. If the skolem chase for I3, and
Y terminates, then the skolem chase of Y terminates univer-
sally (Marnette 2009).

Universal chase termination is undecidable, and various
sufficient acyclicity conditions have been proposed. In the
following, let > be a set of rules where w.l.0.g. no variable
occurs in more than one rule. A position is an expression of
the form P|; where P is an n-ary predicate and 1 < 4 < n.
Given a rule r of the form (1) and a variable w, the set
Pos g (w) of body positions of w consists of all positions P|;
for which P(t1,...,t,) € ©(Z,) exists with ¢; = w. The
set Posyr (w) is defined analogously.

Weak acyclicity (WA) (Fagin et al. 2005) can be used with
rules containing the equality predicate. The WA dependency
graph Dy for X contains positions as vertices; furthermore,
for each rule r € ¥ of the form (1), each z € Z, each
PJ; € Posg(z), and each y € ¢, graph Ds; contains

e aregular edge from P|; to each)|; € Posg () such that
Q # ~and,

e aspecial edge from P|; to each Q|; € Posg (y) such that
Q#=.

Set 3 is WA if Dy, does not contain a cycle going through a

special edge. Equality atoms are effectively ignored by WA.
Joint acyclicity (JA) (Krotzsch and Rudolph 2011) gen-

eralises WA, but it is applicable only to equality-free rules.

For an existentially quantified variable y in 3, let Move(y)

be the smallest set of positions such that

e Posy(y) C Move(y), and

e for each existential rule » € ¥ and each universally quan-
tified variable = occurring in r, if Posg(z) C Move(y)
then Posy () C Move(y).

The JA dependency graph of X is as follows. The vertices are
the existentially quantified variables occurring in . Given
arbitrary two such variables y; and ys, the JA dependency
graph contains an edge from y; to yo whenever the rule that
contains y» also contains a universally quantified variable x
such that Posy(x) # () and Posg(z) C Move(y;). Set X is
JA if its JA dependency graph does not contain a cycle.

Super-weak acyclicity (SWA) (Marnette 2009) is a further
generalisation of JA, and it can differ from JA only on rules
in which a variable occurs more than once in some body
atom. Since such rules are not obtained from DL knowledge
bases, we omit the somewhat technical definition of SWA.

Spezzano and Greco (2010) suggest a rule rewriting
framework for chase termination. A set of rules X is rewrit-
ten into a set of rules ', and then Y’ is checked using an
arbitrary acyclicity notion (e.g., weak acyclicity). This tech-
nique is thus independent from the actual acyclicity condi-
tion used, and so we do not discuss it any further.

Model-Faithful Acyclicity

As the following example shows, known acyclicity condi-
tions, such as JA, do not guarantee chase termination on cer-
tain commonly occurring rules.

Example 1. Let 3 be the set of rules (7)—(9).

L= A(xy) — Iy R(z1,y1) AB(yr) (7)
ro = R(xo,2) N B(z) = A(z2))
r3 = B(x3) = Jy2.R(x3,y2) AN C(y2) (9)

Note that Move(y1) = {R|2, Bl1, Rl1, A|1}; hence, the
JA dependency graph has a cyclic edge from y, to itself. The
chase of 3, however, terminates universally. Assume that f
and g are used to skolemize m1 and rs. Given a fact A(a),
rule r1 derives R(a, f(a)) and B(f(a)), and rule r3 derives
R(f(a),g(f(a))) and C(g(f(a))); after this, rule ry is not
applicable to R(f(a), g(f(a))) since variable z in 4 cannot
be matched to B(g(f(a))), and so the chase terminates.

Note that rules r; and 75 in Example 1 encode the DL ax-
iom A = dR.B, and rule r3 encodes B C JR.C; such ax-
ioms abound in OWL ontologies. To enable applications of
chase termination outlined in the introduction, we next pro-
pose a less restrictive acyclicity condition.

Acyclicity conditions try to estimate whether applying
chase to a rule can produce facts that can (possibly by ap-
plying chase to other rules) repeatedly trigger the same rule.
The key difference between various conditions is how rule
applicability is determined. For example, JA and SWA con-
sider each variable in a rule in isolation and do not check sat-
isfaction of all body atoms at once; hence, they overestimate
rule applicability. For example, rule (8) is not applicable to
the facts generated by rule (9), but this can be determined
only by considering variables z2 and z in rule (8) simulta-
neously. More precise chase termination guarantees can be
obtained by tracking rule applicability more ‘faithfully’.

A simple solution is to be completely precise about rule
applicability: one can run the skolem chase and then use suf-
ficient checks to identify cyclic computations. Clearly, no
sufficient, necessary, and computable condition for the latter

can be given, so we must adopt a practical approach; for ex-
ample, we can ‘raise the alarm’ and stop the process if the
chase derives a term f(#) where f occurs in t. This condition
can be further refined; for example, one could stop only if f
occurs nested in a term some fixed number of times. The
choice of the appropriate condition is thus application de-
pendent; however, as our experiments show, checking only
for one level of nesting suffices in many cases. In particular,
no term f(f) with f occurring in # is generated in the chase
of X from Example 1.

Meier, Schmidt, and Lausen (2009) proposed a related
idea, where the chase is extended to keep track of a ‘mon-
itor graph’, which is used to track rule dependencies and
then stop the chase if certain conditions are satisfied. This
approach uses a variant of the chase that is don’t-know non-
deterministic: while all possible chase applications produce
a model, not all applications will terminate, which can make
acyclicity checking difficult.

In contrast, our notion of acyclicity is independent from
any concrete notion of chase. The given rules X are trans-
formed into a new set of rules ¥/, which tracks rule de-
pendencies using fresh predicates; then, X is identified as
being acyclic if ¥’ does not entail a special nullary pred-
icate C. Since acyclicity is defined via entailment, it can
be decided using any sound and complete theorem proving
procedure for existential rules. Acyclicity guarantees termi-
nation of skolem chase, which then guarantees termination
of nonoblivious and core chase as well. We call our notion
model-faithful acyclicity because it estimates rule applica-
tion precisely, by examining the actual model of X.

Definition 2. For each rule r = ¢(¥,2) — 3y.(Z,¥) and
each variable y; € ij, let F'. be a fresh unary predicate
unique for r and y;; furthermore, let S and D be fresh bi-
nary predicates, and let C be a fresh nullary predicate. Then,
MFA(r) is the following rule:

p(,2) = 3@ A N Frlw) n N\ Sl v0)]]

For ¥ a set of rules, MFA(X) is the smallest set that contains
MFA(r) for each rule r € %, rules (10)~(11), and rule (12)
instantiated for each predicate F:.:

S(l‘hxg) — D(:L‘hxg) (10)
D(xl,il'z) A S(l’g,xg) — D(l’l,xg) (11)
Fi(:cl)/\D(xhxg)/\Fi(xg) — C (12)

Set 3. is model-faithful acyclic (MFA) w.r.t. an instance I if
T UMFA() [~ C; furthermore, ¥ is universally MFA! if 33
is MFA w.rt. I3,

Example 3. Let X be the set of rules from Example 1. Then,
MFA(r1) and MFA(r3) are given by (13) and (14), resp.

A(z1) = y1.R(z1,y1) AB(y1)AFL (y1) AS(z1,41) (13)

B(xs) = 3y2.R(x3,y2) AC(y2) AFy, (y2) AS(23,12) (14)

Then, MFA(X) consists of rules (8), rules (13)—~(14), rules
(10)—(11), and rule (12) instantiated for F}ﬁl and Fig.

'In the rest of this paper we typically omit ‘universally’.

Figure 1: Example MFA

Set X is universally MFA: the interpretation shown in Fig-
ure 1 is a model of I, U MFA(X) that does not satisfy C. ¢

MFA is defined as a semantic, rather than a syntactic con-
dition, and entailment 7 U MFA(X) £ C can be checked us-
ing sound and complete first-order calculus. In the follow-
ing section we show that MFA is strictly more general than
SWA. We next show that MFA characterises derivations of
the skolem chase in a particular way.

Definition 4. A term t is cyclic if some f(3) is a subterm of
t, and some f (1) is a proper subterm of f(3).

Proposition 5. A set of rules 3 is not MFA w.r.t. an instance
I if and only ifI,\‘jloFA(E) contains a cyclic term.

Proof. Let ¥/ = MFA(X), and let I%,, I/, ... be the chase
sequence for I and X’. We next prove that the following
claims hold for each integer k, as well as k = oc.

1. Fi(t) € I, foreachtermt = f(t) occurring in I%,; con-
versely, Fi(t) € I3 implies t = f({).

2. S(t',t) € I&, for each term ¢ = fi(f) occurring in I%,
and each term t' € £; conversely, S(#',t) € I implies
t=fi(t)andt' €t

3. D(t,t) € IEF? for all terms ¢ and ¢’ occurring in 1%, such

that ¢’ is a proper subterm of ¢; conversely, D(¢',t) € I3
implies that ¢’ is a proper subterm of .

(Claims 1 and 2, the first part) The proof is by the induc-
tion on k. Set I2, does not contain functional terms, and so
it clearly satisfies both claims. For the induction step, as-

sume that both claims hold for 7%, and consider I%,. Since
IE7Y C 1L, both claims clearly hold for each ¢ that occurs
in Igfl. Consider an arbitrary term ¢ = f2(#) that does not
occur in Iéfl, and an arbitrary term ¢’ € i Clearly, t is in-
troduced into IQ, by an application of the skolemisation of
MFA(r) for some rule » € X. Since the head of MFA(r) con-
tains atoms F..(y;) and S(z;,y;) for each z; € &, we have
Fi(t) € I and S(¢,t) € I%, for each ¢’ € £, and so we
have Fi(t) € I and S(#',t) € I3 for each t' € T as well.
That these claims hold for k£ = oo is a straightforward con-
sequence of the fact that I3y = |J, I%,.

(Claims 1 and 2, the second part) Predicate S and each
predicate F% occur in ¥’ only in the head of some rule
MFA(r), which clearly implies the claim.

(Claim 3, the first part for k # co) The proof is by in-
duction on k. The base case holds vacuously since I,
does not contain functional terms. Assume now that the
claim holds for some k — 1, and consider an arbitrary term
t = fi() occurring in I%, such that ' is a subterm of some
t; € i By Claim 2, we have S(¢;,t) € Ig,; furthermore, ¢;
occurs in Igfl, so by the induction assumption we have

D(',t;) € I&. Finally, the rules without functional terms
are applied before the rules with functional terms; hence, by
rule (10) we have D(¢;,t) € Igfrl, and by rule (11) we have
D(t',t) € TEF?, as required.

(Claim 3, the first part for k¥ = oo and the second part)
The ‘proper subterm’ relation is transitive, and rules (10)
and (11) effectively define D as the transitive closure of S,
which clearly implies this claim.

Assume now that I3 contains a cyclic term ¢. Then, some
term t; = fi(3) is a subterm of ¢ and some term to = ()
is a proper subterm of ¢;. By Claims 1 and 3, then we have
{Fi(ta),D(t2,t1),Fi(t1)} C IY. But then, since X’ con-
tains rule (12), we have C € I3, so X is not MFA. The proof
of the converse claim is analogous. [

This characterisation implies termination of skolem chase
of MFA rules X in 2EXPTIME. In particular, a term ¢ derived
by the skolem chase of ¥ = MFA(X) cannot be cyclic by
Proposition 5; such ¢ can then be seen as a tree with branch-
ing factor bounded by the maximum arity of a function sym-
bol in sk(X’) and with depth bounded by the number of func-
tion symbols in sk(X'). The chase can thus generate at most
doubly exponentially many different terms and atoms. The
2EXPTIME bound already holds if the rules are WA; hence,
CQ answering for MFA rules is not harder than for WA.

Proposition 6. If a set of rules 3 is MFA w.r.t. an instance
1, then the skolem chase for I and X terminates in double
exponential time.

Proof. Let ¥ = MFA(X), let ¢, f, and p be the number of
constants, function symbols, and predicate symbols, respec-
tively, occurring in sk(X'), let £ be the maximum arity of a
function symbol in sk(X’), and let a be the maximum arity
of a predicate symbol in sk(X’). Consider now an arbitrary
term ¢ occurring in I$7; clearly, ¢ can be seen as a tree with
branching factor £ containing constants in the leaf nodes and
function symbols in the internal nodes; furthermore, since ¢
is not cyclic, dep(t) < f, so the tree has at most ¢ leaves

and ¢f inner nodes. Thus, the number of different terms oc-

curring in I3 is bounded by p = (f)ef ¢!’ and the num-

ber of different atoms in I3y is bounded by p - o, which
is clearly doubly exponential in > and I. Consequently, the
size of I is at most doubly exponential in 3 and I. Fur-
thermore, for an arbitrary set of facts I’ and rule r, set r(I’)
can be computed by examining all mappings of the variables
in 7 to the terms occurring in I’, which requires exponential
time in the size of r and polynomial time in the size of I’.

Consequently, /97 can be computed in time that is double

exponential in I and X. Finally, it is straightforward to see
that Ig° C 137, so Ig° can be computed in double exponen-
tial time as well. O

Proposition 6 implies that answering a BCQ over MFA
rules is in 2EXPTIME; furthermore, Cali, Gottlob, and Pieris
(2010) provide the matching lower bound for WA rules.
We next prove that checking MFA w.r.t. a specific instance
I is in 2EXPTIME, and that checking universal MFA is
2EXPTIME-hard. These results provide tight complexity
bounds for both problems.

Theorem 7. For Y. a set of rules, deciding whether ¥, is MFA
w.r.t. an instance I is in 2EXPTIME, and deciding whether
Y is universally MFA is 2EXPTIME-hard. Both results hold
even if the arity of predicates in Y. is bounded.

Proof. (Membership) Let &' = MFA(X), let I2,, I}, ... be
the chase sequence for I and ¥, and let p, p, and a be as
stated in the proof of Proposition 6. The number of differ-
ent atoms that can be constructed from @ terms is bounded
by k = p - p%; note that this is doubly exponential even if a
is bounded. Let k' = k + 3 and consider I%,. If Ik, = I%,,
then I = I%,, so ¥ is MFA if and only if C € I%,. Other-
wise, we have I¥, C I gl,, but then, I gfrl clearly contains at
least one cyclic term ¢t = f(#) such that # = f¥(5) is a sub-
term of some ¢; € t. Since I£, satisfies Claims 1-3 from the
proof of Proposition 5, we have S(¢;,t) € I g?ﬂ; finally, by
rule (12) and the fact that rules without functional terms are
applied before rules with functional terms, we have C € 1. k.
But then, C € 19, so by Proposition 5 set ¥ is not MFA.

(Hardness) We prove the claim by a reduction from the
problem of checking I UX = @, where ¥ is a weakly
acyclic set of rules without equality and with predicates
of bounded arity, I is an instance, and @ = 37.£(¥) is a
Boolean conjunctive query. Since ¥ is weakly acyclic, ¥ is
SWA (Marnette 2009); by Theorem 15 it is MFA as well.
Cali, Gottlob, and Pieris (2010) show that, for such I, 3,
and @, deciding I UY, = @ is 2EXPTIME-complete.

Without loss of generality we assume that the rules in X
do not contain constants: if a rule » € ¥ contains a constant
¢, we can replace all occurrences of c in 7 with a fresh vari-
able y., add an atom O.(y..) to the body of r for O.. a fresh
predicate, and add a fact O.(c) to I. It is straightforward to
see that this transformation does not affect the answers of).
We analogously assume w.l.o.g. that () is free of constants.

To prove the claim of this theorem, we next construct a set
of rules 2 such that I U ¥ |= @ if and only if £2 is not univer-
sally MFA. Before proceeding, we define some notation. For
each n-ary predicate P, let Pbe afreshn + 1-ary predicate
unique for P. For A = P(t) an atom, let A = P(f, w) where
w is a fresh variable not occurring in ¥ or (). For a con-
junction of atoms ¢, let ¢ = A 4. o A. Finally, let 3 be the

smallest set of rules containing ¢(7, Z, w) — 3i7.4(Z, 7, w)
for each rule p(Z, 2) — FF.H(Z, 2) in X.

For c a constant, let v, be a fresh variable unique for c, let
U, be the vector of all variables corresponding to constants

in I, and let I be defined as follows:

I = /\ P(vey, ..., Ve, w') (15)
P(ci,...,ci)EI

Let U be a fresh unary predicate, and let B be a fresh
binary predicate. Rules rg and r; are defined as shown in
(16) and (17), respectively.

rq= §@w) = U(w) (16)
ry = Ulw) — ', 8,.[B(w,w') A] (17)

Finally, let Q@ = 3 U {r¢, r1}.

The following property (¢) follows immediately from the
definition of rg, 5], and I: for an arbitrary substitution 6
that maps ¥, and w to distinct terms, it is the case that
I0US U {ro} = U(w)d if and only if TUY = Q. Fur-
thermore, since ¥ is MFA, Y is clearly MFA as well, and
so the chase for 16 U 3 does not contain a cyclic term.

We next show that € is not universally MFA if and only
if TUX = Q. Let I’ be the chase of I and Q. Let f
be the function symbol used to skolemise Jw’ in (17); for
each v, € ¥, in (17), let g, be the function symbols used
to skolemise Jv,; and let be a substitution mapping w’ to
f(*) and each variable v, € ¥, to g.(*). Clearly, U(x) € I,
so by rule (17) we have 16 C I'; furthermore, I’ \ 16 does
not contain g.(x), and it can contain f(x) only in an asser-
tion involving predicate B which does not occur in Q). So,
I0US U {rqo} = U(f(x)) if and only if U(f(x)) € I; by
property (O), then U(f(x)) € I'ifand only if TU X = Q.

Assume now that U(f(x)) ¢ I’. Then, the body of rule
(17) is not satisfied, so I’ does not contain term f(f(x)).
Together with property ({), we conclude that I’ does not
contain a cyclic term, so €2 is MFA by Proposition 5.

Assume now that U(f(x)) € I'. Then, the body of rule
(17) is satisfied, so B(f(*), f(f(x))) € I'; thus, I’ contains
a cyclic term, so €2 is not MFA by Proposition 5. [

The results of Theorem 7 are somewhat discouraging:
using the existing conditions, acycilicity can typically be
checked in PTIME or in NP. We consider MFA to be an ‘up-
per bound’ of practically useful acyclicity conditions. We
see two possibilities for improving these results. In the fol-
lowing section, we introduce an approximation of MFA that
is easier to check; our evaluation shows that this condition
often coincides with MFA in practice. Next, we show that
the complexity is lower for rules of the following shape.

Definition 8. A rule r of the form (1) is an 3-1 rule if i/ is
empty or X contains at most one variable.

As we discuss in the following sections, 3-1 rules cap-
ture (extensions of) Horn DLs. We next show that BCQ an-
swering and MFA checking for 3-1 rules is easier than for
general rules. Intuitively, if 3 is MFA and contains only 3-1
rules, then all functional terms in sk(MFA(X)) are unary and
hence the number of different terms and atoms derivable by
chase becomes exponentially bounded. The following theo-
rem provides the upper bound; the lower bounds are given
later on for a smaller class of rules that capture DLs.

Theorem 9. Let X be a set of 3-1 rules, and let I be an in-
stance. Checking whether X is MFA w.r.t. I is in EXPTIME.
Furthermore, if ¥ is MFA, then answering a BCQ over 3
and I is in EXPTIME as well.

Proof. Let ¥’ = MFA(X). Since X contains only 3-1 rules,
3 also contains only 3-1 rules; consequently, all functional
terms in sk(X') are of arity 1. But then, the total number
of different noncyclic terms is p = c- ff, where c is the
number of constants in an instance and f is the number of
function symbols in the rules. The total number of atoms is
p - p%, where p is the number of predicates and a is the max-
imum arity of a predicate in Y’. Note that this is exponential
even if a is bounded. As in the proof of Proposition 6, we
can now show that the either the chase for ¥’ and I termi-
nates or a cyclic term is derived in exponential time, which
proves that the complexity of checking whether 3 is MFA
w.r.t. I is in EXPTIME.

Finally, since Ig® C Iy, if ¥ is MFA, then I$° can be
computed in exponential time, so a BCQ over ¥ and I can
be answered in EXPTIME. 0

Model-Summarising Acyclicity

The high cost of checking MFA of X is due to the fact that
the arity of function symbols in sk(X) is unbounded, and
that the depth of cyclic terms can be linear in 3. To obtain an
acyclicity condition that is easier to check, we must coarsen
the structure used for the analysis of cycles. Thus, we in-
troduce model-summarising acyclicity, which ‘summarises’
the models of X by reusing the same constant to satisfy an
existential quantifier, instead of introducing deeper terms.

Definition 10. Let S, D, and Fﬁ, be as in Definition 2, fur-
thermore, for each rule r = p(Z, Z) — 35.4(Z, §) and each
variable y; € ¥, let c'. be a fresh constant unique for r and
Yi. Then, MSA(r) is the following rule, where 0 is the sub-
stitution that maps each variable y; € ij to ci.:

o(T,2) = @ POA N\ |[Frw)d A\ S(xj,v:)0

Yi€Y T;ET

For ¥ a set of rules, MSA(Y) is the smallest set that
contains MSA(r) for each rule r € %, rules (10)—(11),
and rule (12) instantiated for each predicate F:. Set 3 is
model-summarising acyclic (MSA) w.rt. an instance I if
T UMSA(Y) £ C; furthermore, 3 is universally MSA if 3
is MSA w.rt. I3,

Example 11. Consider again the set of rules % in Example
1. MSA(r1) and MSA(r3) are given by the following rules
(18) and (19), respectively:

A(z1) = R(x1, ¢,) AB(ey,)AFy, (e,)AS(a1,¢r,) - (18)

T1

B(x3) = R(xs, cp,)AC (e,)AFy (cr,)AS (3, ¢p,) (19)

T3

Then, MSA(X) consists of rules (8), rules (18)—(19), rules
(10)—(11), and rule (12) instantiated for F71n1 and F,ld

Set Y is universally MSA: the interpretation shown in Fig-
ure 2 is a model of I, U MSA(X) that does not satisfy C.

Figure 2: Example MSA

Note that MSA(X) is a set of datalog rules, so MSA can
be checked using a datalog reasoner. This connection with
datalog provides the upper complexity bound for checking
MSA: the following theorem follows from the well known
complexity results of checking entailment of a ground atom
in a datalog program (Dantsin et al. 2001). The complexity
of datalog reasoning is O(n") where v is the maximum num-
ber of variables in a rule and n is the size of the set of facts
that the rules are applied to; thus, checking MSA should be
feasible if the rules in X are ‘short’ and so v is ‘small’.

Theorem 12. For ¥ a set of rules, deciding whether %
is MSA w.r.t. an instance I is in EXPTIME, and deciding
whether X is universally MSA is EXPTIME-hard. The two
problems are in coNP and coNP-hard, respectively, if the
arity of the predicates in 3 is bounded.

Proof. (Membership) Let ' = MSA(X). Note that the to-
tal number of atoms occurring in a chase of I and ¥’ is
p - c*, where p is the number of predicates, c is the number
of constants, and « is the maximum arity of the predicates
in X’; this number is clearly exponential if a is not bounded.
The rest of the proof is the same as in Theorem 7. If a is
bounded, then the number of atoms becomes polynomial;
hence, to check whether I U >’ |= C, one can guess a proof
for C as a polynomially long sequence of derived facts, and
then check in polynomial time whether the proof is valid
for I and 3. Thus, checking whether I U Y’ = C is in NP;
since I UY' [£ C if and only if ¥ is MSA w.r.t. I, we have
that checking whether X is MSA w.r.t. I is in coNP.

(Hardness) Let X be a set of datalog rules, let I be
an instance, and let () be ground atom. Checking whether
TUXY | Q is EXPTIME-complete in general (Dantsin et
al. 2001). Furthermore, checking whether I |= @ is already
NP-hard even if the arity of predicates is bounded, so check-
ing I UXY = @ is NP-hard as well.

Let us define €2 as in the proof of Theorem 7. That €2 is not
MSA if and only if I U ¥ |= @ can be shown as in Theorem
7, and we omit the proof for the sake of brevity. O

We finish this section by proving strict inclusion relation-
ships between MFA, MSA, and SWA. In particular, Theo-
rem 13 and Example 14 show that that MFA is strictly more
general than MSA.

Theorem 13. If a set of rules ¥ is MSA (w.r.t. an instance
1), then X is MFA (w.r.t. I) as well.

Proof. Let X1 = MFA(Z) and let X9 = MSA(X). Further-
more, let h be the mapping of ground terms to constants
defined such that h(t) = c’ if ¢ is of the form fi(...), and
h(t) =t if t is a constant; for an atom A = P(t1,...,t,),
let h(A) = P(h(t1),...,h(t,)); and for an instance I,
let h(I) = {h(A) | A € I}. Finally, let I{. , I} ... be the
chase sequence for I and X, and let 1¢I5, ,... be the
chase sequence for I and X5. Note that sk(Xs) = 35 differs
from sk(X1) only in that the former contains the constant c’.
in place of each functional term f!(Z). Thus, by a straight-
forward induction on 7, one can show that h(1%;) C I%, for
each i; this implies h(I3) C I Consequently, C §Z I
clearly implies C ¢ I2°; hence 1f E is MSA, then X is MFA

as well, as required. O
Example 14. Let X be the set of rules (20)—(23).

A(z) = Jy.R(x,y) A B(y) (20)

B(x) = 3y.S(z,y) AT(y,x) 2D

A(z) AN S(z,z) = C(x) (22)

C(z) NT(z,2) — A(z) (23)

> is universally MFA, but not universally MSA. O

We now show that MSA is more general than SWA, and
thus also more general than JA. The converse does not hold:
the set > in Example 1 is MSA, but not SWA.

Theorem 15. If a set of equality-free rules 3 is SWA, then
Y. is universally MSA as well.

Before proving the claim, we first recapitulate the def-
inition of SWA (Marnette 2009). The definition uses the
notion of a place—a pair A|; where A is an n-ary atom
and 1 < i < n. For arbitrary sets of places P and P’, we
write P C P’ if, for each place A|; € P, a place A’|; € P’
and substitutions o and o’ exist such that Ao = A’¢’. Let
3 be a set of equality-free rules (SWA is defined only for
rules that do not contain equality). Let » € X be a rule of
the form (1), and let w be a variable; then, In(r, w) (resp.
Out’(r,w)) is the set that contains each place A|; such that
A € o(%,Z) (resp. A € ¢(&,¥)) and atom A contains vari-
able w at position i; Out(r, w) = {A6|; | A|; € Out'(r,w)}
where 6 is the substitution used in the skolemisation of 7;
finally, Movey, (r, w) is the smallest set of places that con-
tains Out(r,w) such that, for each ' € ¥ and each vari-
able w’ occurring in 7/, if In(r’,w") C Moves(r, w), then
Out(r’,w") C Moves(r, w). A rule r triggers arule 7’ in 3
if a variable =’ occurring in both the body and the head of
r’ and an existentially quantified variable y occurring in the
head of r exist such that In(r/, ') C Moves(r,y). Set X is
SWA if its triggers relation is acyclic.

Proof of Theorem 15. SWA is applicable to ¥ only if ¥
contains the explicit axiomatisation of the equality predi-
cate, so we assume this to be the case and consider =~ to
be a regular predicate. Let X' = MSA(X), let 1%, 1, ...
be the chase sequence for I3 and ¥/ and let I>® be
the chase of If and X'. Furthermore, let p be the func-
tion that maps constants to themselves and that is defined
on ground functional terms as p(f%(f)) = c’. Finally, let

p(P(tr,. . tn) = P(pltr), ., pltn):

We next prove the following property (¢): for each rule
r € X, each existentially quantified variable y; occurring in
7, each P(t) € I°® where P ¢ {S,D,C}, and each t; € T
such that t; =c’ is the constant used to replace y; in
r, a substitution ¢ and a place A|; € Moves(r,y;) ex-

ist such that P(f) = p(A6). The proof is by induction
on the length of the chase Since IV = I3 does not con-
tain a constant of the form ci, property (#) holds vac-
uously for I°. Assume now that property (4) holds for
some I¥~1 and consider an arbitrary rule r € X, variable
y;, fact P(t) € I* \ I*~' with P ¢ {S,D,C}, and t; € ¢
such that ¢; = c’. Fact P(t) is derived in I* from the
head atom H of some rule r! € MSA(X). Let o be the
substitution used in the rule application; clearly, we have
Ho = P(t). Furthermore, let 72 € ¥ be the rule that pro-
duces 7! € MSA(X), let r3 be the skolemisation of 72,
and let H3 be the head atorn of 73 that corresponds to
H; clearly, we have p(H3c P(t). Now if H contains
c’. in position j, then r = 7"1 since 7! is the only rule
that contains ci; thus, H3|; € Out(r,y;) C Moves(r,y;),
SO property (0) holds Otherwise, H contains at position
j a universally quantified variable x such that o(x) = ct.
Let By,..., B, be the body atoms of 7! that contain z;
clearly, {Byo,...,B,o} C I*71. All these atoms satisfy
the induction assumption, so for each B,, € {B1,...,B,}
and each ¢ such that B,,, contains variable x at position ¢, a
place B/, |, € Movex(r,y;) and substitution 0,,, exist such
that Bma = p(B], 07,,) Let ¢’ be the substitution obtained
from o by setting ¢’ (w) = 0,,(w) for each variable w for
which 6, (w) is a functional term; clearly, B0’ = B}, 0.
But then, we have In(r!, z) C Moves(r,y;); by the defini-
tion of Moves, we have H?|; € Moves(r,y;), so property
(#) holds.

We additionally prove the following property (O): if

S(ci,ct,) e I* for some i and 7/, then rule r triggers 7.

Consider an arbitrary such fact, let y; be‘ the existentially
quantified variable of r corresponding tocl, and let k be the

smallest integer such that S(c?, c%,) € I*. Clearly, S(ck, ¢l)

is derived in I* from the head atom S(z,c,) of rule 7.
Let o be the substitution used in the rule application; thus,
o(x) = ct.Let By, ..., B, be the body atoms of r that con-
tain x; clearly, we have {Bo,...,B,0} C I5=1. All these
atoms satisfy property (#), so for each B,,, € {B1,..., By}
and each ¢ such that B,,, contains variable x at position ¢, a
place B}, |¢ € Movex(r,y;) and substitution 6, exist such
that B,,0 = p(B.,0.,). But then, as in the previous para-
graph we have In(r’, x) C Movex(r, y;), so r triggers 1.
Assume now that ¥ is not MSA, so C € I°°; due to rules
(12), we have {F}.(t),D(t,t'), F}.(t')} € I for some F;.
But then, since predicate Fi occurs in X only in an atom
Fz(i), we have t = ' = c’. Finally, since D is axiomatised
in X/ as the transitive closure of S, clearly r triggers itself,
and so X is not SWA. O

Handing Equality via Singularisation
JA and SWA can be applied to rules with equality provided
that the rule set contains rules (2)—(5). In both cases, how-

ever, rules (2) and (5) lead to a cycle as soon as the rule
set contains an existential quantifier. MFA and MSA are de-
fined as entailment checks in first-order logic with equal-
ity, which effectively incorporates the rules of equality into
these checks even if rules (2)—(5) are not explicitly stated.
On rules with equality, MFA and MSA are slightly more
general than JA and SWA, but they still fail to capture certain
relevant cases, as the following example demonstrates.

Example 16. Consider the following set of rules.

Aw) A B() = W R(ey) A BG4
R(z,21) A R(z,22) — 21 =~ X2 (25)

On (24)—(25), skolem chase derives the following infinite set
of facts; but then, by Proposition 5 this set of rules is not
MFA; by Theorem 13, it is not MSA either.

R(x, f(+)) B(f(x)) ==~ [f(x) A(f(+))
R(f(x), F(f(x)) B(f(f(x))) 0

Example 16 shows that equalities between terms tend to
proliferate during chase, which can lead to non-termination.
Interestingly, the rules in Example 16 are WA. This is
because WA is sufficient for termination of nonoblivious
chase—a version of chase that expands an existential quan-
tifier only if necessary. Already JA is more general than WA
on rules without equality, so nonoblivious chase does not
seem to provide an advantage over skolem chase w.r.t. ter-
mination on such rules; however, Example 16 shows that this
is not the case for rules with equality.

Marnette (2009) proposed singularisation as a possible
solution to this problem. The idea is to only partially ax-
iomatise =/ as being reflexive, symmetric, and transitive, but
without the replacement property cf. rule (5). A set of rules
> is modified in a way to take into account the lack of the
replacement rules. This latter step is nondeterministic: there
are many ways to modify 3 and, while some modifications
will lead to chase termination, not all will do so.

We recapitulate the definition of singularisation. A mark-
ing M, of a rule r of the form (1) is a mapping from each
w € U 2 to a single occurrence of w in ¢; all other vari-
able occurrences are unmarked and all constants are also
unmarked. A marking M of a set of rules X contains ex-
actly one marking M, for each r € Y. The singularisation
of ¥ under M is the set Sing(%, M) containing

e for each r € X, a rule obtained by replacing each un-
marked occurrence of a body term ¢ in r with a fresh vari-
able 2’ and adding ¢ ~ 2’ to the body, and

e rules (2)—(4).

Note that Sing(X, M) is unique up to the renaming of the
fresh variables. We identify the marked occurrence of a vari-
able x in a rule as z. The properties of singularisation can
be summarised as follows: for an arbitrary set of rules X, a
marking M for ¥, an instance I, and a fact P(¢), we have
TUX UZX, = P(¢) if and only if

IUSiIng(3, M) = 37PN N vi ~cil.

Yi €Y

Example 17. Singularisation of the marked rule (26) pro-
duces rule (27).

A(Z) A B(z) A R(z,2) — C(x) (26)

A(z) A B(z1) A R(xa,2) A

xR T A~ xy = Cx) 27

Note that singularisation should be applied ‘globally’ to all
rules, even to those without equality.

The absence of rules (5) often allows the skolem chase to
terminate on Sing(X, M); however, this may depend on the
selected marking.

Example 18. Rule (24) from Example 16 admits the follow-
ing two markings:

A(#) AB(x) » Jy[R(x,y) ABW)] @9
A(x) AB(&) = Jy[R(x,9) A B (29)

The skolem chase does not universally terminate for the sin-
gularisation obtained from (29); in contrast, the singulari-
sation obtained from (28) is JA. O

We use MFA and MFAY to denote the classes of rule
sets that are in MFA for some singularisation and for all sin-
gularisations, respectively; notions MSA?, MSAY, JA7, and
JAY are defined analogously. Clearly, X7 C X7 for each
X € {MFA,MSA,JA}, and Example 18 shows this inclu-
sion to be proper.

Theorem 19. JA” = WA.

Proof. JAY C WA) We prove the contrapositive, so con-
sider an arbitrary set of rules > ¢ WA. Then, the WA depen-
dency graph contains a cycle through special edges. Assume
w.l.o.g. that each variable occurs in at most one rule of 3.
By the definition of WA, each edge p — ¢ in the dependency
graph is justified by a rule r that has a universally quantified
variable = at position p in some body atom of r. For each
edge p — ¢, let x,_,, denote one (arbitrary but fixed) such
variable; we say that x,,_,, contributes to p — q.

We next show that a cycle through a special edge exists
to which each variable contributes at most one edge. To
this end, let py — p2 — ... = pp, = Dpy1 = p1 be an ar-
bitrary cycle in the WA dependency graph. Let p; — p; 41
and p; — p;4+1 be two edges (regular or special) such that
Tp;—pigr = Tpj—p;i1- I Pi — Pit1 1s special, then a spe-
cial edge p; — p;41 exists, and we obtain a shorter cycle
by replacing the path between p; and p; with p; — p;i 1.
If p; — p;j41 is special, the situation is analogous. If nei-
ther p; — p;41 nor p; — p;41 is special, then regular edges
D; — pj+1 and p; — p;11 exist. If the path between p;iq
and p, contains a special edge, we obtain a shorter cycle
by replacing the path between p; and p;1 by p; — pjy1.
Otherwise, the path between p; 1 and p; contains a special
edge, and we obtain a shorter cycle by replacing the path
between p; and p; 1 with p; — p;41. This reduction of cy-
cles can be applied recursively until we find a cycle of the
required form.

Let II=p; = ps — ... = pn —> pnt1 be a cycle go-
ing through a special edge such that p,;; = p; and each
variable contributes at most one edge in the cycle, and let

T1 = Tp,—spy»-- - Tn = Tp,—p, De the corresponding con-
tributing variables. Let M be a marking for > where each z;
is marked in position p; in some body atom of its rule. We
claim that Sing (3, M) is not JA.

Consider a subpath ¢ — ... — ¢, (m > 3) of II such
that g1 — ¢2 and ¢,,—1 — ¢, are (not necessarily distinct)
special edges, and all other edges are regular. Let v be an
existentially quantified variable at position g, that was used
to justify the special edge g1 — g2, and let w be an exis-
tentially quantified variable at position g, that was used to
justify the special edge ¢,,—1 — ¢m. We claim that the JA
dependency graph has an edge from v to w.

We show that ¢ € Move(v) for 2 < k <m —1 by in-
duction over k. For k = 2, g2 € Posg (v) C Move(v) is im-
mediate. For k& > 2, note that x4, , 4, occurs only in the
positions g;—1 and =|; in the body of the rule that justifies
gk—1 — qg- By the induction hypothesis, gx—1 € Move(v).
By rule (2) of the equality theory, |y € Move(v). Thus, we
have g, € Move(v).

Consequently, we have ¢,,—1 € Move(v). Since we have
~|1 € Move(v), an edge v — w exists in the JA dependency
graph. For all subpaths of the form ¢; — ... — ¢, one can
find analogous edges, so the JA dependency graph is cyclic.

(JA” D WA) Assume that 3 ¢ JA". Then a marking M
for ¥ exists such that Sing(X, M) is not JA. Consider
some existentially quantified variable v. For each posi-
tion p € Move(v) (w.r.t. Sing(¥, M)) where p does not
involve the ~ predicate, there is a path of regular edges
p1 — ... — Dy = pin the WA dependency graph of X such
that v occurs on position p;; this property (x) can be eas-
ily shown by induction over the construction of Move(v),
and we omit the details for the sake of brevity. Thus, by
(%) and the definition of the JA dependency graph, for
each edge v — w in the JA dependency graph, a path
P1 — ... —> Ppn — DPn+1 exists in the WA dependency graph
of ¥ where p,, — p,+1 is a special edge and all other edges
are regular. Clearly, we have > ¢ WA. O

Checking all possible markings may be infeasible: the
number of candidates is exponential in the total number of
variables that occur more than once in a rule body. Theo-
rem 19 shows that JA” can be decided using WA. For the
other cases, the following simple observation shows how to
reduce the number of markings.

Proposition 20. Let M and M’ be markings for ¥ that
agree on all variables that occur in both body and head, but
not necessarily on the variables that occur only in the body
of a rule. Then Sing(3, M) is JA/MSA/MFA if and only if
Sing(X, M) is JA/MSA/MFA.

Despite this optimisation, the number of markings to
check can still be exponential; hence, we next describe a use-
ful approximation. Let Sing (X) = Uy e Sing(X, M),
where M is a set of all markings for ¥ that agree on all vari-
ables occurring only in the body of a rule in X. By Propo-
sition 20, it is irrelevant how the markings of body vari-
ables are defined in M. Let MFA" be the class containing
rule sets ¥ for which Sing,,(X) is in MFA; MSA" and JA"
are defined analogously. As the following theorem shows,

Sing (%) provides a ‘lower bound’ on the result attainable
via singularisation.

Theorem 21. For each X € {MFA,MSA,JA}, we have that
XY C XY, The size of Uyrepq Sing(2, M) is exponential
in the maximal number of variables that occur more than
once in the body of any one rule in X, and it is linear in the
number of rules in Y.

Proof. The first claim follows from the fact that all consid-
ered notions of acyclicity are monotone in the sense that ev-
ery subset of an acyclic rule set is also acyclic. The second
claim follows from the fact that each rule r in X occurs k
times in (J,;c o, Sing(X, M), where k is the number of dis-
tinct markings of 7. O

This result is of particular interest when dealing with rules
that are obtained from DLs, where each rule has at most one
variable that occurs in the head as well as multiple times in
the body. On such rule sets, the size of Sing,(2) is linear in
the size of Y. For the general case, we can obtain the same
complexity bounds despite the exponential increase in the
number of rules.

Theorem 22. Deciding whether Y is in MFAY (MFA>,
MFAY) is 2EXPTIME-complete. Deciding whether ¥ is in
MSAY (MSA3, MSAY) is EXPTIME-complete.

Proof. If X contains no equality, it is easy to see that X is
in MFAY (MFAZ, MFAY) iff it is in MFA. The same can be
observed for MSA. Hardness thus follows from Theorem 7
and Theorem 12.

For membership, we first consider the cases of MFA3,
MFAY, MSA7, and MSA". Each of these properties can be
decided by considering all of the at most exponentially many
markings. Since Sing(X, M) is linear in the size of X, the
property can be checked for each marking in 2EXPTIME (for
MFA; Theorem 7) and EXPTIME (for MSA; Theorem 12).
This yields the required bound since an exponential factor is
not significant for the considered complexity classes.

For the case of MFA"Y and MSAY, membership follows
by observing that the membership of MFA and MSA in
2EXPTIME and EXPTIME, respectively, is obtained from
the according bound of doubly/singly exponentially many
ground facts that can potentially be derived before the prop-
erty can be decided. While Sing (X)) is exponentially larger
than X, the maximal number of relevant ground facts is still
the same since no new predicates or constant symbols are
introduced. The increased number of rules leads to an expo-
nential increase of the time to check applicability of all rules
in each of the doubly/singly exponentially many steps. As
above, this exponential factor does not affect membership in
2EXPTIME/EXPTIME. O

Acyclicity of DL Ontologies

We now consider applying acyclicity conditions to DL on-
tologies. DLs are KR formalisms that underpin the Web
Ontology Language (OWL). DL ontologies are constructed
from atomic concepts (i.e., unary predicates), atomic roles
(i.e., binary predicates), and individuals (i.e., constants).
Special atomic concepts T and _L denote universal truth and

falsehood, respectively. For R an atomic role, R~ is an in-
verse role; inverse roles can be used in atoms, and R~ (¢1, t2)
is an abbreviation for R(t2,t1). A role is an atomic or an in-
verse role. DLs provide a rich set of constructors for build-
ing concepts (first-order formulae with one free variable)
from atomic concepts and roles. DL ontologies consist of
axioms about concepts and roles; these correspond to first-
order sentences. For simplicity, we consider only normalised
ontologies, where concepts are not nested. This is w.l.o.g. as
each ontology can be normalised in linear time, and the nor-
malised ontology is a conservative extension of the original
one. In this paper, we consider only Horn DLs; ontologies in
such DLs have at most one minimal Herbrand model, which
is a prerequisite for materialisation-based reasoning—the
main motivation for applying acyclicity to DLs.

A normalised Horn-SRZ QO TBox ‘T consists of axioms
shown on the left-hand side of Table 1; in the table, A, B,
and C' are atomic concepts (including possibly T and L),
R, S, T are (not necessarily atomic) roles, and n is a posi-
tive integer. To guarantee decidability of reasoning, 7 must
satisfy certain global conditions (Kutz, Horrocks, and Sat-
tler 2006), which we omit for brevity. Roughly speaking,
only so-called simple roles are allowed to occur in axioms
of Type 2, and axioms of Type 6 must be regular according
to a particular condition; the latter condition ensures that ax-
ioms of Type 6 can be represented using a nondeterministic
finite automaton. Apart from Horn-SRZQ, we also consider
Horn-SRZ TBoxes, which do not contain rules of Type 2,
as well as Horn-SHZ Q TBoxes, where R =S =T in all
rules of Type 6; all Horn-SHZ Q TBoxes are regular.

Each Horn-SRZQ axiom corresponds to an existential
rule as shown in Table 1. A minor difference is that ax-
ioms in Table 1 can contain _L in the head, which can make
a TBox 7 unsatisfiable w.r.t. an instance /. This can be
handled by considering L to be just another atomic con-
cept, without special meaning. Technically, this ensures that
T UT is satisfiable in the model constructed by the skolem
chase; however, we consider I U7 to be unsatisfiable if
I'UT = 3y.L(y). We consider a substitution 6 to be an an-
swertoa CQ Q(Z) wrt.a7 and Iif IUT |=3y.L(y) or
T UI = Q(Z)6. Due to this close correspondence between
DL axioms and existential rules, in the rest of this paper we
identify a TBox 7 with the corresponding set of rules.

We next investigate the complexity of BCQ answering
over acyclic DL TBoxes. For the membership, note that all
rules in Table 1 are 3-1 rules; thus, Theorem 9 gives us an
EXPTIME upper bound. We next prove a matching lower
bound for WA Horn-SRZ rules. Intuitively, axioms of Type
6 allow us to axiomatise non-tree-like structures; although
regularity ensures that axioms of Type 6 can be represented
by a nondeterministic finite automaton, this automaton can
be exponential, which may require one to examine all nodes
in an exponential model of a Horn-SRZ TBox. Further-
more, by Theorem 9, if we extend acyclic Horn-SRZQ
rules 3; with arbitrary SWRL rules X5, reasoning stays
ExPTIME-complete, provided that 3; U5 is acyclic; this is
in contrast to general TBoxes for which SWRL extensions
lead to undecidability. Thus, applications that need expres-
sivity beyond what is available in OWL can benefit from the

required expressivity without running into undecidability as
long as the resulting ontology is acyclic.

Theorem 23. Let 7 be a WA Horn-SRZI TBox, let I be
an instance, and let F' be a fact. Then, checking whether
I'UT [= F is EXPTIME-hard.

Proof. Let M = (S, Q,0,Q0,Q,) be a deterministic Tur-
ing machine, where S is a finite set of symbols, Q is a finite
set of states, § : @ x § = Q x § x {«—, —} is a transition
function, @)y € Q is the initial state, and), the accepting
state. Furthermore, assume that an integer % exists such that

M halts on each input of length n in time 2" For arbitrary
input S;,,...,S;,, we construct an MFA set of Horn-SRZ
rules 7 and an instance I such that I U7 = Q4 (a) if and
only if M accepts the input. To simplify the presentation,
we will use a slightly more general syntax for the rules in 7
than what is allowed in Table 1; however, all of our rules can
be brought into the required form by renaming parts of the
rules with fresh predicates.

Let ¢ = n¥; since k is a constant, ¢ is polynomial in n.
Our construction uses a unary predicate for each symbol
and state; for simplicity, we do not distinguish between the
predicate and the symbol/state. In addition, the construction
also uses binary predicates L;, R;, T;, U;, D;, H;, and V;
for 1 <i </, unary predicates A; and B; for 0 < i </,
and unary predicates O1,...,O,41, N1, and Na. Instance
I contains only the fact Ag(a). We next present the rules of
T. Set T will contain only Horn rules without empty heads,
so it will be satisfiable in a minimal Herbrand model. For
readability, we will break 7 into parts and prove for each
part various facts about this minimal Herbrand model.

The first part of 7 contains rules (30)—(32) for each i > 0,
and rule (33) for each ¢ > 1.

Ai1(z) = Fy.[Li(z,y) A Ai(y)] (30)

Ai—q1(z) = Fy.[Ri(z,y) AN Ai(y)] (BD

Ri(z,z) N Li(z,2") — T;(x,2") (32)

Li(z,2) NT;_1(2,2") AN Ry (2, 2") — Ti(z,2") (33)

On I, these rules axiomatise existence of a triangular struc-
ture in the top part of Figure 3 containing 7; links.

The second part of 7 contains rule (34), rules (35)—(37)
for each ¢ > 0, and rule (38) for each ¢ > 1.

Ae(z) = Bo(z) (34

—1(z) = 3y [Ui(z,y) A Bi(y)] (35)

~1(z) = Jy.[Di(z,y) A Bi(y)] (36)

U(;@) A Di(z,2") = Vi(z,2") (37

Di(z,2) NVi_1(2,2") NU; (2, 2") — Vi(x,2') (38)

These rules axiomatise existence of triangular structures in
the bottom part of Figure 3 containing V; links.

The third part of 7 contains rule (39), and rules (40) and
(41) for each i > 0.

Ty(w,2') — Ho(z,2") (39)
Ui(z,x) NHi—1(2,2") NU; (2, 2") — Hi(z,2") (40)
Di(z,2) NH;_1(2,2") N Di(2,2") — H;(x,2') (41)

1. AC3R.B A(z) — Jy.[R(x,y) A B(y)]

2. ACK<I1R.B A(z) N R(z A B(z1) A R(z,22) A B(z2) — 21 = o2
3. ANMBCC A(z) A B(z) = C(x)

4. ACVR.B A(z) N R(z B(x)

5. R C S R(:vl,:cg) — S(.’L‘l,xg

6. RoSLCT R(xz1,2) A S(z,22) = T(x1, 22)

Legend

L; 2
“«-——-= -«-——-

R; i
i b

T;
-

H; v;

Figure 3: Grid Model of T

These rules axiomatise existence of H; links, which with V;
links form a grid of size 2¢ x 2¢ shown in Figure 3.

In the rest of this proof we abbreviate conjunctions of the
form Ry(xo,z1) A ... A Re(xs_1,20) as R*(wg,x,), and
Ui(zo,21) A ... AUg(wo—1,2¢) as U (zq, 7)

The fourth part of 7 contains rule (42), rules (43) and
(44) for each 1 < j < n, and rules (45)—(46), where S, is
the empty tape symbol. Remember that the input to M is
givenas S;,,...,S;, .

Ao(2) AR (2,2/) NU (2 z) — O1(z) A Qo(z) (42)
O;(2) ANVe(z,2) = Ojp1(x) (43)

Oj(z) = Si; (44

Ont1(2) ANVi(z,2) = Opy1(z) (45)

Ont1(z) = Su(x) (46)

Rule (42) labels the grid origin and sets the initial state as
shown in Figure 3. Rules (43) ensure that the n subsequent
nodes are labelled with O,, ..., 0,11, and rule (45) prop-

agates O,,41 to the rest of the Vj-chain. Finally, rules (44)
and (46) ensure that nodes labelled with O; are also labelled

with S;, and that nodes labeled with O,, ;1 are labeled with
Sy. Thus, this part of 7 ensures that the right-most V;-chain
in the grid contains the initial state of the tape of M.

The fifth part of 7 contains rules (47)—(48) for each state
Qr € 9, and rules (49)—(50). These rules essentially ensure
that all nodes before and after a node labelled with some
state Q € Q are labeled with N and N,, respectively, thus
indicating that the head is not above the node.

Qr(2) AN Ve(z, 2) = Ni(x) (47)
Qr(2) AN Vi(z,z) — Nao() (48)
Ni(2) AVy(z,2) = Ni(z) (49)
No(2) AVy(z,2) = Na(z) (50)

The sixth part of 7 contains rules (51)—(52) instantiated
for each symbol S}, € S; these rules ensure that the contents
of the tape is copied for all nodes not containing the head.

Ni(2) A Sk(2) AN Ho(z,2) = Sk(z) (1)
Na(z) A Sk(2) A He(z,2) = Sk(z) (52)

The seventh part of 7 contains rules (53)—(54) instanti-
ated for each symbol S} € S and each state (Q;, € Q such

that §(Qp, Sk) = (Qxr, Sk, +). These rules encode moves
of M where the head moves up.

Qr(2) ANSk(2) NHy(z,x) = Spr(z) (53)
Qr(2) N Sk(2) AN Ho(z,2") AN Vi(x,2") = Qpe(z) (54)

The eighth part of 7 contains rules (55)—(56) instanti-
ated for each symbol S} € S and each state Q) € Q such
that §(Qy, Sk) = (Qxr, Sk’, —). These rules encode moves
of M where the head moves down.

Qr(2) ANSk(2) N Hy(z,x) — Spr(x) (55)
Qr(2) N Sk(2) AN He(z,2") ANVe(2',) = Qe (z) (56)

The ninth part of 7 contains rules (57)—(60) for each
1 < i < 7; these rules simply ensure that acceptance is prop-
agated back to the root of the upper tree.

Qa(2) A Ui(w, Z) = Qa() (57)
Qa(2) A Di(x,2) = Qa() (58)
Qu(2) AN Li(z,2) = Qu(x) (59)
Qu(2) N Ri(z,2) = Qu(x) (60)

The above discussion shows that labelling of the nodes
in the grid shown in Figure 3 simulates the execution of
M on input S;,,...,S;,, where the contents of the tape
at some time instant is represented by a Vj-chain, and Hy-
links connect tape cells at successive time instants. Thus,
IUT = Qq(a) if and only if M accepts S;,,...,5;, in
time 2°. It is straightforward to see that 7 is WA, so the
claim of this theorem holds. O

Note that Theorem 23 applies to Horn-SRZ and thus does
not rely on a particular treatment of equality.

The proof of Theorem 23 can be adapted to obtain the
lower bound for checking MFA of Horn-SRZ rules.

Proposition 24. Checking whether a Horn-SRZI TBox is
universally MFA is EXPTIME-hard.

Proof. Let M be an arbitrary deterministic Turing machine
and let S;,,...,.S;, be an input string on which M termi-

nates in time 2"". For such M and Siry---y S, let T be
as in the proof of Theorem 23. Furthermore, let 7" be the
extension of 7~ with the following rule:

Qa(7) = Fy.[B(z,y) A Ao(y)] (61)

By an argument analogous to the one used in the proof of
Theorem 7, one can see that 7’ is not universally MFA if
and only if M accepts S;,,...,5; O

tn*

As we show next, however, the complexity of query
answering drops to PSPACE for MFA Horn-SHZQ on-
tologies. In contrast, checking entailment of a single fact
is EXPTIME-hard in the general (i.e., not acyclic) case
(Krdtzsch, Rudolph, and Hitzler 2012). This drop in com-
plexity is due to the fact that, if R =5 =T in all rules
of Type 6, the automaton describing roles is of polynomial
size, and the elimination of role inclusions by Demri and de
Nivelle (2005) becomes polynomial. Thus, although acyclic
TBoxes can axiomatise existence of polynomially deep and

exponentially large structures, these structures are tree-like,
which allows us to explore the structures one path at a time
using the well-known tracing technique (Baader et al. 2007).
The main difficulty in the membership proof of the follow-
ing theorem is due to the fact that queries can contain tran-
sitive roles, so one cannot roll a query up into a concept.
Since the TBox is Horn, however, one can guess places in
the model that the query maps to. Given one such guess, one
can ground the query and check entailment of each ground
query atom individually, while taking transitive roles into
account. Furthermore, note that PSPACE-hardness proof of
concept satisfiability checking by Baader et al. (2007) is not
applicable to Horn ontologies since it uses disjunctive con-
cepts. Nonetheless, PSPACE-hardness can be proved by a
reduction from checking QBF validity.

Theorem 25. Let T be Horn-SHZIQ TBox, let I be an in-
stance such that T is MFA w.r.t. I, and let () be a BCQ.
Then, deciding I UT |= Q is PSPACE-complete.

Proof (Membership). Let us assume that BCQ @ is of the
form @Q = 3§.B1 A ... A B,,. Furthermore, let T = sk(7),
let f be the number of function symbols in Y, and let ¢
be the number of constants in I. Since L is just a regular
atomic concept, I U T is always satisfiable in the chase I
of I and 7. Furthermore, I U7 = @ if and only if a substi-
tution from the variables in § to the terms in I exists such
that B;0 € I for each 1 < ¢ < n; the latter clearly holds if
and only if / U Y |= B;6. As shown in the proof of Theorem
(9), each term in I is of the form gi(...g,(a)...), where
n < f. Thus, the first step in deciding I U T = @ is to ex-
amine all possible 6 and then check I U Y = B;#6; this can
clearly be done using a deterministic Turing machine that
uses polynomial space to store 6.

If B;# is of the form C(t), then let Y/ =Y, and let
D = C. Alternatively, if B;0 is of the form R(¢,t), then
let Y’ be Y extended with the following rules, where D and
E are fresh concepts not occurring in Y and I:

— E(t) (62)
E(z) ANR(z,z) — D(x) (63)

It is straightforward to see that I U Y |= D(t) if and only if
TUTY' = D(t). Let T” be obtained from Y’ by removing
each rule of the form

R(x1,2) N R(z,29) — R(x1,x2) (64)
and then replacing each rule of the form
A(2) AN R(z,z) — B(x) (65)

with the following rules, where ()4 g, B is a fresh concept
unique for A, R, and B:

A(z) N R(z,2) = Qa.r B(x) (66)
Qa,rB(2) NR(2,7) = Qa,r,B(T) (67)
Qa,r,B(z) = B(z) (68)

This corresponds to the well-known elimination of tran-
sitivity (Demri and de Nivelle 2005), so for the sake of
brevity we omit the proof that I U Y’ |= D(¢) if and only
ifTUY” = D(t).

Let = be T” extended with the equality axioms (3) and
(5). Since ~ does not occur in the body of the rules in T,
we have that T UY"” = D(t) if and only if T U =}~ D(t).
Let I2° be the chase for I and =; then I U Z }= D(t) if and
only if D(t) ¢ I°. Note that = contains rules of Types 1-5
from Table 1, rules (3) and (5), and possibly rules of the form
— Q1(t1) and Q2(t2) — false. This can be used in the same
way as by Motik, Shearer, and Horrocks (2009) to show that
each assertion in I2° is of one of the following forms, where
a and b are constants, and ¢ is a term consisting of possibly
zero unary function symbols:

o C(1),
* R(a,b), R(a, f(b)), R(f(b),a), R(t, f(t)), R(f(t),1), or

o L= f(g(t)), f(t) = g(t),a = b, a~ f(b), or an equality
symmetric to these ones.

The proof is by induction on the length of the chase sequence
for I and =, and the claim follows straightforwardly from the
12° form of rules of Types 1-5.

“Let fi,..., fn be all function symbols occurring in =.
Furthermore, we say that x is the central variable in a rule
of Type 1 or 3, and that z central variable in a rule of Type 2
or 4. W.l.o.g. we assume that the antecedent of a rule of Type
5 does not contain inverse roles; then, x; is the central vari-
able of arule of Type 5. Finally, in the equality replacement
rules (5), the central variable is the variable being replaced.

Clearly, D(t) ¢ I if and only if a Herbrand interpre-
tation J exists in which all assertions are of the form
mentioned above, such that I C J, I C J, J = E, and
D(t) ¢ J. We next show how to check the existence of such
J using a nondeterministic Turing machine that runs in poly-
nomial space.

We first guess an interpretation Jy C I for the constants
in I, and we check whether all rules in = not of Type 1 are
satisfied in .Jy. If that is the case, we consider each constant
cin Jy and call the following procedure for s = cand ¢ = 1:

1. If ¢ = n + 1 return true.

2. Guess an interpretation J* consisting of assertions of type
mentioned above and that involves terms occurring in J7
with j < ¢, and f1(s),..., fn(s).

3. If D(t) € J, return false.

4. Check whether J? coincides with each J7, j < i on the
common terms; if not, return false.

5. Check whether the equality symmetry rule (5) is satisfied
in J*; if not, return false.

6. Check whether J* U Ji=1 U ... U J satisfies each rule in
= if the central variable of the rule is mapped to s; if this
is not the case for each rule, return false.

7. For each 1 < k < n, recursively call this procedure for
fr(s) and @ + 1; if one of this call returns false, return
false as well.

8. Return true.

Assume that this procedure returns frue for each constant c,
and let .J be the union of all J* considered in the process. It
is straightforward to see that I C J, J |= Z, and D(t) & J.
Furthermore, recursion depth of our algorithm is n and at

each recursion level we need to keep a polynomially sized
interpretation J?, so our algorithm can be implemented us-
ing a nondeterministic Turing machine that uses polynomial
space. By the Savitch’s theorem, the algorithm can be im-
plemented using a deterministic Turing machine that uses
polynomial space, which proves our claim. O

Proof (Hardness). Consider an arbitrary quantified Boolean
formula of the form ¢ = Q121 ... Qpxy,.C1 A ... A Cy, de-
fined over variables x1,...,x,, where each Q; € {3,V},
1 <¢ < nisaquantifier, and each C;, 1 < j < kis aclause
of the form C; = L; 1 V L;j 2 V L; 3. Checking validity of ¢
is the canonical PSPACE-hard problem.

In the rest of this proof, for a binary predicate P, we ab-
breviate P(zg,z1) A... A P(Zm—_1,Tm) as P™(xo, Zm).
Let 7 be the Horn-SHZ Q TBox containing rules (69)—(72)
for each 1 <1 < n, rule (73) for each literal L;,, = z; in
clause C}, rule (74) for each literal L;,, = -z in clause
Cj, rule (75), rule (76) for each 1 <7 < nsuchthat Q; = 3,
and rule (77) for each 1 < ¢ < n such that Q); = V.

Ai_1(x) = Fy [X (2,9) A Ai(z)] (69)

Ai_1(z) = Fy.[X; (z,y) A Ai(x)] (70)

X (z,2") — P(z,2") (71)

X (z,2") = P(z,2") (72)

X[(2, 2) AP (z,2) A Ap(x) — Cj(x) (73)

X, (2, 2) NPz, 2) A Ay(x) — Cj(z) (74)

Ci(z) N ... ANCi(z) = F,(x) (75)

P(z,2) N Fi(z) = Fi_1(z) (76)

X (2, 2) NFi(2) AN X (2,2)) ANFy(2) — Fi_q(z) (77)

Strictly speaking, rules (73), (74), and (77) are not Horn-
SHZQ rules, but they can be transformed into Horn-SHZ Q
rules by replacing parts of their bodies with fresh concepts.
It is straightforward to see what 7" is WA and, thus, MFA.
Let I = {Ap(a)}, and let I5° be the chase of I and 7.
Due to rules (69)—(70), I contains a binary tree of depth
n in which each leaf node is reachable from a via a path
that, for each 1 < 7 < n, contains either Xi+ or X; . If we
interpret the presence of X" and X as assigning variable
x; to t and f, respectively, then each leaf node corresponds
to one possible assignment of z1,...,xz,. Rules (73) and
(74) then clearly label each leaf node with the clauses that
are true in the node, and rule (75) labels each leaf node with
F, for which all clauses are true. Finally, rules (76) and (77)
label each interior node of the tree with F;_; according to
the semantics of the appropriate quantifier of (. Clearly, ¢
is valid iff I U T |= Fy(a), which implies our claim. O

Although the proof of Theorem 25 takes into account on-
tology rules with equality (i.e., rules of Type 2), it assumes
that equality is axiomatised by >, and hence it does not
directly apply to singularised Horn-SHZQ rules. We con-
juecture, however, that the result in the theorem holds even
if singularisation is applied.

The restriction to Horn-SHZ Q rules also makes checking
MFA w.r.t. an instance easier: this task can be accomplished
by a minor variation of the query answering algorithm.

Theorem 26. Let T be Horn-SHZIQ TBox, and let I be
an instance. Then, deciding whether T is MFA w.rt. I is
in PSPACE, and deciding whether T is universally MFA is
PSPACE-hard.

Proof. (Membership) Rules in MFA(T) are ‘almost’ Horn-
SHZQ rules: rule (11) can be made a Horn-SHZ Q rule by
replacing S in the body with D (which clearly does not af-
fect the consequences of the rule), and the fact that rule (12)
contains a nullary atom in the head is immaterial. Thus, the
claim can be proved by a straightforward adaptation of the
membership proof of Theorem 25. The main difference in
the algorithm is that, with n function symbols, we need to
examine the models to depth n + 1; however, such an algo-
rithm still uses polynomial space.

(Hardness) Let ¢ be an arbitrary QBF, and let 7 be as in
the hardness proof of Theorem 23. Furthermore, let 7' be
the extension of 7 with the following rule:

Fo(z) — Jy.[B(x,y) A Ao(y)] (78)

By an argument analogous to the one used in the proof of
Theorem 7, one can see that 7’ is not universally MFA if
and only if ¢ is valid. O

Finally, MSA provides us with a tractable condition for
Horn-SHZ Q rules. Intuitively, all rules in MSA(7") have a
bounded number of variables and all predicates in MSA(T)
are of bounded arity, which eliminates all sources of in-
tractability in datalog reasoning. This result also holds for
singularised rules.

Theorem 27. Let T be Horn-SHZIQ TBox, and let I be
an instance. Then, deciding whether T is MSA w.rt. I is
in PTIME, and deciding whether T is universally MSA is
PTIME-hard.

Proof. (Membership) The datalog program MSA(T) con-
tains predicates of bounded arity, so its chase w.r.t. [is poly-
nomial in size. Furthermore, the number of variables in each
rule in MSA(T) is bounded, so each rule can be applied in
polynomial time. Thus, the chase of I and MSA(T) can be
computed in polynomial time, which implies our claim.

(Hardness) A monotone circuit C is a finite directed
acyclic graph with input vertices v;, , . . ., v;,, and one output
vertex v,. Each non-input vertex v in C' is assigned a label
A(v) € {A,V}. A valuation i is an assignment of input ver-
tices to t and f. The value of C on p is an assignment p¢c of
all vertices in C' to t and f that coincides with y on the input
vertices, and that is defined inductively on each other vertex
v with incoming edges from vertices vy, . .., v, as follows.

o If A\(v) =V, then pc(v) = po(vr) V...V uc(vp).
o If A(v) = A, then pc(v) = po(v) Ao A pe(op).

The problem of deciding for a given C' and p whether
e (v,) = t is PTIME-hard.

Let C be a monotone circuit. Then, 7 is the Horn-SHZ Q
TBox that uses a concept V; for each vertex v; of C' and
that, for each vertex v with incoming edges from vertices

U1, ..., 0, contains rule (79) if A(v) = A and rule (80) for
eachl <i<nif A(v) = V.

Vi) A AV (z) = V(z) (79)
Vi(z) = V(x) (80)

Given an arbitrary assignment p, let I, be the instance
that, for each input vertex v;, of C, contains V;, (a) if and
only if yu(v;;) = t. Clearly, I, UT = V,(a) if and only if
pe(vo) = t.

Now let 7" be the extension of 7 with the following rule:

Vo(x) = Jy.[Bl@,y) A\ V()] 8D

p(vij)=t

By an argument analogous to the one used in the proof of
Theorem 7, one can see that 7' is not universally MSA if
and only if pc(v,) = t. O

Experiments

We have evaluated the applicability of various acyclicity
conditions in practice. First, we implemented MFA, MSA,
JA, and WA checkers, and used them to check acyclicity
of a large corpus of Horn ontologies. Our goal was to de-
termine whether a substantial portion of these ontologies
are acyclic and could thus be used with (suitably extended)
materialisation-based reasoners. Second, we computed the
materialisation of the acyclic Horn ontologies and com-
pared the size of the materialisation with the size of the
original ABox. The goal of these tests was to see whether
materialisation-based reasoning is practically feasible.

Tests were performed on the Oxford Super Computer
HAL system with 8 2.8GHz processors and 16GB RAM. We
used a repository of 149 OWL ontologies whose TBox ax-
ioms can be transformed into existential rules. These ontolo-
gies include many of those in the Gardiner corpus (Gardiner,
Tsarkov, and Horrocks 2006), the LUBM ontology, and a
number of ontologies from the Open Biomedical Ontology
(OBO) corpus. None of our test ontologies, however, has
been obtained from typical conceptual models (i.e., ER or
UML diagrams); due to the specific modelling patterns used
in conceptual modelling, such ontologies are more likely to
be cyclic. All test ontologies are available online.”

Acyclicity Tests

We implemented all acyclicity checks by adapting the Her-
miT reasoner. HermiT was used to transform an ontol-
ogy into DL-clauses—formulae quite close to existential
rules. DL-clauses were then preprocessed: at-least num-
ber restrictions in rule heads were replaced with existen-
tial quantification, atoms involving datatypes were elim-
inated, and DL-clauses with empty head were removed;
datatypes and empty heads merely cause inconsistencies,
and do not contribute to chase non-termination. If the DL-
clauses contained equality, we check X" instead of X for
each X € {MFA,MSA JA} as a ‘lower-bound’ for acyclic-
ity. To obtain an ‘upper bound’ for acyclicity, we checked
whether the ontology was already cyclic when ignoring the

*http://hermit-reasoner.com/2011/acyclicity/TestCorpus.zip

[Gerules | Total | MSA | JA [WA |
| ontologies without equality |

< 100 21 19 19 | 19
100-1K 33 30 30 | 23
1K-5K 18 14 14 | 12
5K-12K 9 8 6 6
12K-160K 7) 3 3
| ontologies with equality |

< 100 49 45 45 | 45
100-1K 0 0 0 0
1K-5K 2 0 0 0
5K-12K 5 3 0 0
12K-160K b) 0 0 0

Table 2: Results of acyclicity tests

rules containing equality. These steps produced a set of exis-
tential rules, which were further modified as required to en-
code the desired ayclicity check. Finally, HermiT was used
to test universal acyclicity of the ontology by checking logi-
cal entailment w.r.t. the critical instance.

Each acyclicity test was given a 500s timeout. The MSA
test exceeded this limit on 2 ontologies, whereas the MFA
test exceeded the limit on 26 ontologies. Of the 149 on-
tologies tested, 124 (83%) were MSA. Moreover, MFA and
MSA are indistinguishable w.r.t. the test ontologies—that is,
all MFA ontologies were found to be MSA as well (the con-
verse holds per Theorem 13). Results are shown in Table 2.
Given the large number of test ontologies, we cannot show
results for each ontology. Instead, ontologies are grouped by
number of generating rules (G-rules); for each group, the ta-
ble shows the number of ontologies (Total) and the number
of ontologies found to be MSA, JA, and WA.

Note that seven large OBO ontologies were MSA but not
JA; thus, MSA may be especially useful on large and com-
plex ontologies. Table 3 shows for each of these ontologies
the number of generating rules (G-rules), if it uses equal-
ity (Eq), expressivity (DL), and the number of classes (C),
properties (P), and axioms (A).

Of the 25 non-MFA ontologies, only two ontologies are
in ELH" or certain versions of DL-Lite; this is interesting
since combined approaches (Lutz, Toman, and Wolter 2009;
Kontchakov et al. 2011) can be used to support CQ answer-
ing over these ontologies.

Materialisation Tests

To estimate the practicability of materialisation in acyclic
ontologies, we measured the maximal depth of function
symbol nesting in terms generated by skolem chase. This
measure, which we call ontology depth, is of interest as it
can be used to establish a bound on the size of the chase.
Our tests revealed that most ontologies have small depths:
out of the 124 MSA ontologies, 83 (66.9%) have depths less
than 5; 13 (10.5%) have depths from 5 to 9; 24 (19.4%) have
depths from 10 to 19; 2 (1.6%) have depths from 20 to 49;
and 2 (1.6%) have depths from 50 to 80.

Grules [Eg] DL | C | P | A |
biological _process_xp_self.imports.owl

10980 [yes | SRZF | 22375 | 183 | 47454
go_xp_regulation.owl

11187 [no | SH [27883] 5 [50941
biological _process_xp-_cell.imports.owl

11274 [yes | SRTF [24309 [293 [50386
cellular_component_xp_go.imports.owl

11473 [no | SR [35236 | 8 | 64026
biological_. .. _cellular_component.imports.owl
11798 [yes | SRTF [25337 [187 [52759
go_xp-regulation.imports.owl

23844 [no [SR [34293] 8] 104473
biological. . .. _multi_organism_process.imports.owl
24678 [no [SR [34410 | 21 | 104873

Table 3: MSA but not JA ontologies

We also computed the materialisation of several acyclic
ontologies. Since our implementation is only prototypical,
our primary goal was not to evaluate the performance of ma-
terialisation, but rather to estimate the increase in ABox size.
Although this increase may not be perfectly linear, we be-
lieve that it can be estimated by examining moderately-sized
ABoxes. Most of our test ontologies, however, do not have
substantial ABoxes; ontologies are often publicly available
as general vocabularies, whereas ABoxes are application-
specific and are thus usually not publicly available. Because
of this problem, we conducted two kinds of experiments.

First, we computed the materialisation of two ontologies
with nontrivial ABoxes: LUBM with one university and the
‘*kmi-basic-portal’ ontology. The TBox of LUBM contains 8
generating rules and has depth 1; the ABox before material-
isation contains 100, 543 facts. Materialisation took only 1
second, and it produced 150, 530 new facts, of which 47, 798
were added by generating rules. The ‘kmi-basic-portal’ on-
tology has 10 generating rules and has depth 2; the ABox
contains 179 facts. Materialisation took only 0.01 seconds,
and it added 975 new facts, of which 151 were added by
generating rules.

Second, for each of the 124 ontologies identified as MSA,
we computed an ABox by instantiating each class and prop-
erty with fresh individuals. We then computed the materi-
alisation and measured the generated size (number of facts
introduced by generating rules, divided by the facts in the
initial ABox), the materialisation size (facts in the mate-
rialisation, divided by facts in the initial ABox), and the
materialisation time. Since most generating rules in these
ontologies had singleton body atoms (i.e., they are of the
form A(x) — 3R.C(x)), these measures should provide a
reasonable estimate of the increase in ABox size caused by
materialisation. Of the 124 ontologies tested, 15 exceeded
the 1, 000s time limit for materialisation. The results for the
other 109 ontologies are shown in Table 4. Ontologies are
grouped by depth; each group shows the number of ontolo-
gies (#), and materialisation times, generated sizes, and ma-
terialisation sizes.

Depth | # time gen. size mat. size
max [avg [max [avg | max [avg
<5 |8 | 69 | 09 | 27 2 35 5
5-9 | 13| 68 11 37 | 11 | 41 13
10-80 | 14 | 549 | 101 | 281 | 51 | 283 | 53

Table 4: Materialisation times (in seconds) and sizes

Thus, materialisation seems practically feasible for many
ontologies: for 82 ontologies with depth less than 5, mate-
rialisation increases the ontology size by a factor of 5. This
suggests that principled, materialisation-based reasoning for
ontologies beyond the OWL 2 RL profile may be feasible,
especially for ontologies with relatively small depths.

Conclusion

In this paper, we have studied the problem of CQ answering
over acyclic existential rules. We have proposed two novel
acyclicity conditions that are sufficient to ensure chase ter-
mination and that generalise many of the existing acyclicity
conditions known thus far.

We have then studied the problem of CQ answering over
acyclic DL ontologies. Acyclicity provides several com-
pelling benefits for DL query answering. First, the CQ an-
swering problem over Horn ontologies is computationally
easier than for general ontologies. Second, under acyclic-
ity conditions it is possible to extend Horn ontologies with
arbitrary SWRL rules while preserving both the decid-
ability and the worst-case complexity of the formalism.
Third, acyclicity enables principled extensions of ontology
materialisation-based reasoners. Fourth, ontologies used in
practice are often acyclic, so our results open the door to
practical CQ answering beyond the OWL 2 RL profile.

Acknowledgments
This work was supported by the EU FP7 project SEALS and
by the EPSRC projects ConDOR, ExODA, and LogMap. B.
Cuenca Grau is supported by a Royal Society University Re-
search Fellowship.

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F,, eds. 2007. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edition.

Baget, J.-F.; Leclere, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artificial Intelligence 175(9—10):1620-1654.

Baget, J.-F.; Mugnier, M.-L.; and Thomazo, M. 2011. To-
wards farsighted dependencies for existential rules. In Proc.
RR, 30-45.

Beeri, C., and Vardi, M. Y. 1981. The implication problem
for data dependencies. In Proc. ICALP, 73-85.

Bishop, B., and Bojanov, S. 2011. Implementing OWL 2
RL and OWL 2 QL rule-sets for OWLIM. In Proc. OWLED,
volume 796 of CEUR WS Proceedings.

Broekstra, J.; Kampman, A.; and van Harmelen, F. 2002.
Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Proc. ISWC, 54—68.

Cali, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
Proc. LICS, 228-242.

Cali, A.; Gottlob, G.; and Pieris, A. 2010. Query answering
under non-guarded rules in Datalog+/-. In Proc. RR, 1-17.

Cali, A.; Gottlob, G.; and Pieris, A. 2011. New expressive
languages for ontological query answering. In Proc. AAAL

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tomated Reasoning 39(3):385-429.

Carroll, J. J.; Dickinson, I.; Dollin, C.; Reynolds, D.;
Seaborne, A.; and Wilkinson, K. 2004. Jena: Implement-
ing the Semantic Web Recommendations. In Proc. WWW—
Alternate Track, 74-83.

Cuenca Grau, B.; Horrocks, 1.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. OWL 2: The next step
for OWL. J. Web Semantics 6(4):309-322.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.

Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374-425.

Demri, S., and de Nivelle, H. 2005. Deciding Regular Gram-
mar Logics with Converse Through First-Order Logic. J.
Logic, Language and Information 14(3):289-329.

Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisited. In Proc. PODS, 149-158.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89-124.

Gardiner, T.; Tsarkov, D.; and Horrocks, I. 2006. Framework
for an automated comparison of description logic reasoners.
In Proc. ISWC, 654—667.

Glimm, B.; Lutz, C.; Horrocks, I.; and Sattler, U. 2008. Con-
junctive query answering for the description logic SHZ Q. J.
Artif. Intell. Res. 31:157-204.

Horrocks, 1., and Patel-Schneider, P. F. 2004. A proposal for
an OWL rules language. In Proc. WWW, 723-731.

Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data complex-
ity of reasoning in very expressive description logics. In
Proc. IJCAI 466-471.

Johnson, D. S., and Klug, A. C. 1984. Testing containment
of conjunctive queries under functional and inclusion depen-
dencies. J. Comput. Syst. Sci. 28(1):167-189.

Kiryakov, A.; Ognyanov, D.; and Manov, D. 2005. OWLIM:
A pragmatic semantic repository for OWL. In WISE Work-
shops, 182—192.

Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In Proc. IJCAI, 2656-2661.

Krotzsch, M., and Rudolph, S. 2011. Extending decidable
existential rules by joining acyclicity and guardedness. In
Proc. 1JCAI, 963-968.

Krétzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Conjunctive
queries for a tractable fragment of OWL 1.1. In Proc. ISWC,
310-323.

Krétzsch, M.; Rudolph, S.; and Hitzler, P. 2012. Complexi-
ties of Horn description logics. ACM Trans. Comp. Log. To
appear.

Kutz, O.; Horrocks, I.; and Sattler, U. 2006. The Even More
Irresistible SROZQ. In Proc. KR, 68-78.

Lutz, C.; Toman, D.; and Wolter, E. 2009. Conjunctive
query answering in the description logic ££ using a rela-
tional database system. In Proc. IJCAL

Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. ACM Trans. Database
Syst. 4(4):455-469.

Marnette, B. 2009. Generalized schema-mappings: from
termination to tractability. In Proc. PODS, 13-22.

Meditskos, G., and Bassiliades, N. 2008. Combining a DL
reasoner and a rule engine for improving entailment-based
OWL reasoning. In Proc. ISWC, 277-292.

Meier, M.; Schmidt, M.; and Lausen, G. 2009. On chase ter-
mination beyond stratification. Proc. VLDB 2(1):970-981.

Motik, B.; Shearer, R.; and Horrocks, 1. 2009. Hypertableau
reasoning for description logics. J. Artif. Intell. Res. 36:165—
228.

Ortiz, M.; Calvanese, D.; and Eiter, T. 2008. Data complex-
ity of query answering in expressive description logics via
tableaux. J. Automated Reasoning 41(1):61-98.

Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query
answering in the Horn fragments of the description logics
SHOIQ and SROZQ. In Proc. IJCAI, 1039-1044.

Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2010.
Tractable query answering and rewriting under description
logic constraints. J. Applied Logic 8(2):186-209.

Rudolph, S., and Glimm, B. 2010. Nominals, inverses,
counting, and conjunctive queries or: Why infinity is your
friend! J. Artif. Intell. Res. 39:429-481.

Spezzano, F., and Greco, S. 2010. Chase termination: A
constraints rewriting approach. Proc. VLDB 3(1):93-104.

Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.; An-
namalai, M.; and Srinivasan, J. 2008. Implementing an in-

ference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In Proc. ICDE, 1239-1248.

