Stratified Negation in Limit Datalog Programs

Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik and Ian Horrocks
Department of Computer Science, University of Oxford, UK
{mark.kaminski, bernardo.cuenca.grau, egor.kostylev, boris.motik, ian.horrocks}@cs.ox.ac.uk

Abstract

There has recently been an increasing interest in declarative data analysis, where analytic tasks are specified using a logical language, and their implementation and optimisation are delegated to a general-purpose query engine. Existing declarative languages for data analysis can be formalised as variants of logic programming equipped with arithmetic function symbols and/or aggregation, and are typically undecidable. In prior work, the language of limit programs was proposed, which is sufficiently powerful to capture many analysis tasks and has decidable entailment problem. Rules in this language, however, do not allow for negation. In this paper, we study an extension of limit programs with stratified negation-as-failure. We show that the additional expressive power makes reasoning computationally more demanding, and provide tight data complexity bounds. We also identify a fragment with tractable data complexity and sufficient expressivity to capture many relevant tasks.

1 Introduction

Data analysis tasks are becoming increasingly important in information systems. Although these tasks are currently implemented using code written in standard programming languages, in recent years there has been a significant shift towards declarative solutions where the definition of the task is clearly separated from its implementation [Alvaro et al., 2010; Markl, 2014; Seo et al., 2015; Wang et al., 2015; Shkapsky et al., 2016; Kaminski et al., 2017].

Languages for declarative data analysis are typically rule-based, and they have already been implemented in reasoning engines such as BOOM [Alvaro et al., 2010], DeALS [Shkapsky et al., 2016], Myria [Wang et al., 2015], SocialLite [Seo et al., 2015], Overlog [Loo et al., 2009], Dyna [Esner and Filardo, 2011], and Yedalog [Chin et al., 2015].

Formally, such declarative languages can be seen as variants of logic programming equipped with means for capturing quantitative aspects of the data, such as arithmetic function symbols and aggregates. It is, however, well-known since the ‘90s that the combination of recursion with numeric computations in rules easily leads to semantic difficulties [Mumick et al., 1990; Kemp and Stuckey, 1991; Beeri et al., 1991; Van Gelder, 1992; Consens and Mendelzon, 1993; Ganguly et al., 1995; Ross and Sagiv, 1997; Mazuran et al., 2013], and/or undecidability of reasoning [Dantsin et al., 2001; Kaminski et al., 2017]. In particular, undecidability carries over to the languages underpinning the aforementioned reasoning engines for data analysis.

Kaminski et al. [2017] have recently proposed the language of limit Datalog programs—a decidable variant of negation-free Datalog equipped with arithmetic functions over the integers that is expressive enough to capture many data analysis tasks. The key feature of limit programs is that all intensional predicates with a numeric argument are limit predicates, the extension of which represents minimal (min) or maximal (max) bounds of numeric values. For instance, if we encode a weighted directed graph as facts over a ternary edge predicate and a unary node predicate in the obvious way, then the following rules encode the all-pairs shortest path problem, where the ternary min limit predicate d is used to encode the distance from any node to any other node in the graph as the length of a shortest path between them.

\[\text{node}(x) \rightarrow d(x, x, 0) \quad (1) \]
\[d(x, y, m) \land \text{edge}(y, z, n) \rightarrow d(x, z, m + n) \quad (2) \]

The semantics of min predicates is defined such that a fact \(d(u, v, k) \) is entailed from these rules and a dataset if and only if the distance from \(u \) to \(v \) is at most \(k \); as a result, all facts \(d(u, v, k') \) with \(k' \geq k \) are also entailed. This is in contrast to standard first order predicates, where there is no semantic relationship between \(d(u, v, k) \) and \(d(u, v, k') \). The intended semantics of limit predicates can be axiomatised using rules over standard predicates; in particular, our example limit program is equivalent to a standard logic program consisting of rules (1), (2), and the following rule (3), where \(d \) is now treated as a regular first-order predicate:

\[d(x, y, k) \land (k \leq k') \rightarrow d(x, y, k') \quad (3) \]

Kaminski et al. [2017] showed that, under certain restrictions on the use of multiplication, reasoning (i.e., fact entailment) over limit programs is decidable and CoNP-complete in data complexity; then, they proposed a practical fragment with tractable data complexity.

Limit Datalog programs as defined in prior work are, however, positive and hence do not allow for negation-as-failure
in the body of rules. Non-monotonic negation applied to limit atoms can be useful, not only to express a wider range of data analysis tasks, but also to declaratively obtain solutions to problems where the cost of such solutions is defined by a positive limit program. For instance, our example limit program consisting of rules (1) and (2) provides the length of a shortest path between any two nodes, but does not provide access to any of the paths themselves—an issue that we will be able to solve using non-monotonic negation.

In this paper, we study the language of limit programs with stratified negation-as-failure. Our language extends both positive limit Datalog as defined in prior work and plain (function-free) Datalog with stratified negation. We argue that our language provides useful additional expressivity, but at the expense of increased complexity of reasoning; for programs with restricted use of multiplication, complexity jumps from CONP-completeness in the case of positive programs, to Δ^2_p-completeness in programs with stratified negation. We also show that the tractable fragment of positive limit programs defined in [Kaminski et al., 2017] can be seamlessly extended with stratified negation while preserving tractability of reasoning; furthermore, the extended fragment is sufficiently expressive to capture the relevant data analysis tasks.

The proofs of all our results are given in the appendix.

2 Preliminaries

In this section we recapitulate the syntax and semantics of Datalog programs with integer arithmetic and stratified negation (see e.g., [Dantsin et al., 2001] for an excellent survey).

Syntax We assume a fixed vocabulary of countably infinite, mutually disjoint sets of predicates equipped with non-negative arities, objects, object variables, and numeric variables. Each position $1 \leq i \leq n$ of an n-ary predicate is of either object or numeric sort. An object term is an object or an object variable. A numeric term is an integer, a numeric variable, or of the form $s_1 + s_2$, $s_1 - s_2$, or $s_1 \times s_2$ where s_1 and s_2 are numeric terms and $+$, $-$, and \times are the standard arithmetic functions. A constant is an object or an integer. A standard atom is of the form $B(t_1, \ldots, t_n)$, with B an n-ary predicate and each t_i a term matching the sort of the i-th position of B. A (standard) positive literal is a standard atom, and a (standard) negative literal is of the form $\neg \alpha$ for α a standard atom. A comparison atom is of the form $(s_1 < s_2)$ or $(s_1 \leq s_2)$, with $<$ and \leq the usual comparison predicates over the integers, and s_1 and s_2 numeric terms. We write $(s_1 \equiv s_2)$ as an abbreviation for $(s_1 \leq s_2) \land (s_2 \leq s_1)$. A term, atom or literal is ground if it has no variables.

A rule r has the form $\bigwedge_i \mu_i \land \bigwedge_j \beta_j \rightarrow \alpha$, where the body $\bigwedge_i \mu_i \land \bigwedge_j \beta_j$ is a possibly empty conjunction of standard literals μ_i and comparison atoms β_j, and the head α is a standard atom. We assume without loss of generality that standard body literals are function-free; indeed, a conjunction with a functional term s can be equivalently rewritten by replacing s with a fresh variable x and adding $(x = s)$ to the conjunction. A rule r is safe if each object variable in r occurs in a positive literal in the body of r. A ground instance of r is obtained from r by substituting each variable by a constant of the right sort.

A fact is a rule with empty body and a function-free standard atom in the head that has no variables in object positions and no repeated variables in numeric positions. Intuitively, a variable in a fact says that the fact holds for every integer in the position. As a convention, we will omit \rightarrow and use symbol ∞ instead of variables when writing facts. A dataset D is a finite set of facts. Dataset D is ordered if (i) it contains facts $\text{first}(a_1)$, $\text{next}(a_1, a_2)$, \ldots, $\text{next}(a_{n-1}, a_n)$, $\text{last}(a_n)$ for some repetition-free enumeration a_1, \ldots, a_n of all objects in D; and (ii) it contains no other facts over predicates first, next, and last. A program is a finite set of safe rules; without loss of generality we assume that distinct rules do not share variables. A predicate B is extensional (EDB) in a program P if B occurs in P in the head of a rule that is not a fact; otherwise, B is extensional (EDB) in P. Program P is positive if it has no negative literals, and it is semi-positive if negation occurs only in front of EDB atoms. A stratification λ of P is a function λ mapping each predicate to a positive integer such that, for each rule with the head over a predicate A and each standard body literal μ over B, we have $\lambda(B) \leq \lambda(A)$ if μ is positive, and $\lambda(B) < \lambda(A)$ if μ is negative. Program P is stratified if it admits a stratification. Given a stratification λ, we write $P[i]$ for the i-th stratum of P over λ—that is, the set of all rules in P whose head predicates A satisfy $\lambda(A) = i$. Note that each stratum is a semi-positive program.

Semantics A (Herbrand) interpretation I is a possibly infinite set of ground facts (i.e., facts without ∞). Interpretation I satisfies a ground atom α, written $I \models \alpha$, if either (i) α is a standard atom such that evaluation of the arithmetic functions in α under the usual semantics produces a fact in I; or (ii) α is a comparison atom that evaluates to true under the usual semantics. Interpretation I satisfies a ground negative literal $\neg \alpha$, written $I \models \neg \alpha$, if $I \not\models \alpha$. The notion of satisfaction is extended to conjunctions of ground literals, rules, and programs as in first-order logic, with all variables in rules implicitly universally quantified. If I satisfies a program P, then I is a model of P. For I a Herbrand interpretation and R a (possibly infinite) semi-positive set of rules, let $S_R(I)$ be the set of facts α such that $\varphi \rightarrow \alpha$ is a ground instance of a rule in R and $I \models \varphi$. Given a program P and a stratification λ of P, for each $i, j \geq 0$ we define interpretation I^λ_i by induction on i and j:

$$I^\lambda_0 = I^\emptyset; \quad I^\lambda_{i+1} = S_P[i+1] \cup I^\lambda_i(P[i+1]); \quad I^\lambda_\infty = \bigcup_{j \geq 0} I^\lambda_j.$$

The materialisation $M(P)$ of P is the interpretation I^∞, for k the greatest number such that $P[k] \neq \emptyset$. The materialisation of a program does not depend on the chosen stratification. A stratified program P entails a fact α, written $P \models \alpha$, if $\alpha' \in M(P)$ for every ground instance α' of α. For positive programs, this definition coincides with the usual first-order notion of entailment: for P positive and α a fact, $P \models \alpha$ if and only if $I \models \alpha$ holds for all $I \models P$.

Reasoning We study the computational properties of checking whether $P \cup D \models \alpha$, for P a program, D a dataset, and α a fact. We are interested in data complexity, which assumes that only D and α form the input while P is fixed. Unless otherwise stated, all numbers in the input are coded in bi-
nary, and the size $|\mathcal{P}|$ of \mathcal{P} is the size of its representation. Checking $\mathcal{P} \cup D \models \alpha$ is undecidable even if the only arithmetic function in \mathcal{P} is $+ \text{[Dantsin et al., 2001]}$ and predicates have at most one numeric position [Kaminski et al., 2017].

We use standard definitions of the basic complexity classes such as P, NP, \textsc{CoNP}, and FP. Given a complexity class C, \mathcal{P}^C is the class of decision problems solvable in polynomial time by deterministic Turing machines with an oracle for a problem in C; functional class FP^C is defined similarly. Finally, Δ^b_P is a synonym for P^NP.

3 Stratified Limit Programs

We introduce stratified limit programs as a language that can be seen as either a semantic or a syntactic restriction of Datalog with integer arithmetic and stratified negation. Our language is also an extension of that in [Kaminski et al., 2017] with stratified negation.

Definition 1. A stratified limit program is a pair (\mathcal{P}, τ) where

- \mathcal{P} is a stratified program where each predicate either has no numeric position, in which case it is an object predicate, or only its last position is numeric, in which case it is a numeric predicate, and
- τ is a partial function from numeric predicates to $\{\min, \max\}$ that is total on the IDB predicates in \mathcal{P} and on predicates occurring in non-ground facts.

A numeric predicate A is a min (or max) limit predicate if $\tau(A) = \min$ (or $\tau(A) = \max$, respectively). Numeric predicates that are not limit predicates are ordinary. An atom, fact or literal is numeric, limit, etc. if so is the used predicate.

All notions defined on ordinary Datalog programs \mathcal{P} (such as EDB and IDB predicates, stratification, etc.) transfer to limit programs (\mathcal{P}, τ) by applying them to \mathcal{P}. We often abuse notation and write \mathcal{P} instead of (\mathcal{P}, τ) when τ is clear from the context or immaterial. Whenever we consider a union of two limit programs, we silently assume that they coincide on τ. Finally, we denote \preceq (or \succeq) by \succeq_A if A is a max (or, respectively, min) limit predicate.

Intuitively, a limit fact $B(\vec{a}, k)$ says that the value of B for a tuple of objects \vec{a} is k or more, if B is max, or k or less, if B is min. For example, a min limit fact $d(u, v, k)$ in all-pairs shortest path example says that node v is reachable from node u via a path with cost k or less. The intended semantics of limit predicates can be axiomatised using standard rules as given next.

Definition 2. An interpretation I satisfies a limit program (\mathcal{P}, τ) if it satisfies the program $\mathcal{P} \cup \text{ax}(\mathcal{P})$, where $\text{ax}(\mathcal{P})$ contains the following rule for each limit predicate A in \mathcal{P}:

$$A(\vec{x}, m) \land \langle n \succeq_A m \rangle \rightarrow A(\vec{x}, n).$$

The materialisation $M(\mathcal{P}, \tau)$ of (\mathcal{P}, τ) is $M(\mathcal{P} \cup \text{ax}(\mathcal{P}))$; and (\mathcal{P}, τ) entails α, written $(\mathcal{P}, \tau) \models \alpha$, if $\alpha \in M(\mathcal{P}, \tau)$.

We next demonstrate the use of stratified negation on examples. One of the main uses of negation of a limit atom is to ‘access’ the limit value (e.g., the length of a shortest path) attained by the atom in the materialisation of previous strata, and then exploit such values in further computations. To facilitate such use of negation in examples, we introduce a new operator as syntactic sugar in the language.

Definition 3. The least upper bound expression $[A(\vec{s}, n)]$ of a max (or min) limit atom $A(\vec{s}, n)$ is the conjunction $A(\vec{s}, n) \land \neg A(\vec{s}, m) \land (m \succeq n + t)$ where $t = 1$ (or $t = -1$, respectively) and m is a fresh variable.

Clearly, $I \models [A(\vec{a}, k)]$ for I an interpretation and $A(\vec{a}, k)$ a ground atom if k is the limit integer such that $I \models A(\vec{a}, k)$. Example 4. An input of the single-pair shortest path problem can be encoded in the obvious way as a dataset D_{sp} using a ternary ordinary numeric predicate edge to represent the graph’s weighted edges, and unary facts $\text{source}(u)$ and $\text{target}(v)$ to identify the source and target nodes u and v, respectively. The stratified limit program \mathcal{P}_{sp} given next computes, together with D_{sp} (where all edge weights are positive), a DAG over a binary object predicate sp-edge such that every maximal path in the DAG is a shortest path from u to v.

$$\text{source}(x) \rightarrow \text{ds}(x, 0)$$

$$\text{ds}(x, m) \land \text{edge}(x, y, n) \rightarrow \text{ds}(y, m + n)$$

$$[\text{ds}(x, m_1)] \land [\text{ds}(y, m_2)] \land \text{edge}(x, y, n) \land \text{target}(y) \land (m_1 + n = m_2) \rightarrow \text{sp-edge}(x, y)$$

$$[\text{ds}(x, m_1)] \land [\text{ds}(y, m_2)] \land \text{edge}(x, y, n) \land \text{sp-edge}(y, z) \land (m_1 + n = m_2) \rightarrow \text{sp-edge}(x, y)$$

The first stratum consists of rules (4) and (5), and computes the length of a shortest path from u to all other nodes using the min predicate ds; in particular, $\mathcal{P}_{sp} \cup D_{sp} \models [\text{ds}(v, k)]$ if and only if k is the length of a shortest path from u to v. Then, in a second stratum, the program computes the sp-edge predicate such that $\mathcal{P}_{sp} \cup D_{sp} \models \text{sp-edge}(a, b)$ if and only if the edge (a, b) is part of a shortest path from u to v.

Example 5. The closeness centrality of a node in a strongly connected weighted directed graph G is a measure of how central the node is in the graph [Sabidussi, 1966]; variants of this measure are useful, for instance, for the analysis of market potential. Most commonly, closeness centrality of a node u is defined as $1/\sum_{v \text{node with } u} d(u, v)$, where $d(u, v)$ is the length of a shortest path from u to v; the sum in the denominator is often called the farness centrality of v. We next give a limit program computing a node of maximal closeness centrality in a given directed graph. We encode a graph as an ordered dataset D_{cc} using, as before, a unary object predicate node and a ternary ordinary numeric predicate edge. Program \mathcal{P}_{cc} consists of rules (8)–(16), where d, $\text{farness}'$ and farness are min predicates, and centre' and centre are object predicates.

$$\text{node}(x) \rightarrow d(x, x, 0)$$

$$d(x, y, m) \land \text{edge}(y, z, n) \rightarrow d(x, z, m + n)$$

$$\text{first}(y) \land d(x, y, n) \rightarrow \text{farness}'(x, y, n)$$

$$\text{farness}'(x, y, n) \land \text{last}(y) \rightarrow \text{farness}(x, n)$$

$$\text{first}(x) \rightarrow \text{centre}'(x, x)$$

$$\text{next}(x, y) \land \text{centre}'(x, z) \land [\text{farness}(z, n)] \land [\text{farness}(y, m)] \land (m < n) \rightarrow \text{centre}'(y, y)$$
A rule r is semi-ground if all variables in r are numeric and occur only in limit and comparison atoms. The semi-grounding of a program P is obtained by replacing, in every rule r in P, each object variable and each numeric variable occurring in an ordinary atomic term in r with a constant in P in all possible ways.

It is easily seen that the semi-grounding of a limit-linear program P entails the same facts as P for every dataset. Furthermore, as in prior work, Definition 6 ensures that the semi-grounding of a positive limit-linear program contains only linear numeric terms; finally, for programs with stratified negation, it ensures that negation can be eliminated while preserving limit-linearity when the program is materialised stratum-by-stratum, as we will discuss in detail later on.

Decidability of fact entailment for positive limit-linear programs is established by first semi-grounding the program and then reducing fact entailment over the resulting program to the validity problem of Presburger formulas [Kaminski et al., 2017]—that is, first-order formulas interpreted over the integers and composed using only variables, constants 0 and 1, functions $+$ and $-$, and the comparisons.

The extension of such a reduction to stratified limit-linear programs, however, is complicated by the fact that in the presence of negation-as-failure, entailment no longer coincides with classical first-order entailment. We thus adopt a different approach, where we show decidability and establish data complexity upper bounds according to the following steps.

Step 1. We extend the results in [Kaminski et al., 2017] for positive programs by showing that, for every positive limit-linear program P and dataset D, we can compute in $FP^{\Delta^P_0}$ a finite representation of its (possibly infinite) materialisation $M(P \cup D)$ (see Lemma 8 and Corollary 9). This representation is called the pseudo-materialisation of $P \cup D$.

Step 2. We further extend the results in Step 1 to semi-positive limit-linear programs, where negation occurs only in front of EDB predicates. For this, we show that fact entailment for such programs can be reduced in polynomial time in the size of the data to fact entailment over semi-ground positive limit-linear programs by exploiting the notion of a reduct (see Definition 10 and Lemma 11). Thus, we can assume existence of an $FP^{\Delta^P_0}$ oracle O for computing the pseudo-materialisation of a semi-positive limit-linear program.

Step 3. We provide an algorithm (see Algorithm 1) that decides entailment of a fact α by a stratified limit-linear program P using oracle O from Step 2. The algorithm maintains a pseudo-materialisation J, which is initially empty and is constructed bottom-up stratum by stratum. In each step i, the algorithm updates the pseudo-materialisation by applying O to the union of the pseudo-materialisation for stratum $i-1$ and the rules in the i-th stratum. The final J, from which entailment of α is obtained, is computed using a constant number of oracle calls in the size of the data, which yields a Δ^P_0 data complexity upper bound (Proposition 13 and Theorem 15).

In what follows, we specify each of these steps. We start by formally defining the notion of a pseudo-materialisation $M(P)$ of a stratified limit program P, which compactly represents the materialisation $M(P)$. Intuitively, $M(P)$ can be infinite because it can contain, for any limit predicate B and tuple of objects \vec{a} of suitable arity, an infinite number of facts.

\[
\begin{align*}
next(x,y) \land \text{centre}'(x,z) \land \\
(fness(z,n)) \land (fness(y,m)) \land \\
(n \leq m) \rightarrow \text{centre}'(y,z) \\
(\text{centre}'(x,z) \land \text{last}(x) \rightarrow \text{centre}(z))
\end{align*}
\]
of the form \(B(\vec{a}, k)\). However, if the materialisation has facts of this form, then either there is a limit value \(\ell\) such that \(B(\vec{a}, k) \in M(P)\) for each \(k \leq_\ell \ell\) and \(B(\vec{a}, k') \notin M(P)\) for each \(k' >_B \ell\), or \(B(\vec{a}, k) \in M(P)\) for every integer \(k\). As argued in prior work, it suffices for the pseudo-materialisation to contain only a single fact \(B(\vec{a}, \ell)\) in the former case, or \(B(\vec{a}, \infty)\) in the latter case.

Definition 7. A pseudo-interpretation \(J\) is a set of facts such that \(\forall \ell\) occurs only in facts over limit predicates and \(k = k'\) holds for all facts \(B(\vec{a}, k)\) and \(B(\vec{a}, k')\) in \(J\) with limit \(B\).

The pseudo-materialisation of a limit program \(P\), written \(P(P)\), is the (unique) pseudo-interpretation such that:

1. an object or ordinary numeric fact is contained in \(P(P)\) if and only if it is contained in \(M(P)\); and
2. for each limit predicate \(B\), object tuple \(\vec{a}\), and integer \(\ell\),
 - \(B(\vec{a}, \ell) \in P(P)\) if and only if \(B(\vec{a}, \ell) \in M(P)\) and \(B(\vec{a}, k) \notin M(P)\) for all \(k >_B \ell\), and
 - \(B(\vec{a}, k) \in P(P)\) if and only if \(B(\vec{a}, k) \in M(P)\) for all integers \(k\).

We now strengthen the results in [Kaminski et al., 2017] by establishing a bound on the size of pseudo-materialisations of positive, limit-linear programs.

Lemma 8. Let \(P\) be a semi-ground, positive, limit-linear program, and let \(D\) be a limit dataset. Then \(|P(P \cup D)| \leq |P \cup D|\) and the magnitude of each integer in \(P(P \cup D)\) is bounded polynomially in the largest magnitude of an integer in \(P \cup D\), exponentially in \(|P|\), and double-exponentially in \(\max_{r \in P} \|r\|_u\), where \(\|r\|_u\) stands for the size of the representation of \(r\) assuming that all numbers take unit space.

By Lemma 8, the pseudo-materialisation of \(P \cup D\) contains at most linearly many facts; furthermore, the size of each such fact is bounded polynomially once \(P\) is considered fixed. Hence, the pseudo-materialisation of \(P\) can be computed in \(FP\) in data complexity, even if \(P\) is not semi-ground.

Corollary 9. Let \(P\) be a positive, limit-linear program. Then the function mapping each limit dataset \(D\) to \(P(P \cup D)\) is computable in \(FP\) in \(|D|\).

In our second step, we extend this result to semi-positive programs. For this, we start by defining the notion of a reduct of a semi-positive limit-linear program \(P\). The reduct is obtained by first computing a semi-ground instance \(P'\) of \(P\) and then eliminating all negative literals in \(P'\) while preserving fact entailment. Intuitively, negative literals can be eliminated because they involve only EDB predicates; as a result, their extension can be computed in polynomial time from the facts in \(P\) alone. To eliminate a ground negative literal \(\mu\), it suffices to check whether \(\mu\) is entailed by the facts in \(P\) and simplify all rules containing \(\mu\) accordingly; in turn, limit literals involving a numeric variable \(m\) can be rewritten as comparisons of \(m\) with a constant computed from the facts in \(P\).

Definition 10. Let \(P\) be a semi-positive, limit-linear program and let \(D\) be the subset of all facts in \(P\). The reduct of \(P\) is obtained by first computing the semi-grounding \(P'\) of \(P\) and then applying the following transformations to each rule \(r \in P'\) and each negative body literal \(\mu\) in \(r\):

1. if \(\mu = \text{not } \alpha\), for \(\alpha\) a ground atom, delete \(r\) if \(D \models \alpha\), and delete \(\mu\) from \(r\) otherwise.

Algorithm 1:

Parameter: oracle \(O\) computing \(P(P')\) for \(P'\) a semi-positive, limit-linear program

Input: stratified, limit-linear program \(P\), fact \(\alpha\)

Output: true if \(P \models \alpha\)

1. compute a stratification \(\lambda\) of \(P\)
2. \(J := \emptyset\)
3. for \(i := 1\) to \(\max\{k \mid P[k] \neq \emptyset\}\) do
4. \(J := O(P[i] \cup J)\)
5. return true if \(\alpha\) is satisfied in \(J\) and false otherwise

2. if \(\mu = \text{not } A(\vec{a}, m)\) is a non-ground limit literal, then
 - delete \(\alpha\) if \(D \models A(\vec{a}, k)\) for each integer \(k\);
 - delete \(\mu\) from \(r\) if \(D \neq A(\vec{a}, k)\) for each \(k\); and
 - replace \(\mu\) in \(r\) with \((k \prec_A m)\) otherwise, where \(D \models [A(\vec{a}, k)]\).

Note that semi-ground programs disallow non-ground negative literals over ordinary numeric predicates, which is why these are not considered in Definition 10. As shown by the following lemma, reducts allow us to reduce fact entailment for semi-positive, limit-linear programs to semi-ground, positive, limit-linear programs.

Lemma 11. For \(P\) a semi-positive, limit-linear program and \(D\) a limit dataset, \(P'\) the reduct of \(P\) \& \(D\), and \(\alpha\) a fact, we have \(P \cup D \models \alpha\) if and only if \(P' \models \alpha\). Moreover \(P'\) can be computed in polynomial time in \(|D|\), \(|P'\|\) is polynomially bounded in \(|D|\), and \(\max_{r \in P'} \|r\|_u \leq \max_{r \in P \cup D} \|r\|_u\).

The results in Lemma 8 and Lemma 11 imply that the pseudo-materialisation of a semi-positive, limit-linear program can be computed in \(FP\) in data complexity.

Lemma 12. Let \(P\) be a semi-positive, limit-linear program. Then the function mapping each limit dataset \(D\) to \(P(P \cup D)\) is computable in \(FP\) in \(|D|\).

We are now ready to present Algorithm 1, which decides entailment of a fact \(\alpha\) by a stratified limit-linear program \(P\). The algorithm uses an oracle \(O\) for computing the pseudo-materialisation of a semi-positive program. The existence of such oracle and its computational bounds are ensured by Lemma 12. Algorithm 1 constructs the pseudo-materialisation \(P(P)\) of \(P\) stratum by stratum in a bottom-up fashion. For each stratum \(i\), the algorithm uses oracle \(O\) to compute the pseudo-materialisation of the program consisting of the rules in the current stratum and the facts in the pseudo-materialisation computed for the previous stratum. Once \(P(P)\) has been constructed, entailment of \(\alpha\) is checked directly over \(P(P)\).

Correctness of the algorithm is immediate by the properties of \(O\) and the correspondence between pseudo-materialisations and materialisations. Moreover, if oracle \(O\) runs in \(FP_{C^C}\) in data complexity, for some complexity class \(C\), then it can only return a pseudo-interpretation that is polynomially bounded in data complexity; as a result, Algorithm 1 runs in \(P_{C^C}\) since the number of strata of \(P\) does not depend on the input dataset.

Proposition 13. If oracle \(O\) is computable in \(FP_{C^C}\) in data complexity, then Algorithm 1 runs in \(P_{C^C}\) in data complexity.
The following upper bound immediately follows from the correctness of Algorithm 1 and Proposition 13.

Lemma 14. For \mathcal{P} a stratified, limit-linear program and α a fact, deciding $\mathcal{P} \models \alpha$ is in Δ^p_2 in data complexity.

The matching lower bound is obtained from the ODDMINSAT problem [Krentel, 1988]. An instance \mathcal{M} of ODDMINSAT consists of a repetition-free tuple of variables $\langle x_N, \ldots, x_0 \rangle$ and a satisfiable propositional formula φ over these variables. The question is whether the truth assignment σ satisfying φ for which the tuple $(\sigma(x_N), \ldots, \sigma(x_0))$ is lexicographically minimal, assuming $\varphi = \text{false}$, among all satisfying truth assignments of φ has $\sigma(x_0) = \text{true}$. In our reduction, \mathcal{M} is encoded as a dataset $\mathcal{D}_{\mathcal{M}}$ using object predicates or and not to encode the structure of φ and numeric predicates to encode the order of variables in $\langle x_N, \ldots, x_0 \rangle$; a fixed, two-strata program $\mathcal{P}_{\text{modd}}$ then goes through all assignments σ in the ascending lexicographic order and evaluates the encoding of φ on σ until it finds some σ that makes φ true; $\mathcal{P}_{\text{modd}}$ then derives fact minOdd if and only if $\varphi = \text{true}$. Thus, $\mathcal{P}_{\text{modd}} \cup \mathcal{D}_{\mathcal{M}} \models \text{minOdd}$ if and only if \mathcal{M} belongs to the language of ODDMINSAT.

Theorem 15. For \mathcal{P} a stratified, limit-linear program and α a fact, deciding $\mathcal{P} \models \alpha$ is Δ^p_2-complete in data complexity. The lower bound holds already for programs with two strata.

5 A Tractable Fragment

Tractability in data complexity is an important requirement in data-intensive applications. In this section, we propose a syntactic restriction on stratified, limit-linear programs that is sufficient to ensure tractability of fact entailment in data complexity. Our restriction extends that of type consistency in prior work to account for negation. The programs in Examples 4 and 5 are type-consistent.

Definition 16. A semi-ground, limit-linear rule r is type-consistent if
- each numeric term t in r is of the form $k_0 + \sum_{i=1}^{m} k_i \times m_i$ where k_0 is an integer and each k_i, $1 \leq i \leq n$, is a nonzero integer, called the coefficient of variable m_i in t;
- each numeric variable occurs in exactly one standard body literal;
- each numeric variable in a negative literal is guarded;
- if the head $\text{A}(\vec{a}, s)$ of r is a limit atom, then each unguarded variable occurring in s with a positive (or negative) coefficient also occurs in the body in a (unique) positive limit literal that is of the same (or different, respectively) type (i.e., min vs. max) as A;
- for each comparison $(s_1 < s_2)$ or $(s_1 \leq s_2)$ in r, each unguarded variable occurring in s_1 with a positive (or negative) coefficient also occurs in a (unique) positive min (or max, respectively) body literal, and each unguarded variable occurring in s_2 with a positive (or negative) coefficient occurs in a (unique) positive max (or min, respectively) body literal.

A semi-ground, stratified, limit-linear program is type-consistent if all of its rules are type-consistent. A stratified limit-linear program \mathcal{P} is type-consistent if the program obtained by first semi-grounding \mathcal{P} and then simplifying all numeric terms as much as possible is type-consistent.

Similarly to type-consistency for positive programs, Definition 16 ensures that divergence of limit facts to ∞ can be detected in polynomial time when constructing a pseudo-materialisation (see [Kaminski et al., 2017] for details). Furthermore, the conditions in Definition 16 have been crafted such that the reduct of a semi-positive type-consistent program (and hence of any intermediate program considered while materialising a stratified program) can be trivially rewritten into a positive type-consistent program. For this, it is essential to require a guarded use of negation (see third condition in Definition 16).

Lemma 17. For \mathcal{P} a semi-positive, type-consistent program and \mathcal{D} a limit dataset, the reduct of $\mathcal{P} \cup \mathcal{D}$ is polynomially rewritable to a positive, semi-ground, type-consistent program \mathcal{P}' such that, for each fact α, $\mathcal{P} \cup \mathcal{D} \models \alpha$ if and only if $\mathcal{P}' \models \alpha$.

Lemma 17 allows us to extend the polytime algorithm in [Kaminski et al., 2017] for computing the pseudo-materialisation of a positive type-consistent program to semi-positive programs, thus obtaining a tractable implementation of Oracle O restricted to type-consistent programs. This suffices since Algorithm 1, when given a type-consistent program as input, only applies O to type-consistent programs. Thus, by Proposition 13, we obtain a polynomial time upper bound on the data complexity of fact entailment for type-consistent programs with stratified negation. Since plain Datalog is already \mathcal{P}-hard in data complexity, this upper bound is tight.

Theorem 18. For \mathcal{P} a stratified, type-consistent program and α a fact, deciding $\mathcal{P} \models \alpha$ is \mathcal{P}-complete in data complexity.

Finally, as we show next, our extended notion of type consistency can be efficiently recognised.

Proposition 19. Checking whether a stratified, limit-linear program is type-consistent is in LOGSPACE.

6 Conclusion and Future Work

Motivated by declarative data analysis applications, we have extended the language of limit programs with stratified negation-as-failure. We have shown that the additional expressive power provided by our extended language comes at a computational cost, but we have also identified sufficient syntactic conditions that ensure tractability of reasoning in data complexity. There are many avenues for future work. First, it would be interesting to formally study the expressive power of our language. Since type-consistent programs extend plain (function-free) Datalog with stratified negation, it is clear that they capture \mathcal{P} on ordered datasets [Dantsin et al., 2001], and we conjecture that the full language of stratified limit-linear programs captures Δ^p_2. From a more practical perspective, we believe that limit programs can naturally express many tasks that admit a dynamic programming solution (e.g., variants of the knapsack problem, and many others). Conceptually, a dynamic programming approach can be seen as a three-stage process: first, one constructs an acyclic ‘graph of subproblems’ that orders the subproblems from smallest to largest; then, one computes a shortest/longest path over this graph to obtain the value of optimal solutions; finally, one backwards-computes the actual solution by tracing back in
the graph. Capturing the third stage seems to always require non-monotonic negation (as illustrated in our path computation example), whereas the first stage may or may not require it depending on the problem. Finally, the second stage can be realised with a (recursive) positive program. Second, our formalism should be extended with aggregate functions. Although certain forms of aggregation can be simulated using arithmetic functions and iterating over the object domain by exploiting the ordering, having aggregation explicitly would allow us to express certain tasks in a more natural way. Third, we would like to go beyond stratified negation and investigate the theoretical properties of limit Datalog under well-founded [Van Gelder et al., 1991] or the stable model semantics [Gelfond and Lifschitz, 1988]. Finally, we plan to implement our reasoning algorithms and test them in practice.

Acknowledgments

This research was supported by the EPSRC projects DBOnto, MaSI3, and ED3.

References

A Proofs for Section 4

Before proceeding to the proofs of our theorems in the main body of the paper, we restate some notions from [Kaminski et al., 2017]. All models of a limit program are easily seen to satisfy the following closure property.

Definition A.1. An interpretation I is limit-closed (for a limit program P) if, for each fact $B(\bar{a}, k) \in I$ where B is a limit predicate, $B(\bar{a}, k') \in I$ holds for each integer k' with $k' \geq I, k$.

There is a one-to-one correspondence between pseudo-interpretations and limit-closed interpretations, and thus each model of a program can be equivalently represented by a pseudo-interpretation.

Definition A.2. A limit-closed interpretation I corresponds to a pseudo-interpretation J if the following conditions hold:

- an object or ordinary numeric fact is contained in J if and only if it is contained in I; and
- for each limit predicate B, each tuple of objects \bar{b}, and each integer ℓ, (i) $B(\bar{b}, k) \in I$ for all k if and only if $B(\bar{b}, \infty) \in J$, and (ii) $B(\bar{b}, \ell) \in I$ and $B(\bar{b}, k) \not\in I$ for all $k > \ell$ if B is a limit predicate if and only if $B(\bar{b}, \ell) \in J$.

Let J and J' be pseudo-interpretations corresponding to interpretations I and I'. Then, J satisfies a ground atom α, written $J |= \alpha$, if $I |= \alpha$; J is a pseudo-model of a program P, written $J |= P$, if $I |= P$; finally, $J \subseteq J'$ holds if $I \subseteq I'$.

Kaminski et al. [2017] then define an immediate consequence operator T_P for positive limit programs that works on pseudo-interpretations and show that the pseudo-materialisation $P(P)$ of a positive limit program P can be computed as the pseudo-interpretation J^∞ inductively defined as follows, where $\sup S$, for a set S of pseudo-interpretations, is the supremum of S w.r.t. \subseteq:

$$J^0 = \emptyset \quad J^{j+1} = T_P(J^j) \quad J^\infty = \sup_{j \in \mathbb{N}} J^j$$

We call pseudo-interpretations J^j partial pseudo-materialisations of P.

The CoNP upper bound for fact entailment in [Kaminski et al., 2017] is shown by a reduction to validity of Presburger formulas of a certain shape. We next extend this reduction $\text{Pres}(P)$ as given in [Kaminski et al., 2017] for a (semi-ground and positive) limit-linear program P to account for datasets involving ∞.

Definition A.3. For each n-ary object predicate A, each $(n + 1)$-ary ordinary numeric predicate B, each $(n + 1)$-ary limit predicate C, each n-tuple of objects \bar{a}, and each integer k, let $\text{def}_{A\bar{a}}$, $\text{def}_{B\bar{a}k}$, $\text{def}_{C\bar{a}}$ and $\text{fin}_{C\bar{a}}$ be distinct propositional variables, and let $\text{val}_{C\bar{a}}$ a distinct integer variable.

For P a semi-ground, positive, limit-linear program, $\text{Pres}(P) = \bigwedge_{r \in P} \text{Pres}(r)$ is the Presburger formula where $\text{Pres}(r)$ is the formula (with the same quantifier block as r) that is obtained by replacing each atom α in r with its encoding $\text{Pres}(\alpha)$ defined as follows:

- $\text{Pres}(\alpha) = \alpha$ if α is a comparison atom;
- $\text{Pres}(\alpha) = \text{def}_{A\bar{a}}$ if α is an object atom of the form $A(\bar{a})$;
- $\text{Pres}(\alpha) = \text{def}_{B\bar{a}k}$ if α is an ordinary numeric atom of the form $B(\bar{a}, s)$ where s is a ground numeric term evaluating to k;
- $\text{Pres}(\alpha) = \text{def}_{C\bar{a}} \land (\neg \text{fin}_{C\bar{a}} \lor s \leq \text{val}_{C\bar{a}})$ if α is a limit atom of the form $C(\bar{a}, s)$ where $s \neq \infty$; and
- $\text{Pres}(\alpha) = \text{def}_{C\bar{a}} \land \neg \text{fin}_{C\bar{a}}$ if α is a limit atom of the form $C(\bar{a}, \infty)$.

Let J be a pseudo-interpretation, and let μ be an assignment of Boolean and integer variables. Then, J corresponds to μ if all of the following conditions hold for all A, B, C, and \bar{a} as specified above, for each integer $k \in \mathbb{Z}$:

- $\mu(\text{def}_{A\bar{a}}) = \text{true}$ if and only if $A(\bar{a}) \in J$;
- $\mu(\text{def}_{B\bar{a}k}) = \text{true}$ if and only if $B(\bar{a}, k) \in J$;
- $\mu(\text{def}_{C\bar{a}}) = \text{true}$ if and only if $C(\bar{a}, k) \in J$ or there exists $\ell \in \mathbb{Z}$ such that $C(\bar{a}, \ell) \in J$;
- $\mu(\text{fin}_{C\bar{a}}) = \text{true}$ and $\mu(\text{val}_{C\bar{a}}) = k$ if and only if $C(\bar{a}, k) \in J$.

Note that k in Definition A.3 ranges over all integers (which excludes ∞), $\mu(\text{val}_{C\bar{a}})$ is equal to some integer k, and J is a pseudo-interpretation and thus cannot contain both $C(\bar{a}, \infty)$ and $C(\bar{a}, k)$; thus, $C(\bar{a}, \infty) \in J$ implies $\mu(\text{fin}_{C\bar{a}}) = \text{false}$.

The key property of the Presburger encoding in [Kaminski et al., 2017] is established by the following lemma, which we easily re-prove for our variant of the encoding.

Lemma A.4. Let J be a pseudo-interpretation and let μ be a variable assignment such that J corresponds to μ. Then,

1. $J |= \alpha$ if and only if $\mu |= \text{Pres}(\alpha)$ for each ground atom α,
2. $J |= r$ if and only if $\mu |= \text{Pres}(r)$ for each semi-ground, positive rule r.

Note that all ordinary numeric atoms in P have this form since P is semi-ground.
Proof. Claim 1 follows analogously to the respective argument in [Kaminski et al., 2017] except for having an extra case, namely \(\alpha = C(\vec{a}, \infty) \), for \(C \) a limit predicate. The proof of this case is analogous but simpler to the case for \(\alpha = C(\vec{a}, k) \) where \(k \in \mathbb{Z} \). Claim 2 then follows from Claim 1 same as before.

Using Lemma A.4, Kaminski et al. [2017] establish the following correspondence between entailment for positive limit-linear programs and validity of Presburger sentences.

Lemma A.5. For \(P \) a semi-ground, positive, limit-linear program and \(\alpha \) a fact, there exists a Presburger sentence \(\varphi = \forall \exists \exists \vec{g}, \bigvee_{i=1}^{n} \psi_{i} \) that is valid if and only if \(P \models \alpha \). Each \(\psi_{i} \) is a conjunction of possibly negated atoms. Moreover, \(|\vec{g}| + |\vec{\alpha}|\) and each \(|\psi_{i}|\) are bounded polynomially by \(|P| + |\alpha| \). Number \(n \) is bounded polynomially by \(|P| \) and exponentially by \(\max_{r \in P} \| r \| \). Finally, the magnitude of each integer in \(\varphi \) is bounded by the maximal magnitude of an integer in \(P \) and \(\alpha \).

By a more precise analysis of the Presburger formulas in the proof of Lemma A.5, we can sharpen the bounds provided by the lemma as follows, where \(|\| r\|_{u}\) (resp. \(|\| P\|_{u}\), \(|\| \varphi\|_{u}\), etc.) stands for the size of the representation of \(r \) (resp. \(P \), \(\varphi \), etc.) assuming that all numbers take unit space.

Lemma A.6. For \(P \) a semi-ground, positive, limit-linear program and \(\alpha \) a fact, there exists a Presburger sentence \(\varphi = \forall \exists \exists \vec{g}, \bigvee_{i=1}^{n} \psi_{i} \) that is valid if and only if \(P \models \alpha \). Each \(\psi_{i} \) is a conjunction of possibly negated atoms. Moreover, \(|\vec{g}| + |\vec{\alpha}|\) is bounded polynomially in \(|P|_{u} \) and each \(|\psi_{i}|_{u}\) is bounded polynomially in \(\max_{r \in P} \| r \|_{u} \). Number \(n \) is bounded polynomially in \(|P| \) and exponentially in \(\max_{r \in P} \| r \|_{u} \). Finally, the magnitude of each integer in \(\varphi \) is bounded by the maximal magnitude of an integer in \(P \) and \(\alpha \).

Analogously to the notion of a model for an interpretation, we call With Lemma A.5 at hand, Kaminski et al. [2017] then show the following theorem, which bounds the magnitude of integers in counter-pseudo-models for entailment (the proof of the theorem adapts to our setting as is).

Theorem A.7. For \(P \) a semi-ground, positive, limit-linear program, \(D \) a limit dataset, and \(\alpha \) a fact, \(P \cup D \models \alpha \) if and only if a pseudo-model \(J \) of \(P \cup D \) exists where \(J \models \alpha \), \(|J| \leq |P \cup D| \), and the magnitude of each integer in \(J \) is bounded polynomially in the largest magnitude of an integer in \(P \cup D \), exponentially in \(|P| \), and double-exponentially in \(\max_{r \in P} \| r \| \).

Furthermore, the double-exponential bound in \(\max_{r \in P} \| r \| \) can be trivially sharpened to \(\max_{r \in P} \| r \|_{u} \) by employing Lemma A.6 in place of Lemma A.5. Building on the proof of Theorem A.7, we next prove the following stronger version, which bounds the size of pseudo-materialisations of semi-ground, positive, limit-linear programs.

Lemma 8. Let \(P \) be a semi-ground, positive, limit-linear program, and let \(D \) be a limit dataset. Then \(|P(P \cup D)| \leq |P \cup D| \) and the magnitude of each integer in \(P(P \cup D) \) is bounded polynomially in the largest magnitude of an integer in \(P \cup D \), exponentially in \(|P| \), and double-exponentially in \(\max_{r \in P} \| r \|_{u} \), where \(|\| r\|_{u}\) stands for the size of the representation of \(r \) assuming that all numbers take unit space.

Proof. Let \(a \) be the maximal magnitude of an integer in \(P \cup D \), \(m = |P| \), and \(n = \max_{r \in P} \| r \|_{u} \). Let \(D' \) be obtained from \(D \) by removing each fact that does not unify with an atom in \(P \) and let \(E \) be a fresh nullary predicate.

Clearly, we have \(P(P \cup D) = P(P \cup D') \cup J_{0} \) where \(J_{0} \) is the least pseudo-interpretation w.r.t. \(P \) such that \(\{ \alpha \} \subseteq J_{0} \) for each \(\alpha \in D \setminus D' \). Let \(\varphi \) be obtained from \(P \cup D' \) and fact \(E \) analogously to the construction in the proof of Lemma A.6, but where each disjunct \(\neg \text{fin}_{\text{C\{\alpha\}}}^{\vec{a}} \text{val}_{\text{C\{\alpha\}}}^{\vec{a}} \) in \(\text{Pres}(P) \) is replaced by \(\neg \text{fin}_{\text{C\{\alpha\}}}^{\vec{a}} \text{val}_{\text{C\{\alpha\}}}^{\vec{a}} \) if \(C(\vec{a}, \infty) \in P(P \cup D') \) and by \(s \leq_{\text{C \{\alpha\}}} \text{val}_{\text{C\{\alpha\}}}^{\vec{a}} \) if \(C(\vec{a}, k) \in P(P \cup D') \) for some \(k \in \mathbb{Z} \). It is easy to see that every assignment corresponding to \(P(P \cup D') \) is a countermodel of \(\varphi \). Therefore, since \(\varphi \) satisfies the same structural constraints as the formula in Lemma A.6, by an argument analogous to the one in the proof of Theorem A.7 we obtain that \(P \cup D \) has a pseudo-model \(J \) such that \(|J| \leq |P \cup D| \), the magnitude of each integer in \(J \) is bounded by some number \(\ell \) that is polynomial in \(a \), exponential in \(m \), and double-exponential in \(n \), and where, it holds that \(C(\vec{a}, \infty) \in J \) if and only if \(C(\vec{a}, \infty) \in P(P \cup D) \) for each limit predicate \(C \) and objects \(\vec{a} \). Consequently, we have established that \(P(P \cup D) \) has a pseudo-model \(J \) that satisfies the required bounds in the lemma. In what follows we use the fact that \(P(P \cup D) \subseteq J \) to show that \(P(P \cup D) \) also satisfies the bounds in the lemma.

Let us denote with \(J' \) the partial-pseudo-materialisation of \(P \cup D \) for any \(j \geq 0 \) and hence, \(P(P \cup D) = J^{\infty} \). We start with the observation that \((s) \) the value of a number \(k \) in a limit fact \(A(\vec{a}, k) \) can only increase with respect to \(\leq_{A} \) during the construction of \(P(P \cup D) \). For instance, if \(A(\vec{a}, k) \in J^{j} \), with \(A \) a max predicate, and \(A(\vec{a}, k') \in J^{j+1} \), then \(k' \geq k \). Let, \(\ell_{0} = \ell \) and, for \(j > 0 \), \(\ell_{j} \) be the maximum between

- \(\ell_{j-1} \),
- the maximal magnitude of a negative integer occurring in a max fact in \(J^{j} \), and
- the maximal magnitude of a positive integer occurring in a min fact in \(J^{j} \).

Numbers \(\ell_{j} \) allow us to bound the integers produced by the immediate consequence operator \(T_{P} \) applied to pseudo-interpretation \(J^{j} \). Specifically, we argue that \((\bullet) \) for each \(j \) and rule \(r \) with head \(A(\vec{a}, s) \) for some \(s \), we have

- \(|\text{opt}(r, J^{j})| \leq n2^{(n+1)\ell_{j}} \) if \(A(\vec{a}, \infty) \notin P(P \cup D) \),
- \(|\text{opt}(r, J^{j})| \leq n2^{(n+1)\ell_{j}} \) if \(A \) is a max predicate, and
- \(|\text{opt}(r, J^{j})| \leq n2^{(n+1)\ell_{j}} \) if \(A \) is a min predicate.
To see why this holds, consider a pseudo-interpretation J' obtained from J^j by replacing each max IDB fact $B(\vec{b}, k)$ with $B(\vec{b}, -\ell_j)$, and each min IDB fact $C(\vec{c}, k')$ with $C(\vec{c}, \ell_j)$. By construction, we have $\{\text{opt}(r, J')\} \subset \{\text{opt}(r, J^j)\} \subset J$ and hence $\text{opt}(r, J') \preceq_A \text{opt}(r, J^j) \preceq_A \text{opt}(r, J)$ whenever $\text{opt}(r, J')$ is defined. But since the magnitude of all numbers in J' is bounded by ℓ_j, by Proposition 3 in [Chistikov and Haase, 2016], $\text{opt}(r, J')$ has a solution where the maximal magnitude of all numbers is bounded by $2^{O(n \log n)} \ell_j$, and hence the magnitude of the value of k of this solution is bounded by $n^{2O(n \log n)} \ell_j$ (unless the value of s is unbounded in $C(r, J')$, in which case $\text{opt}(r, J') = \text{opt}(r, J)$ and we are done). The last two subclaims are immediate since $k \preceq_A \text{opt}(r, J') \preceq_A \text{opt}(r, J)$, and and the first claim follows since, additionally, $\text{opt}(r, J') \preceq_A \text{opt}(r, J)$, and $A(\vec{a}, \infty) \notin \text{opt}(r, J)$ implies $|\text{opt}(r, J)| \leq \ell = \ell_0$ by our assumptions about J.

From (*) we can conclude that, for each j and k such that $j \leq k$ and $|J^j| = |J^k|$, we have $\ell_j = \ell_k$. Thus, whenever ℓ_j increases during the construction of $P(P \cup D)$, this must be because a rule has generated a fact $B(\vec{b}, i)$ where there was previously no fact over B and \vec{b} in the partial pseudo-materialisation. The number of times this can happen is obviously bounded by m (i.e., the number of rules in P). Furthermore, by (b), whenever $\ell_j < \ell_{j+1}$, we have $\ell_{j+1} \leq n^{2O(n \log n)} \ell_j$. Consequently, for every j, we have that $\ell_j \leq n^{m2O(mn \log n)} \ell_{j+1}^{m+1}$.

By (a), we conclude that the maximal magnitude L of every integer in $P(P \cup D) = J^\infty$ is bounded by $n^{m+1}2^{O((m+1)n \log n)} \ell_{n+1}$. Clearly, L is polynomially bounded in a, exponentially in m, and double-exponentially in n since ℓ is.

Lemma 11. For P a semi-positive, limit-linear program and D a limit dataset, P' the reduct of $P \cup D$, and α a fact, we have $P \cup D \models \alpha$ if and only if $P' \models \alpha$. Moreover P' can be computed in polynomial time in $|D|$, $|P'|$ is polynomially bounded in $|D|$, and $\max_{r \in P'} |r| \leq \max_{r \in P \cup D} |r|$.\n
Proof. To show $P \cup D \models \alpha$ iff $P' \models \alpha$, it suffices to argue that $P' \models \alpha$ holds iff $P'' \models \alpha$, for P'' the semi-grounding of $P \cup D$.

Since P'' is semi-positive and P' positive, w.l.o.g., we have $M(P') = I_1^\infty$, $M(P'') = H_2^\infty$. We show that, for each $i \in \mathbb{N}$, (i) $I_i^1 \subseteq M(P'')$, (and (ii) $H_i^2 \subseteq M(P'')$, by simultaneous induction on i, which implies the claim by the definition of entailment.\n
Note that, for r a rule, we will denote the body of r as $b(r)$.\n
For $i = 0$, the claim is trivial since $I_i^1 = H_i^2 = \emptyset$.\n
For $i > 0$, suppose first $\beta \in I_i^1$ for some β. We show $\beta \in M(P'')$. Since $\beta \in S_P(I_i^1)$, there is a rule $r' \in P'$ such that, for some grounding σ, $I_i^1 = b(r' \sigma)$. Moreover, by the inductive hypothesis, $I_i^1 \subseteq M(P'')$. Let $r'' \in P''$ be the rule in P'' such that $r'' \sigma$. It suffices to show $M(P'') = b(r'' \sigma)$. By construction, all literals in $b(r'' \sigma)$ are positive and the only literals in $b(r' \sigma) \setminus b(r'' \sigma)$ are negative literals of the form not α, so, since $I_i^1 \subseteq M(P'')$, it suffices to show that $M(P'') = \neg \alpha$ for each not $\alpha \in b(r'' \sigma)$. We distinguish two cases.

If α is ground, we have $\alpha \sigma$ and, by construction of r', we have $D' \models \alpha$, where D' is the set of facts in $P \cup D$. Consequently, $P'' \models \alpha$ since P'' and D' coincide on facts and α must be EDB in P'' (which is the case since P is semi-positive), and so $M(P'' \models \alpha$, and so $M(P'') = \neg \alpha = \neg \alpha$, as required.

If α is non-ground, it must be a limit of the form $A(\vec{a}, m)$ (since P'' is semi-ground and thus negative ordinary numeric literals contain no numeric variables). By construction of r'', one of the following two cases must hold.

- $D' \models [A(\vec{a}, k)]$ for each $k \in \mathbb{Z}$, and hence $D' \models [A(\vec{a}, m \sigma)$.
- $D' \models [A(\vec{a}, k)]$ for some $k \in \mathbb{Z}$ and $(k \prec_A m) \in b(r' \sigma)$. Since $I_i^1 \subseteq b(r' \sigma)$, we then have $k \prec_A m \sigma$, and hence $D' \models [A(\vec{a}, m \sigma)$.

Since A must be EDB in P'', we then conclude $M(P'') = \neg \alpha$ analogously to before.

Next, suppose $\beta \in H_i^2$ for some β. We show $\beta \in M(P')$. Since $\beta \in S_{P''}[2] \cup H_2^\infty$, there is a rule $r'' \in P''[2] \cup H_2^\infty$ such that, for some grounding σ, $H_i^2 = b(r'' \sigma)$. Moreover, by the inductive hypothesis, $H_i^2 \subseteq M(P)$.\n
We distinguish two cases. If $r'' = \beta \in H_2^\infty$, it is easily seen that $\beta \in M(P')$ since, by construction, we have $P''[1] \subseteq P'$, and hence $H_2^\infty = M(P''[1]) \subseteq M(P')$ since P' is positive. Thus, w.l.o.g., suppose $r'' \in P''[2]$. It then suffices to show that there is a rule $r' \in P'$ obtained from r'' such that $M(P') = b(r' \sigma)$. Since $H_i^2 \subseteq b(r' \sigma)$, we have $H_i^2 \models b(r' \sigma)$ and hence $D' \models \neg \alpha$ for each negative literal $\alpha \in b(r' \sigma)$, and hence also $D' \models \neg \alpha$. Consequently, rule $r'' \sigma$ is not deleted by the transformation rules in Definition 10 but rather transformed to a positive rule r'' such that the only literals in $b(r'' \sigma)$ have the form $k \prec_A m \sigma$ such that $A(\vec{a}, m)$ is a non-ground limit literal in $b(r'' \sigma)$ and $D' \models [A(\vec{a}, k)]$. Thus, since $r'' \sigma$ is positive and $H_i^2 \subseteq M(P')$, it suffices to show $M(P') = k \prec_A m \sigma$ for each such literal $(k \prec_A m) \in b(r' \sigma)$. This follows since, by construction and since P'' is semi-positive, A is EDB in P'', and hence $M(P) = A(\vec{a}, s)$ holds for a term s if and only if $D' \models A(\vec{a}, s)$; for each literal $(k \prec_A m) \in b(r' \sigma)$, we then have $M(P) = A(\vec{a}, m \sigma)$ and $M(P) = A(\vec{a}, k)$, which implies $M(P) = k \prec_A m \sigma$, as required.

For the second claim, note, that, by construction, $||P'||$ is bounded from above by $||P''||$, for P'' the semi-grounding of $P \cup D$, while $||P''||$ is easily seen to be polynomial in $|D|$ for P fixed. Moreover, P'' can be computed in polynomial time, w.r.t. $|D|$, and each rule in P' can be computed from a rule in P'' in polynomial time, provided that we can polynomially check $D' \models \alpha$, for D' as above. This clearly holds since $D' \models \alpha$ can be checked by simply matching α against facts in D'. Finally $\max_{r \in P'} |r| \leq \max_{r \in P''} |r|$. \n

We next use Lemmas 8 and 11 to show Lemma 12. To this end, we first establish the following auxiliary result.

Lemma A.8. Let \mathcal{P} be a semi-positive, limit-linear program and let f be the function mapping each triple (D, A, \vec{a}), for D a limit dataset, A a max (resp. min) predicate and \vec{a} a tuple of objects, to the greatest (resp. least) $k \in \mathbb{Z} \cup \{\infty\}$ such that $\mathcal{P} \cup D \models A(\vec{a}, k)$ if such k exists, and otherwise to a special symbol none. Then function f is computable in FP^{NP}.

Proof. Without loss of generality, suppose A is a max predicate. Let \mathcal{P}' be the reduct of $\mathcal{P} \cup D$, and let ℓ be the bound on the magnitude of integers in $\mathcal{P}(\mathcal{P}')$ from Lemma 8. Then, since, by Lemma 11, $\mathcal{P} \cup D \models A(\vec{a}, k)$ implies $A(\vec{a}, k') \in \mathcal{P}(\mathcal{P}')$ for some $k' \geq k$, Lemma 8 implies that $\mathcal{P} \cup D \models A(\vec{a}, \ell + 1)$ if and only if $\mathcal{P} \cup D \models A(\vec{a}, \infty)$. Similarly, $\mathcal{P} \cup D \not\models A(\vec{a}, -\ell)$ if and only if $\mathcal{P} \cup D$ does not satisfy $A(\vec{a}, k)$ for any $k \in \mathbb{Z}$. Since $|\mathcal{P}'|$ is polynomial in $|\mathcal{P}|$ but $\max_{r \in \mathcal{P} \setminus \mathcal{D}} \|r\|_u \leq \max_{r \in \mathcal{P}} \|r\|_u$, by Lemma 8, ℓ is exponentially bounded in $|\mathcal{D}|$, and hence every number in the range of f can be represented using polynomially many bits.

Given a triple (D, A, \vec{a}), we can thus compute $f(D, A, \vec{a})$ by a deterministic oracle TM whose oracle set consists of all pairs (D', α) such that $\mathcal{P} \cup D' \models \alpha$ as follows:

1. Compute the reduct \mathcal{P}' of $\mathcal{P} \cup D$.
2. Compute a bound ℓ on the magnitude of integers in $\mathcal{P}(\mathcal{P}')$ satisfying the restrictions in Lemma 8.
3. Perform a binary search for the greatest number $k \in [-\ell, \ell + 1]$ such that $(D, A(\vec{a}, k))$ is in the oracle set.
4. If no such k exists, return none, if $k = \ell + 1$, return ∞, and otherwise return k.

Correctness of the algorithm is immediate by the above observations.

The reduct can be computed in step (1) in polynomial time and is of polynomial size in $|\mathcal{D}|$, whereas $\max_{r \in \mathcal{P}'} \|r\|_u$ is bounded by a constant for a fixed \mathcal{P} by Lemma 11. The computation in step (2) takes polynomial time as the binary representation of ℓ is polynomial in $|\mathcal{D}|$. The search in step (3) takes polynomial time and makes polynomially many oracle calls since the interval $[-\ell, \ell + 1]$ is exponential in $|\mathcal{D}|$ and does not depend on A or \vec{a}, as observed above. Finally, step (4) is clearly polynomial in the size of the input.

The claim follows since, by the results in [Kaminski et al., 2017], fact entailment for positive, limit-linear programs is coNP-complete, hence the membership problem for the oracle set is in coNP, and $\text{FP}^{\text{NP}} = \text{FP}^{\text{coNP}}$. \hfill \Box

We then generalise Lemma A.8 to Lemma 12.

Lemma 12. Let \mathcal{P} be a semi-positive, limit-linear program. Then the function mapping each limit dataset D to $\mathcal{P}(\mathcal{P} \cup D)$ is computable in FP^{NP} in $|\mathcal{D}|$.

Proof. The set $\mathcal{P}(\mathcal{P} \cup D)$ can be computed by the following algorithm:

1. Compute the reduct \mathcal{P}' of $\mathcal{P} \cup D$.
2. Compute the least (w.r.t. \sqsubseteq) pseudo-model J of all facts in \mathcal{P}'.
3. For each IDB predicate A and objects \vec{a} occurring in the head of a rule in \mathcal{P}':

 (a) if A is an object predicate and $\mathcal{P} \cup D \models A(\vec{a})$, add $A(\vec{a})$ to J;
 (b) if A is a max (resp. min) predicate, compute the greatest (resp. least) $k \in \mathbb{Z} \cup \{\infty\}$ such that $\mathcal{P} \cup D \models A(\vec{a}, k)$, and, if it exists, add $A(\vec{a}, k)$ to J.

Correctness of the algorithm follows since \mathcal{P}' entails the same facts as $\mathcal{P} \cup D$ by Lemma 11 and steps (2) and (3) construct the least pseudo-model of \mathcal{P}'. Thus, for the claim, it suffices to show that steps (1), (2), (3.a) and (3.b) are all feasible in FP^{NP}, while step (3) is repeated at most polynomially often in $|\mathcal{D}|$.

Step (1) can be performed in polynomial time in $|\mathcal{D}|$ by Lemma 11, while the construction of a pseudo-model of a dataset in step (2) is polynomial in $|\mathcal{P}'|$, and hence in $|\mathcal{D}|$, since it involves only trivial reasoning. Moreover, step (3) is repeated at most $|\mathcal{P}'|$ times, where $|\mathcal{P}'|$ is bounded polynomially in $|\mathcal{D}|$ for fixed \mathcal{P}. Finally, step (3.a) can be performed in coNP since fact entailment is coNP-complete in data complexity by the results in [Kaminski et al., 2017], while step (3.b) is feasible in FP^{NP} by Lemma A.8. \hfill \Box

Note that Lemma 12 immediately implies Corollary 9, so we dispense with a separate proof for the corollary.

Proposition 13. If oracle O is computable in FP^{C} in data complexity, then Algorithm 1 runs in FP^{C} in data complexity.

Proof. Let $\mathcal{P} = \mathcal{P}_0 \cup D$. Without loss of generality, the number of non-empty strata in \mathcal{P} is bounded by a constant s for \mathcal{P}_0 fixed, and hence loop 3–5 is executed at most s times. Let J_i be the pseudo-interpretation computed by O in iteration i of the loop. By assumption, O in iteration i of the loop runs in time bounded by $q(|\mathcal{D} \cup J_{i-1}|)$, for some polynomial q, and hence $|\mathcal{D} \cup J_i| \leq p(|\mathcal{D} \cup J_{i-1}|)$ for some polynomial p. Consequently, we have $|\mathcal{P}(\mathcal{P})| = |J_s| \leq p|\mathcal{P}(\mathcal{P})|^s$, which is in turn polynomial in $|\mathcal{P}(\mathcal{P})|$, and loop 3–5 terminates in time bounded by $s \cdot q(p(|\mathcal{D}|)^s)$. Finally, step 6 can clearly be performed in time polynomial in $|\mathcal{P}(\mathcal{P})|$. \hfill \Box
Lemma 14. For \(P \) a stratified, limit-linear program and \(\alpha \) a fact, deciding \(P \models \alpha \) is in \(\Delta^P_2 \) in data complexity.

Proof. The claim is immediate by Lemma 12 and Proposition 13.

Theorem 15. For \(P \) a stratified, limit-linear program and \(\alpha \) a fact, deciding \(P \models \alpha \) is \(\Delta^P_2 \)-complete in data complexity. The lower bound holds already for programs with two strata.

Proof. The upper bound follows by Lemma 14 while hardness is established by reduction from the minimal satisfying assignment odd problem. An instance of the minimal satisfying assignment odd problem is given by a (repetition-free) tuple of variables \((x_N, \ldots, x_0) \) and a satisfiable Boolean formula \(\varphi \) over \(x_0, \ldots, x_N \) (using operators \(\lor \) and \(\land \)). The problem is to determine whether the assignment \(\sigma \) for which the tuple \((\sigma(x_N), \ldots, \sigma(x_0)) \) is lexicographically minimal (assuming \(\text{false} < \text{true} \)) among all satisfying truth assignments of \(\varphi \) satisfies \(\sigma(x_0) = \text{true} \). The closely related problem where \((\sigma(x_N), \ldots, \sigma(x_0)) \) is lexicographically maximal and \(\varphi \) is not restricted to be satisfiable has been shown \(\Delta^P_0 \)-complete in [Krentel, 1988, Theorem 3.4], and the two versions are easily seen to be \(\text{LOGSPACE} \) many-one inter-reducible. We reduce the problem by presenting a fixed program \(P_{\text{modd}} \) admitting two strata, and a dataset \(D_M \), which depends on \(M \), and showing that \(M \) is true if and only if \(P_{\text{modd}} \cup D_M \) entails a nullary fact \(\text{minOdd} \).

Our encoding uses object EDB predicates \(\text{root} \), \(\text{or} \), and \(\text{and} \); ordinary numeric EDB predicate \(\text{shift} \); and max IDB predicates \(\text{ass} \), \(T \), and \(F \). Program \(P_{\text{modd}} \) consists of the following rules, where we write \((s_1 \leq s_2 < s_3)\) as an abbreviation for the conjunction \((s_1 \leq s_2) \land (s_2 < s_3)\).

\[
\begin{align*}
\text{root}(x) & \land F(x,n) \rightarrow \text{ass}(n+1) \quad (17) \\
\text{or}(x,y,z) & \land F(y,n) \land F(z,n) \rightarrow F(x,n) \quad (18) \\
\text{or}(x,y,z) & \land T(y,n) \rightarrow T(x,n) \quad (19) \\
\text{or}(x,y,z) & \land T(z,n) \rightarrow T(x,n) \quad (20) \\
\text{not}(x,y) & \land T(y,n) \rightarrow F(x,n) \quad (21) \\
\text{not}(x,y) & \land F(y,n) \rightarrow T(x,n) \quad (22) \\
\text{ass}(n) \land \text{shift}(x,s) & \land (0 \leq m_1) \land (0 \leq m_2 < s) \land (n \equiv 2 \times m_1 \times s + s + m_2) \rightarrow T(x,n) \quad (23) \\
\text{ass}(n) \land \text{shift}(x,s) & \land (0 \leq m_1) \land (0 \leq m_2 < s) \land (n \equiv 2 \times m_1 \times s + m_2) \rightarrow F(x,n) \quad (24) \\
\frac{\text{ass}(n) \land \text{shift}(x,s) \land (0 \leq m_1) \land (0 \leq m_2 < s) \land (n \equiv 2 \times m_1 \times s + m_2)}{} \rightarrow \text{minOdd} \quad (25) \\
\end{align*}
\]

Dataset \(D_{(\varphi,\psi)} \) contains facts (27)–(30), where, for each distinct subformula \(\psi \) of \(\varphi \) (including \(\varphi \) itself), \(a_\psi \) is a fresh object.

Note that numbers \(2^i \) for \(0 \leq i \leq N \) are exponential in \(N \), and thus can be computed in polynomial time and represented using polynomially many bits in the size of the input.

\[
\begin{align*}
\rightarrow \text{shift}(a_{x_i}, 2^i) & \text{ for each } 0 \leq i \leq N \quad (27) \\
\rightarrow \text{root}(a_\varphi) & \quad (28) \\
\rightarrow \text{or}(a_\psi, a_{\psi_1}, a_{\psi_2}) & \text{ for each subformula } \psi = \psi_1 \lor \psi_2 \text{ of } \varphi \quad (29) \\
\rightarrow \text{not}(a_\psi, a_{\psi_1}) & \text{ for each subformula } \psi = \neg \psi_1 \text{ of } \varphi \quad (30) \\
\end{align*}
\]

In our reduction, each truth assignment \(\sigma \) for \(x_0, \ldots, x_N \) is associated with a number \(\sum_{0 \leq i \leq N} \sigma(x_i) \times 2^i \). Thus, given a number \(n \) that encodes a truth assignment, variable \(x_i \) (\(0 \leq i \leq N \)) is assigned \(\text{true} \) if \(n = 2 \times m_1 \times 2^i + m_2 \), and \(\text{false} \) if \(n = 2 \times m_1 \times 2^i + m_2 \), for some nonnegative integers \(m_1 \) and \(m_2 \) where \(m_2 < 2^i \). Thus, if numeric variable \(n \) is assigned such an encoding of a truth assignment and numeric variable \(s \) is assigned the factor \(2^i \) corresponding to variable \(x_i \), then conjunction

\[
(0 \leq m_1) \land (0 \leq m_2 < s) \land (n \equiv 2 \times m_1 \times s + s + m_2)
\]

is true if and only if \(x_i \) is true in the assignment (encoded by) \(n \); analogously, conjunction

\[
(0 \leq m_1) \land (0 \leq m_2 < s) \land (n \equiv 2 \times m_1 \times s + m_2)
\]

is true if and only if \(x_i \) is \(\text{false} \) in assignment \(n \). Facts (27) associate with every variable \(x_i \) the corresponding factor \(2^i \), and hence rules (24) and (25) derive \(T(a_{x_i}, n) \) if \(x_i \) is true and \(F(a_{x_i}, n) \) if \(x_i \) is \(\text{false} \) in assignment \(n \). Facts (28)–(30) encode the structure of \(\varphi \). Using these facts, rules (19)–(23) recursively evaluate \(\varphi \), deriving, for each subformula \(\psi \) of \(\varphi \), \(T(a_\psi, n) \) if \(\psi \) evaluates to \(\text{true} \) and \(F(a_\psi, n) \) if \(\psi \) evaluates to \(\text{false} \) in assignment \(n \). Rules (17) and (18) then search for the lexicographically minimal assignment that satisfies \(\varphi \) (recall that \(\varphi \) is satisfiable by assumption)—rule (17) ensures than assignment \(\sigma \) is checked, and rule (18) ensures that assignment \(n = 1 \), is checked whenever \(\varphi \) evaluates to \(\text{false} \) in \(n \). Finally, rule (26) derives \(\text{minOdd} \) if and only if \(x_0 \) is \(\text{true} \) in the minimal assignment satisfying \(\varphi \), as required. \[\square\]

B Proofs for Section 5

Lemma 17. For P a semi-positive, type-consistent program and D a limit dataset, the reduct of $P \cup D$ is polynomially rewritable to a positive, semi-ground, type-consistent program P' such that, for each fact α, $P \cup D \models \alpha$ if and only if $P' \models \alpha$.

Proof. By definition, the program P' obtained by first semi-grounding $P \cup D$ and then simplifying all numeric terms as much as possible is type-consistent. Thus, it suffices to show that the possible violations of type consistency introduced by the additional transformation rules in Definition 10 can be repaired in polynomial time. Since the transformation rules apply to negative body literals of an individual rule, suppose r is a semi-ground, semi-positive, type-consistent rule and $\mu = \neg \alpha$ is a negative body literal of r. We have two cases.

If α is ground, then either r is deleted or μ is deleted from r. Clearly, neither of these transformations can violate type consistency since μ does not mention a numeric variable.

If $\alpha = A(\bar{a}, m)$ is a non-ground limit literal, then one of the following is true, for D' the set of facts in $P \cup D$:

(i) $D' \models A(\bar{a}, k)$ for each $k \in \mathbb{Z}$ and r is removed,

(ii) $D' \not\models A(\bar{a}, k)$ for each $k \in \mathbb{Z}$ and μ is removed from r, or

(iii) $D' \models [A(\bar{a}, k)]$ for some $k \in \mathbb{Z}$ and μ is replaced in r with $(k = A m)$.

Case (i) does not violate type consistency.

In case (ii), r is type-consistent, variable m needs to be guarded, i.e., there needs to be a conjunction $A(\bar{a}, n) \land (m \equiv n + t)$ for $t \in \{1, -1\}$ in $b(r)$. Moreover, since A is EDB in $P \cup D$, and hence in P', $D' \not\models A(\bar{a}, k)$ implies $P' \not\models A(\bar{a}, k)$ for each $k \in \mathbb{Z}$, and thus the literal $A(\bar{a}, n) \in b(r)$ will never be satisfied when computing the materialisation of P', i.e., r is semantically redundant and hence can be removed from P', maintaining type-consistency.

Finally, in case (iii), this rule is violated because in the transformed program, variable m no longer occurs in a standard body atom. Let r' be the rule obtained from r by a one-step application of the transformation rules in case (iii). To restore type consistency, we will equivalently re-state rule r' eliminating all occurrences of m. To this end, note that, as in the previous case, since r is type-consistent, variable m needs to be guarded, i.e., there needs to be a conjunction $A(\bar{a}, n) \land \neg A(\bar{a}, m) \land (m \equiv n + t)$ for $t \in \{1, -1\}$ in $b(r)$. Thus, let rule r'' be obtained from r by removing the conjunction $A(\bar{a}, n) \land \neg A(\bar{a}, m) \land (m \equiv n + t)$ and substituting each occurrence of m in r with $k + t$ and each occurrence of n with k. Clearly, rule r'' is type-consistent since so is r. Moreover, since A is EDB in P', we have $P' \models [A(\bar{a}, k)]$, and hence r can be replaced with r'' while maintaining the set of entailed facts.

Clearly, the transformation rules in Definition 10 restricted to type-consistent programs can be modified to preserve type consistency as described above while remaining polynomially computable.

Theorem 18. For P a stratified, type-consistent program and α a fact, deciding $P \models \alpha$ is P-complete in data complexity.

Proof. The P lower bound in data complexity is inherited from plain Datalog [Dantsin et al., 2001]. For the upper bound, note that, for P a stratified, type-consistent program, the program $P[i] \cup D$ is type-consistent for each $i \in \mathbb{N}$ and each finite dataset D. Thus, by Proposition 13, it suffices to show that the pseudo-materialisation of a semi-positive, type-consistent program P' can be computed in polynomial time in data complexity. By Lemmas 11 and 17, this reduces to showing the existence of a polynomial algorithm for computing the pseudo-materialisation of a semi-ground, positive, type-consistent program P''. Kaminski et al. [2017] provide such an algorithm that terminates in time polynomial in $|P''|$, provided $\max_{r \in P'} \|r\|_u$ is bounded by a constant. This assumption can be made since, w.l.o.g., $\max_{r \in P'} \|r\|_u$ is constant w.r.t. data complexity and, for P'' the semi-ground, positive, type-consistent program obtained from P' by the results in Lemmas 11 and 17, we have $\max_{r \in P'} \|r\|_u \leq \max_{r \in P'} \|r\|_u$.

Proposition 19. Checking whether a stratified, limit-linear program is type-consistent is in LOGSPACE.

Proof. Let P be a stratified, limit-linear program. We can check whether P is type-consistent by considering each rule $r \in P$ independently. For the first type consistency condition, note that each maximally simplified numeric term in a semi-ground limit-linear rule has the form $k_0 + \sum_{i=1}^{n} k_i \times \prod_{j=1}^{l_i} m_{ij}^j$ for all $\ell_i \geq 1$. Such a term satisfies the first condition iff, for each i, either $\ell_i = 1$ or $k_i = 0$. Thus, to check the first condition, it suffices, for each numeric term $s_0 + \sum_{i=1}^{n} s_i$, to consider each one at a time (a limit head atom $A(\bar{a}, s)$ for the fourth condition or a comparison atom $s_1 < s_2$ or $s_1 \leq s_2$ for the fifth condition). In α, we consider at most one numeric term s at a time ($s \in \{s_1, s_2\}$ for the fifth condition), where, by our considerations for the first condition, we can assume w.l.o.g. that s has the form $t_0 + \sum_{i=1}^{n} t_i \times m_i$, where t_i, for $i \geq 1$, are terms constructed from integers, variables occurring in positive ordinary numeric literals, and multiplication. Moreover, for each such s we consider each unguarded variable m occurring in s. By assumption, m occurs in s, so we have $m_i = m$ for some i. For the fourth condition of Definition 16, we need to check that,
if the positive limit body literal $B(s, m_i)$ introducing m_i (note that m_i cannot be introduced by a negative literal by the third condition and since it is unguarded by assumption) has the same (different) type as the head atom, then term t_i can only be grounded to positive (negative) integers or zero. For the fifth condition, we need to check that, if $s = s_1$ and the positive limit body literal $B(s, m_i)$ introducing m_i is $\text{min} (\text{max})$, then term t_i can only be grounded to positive (negative) integers or 0, and dually for the case $s = s_2$. Hence, in either case, it suffices to check whether term t_i can be semi-grounded so that it evaluates to a positive integer, a negative integer, or zero. We next discuss how this can be checked in logarithmic space. Let $t_i = t^1_i \times \cdots \times t^k_i$, where each t^j_i is an integer or a variable not occurring in a limit atom, and assume without loss of generality that we want to check whether t_i can be grounded to a positive integer; this is the case if and only if one of the following holds:

- all t^j_i are integers whose product is positive;
- the product of all integers in t_i is positive and \mathcal{P} contains a positive integer;
- the product of all integers in t_i is positive, \mathcal{P} contains a negative integer, and the total number of variable occurrences in t_i is even;
- the product of all integers in t_i is negative, \mathcal{P} contains a negative integer, and the total number of variable occurrences in t_i is odd; or
- the product of all integers in t_i is negative, \mathcal{P} contains both positive and negative integers, and some variable t^j_i has an odd number of occurrences in t_i.

Each of these conditions can be verified using a constant number of pointers into \mathcal{P} and binary variables. This clearly requires logarithmic space, and it implies our claim.