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Abstract

State-of-the-art ontology languages are often not suffilsie
expressive to accurately represent domains consisting-of o
jects connected in a complex way. As a possible remedy, in
our previous work we have proposed an extension of ontology
languages witldescription graphs In this paper, we extend
this formalism by allowing for multiple graphs that can be
combined in complex ways, thus obtaining a powerful lan-
guage for modeling structured objects. By imposing a par-
ticular acyclicity restriction on the relationships between the
graphs, we ensure that checking satisfiability of knowledge
bases expressed in our language is decidable. We also presen
a practical reasoning algorithm.

Introduction

Ontologies are currently used for conceptual modeling in a
wide range of applications. The Web Ontology Language
(OWL) is a commonly used ontology language, the for-
mal underpinning of which is provided by description lo-
gics (DLs) (Baadeet al. 2007). Most DLs are fragments
of first-order logic that describe a domain usiogncepts
(unary predicates)ples (binary predicates), anithdividu-
als (constants). DL axioms are organized into the schema
(TBox) component that contains universal knowledge about
the domain, and the data (ABox) component that contains
facts. We assume the reader to be familiar with the syntax
and semantics of standard DLs (Baadeal. 2007).

Ontologies often describ&ructured objectswhich con-
sist of many parts connected in complex ways. This is
particularly the case in ontologies used in the clinicat sci
ences, such as FMA (Rosse & Mejino 2003), GALEN (Rec-
tor, Nowlan, & Glowinski 1993), and SNOMED (Spackman
2000). For example, FMA models the human hand as con-
sisting of the fingers, the palm, various bones, blood vessel
and so on, all of which are highly interconnected. The re-
presentation of such objects poses well-known problems to
DLs, as DLs usually have a variant of ttree model pro-
perty (Vardi 1996): each satisfiable DL knowledge base has
a tree-like model. Thus, DLs cannot faithfully represent ob
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To address this problem, in our previous work we have
proposed an extension of DLs wittescription graphs
(Motik, Grau, & Sattler 2008), which can describe complex
relations between objects in a direct and intuitive way. We
have also shown that nontrivial ontologies can be semiauto-
matically remodeled as a DL KB extended with a descrip-
tion graph. To be able to focus on the core aspects of such
an extension, however, we have made a number of simpli-
fying assumptions: a knowledge base can contain only one
description graph; this graph can neither specialize atker
ioms nor be specialized itself; and the roles in the DL axioms
and the description graph must be strictly separated.

In this paper, we investigate possible ways of lifting these
restrictions. We first present a general formalism that ad-
dresses all the limitations, but which is undecidable. We
then identify a variant that allows for multiple graphs and
graph specializations, but that requires the relatiorsshg
tween the graphs to satisfy a particudayclicity condition.

For the case where the roles are separated and the DL is
SHOQ, we provide a decision procedure based on hyper-
tableau (Motik, Shearer, & Horrocks 2008). We believe that
this formalism can support a range of practical applicatjon
furthermore, the decision procedure can be easily extended
to SHOZQ and thus cover all of OWL DL. Lifting the res-
triction on role separation, however, leads to undecidabil
ity if the DL provides for number restrictions (i.e., count-
ing). For such cases, our algorithm can be modified to detect
the inferences that can lead to nontermination and thus help
users avoid “dangerous” knowledge bases.

Problems with Modeling Complex Structures

Consider the problem of modeling the skeleton of the hu-

man hand, shown in Figure 1a. The carpal bones form the
base of the hand. The central part of the hand consists of the
metacarpal bones, one leading to each finger. The fingers
consist of phalanges: the proximal phalanges are connected
to the metacarpal bones, and all fingers apart from the thumb
contain a middle phalanx located between the proximal and

the distal phalanx. This structure can be conceptualized as

jects with nontree structures since they cannot enforce the shown in Figures 1b—1e. Our goal is to describe this struc-

existence of only non-tree-like models.
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ture at theschema leveland thus obtain a “template” that
can be instantiated for each particular hand. Thus, as dis-
cussed in our previous work, our description should be part
of the TBox and not of the ABox.
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Figure 1: The Anatomy of the Hand and its Models

Statements such as “the palm is a part of the hand” are
typically represented in ontologies using DL axioms such as
Hand € Fpart. Palm. We have discussed in depth the limi-
tations of such a style of modeling in our previous work. In
short, most DLs enjoy a variant of the tree model property
(Vardi 1996). Thus, as well as having a model that corre-
sponds to the intended structure, DL axioms of the men-
tioned form also have an unintended model obtained by un-
raveling the intended structure into an infinite tree. Tl ¢
prevent us from drawing conclusions that depend on the non-
tree connections in the structure; for example, if the thumb

tion graphs whose vertices and edges are labeled by con-
cepts and roles, respectively. For example, Figure 1d is a
description graph showing that each thumb has a proximal
and a distal phalanx that are attached to each étHRe-
scription graphs and DLs complement each other in expres-
sive power: the former can be used to represent the structure
of arbitrarily connected objects that are naturally bouhde
in size, whereas the latter can model possibly unbounded
but tree-like structures. For example, up to a certain lefel
granularity, a human body can be decomposed into a finite
number of subparts, the total number of which is naturally

has a broken distal phalanx, then we should conclude that the bounded by the decomposition; hence, we can represent the

phalanx adjacent to the proximal phalanx is broken (since
this is the same broken phalanx). Furthermore, the unin-

body using a description graph. In contrast, the statement
that each person has two parents who are persons does not

tended tree models can be large, which causes performanceimpose a natural bound on the number of people; hence, we

problems for reasoners that try to construct them.

Non-tree-like structures can be axiomatized using various
extensions of DLs with rules (Levy & Rousset 1998); how-
ever, the schema-level integration of DLs with rules is unde
cidable even for basic DLs. The DEROZQ (Kutz, Hor-
rocks, & Sattler 2006) provides for complex role inclusions
that can axiomatize a particular class of nontree strusture
however, they cannot describe arbitrarily shaped strastur

In our previous work (Motik, Grau, & Sattler 2008), we
have proposed to describe complex structures wud@sgrip-

can represent such relationships using DLs, provided the re
lationships are tree-shaped. To represent conditionakésp

of the domain, we also allow for arbitrary first-order rules
over the graph; for example, we can state that, if a bone
in the hand is fractured, then the hand is fractured as well.
This existing formalism, however, employs several simpli-
fying assumptions that can limit its applicability.

The role attached_to is symmetric, so we do not orient the
edges labeled with it.



First, each knowledge base can contain only a single de- W.l.0.g. we assume that the body does not contaiiVari-
scription graph. In our example, we would need to represent ablesxz andy are directly connecteéh a rule r if they both
the hand and its fingers in a single graph, which might result occur in a body atom of, and connecteds the transitive
in a description graph that is cluttered with detail and diffi  closure of directly connected. A ruleis connectedf each
cultto manage. In an extreme case, we would need to model pair of variablesz andy occurring inr is connected in.

the entire body as a single graph, which would clearly be  Next we introduce graph specializations to represent, for

cumbersome. Furthermore, reasoning with one monolithic gyample, the fact that the graph for the thumb specializes th
graph can adversely affect the performance of reasoning as graph for the finger—that i€ finger < Giumb
nger umb -

the reasoner must always consider the graph in its entirety. . e o
Second, structured objects cannot be modeled at differ- Definition 3 (Graph Specialization)A graph specializa-

ent levels of abstraction, which is often needed in practice tion has the fornsy <1 Gy, for Gy = (Vi, Ey, A1, My ) and

For example, we would like to describe the abstract struc- G2 = (Va, Ez, A2, M>) description graphs witly; C V5.

ture common to all fingers as shown in Figure 1c, and then
specialize the general structure for, say, the index fingdr a
introduce the middle phalanx as shown in Figure 1e.

Next, we introduce axioms that allow us to properly con-
nect graph instances. For examplg,,,,4 contains the ver-
tices 3 and 4 that represent the thumb and its proximal pha-

Third, our formalism requires the roles to be separated lanx, which correspond to the vertices 1 and 3&f,..ms.
into tree and graph ones: the former can be used only in the We can specify this correspondence usimggaph alignment
DL axioms, whereas the latter can be used only in the graph of the formG,4,,4(3, 4] < Gtrums[1, 3]- Intuitively, this en-
and the rules. This requires users to decide in advance which sures that it is not possible f6¥;,,,; and Gums to share
parts of the domain will be modeled using graphs and which the thumb without sharing the proximal phalanx as well.

using DLs, and it prevents them from using the same role to

represent both bounded and unbounded parts of the domain.

A Formalism for Complex Structures

We now present an extension of our previous work that ad-
dresses all three drawbacks outlined in the previous sectio
Let DL be a general DL language defined over a set of
atomic conceptsVe, a set ofatomic rolesNg, and a set
of named individualsV;. The set ofliteral conceptsiVy
is defined asV, = Noc U{—-A | A€ N¢}. ATBox7 is a
finite set of axioms expressedIn_.

We start by extending the notion of a description graph.

Definition 1 (Description Graph) An ¢-ary description
graphG = (V, E, A\, M) is a directed labeled graph where
(i) V=A{1,...,¢} isasetofl vertices (i) ECV x V' is

a set ofedges (iii) A is a labeling function that assigns a
set of literal concepta (i) C Ny, to each vertex € V and

a set of atomic roles\ (i, j) C Ny to each edgéi, j) € E,
and (v) M C N¢ is a set ofmain concept$or G. For A
an atomic concepf/, is the set of vertices that contaih
in their label; thatis, V4 = {k € V | A € A(k)}.

We define the vertices d¥ to be integers so that we can
use them as indices. The main difference from the definition
in our previous work is in the notion of a main concept. In
Figure 1, main concepts are framed with rounded rectangles.
Thus, the main concepts for the description graph in Figure
1b areHand and Palm, meaning that this graph defines the
structure of the hand and the palm. Intuitively, an instance
of a main concept implies the existence of a graph instance.

Definition 2 (Rule) Let Ny be a set ofvariablesdisjoint
from N;. Anatomis an expression of the fori(¢+, . . . , tx),
wheret; € Ny U Ny and () P is an atomic concept and
k = 1, or (ii) P is an atomic role andc = 2, or (iii) P is
the equality predicatez andk = 2, or (iv) P is an/-ary
graphG andk = ¢. An atom of the forms(s, t) is written
ass = t. Aruleis an expression of the forfl), whereB;
and H; are bodyandheadatoms, respectively.

Definition 4 (Graph Alignment) A graph alignmenthas the
form G1lus,. .., u,] < Galwy,...w,], whereG; and Go

are description graphs with sets of verticésand V5, res-
pectively, and; € V7 andw; € Vo forl <i <n.

Finally, we define GBoxes and graph-extended KBs.

Definition 5 (Formalism) A graph box(GBox) is a tuple
G =(G¢,Gs,G4) where G, Gs, and G4 are finite sets
of description graphs, graph specializations o¥gf, and
graph alignments ovef, respectively. An ABox is a finite
set of assertiong’(a), R(a1,as2), a1 =~ ag, a1 % a2, and
G(as,...,ae) (graph assertion whereC € Ni,, R € Ng,

G € Gg, anda(;) € N;. Agraph-extended knowledge base
is a 4-tupleX = (7,P,G, A) whereT is a TBox,P is a
program consisting of a finite number of connected rues,
is a GBox, and4 is an ABox.

Next, we define the semantics of the formalism.

Definition 6 (Semantics) An interpretation] = (A, .1)
consists of a nonempty interpretation domaifh and an in-
terpretation function’ that assigns to each atomic concept
A, atomic role R, and ¢-ary description graph the sets
AL C AL R C AT x AT andGT C (AT)Y, respectively.

We assume thd&? L defines a suitable notion of satisfac-
tion of a TBox7 in I, written I = 7. Satisfaction of an
ABox A in I, written I = A, is defined as usual. Satis-
faction of a ruler in I, written I = r, is defined by treat-
ing r as a universally quantified material implication. Sat-
isfaction of a description graph, graph specializationdan
graph alignment is defined in Table 1. A knowledge base
K=(7T,P,G,A) is satisfied inl, written I |= K, if all its
components are satisfied in

Thus, eaclt-ary graphG is interpreted as afary rela-
tion G' in which each tuple corresponds to an instance of
G. The key and disjointness properties ensure that no two
distinct instances off can share a vertex; for example, no
two distinct instances df;,.,,4 can share the vertex that rep-
resents the thumb. This assumption is required for decida-
bility, and it seems reasonable in practical cases. Thé star



Table 1: Interpretation of GBox Elements

I EGforG = (V,E,\ M) an(-ary graph if

Key property
Vi, .., @e, Y1,y € A {xy, . 2 € GEA
Wi,y €GTA N zi=yi— N xj=y;
1<i<e 1<5<e
Disjointness property
V1, .oy o, Y1,y € Az, o 2) € GEA
(i,--ye) €Gh = N\ x #y;
1<i<j<e

Start property for each atomic concept € M,
Vee ANl iz e Al —

Jr1,. e €N {my, ) €EGIAN N 2=y
keVa
Layout property
Var,...,mg € A (g, .. 20) € GT —
/\ x; € Bl A /\ <$i,fL‘j> e R!
i€V, BEA(3) (1,)EE, REA(i,j)

I &= Gy < G4 for G; an{;-ary description graph if

Vo1, .., @, € Az Ty, T0,) € G —
(w1,...,20,) € GE
I E Gilug, ... up) < Galws,...wy,] for G; an{;-ary

description graph if, foreach< i < n,
VT, Ty Yy e, Ty € AN (1,0 2,) € GEA

Wiy € GENTy, =Yu, = N\ Zu; = Yu,
1<j<n

property ensures that each instance of a main con¢eyft
G occurs in an instance @f. For example, sincéland is a
main concept fo7},...q4, €ach instance dfand must occur
as vertex 1 in an instance 6f,,,,4. Similarly, vertex 3 of
Ghana is labeled withThumb, which is the main concept
of Gihump; hence, each vertex 3 in an instance®f,,.q is
also a vertex 1 in an instance 6%, (but not the other
way around). The disjunction in the start property handles
the case when a main concept labels multiple vertices. For
example, if we were to describe the hand and the five fingers
in a single graph without a distinction between the five fin-
gers, then, given an instance of'@nger, we would have to
guess which of the five fingers we are dealing with. Finally,
the layout property ensures that each instaneg isflabeled
and connected as specified in the definitior-of

Graph specializations are interpreted as inclusions over
the graph relations; for examplé€; snger < Gindes_finger
means that each instance of an index finger is also an in-
stance of a finger. The two graphs share all the vertices of

the more general graph, and the more specific graph can in-

troduce additional vertices. This is not essential for cex d
cidability results, but it simplifies the technical treatmhe

Finally, graph alignments state that, whenever two graphs
share some vertex from the specified list, then they share all
other vertices from the list as well. For example, the align-
mMentGrand[3,4] < Gumums[1, 3] States that, if instances of
Ghana @ndGyump Share vertices 3 and 1, respectively, then
they must also share vertices 4 and 3, respectively.

Note that our semantics of description graphs corresponds
to implications of the form “if graph, then structure.” Inree
tain applications, however, the converse implication rhigh
be importantin order to recognize graph instances in a-struc
ture; we call such inferencegaph recognition We do not
explicitly support graph recognition because implicasiof
the form “if structure, then graph” can be encoded in rules.

Decidability of Reasoning

The main reasoning problem for graph-extended KBs is sa-
tisfiability checking, as concept subsumption and instance
checking can be reduced to satisfiability as usual. This-prob
lem is clearly undecidable: the combination of simple DLs
with unrestricted Horn rules is already undecidable (Levy &
Rousset 1998). Proposition 1 shows that, even without rules
the interaction between graphs and DL axioms leads to un-
decidability. The proposition can be proved in a simpler way
and with7 in ALCF; however, the presented proof can be
easily extended to acyclic GBoxes, defined shortly.

Proposition 1. Checking satisfiability ok = (7,0,3,0)
with 7 in ALCZF andG = (Gg, 0, 0) is undecidable.

Proof. Let K450 be the following graph-extended KB.
The GBox G contains the graph&:; = (V;, E;, i, M;),
1 < i < 4, defined as follows. Eacty; contains nine ver-
ticesV; = {1,2,3,4,5,6,7,8,9} and the following labeled
edges, where an edge between verticasdj labeled with

an atomic roleR is represented asts j:
1242 283 485 586 758 g8y
154 457 255 558 3%6 659

The labels of the following vertices of eacH; are not
empty, and all other vertices are labeled with

Aif2) = {Ai} Mi{4) = {B:i} Mi(3) ={Ci} A7) = { D}

Finally, M; = {A;, B;}. The ACCZF TBox T contains the
following axioms:

TC<1H TC<1H- TC<1V TC<1V-
Ci C3H.A, C, C3H.A, C3C3H.Ay Cy C 3H. Ay
Dy C3V.By Dy C3AV.By, D3 C3V.By Dy C 3V.Bs
TC3R.A;

Kg4ria axiomatizes the existence of an infinite grid where
horizontal and vertical links are represented using thesrol
H andV, respectively. By the last axiom i@, the exten-
sion of A; is not empty, so an instance @f exists in which
vertices 3 and 7 is labeled with; and D1, respectively. By
C; C 3H.A,, vertex 3 ofG; is connected with an instance
of Ay, so an instance aff, exists. Thus, vertex 3 aff; is
connected to vertex 2 @, by H. Furthermore, vertex 1 of
G is also connected to vertex 2 6% by H so, sinceH is
inverse-functional, vertex 1 df>; must be the same as ver-
tex 3 of G. But then, sincé/ is functional, vertices 6 and 9
of G; must be the same as vertices 4 and -of respecti-
vely. Thus, instances @f, andG- are aligned into adjacent
fragments of a grid. By applying the same argument induc-
tively in the horizontal and vertical directions, one cae se
that the grid extends indefinitely in both directions.



For each instance of the undecidableNdNO TILING
problem (Borger, Gradel, & Gurevich 1996}, can
straightforwardly be extended with axioms that exactly en-
code the tiling of the grid, which implies our claim. [

Proposition 2 shows that, even without a DL TBox, the
interaction between graphs and rules leads to undecitiabili

Proposition 2. Checking satisfiability ofC = (0, P, G, 0)
with P a Horn program and; = (Gg, (), ) is undecidable.

Proof (Sketch)(Levy & Rousset 1998) have proved unde-
cidability of the extension of a DL with rules by using a DL
axiom to axiomatize the existence of an infinitechain and
then encoding the ELTING problem using rules. Le&f be

a GBox containing the following description graphs:

. Vi={1,2} M ={A}
Gl () = (A (2= {Ay) 1702
Gy : Vo ={1,2}  My={As} 12

Ao(1) = {42} A2(2) = {As}
If either A; or A, is not empty,G implies the existence of

an infinite R-chain, which allows us to adapt the encoding
by (Levy & Rousset 1998) with minor changes. O

We next explore ways of ensuring decidability. As the
proof of Proposition 1 suggests, undecidability arises be-

o if G € G, then—A € (i) foreachi € V' \ V/;
o if G’ AG,then—A € \(3) for eachi € V.

Intuitively, G; < G2 means thatG, is subordinate to
G1. In our example, we would hav@},4rq < Gfinger and
Ghand < Guumb, Since the structures of the finger and the
thumb are subordinate to the structure of a hand, respecti-
vely. We would also havér s,y < Ginums, Since a finger
is more general than the thumb. The conditions in Definition
8 state that, if75 is subordinate t@-;, then the existence of
G» cannotimply the existence 6f;. For example, since the
thumb is subordinate to the hand, no vertex in an instance of
G ihump Should ever become labeled with a main concept of
Ghana and thus imply a cycle.

Adding —Hand and—Palm to all vertices ofG ;,4mp, CAN
be tedious and impractical. The problem can be addressed
in practice by letting users specify the graph hierarehin
an ontology editor, which would then generate the required
negative assertions automatically.

The proof of Proposition 1 holds evergfis made acyclic
by adding-A; and—-B;, 1 < i < 4to each vertex of a graph
G; with j # 4. This suggests that the interaction between
number restrictions and graphs is a fundamental problem.
Therefore, in the following section we present a reasoning
algorithm for acyclic role-separated graph-extended KBs.

We also show that, iDL does not allow for number

cause, due to number restrictions, the structures whose ex-restrictions and transitivity, our algorithm provides aide

istence is implied by DL axioms can interact with the struc-
tures whose existence is implied by description graphs: Def
inition 7 provides a way to restrict this interaction.

Definition 7 (Role-Separated KBs)A graph-extended KB
K =(7,G,P,A)isrole separated the set of atomic roles
Nr can be split into disjoint subsefSg, and Nr, of tree
and graph rolesrespectively, such that description graphs
in G and rules inP refer only to graph roles, and axioms in
T refer only to tree roles.

In a role-separated knowledge baSgthe structures con-
structed using graphs and DLs are strictly separated. There
fore, if KC is satisfiable, it has a model consisting ofree
backboneandgraph instancesthe former is a tree-shaped
structure that is axiomatized using DL axioms, whereas the
latter are arbitrarily connected fragments embedded hreo t
backbone (Motik, Grau, & Sattler 2008).

Proposition 2 suggests that undecidability is also partly

sion procedure forule separatedBs (c.f. Definition 9), in
which7 andg can share roles, provided thats acyclic.

Definition 9 (Rule-Separated KBs)A graph-extended KB
K= (7,G,P,A)isrule separated the set of atomic roles
Np can be split into disjoint subsef$r,,, and Ny, of DL-
rolesandrule roles respectively, such that refers only to
DL-roles, andP refers only to rule roles.

Finally, if no weakening ofDL is acceptable, our algo-
rithm can be used as a semidecision procedure. Moreover,
the algorithm can notify the user when it detects an inter-
action between the tree backbone and graph instances, thus
signalling that no termination guarantee can be given.

Reasoning Algorithm

In our previous work, we have presented a satisfiability
checking algorithm for graph-extended KBs with a single

due to the fact that the GBox alone can axiomatize existence description graph and with£ beingSHZQ. The DL un-
of an unbounded sequence of graphs. As we observed in ourderpinning OWL, however, iSHOZQ—an extension of

previous work, however, structured objects often exhibit a

SHZQ with singleton concepts calledbminals The hyper-

natural bound on their size. For example, the hand can be tableau algorithm foSHOZQ without description graphs

decomposed in a finite number of parts, each of which can
be further finitely decomposed into subparts. Effectively,
obtain a hierarchy of parts, the leaves of which determine

(Motik, Shearer, & Horrocks 2008) is technically involved.
Therefore, we focus here on the case wiighis SHOQ,
as this allows us to discuss the novel aspects due to multiple

the total number of objects that we need to represent. This graphs and nominals without overloading the presentation

intuition suggests the following definition.

Definition 8 (Acyclic GBox). A GBoxG = (Ga,Gs,G4)

is acyclicif a strict (i.e., an irreflexive and transitive, but
not necessarily total) ordex on G exists such that, for
eachG = (V,E,\,M) andG' = (V', E', X', M") in Gg,

if G A£G, then, for eachA € M’ and <« the reflexive—

transitive closure okl in Gg,

with technical detail. This algorithm can be easily extahde
to SHOZIQ by combining the mentioned existing results.

Role-Separated Acyclic KBs

Let KX = (7,P,G,.A) be a role-separated graph-extended
KB inwhich7 is expressed is HOQ andg is acyclic. Our
algorithm first preprocessésinto a set of rule€ (7)) and



an ABoxZ 4(7). This step can be seen as an application of
the structural transformation (Plaisted & Greenbaum 1986)

LetRy = 27 (71) and A} = Z4(71) U A;. Itis easy to see
thatR; andG,; are admissibleR is the only tree roleS, T',

adapted to DLs, where complex concepts are replaced with andU are the graph roles; and the rulesRn are HT-rules.

fresh atomic ones, followed by the translation of certaim-co
cepts into first-order logic. Due to lack of space, we leave
the technical details to (Motik, Shearer, & Horrocks 2008,
Section 4.1). In the rest of this paper, we assume that, for
each named individual € Ny, the set of atomic concepts
N¢ contains a distinchominal guard concepD,. These
concepts are used internally by our algorithm and are not
allowed to occur in any input knowledge bases. The prepro-
cessing produces HT-rules, which have the following form.

Definition 10 (HT-Rule). AnHT-rule has the forn{2) where
R;, S;, andT; are atomic rolesA; and B; are atomic con-
ceptsO,, are nominal guard concept§; and D; are either
atomic but not nominal guard concepts or they are of the
form>n R.A or > n R.—A for A an atomic but not a no-
minal guard concept, and eagh andy,, in the consequent
occurs in an atom in the antecedent.

A Ai(x) NN Ri(x,yi) AN Bi(yi) AN Oa, (Ya,) —
(2 VCi(x) vV Di(y) vV Si(z,y:) VV Ti(x,ya;) V
Vaxy, VVYi=ya, VV Y =y

The atoms of the formr ~ y,, andy; ~ y,, stem from
nominals; for exampleC C {a} is translated into a rule
C(z) N Ou(ya) — = = y, and an assertio®, (a); such a
translation ensures that the rules do not contain individu-
als. The atomg; ~ y; stem from the translation of number
restrictions; for example] C <1 R.T is translated into
R(z,y1) A R(z,y2) — y1 ~ y2. In the rest of this paper,
we usedR.C as an abbreviation for 1 R.C.

Our algorithm takes a set of rulgg, a GBoxg, and an
ABox A, and it decides satisfiability ofR, G, A). Defi-
nition 11 specifies the conditions dd and G that ensure
termination of the algorithm. It is straightforward to skatt
the set of ruleR = E4(7) U P is admissible.

Definition 11 (Admissibility). A set of rulesk and a GBox
G are admissiblef G is acyclic, the set of atomic roleSg

can be splitinto disjoint subsets tiee rolesVg, andgraph
roles Ng,, and’R can be split into disjoint subsef; and
R, of treeand graphrules such thatif eachr € R, is an
HT-rule in which all roles are tree rolesjif eachr € R,

is connected and all roles in it are graph roles, anid)(all

roles in each graph iy are graph roles.

We next describe the main aspects of our algorithm by
means of an example. Lét, = (71,P1,G1,.A1) be the
graph-extended KB wherd; = {C C 3R.A, B C {b}},

P =0, Ay ={C(a)}, andg; contains the following de-
scription graphG;:

Vi={1,2,3} M ={A}
Gr: M(1)={A} M(2)={B} M(3)={C}
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Preprocessing produces the ABaX (71) = {O(b)} and
the following set of rule&+(71):

3) C(z) — (BR.A)()
(4) B(z) A Op(yp) — =~ yp

Note thate andb are named individuals.

The hypertableau algorithm consists of derivation rules
shown in Table 2. By successively applying these rules to
R1, G1, and.Al, the algorithm tries to construct an abstrac-
tion of a model of R+, Gy, A).

The Hyp-rule tries to match all atoms from the body or
a rule to assertions in an ABox; if this is successful, an as-
sertion from the rule’s head is then derived nondeterniinist
cally. Thus, giverC'(a) and (3), theHyp-rule derives

(5) A2 = AL U{3R.A(a)}.

To satisfy the assertioRR.A(a), the 3-rule introduces a
fresh individuals; sinceR is a tree roles is called atree
successopf a. To keep track of the successor relation, our
algorithm represents individuals as finite strings; thuis
represented as.m; wherer; is atree symbal Thus, the
application of the3-rule derives

(6) A3 = A2U{R(a,a.m), A(a.7)}.

A is a main concept af1, so the assertiod (a.7 ) must
occur in an instance off; at vertex 1. Thus, thé&/s-rule
derives the ABoxA?.

@ A‘ll = A‘;’ U{Gi(a.11,a.11.71,a.11.72)}

Here, a.7;.y1 and a.71.y2 are freshgraph successorsf
a.7y Where~; and v, are graph symbols The G-rule
then connects all the vertices in the instanceGQf For
brevity, we do not show all the derived assertions; however,
note that they includé(a.71.7v1) and C(a.11.72). Thus,

the same inferences can be repeated:Higp-rule derives
ER.A(G.Tl.’}/Q), the 3-rule deriVESR(a.Tl.’)/Q, a.Ty .’}/2.7'1)

and A(a.m1.y2.71), the Gg-rule derives the graph assertion
G1(a.11.72.11, a.T1.Y2.T1.71, @.T1.7Y2.T1.Y2), and theGp-
rule connects the vertices. Lgf be the resulting ABox.

Clearly, unrestricted application of thé and G3-rule
would result in a nonterminating algorithm. To ensure ter-
mination, our algorithm appligdsiockingin the same say as
the standard tableau algorithms. Roughly speaking,and
a.71.72.71 Occur in A% in the same concepts, so the former
individual blocks the latter—that is, th& andG3-rule are
not applied to (the successors of) the blocked individual.

A tree individual (e.g.a.7) and all of its graph succes-
sors (e.g.a.71.y1 anda.r;.72) are said to form aluster,
furthermore, all named individuals (e.g.,andb) and all
of their graph successors (e.g.71, a.vz2, b.y1, andb.vs)
form a single cluster as well. The ABax; can thus be
seen as consisting of tree fragments with embedded clus-
ters, where each graph assertion contains individuals from
the same cluster. This property, formalized in Lemma 1, is
a direct consequence of the separation of roles between the
TBox and the GBox, and it holds the key to proving termi-
nation. Intuitively, the size of the tree part of each ABox
is bounded due to blocking, and the size of each cluster is
bounded due to acyclicity of the GBox; since the total num-
ber of individuals is bounded, the number applications of
each derivation rule is bounded as well.



Table 2: Derivation Rules of the Hypertableau Calculus

Hyp-rule

fl. UtA AU > ViV..VV,ER,
2. amapping : Ny — N4 exists such that
2.10(x) is not indirectly blocked for each € Ny,

>-rule

If1. >nR.C(s) € A,
2. sis not blocked inA4, and
3. there are no individualg , . . .
Clus) |1 <i<n}U{us #u; |1<i<j<n}CA,
thenA; := AU {R(s,t:),

, Un, SUCh that

Clt)|1<i<nfU{tigt;|1<i<j<n}
, tn, are fresh pairwise distinct tree successors.of

2.20(U;) € Aforeachl <i <m,and (R _
2.30(V;) ¢ Aforeachl < j <n, (s,us),
then A, = AU{L}ifn=0;and
Aj = AU{o(V;)} for 1 < j < n otherwise. wherety, ...
~-rule L-rule

If  s~teAands#t
then A; := merge 4(s — t) if ¢t is a named

If s#&se Aor{A(s),-A
thenA; := AU{L}.

(s)}CA

individual or if s is a descendant @f and G~-rule
Ay := merge 4 (t — s) otherwise. If1. {G(s1,...,50),G(t,...,t)} C A and
G -rule 2.5, =t; for somel <3</
B{s;~t; | 1<j<(}ZA
If 1. {G(S1,...,Sg),G(tl,...,tg)}g.A,and J‘_ J oy .
2. s; =t; for somei # j tGhen“L}l =AU{si =1 |1<j<0).
then A; := AU {Ll}. 3-fule
G4-rule If1. A(s) € Asuchthatd € M for someG = (V, E,\, M) € Gg,
2. sis not blocked in4, and
If1. G < G: €0s, 3. for eachv; € V4, no individualsus, . . ., u exists such that
2. Ga(s1,...,80,) € A, and o
3. Gils se)d A G(u1,...,u¢) € Aandu,, = s
then Al —17A 0 {g (s se)} then givenV4 of the form{uv1, ..., v,}, for eachl < i < n derive
o rile Lo ) Ai := AU{G(t1,...,t;)} wheret,, = s and all other
- ti are fresh graph individuals from the same clustes.as
If1. Gilui,...,un] < Golwi,...wn] € Ga, Gr-rule
2. {Gi(s1y...,80,),G2(t1,...,te,)} C A, .
3. su, = by, for s]omel <i<n, énd If1. G(s1,...,s0) € AwithG = (V, E,\, M), and

4 {su; Rtw; |[1<j<n}ZA
then Ay := AU {5y, R tw,; |1 <j<n}

2. {A(s )|A€A<>}U{R(827SJ)IR€M g
thenA; := AU {A(s:) | A€ A(D)} U{R(s:,5,) | R € < )}

Note: £, is the arity ofG,, A is a generalized ABox, anli 4 is the set of individuals occurring iA.

Nominals, however, introduce a slight complication. Con-
sider again the ABoxA}: from B(a.t1.71), Oy(b), and
(4), the Hyp-rule derivesa.m;.y; =~ b. The ~-rule then
prunesa.7;.y; (i.e., it removes all graph and tree succes-
sors ofa.7.y1) and replaces it withh; pruning is neces-
sary to avoid the so-called “yo-yo” problem (Baader & Sat-
tler 2001). The resulting ABox thus contains the graph
assertionGy (a.71, b, a.11.72), in which b is not from the
same cluster ag.7; anda.7;.72. This is remedied through
graph cleanup the mentioned assertion is replaced with
G1(b.y1,b,b.72), whereb.y; andb.y, are fresh individuals
from the cluster ofh. The next time a graph assertion of
the formG (s, b, t) is derived, the key property allows us to
reuse the individuals~; andb.~, for s andt in the cleanup.
This allows us to establish a bound on the number of indi-
viduals introduced by the cleanup and prove termination.

Definition 12 (Hypertableau Algorithm)

Generalized Individuals. Let T andT" be countably infi-
nite sets oftreeand graph symbolsrespectively, such that
T, I', and N; are all mutually disjoint. Ageneralized indi-
vidual is a finite string of symbols.a;. ... .«, such that
n>0,be Nj,q; e TUI'forl1 <:<n,anda; € I"im-
pliesa;r 1 € T. If n > 1 anda, € T (resp.a,, € T'), the
individual is called atree(resp.graph individual.

Successors and Predecessors. A tree or graph individual
x.« is asuccessoof z, predecessds the inverse of succes-

sor, anddescendarand ancestoare the transitive closures
of successor and predecessor, respectively.

Cluster. Individualss andt are from the same cluster
if (i) each individual in{s,t} is either named or a graph
successor of a named individual, dr)(both s and ¢ are
graph successors of the same tree individual, io) ne
individual is a graph successor of the other individual.

Generalized ABox. In the rest of this paper, we allow
ABoxes to contain generalized individuals and the asser-
tion L that is false in all interpretations, and we takex b
(a % b) to also stand fob =~ a (b % a).

Input ABox. An ABox that contains only named individ-
uals is called arinput ABox.

Single Anywhere Blocking. A concept isblocking-
relevantif it is of the formA, > n R.A, or > n R.—A, for
A an atomic concept an® an atomic role. Théabelof an
individual s in an ABoxA is defined as follows:

Lals) ={C|C(s)

We assume that we are given some (arbitrary) strict order
on the generalized individuals such thak s whenever
is an ancestor 0.2 By induction on<, each individuals
in A is assigned a status as follows) & tree individuals
is directly blocked bya tree individualt if ¢ is not blocked,
t < s,andL4(s) = La(t); (ii) s isindirectly blockedif it

€ AandC is blocking-relevarit

2In practice, this can be the order of individual introduatio



has a predecessor that is blocked; aiig) (s is blockedif it
is either directly or indirectly blocked.

Pruning. The result ofpruning an individual s in an
ABox A is the ABox obtained fromil by removing all as-
sertions that contain a descendantsof

Graph Cleanup. Let.A be an ABox containing an asser-
tion G(uq,...,us) where some:; andw; are not from the
same clustery; is of the forms or s.~,, for v, € ' and s
a tree or named individualy; is of the formt¢ or t.v, for
v, € I' andt a tree or named individual, anglis a named
individual or an ancestor of. A cleanupof u; is obtained
from A by pruningu; and then replacing it everywhere i
with the individual defined as follows:

o if A containsG(v1, ..., v) such thatu; = v; andv; is
from the same cluster ag, thent = v;;
e otherwiset is a fresh graph successor af

A graph cleanupf A is obtained fromA by repeatedly
applying cleanup to individuals inl as long as possible.

Merging. The ABoxmerge (s — t) is obtained fromA
by prunings, replacings with ¢ in all assertions, and then
applying a graph cleanup.

Clash. An ABoxA contains aclashif | € A; otherwise,
A is clash-free

Derivation Rules. Table 2 specifiederivation ruleghat,
given a clash-free ABax, a set of rulesk, and a GBoxg,
derive the ABoxeéA,, ..., A,). In the Hyp-rule, o maps
Ny to the individuals in4, ando (U) is obtained front/ by
replacing each variable: with o (z).

Rule Precedence. TheG3-rule is applicable to an ABox
only if the L-, =~-, G-, G~-, G4-, and G-rule are not
applicable to the ABox.

Derivation. A derivationfor a set of admissible ruleR,
a GBoxg, and an input ABox4 is a pair (T, p) whereT
is a finitely branching tree angd labels the nodes df with
ABoxes such that)(p(e) = A for e the root of the tree, and
(i) for each node, if one or more derivation rules are ap-
plicable toR, G, and p(t), thent has childrenty, ..., ¢,
such that the ABoxe®(t1), ..., p(tn)) are exactly the re-
sults of applying one (arbitrarily chosen, but respectihg t
rule precedence) applicable derivation rule 1, G, and
p(t). The derivation isuccessfuif T contains a leaf node
labeled with a clash-free ABox.

To show soundness, completeness, and termination of the
hypertableau algorithm, we first prove the following lemma,
which shows that all ABoxes labeling a node in a derivation

are of a particular shape.

Lemma 1. Each ABox4’ labeling a node in a derivation for
an admissible set of ruleB, GBoxg, and an input ABox4
satisfies the following properties, farandb named individ-
uals,u a generalized individuaky;,v; € I', andr;, 7; € T.

1. Each R(s,t) € A" with R a tree role is of the form
R(a,b), R(u,u.7;), or R(u,a).

2. Eachs = t € A'isoftheformu ~ u,a = u, a.y; = b.y;,
U.T; RUTH, U R U, OF Uy = Uy

3. In eachG(sy,...,8¢0) € A and eachU(sy,s2) € A
with U a graph role, all individualss; are from the same

cluster; in the latter cases; andss occur in some graph
assertion inA4’.

4. IneachO,(s) € A’ for O, a nominal guard concept, the
individual s is named.

5. For each tree individuat, occurring in A’, we have
{Ro(s0,t0),- -, Rn(sn,tn)} € A" such that {) so is a
named individual, i{) eacht; is a tree successor of;,
(iii) for eachl < ¢ < n, the individuals; is from the same
cluster ast; 1, and (v) R; is a tree role.

Proof. The proof is by induction on rule applications. The
induction base is trivial. Assume that the claim holds for an
ABox and consider the inferences deriving sarie

(L-rule) The ABoxA'’ trivially satisfies Conditions 1-5.

(G1-.G4-, G-, Gx-, andG-rule) These rules are al-
ways applied to individuals in the same cluster,Acsatis-
fies Conditions 1-5.

(G3-rule) All ¢; are from the same cluster asso.A’ sat-
isfies Conditions 1-5.

(>-rule) Thet; are tree successors efand C is not a
nominal guard concept, s4’ satisfies Conditions 1-5.

(Hyp-rule) Consider an application of thdyp-rule to a
ruler € R. No rule contains nominal guard concepts in the
consequent, sd’ satisfies Condition 4. If is a graph rule, it
is connected, so all variablesirare matched to individuals
in the same cluster and’ satisfies Conditions 1-5.

If s =~ t is derived by instantiating ~ y, ory; ~ y, ina
tree ruler, the antecedent of containsO, (y,). This atom
is matched to an asserti@n, (¢) in which, by Condition 4¢
is named. Hence;, ~ t satisfies Condition 2.

If s~ tis derived by instantiating; ~ y; in a tree rule
r, the antecedent of contains atom®(z, y;) and.S(x, y;)
that are matched to assertioRéu, s) andS(u, t) satisfying
Condition 1. Clearlys ~ t then satisfies Condition 2.

If R(s,t) is derived by instantiatingz(x,y;) in a tree
rule r, the antecedent of contains an aton§(z, y;) that is
matched to assertiofi(s, t) satisfying Condition 1. Clearly,
R(s,t) satisfies Condition 1 as well.

If R(s,t) is derived by instantiating?(x, y,,) in a tree
ruler, the antecedent of contains an ator®,, (y,, ) that is
matched to an assertian,, (¢) in which, by Condition 4¢
is named. HenceR(s, t) satisfies Condition 1.

(=-rule) Consider the types of equalities to which the rule
can be applied. Fat.y; = b.y;, u = u.y;, Or u.y; = uw.y;,
the rule simply replaces an individual with another individ
ual from the same cluster. Far= u.v;, the rule replaces
u.y; with u. For w.m; = u.7;, the rule prunes one indi-
vidual, thus removing all individuals from its cluster, and
then merges the pruned individual into the other individual
Clearly, A’ satisfies Conditions 1-5.

If the ~-rule is applied toa ~ u, thenu is pruned and
merged intax. Replacing: with a in someR (b, u) orb ~ u
producesik(b, a) or b = a, respectively, which satisfy Con-
ditions 1 or 2. Replacing with a in G(sq,...,s,) where
s; = u produces at first an assertion that does not satisfy
Condition 3; however, the graph cleanup then replaces each
s; with a graph individual from the same cluster@asFor
U(s1, s2) with U a graph roles; ands, occur in a graph
assertion, so graph cleanup is appliedt@nd/orss. O



Theorem 1 summarizes the properties of our algorithm.

Theorem 1. For an admissible set of ruleB and GBoxg,
and an input ABox4,

1. if (R, G, A) is satisfiable, then each derivation f&, G,
and A is successful,

2. if a successful derivation foR, G, and A exists, then
(R,G, A) is satisfiable, and

3. each derivation fofR, G, and A is finite.

Proof of Claim 1. The claim follows from the following
property: if (R, G, A) is satisfiable andA,,...,.A,) are
the result of applying a derivation rule ®, G, and.A, then
(R,G, A;) is satisfiable for somé < i < n. The proof is
straightforward for all but thex-rule, in which the graph
cleanup step is nonstandard. Uebe a model of R, G, A)
and consider an application of therule to s ~ ¢, produc-
ing an ABox.A4;. Let A’ be the ABox obtained fromd by
prunings and then replacing it with. Sincel | s = ¢, we
haves! = t!, so clearlyl = A’. The ABox A, is obtained
from A’ by graph cleanup, which can additionally replace
some individuals:; with v;. If v; is fresh, we can extend
I to obtain a model of4,; otherwisew; occurs inA’ in a
graph assertion for the same graph so, by the key property
from Definition 6,u} = v/ for each;. Clearly,(R,G, A1)

is satisfiable. O

Proof of Claim 2. For A” a clash-free ABox labeling a leaf
of a derivation forR, G, and A, let A’ be obtained from
A" by removing {) all assertions that contain an indirectly
blocked individual andii) all assertions that contain a di-
rectly blocked individual and a graph role or a description
graph. The ABoxA’ satisfies Lemma 1.

Let A be the set of all individuals itd’. We define the
function[s] on eachs € A as follows: ifs is blocked inA’
by ¢/, then[s] = s’; otherwise,[s] = s. Furthermore, for
each tree individuad € A that is blocked by a tree individ-
ual s’ and foruy,...,u, all graph individuals in4’ from
the same cluster a3, we introduce fresh graph individuals
v1,. .., v, and defing-] on them agv;] = u;. Let T be the
set of all individuals introduced in this way.

We now define an interpretatioh as follows, for each
atomic conceptl, tree roleR, graph rolel/, and graplG:

AT=AUT

sl = sforeachs € A1

Al = {s | for eachs € A’ such thatd([s]) € A’}

RI = {(s,t) | forall s,t € AT such thatR([s],t) € A"}

Ul = {{(s,t) | forall s,t € Al suchthat/([s],[t]) € A’}

G = {(s1,...,s¢) | forall s1,...,s, € A such that
sil,-.-,[s¢]) € A’}

We now show thaf = (R, G, A’). Foreachs ~ t € A',
since thex~-rule is not applicable td’, we haves = ¢, so
I = s~ t. Foreachs % t € A’, since thel-rule is not ap-
plicable toA’, we haves # ¢, sol = s # t.

Consider each> n R.C(s) € A’. By the definition of
blocking, we have> n R.C([s]) € A’; since the>-rule is
not applicable tad’, individualsu, . . . , u,, exists that sat-
isfy the precondition of the rule; but then, by the definition

of I, we have(s, u;) € R’ for eachl <i <n andu; # u]
foreachl <i < j <n,sol > nR.C(s).

Consider a tree rule of the form (2) ands a mapping

of variables toA! such thatl |= o(B;) for each body atom
B; of r. Leto’ be a mapping defined as(z) = [o(x)],
o' (yi) = o(y;), ando’ (ya,) = o(ya, ). By the definition of
I and the structure af, theno’(B;) € A’. Since theHyp-
rule is not applicable to, A’, ando’, theno’(H;) € A’ for
some head aton/; of . But then, by the definition of
and the structure of, we havel = o(H;).

Consider a graph rule of the form (1) andr a mapping
of variables toA’ such thatl = o(B;) for eachl < i < n.
Let ¢/ be a mapping defined as'(z) = [o(z)] for each
variable z occurring inr. By the definition of I, then
o’'(B;) € A'. Since theHyp-rule is not applicable te, A,
ando’, theno’(H;) € A’ for somel < j < m. But then,
by the definition off, we havel = o(H;). The proof thatl
satisfies conditions of Definition 6 is completely analogous
and we omit it for the sake of brevity.

If « € Abuta ¢ A’, then some named individuals in
have been merged into other named individuals, producing
an assertiom’ € A’. Clearly,I can be extended to a model
of (R, G, A) by interpreting the merged individuals. O

Proof of Claim 3.Let (T, p) be a derivation fofR, G, and

A. We show that, in the course of the derivation, (1) each
derivation rule can be applied to a set of assertions only
once; (2) the number of tree ancestors of each tree individ-
ual is bounded; (3) thé&'s-rule can be applied for the same
graphG to (different) assertions containing the same indi-
vidual s at most twice; (4) the number of graph individuals
introduced in each cluster is bounded; and (5) the number of
graph individuals introduced by graph cleanup is bounded.
Together, all these properties imply that (6) the numbemn-of i
dividuals introduced in the course of a derivation is bouhde
By (6), the number of rule applications is bounded as well,
which implies our claim.

(1) This claim holds in exactly the same way as in the case
of standard (hyper)tableau algorithms: if, for some deriva
tion nodet € T', a derivation rule is applied to a subset of the
assertions op(t), then the assertions are addeg(o) that,
for each descendant notlef ¢, prevent the reapplication of
the same derivation rule to the same assertiongt).

(2) Let ¢ be the number of atomic concepts occurring in
R, G, and.A. By Condition 5 of Lemma 1, the ancestors
of each tree individual are present i) for somet € T.
Thus, if a tree individual has more thagp = 2¢ tree ances-
tors, two ancestors with the same individual label mustexis
sot is necessarily blocked in(t).

(3) If the G-rule is applied for the sam@ to two asser-
tions containings, two assertions of the for@(. . .,s,...)
are introduced in whicls occurs at positions andj, and
i # j. Butthen, due to rule precedence, the-rule derives
1 before theiz5-rule is applied tas for the third time.

(4) Let < be the order on the graphs ¢hthat satisfies
conditions of Definition 8. Assume that, whenever it in-
troduces an individuat by an application of the rule to
an individuals and a grapht7, the G5-rule assigns a finite



string of description graphs(¢) to ¢ such thati) w(t) = G

if s is a tree or named individual, and)(w(t) = w(s).G
otherwise. By induction on the applications of tli&;-
rule, we show that the following property)(holds: for
each graph individuat occurring in an ABoxA’ label-
ing a derivation noded’ contains a graph assertion of the
form G, (u1, ..., ug,) with u; = t for somei; furthermore,
forw(t)=Gy. ... .Gp_1.G,, we haveGy < ... < G,—1
and, if G,_1 £ G,, then A’ contains a graph assertion
Gn(uf, ..., up ) such thaw, = t andi # j. Property (4)
then follows straightforwardly from (3)}), and the fact that
< is acyclic and finite.

Assume thati() holds for some ABox4’, the G3-rule is
applied to an assertioA(s) € A’ and a description graph
G' = (V',E' XN, M) with A € M’, and a fresh graph in-
dividual ¢ is introduced. |Ifs is a tree or named indi-
vidual, ) holds trivially, so assume that is a graph
individual such thatw(s) = G;. ... .G,-1.G,,. By the
rule precedence, thé&', -rule is not applicable tod’, so
s does not occur ind’ in two graph assertions involv-
ing G,; thus, G,,_1 < G,. By (f), a graph assertion
Gn(u1,...,up,) € A" exists such that,; = s for some
1<i<¥,, whereG,, = (V,,, Ep, A\, My,). If G, < G,
then ¢) holds trivially, so assume that,, # G’. The
G_r-rule is not applicable tod’, so A’ contains the lay-
out of G,, for the verticesu, ..., us, . Since theGz-rule
is applicable tad’, we havel ¢ A’. Since thel-rule is
not applicable tad’, we have-A(s) € A’, which implies
-A & N\, (i). If G 4G,, then the second condition of Def-
inition 8 requires—A € A, (i), which is a contradiction, so
assume tha®’ < G,,. The first condition of Definition 8 and
—A & N\, (i) imply 1 <4 < /¢'. TheG4-rule is not applica-
ble to A’ by the rule precedence, €& (u1,...,up) € A'.
But then, theGs-rule introduces another graph assertion
G'(uy, ..., up) such that; = s andj # i, so ) holds.

(5) From the proof of Lemma 1, we can see that graph
cleanup can only be applied to a set of graph assertions
O = {G;(u1?, ..., u,")} when someu;* is replaced with a
named individuak. The total number of individuals in each
© is bounded by (4), so the number of sétdifferent up
to the renaming of individuals is bounded as well. By the
first case in the definition of graph cleanup, for each differ-
ento, u;%, anda, fresh graph individuals can be introduced
only once. Since the numbers of differéhtw;*, anda are
bounded, the number of graph individuals introduced by the
graph cleanup is bounded as well.

(6) Because of (1), the-rule can be applied to each indi-
vidual at most once for each assertiom R.C(s). By (1)
and (4), the number of successorsafitroduced by the>-
andGg-rule is bounded. By (2) the number of descendants
introduced by these rules is bounded as well. O

LetK = (7,P, G, A) be arole-separated graph-extended
knowledge base in whicfi is expressed iISHOQ andG
is acyclic. Furthermore, I€€E7(7) and=4(7) be the set
of rules and the ABox obtained by the preprocessing step,
R =E7(T)UP,andA’ = AUE4(T). Since preprocess-
ing does not affect satisfiabilityC is equisatisfiable with
(R,G,A’"). Furthermore, by inspecting the preprocessing

transformation, it is straightforward to see tfaandg are
admissible. This implies the following theorem.

Theorem 2. Checking satisfiability of a role-separated
graph-extended knowledge base= (7, P, G, A) in which
T is expressed isHOQ andg is acyclic is decidable.

Rule-Separated Acyclic KBs

The proofs of Claims 2 and 3 of Theorem 1 crucially depend
on the fact that each ABox labeling a derivation node satis-
fies Lemma 1—that is, it is tree-shaped. Role separation is
one possible way of achieving this property; however, as we
discuss next, it can also be achieved using Definition 9.

Theorem 3. Checking satisfiability of a rule-separated
graph-extended KBC = (7,G, P, A) in which 7 is ex-
pressed inALCHO andg is acyclic is decidable.

Proof. LetR = Z4(7) UP, and letNg,,, andNg, be the
disjoint subsets ofVy satisfying Definition 9. SincéC is
rule-separatedy can be split into disjoint subse®p;, and
R such that the rules in each of them refer only to roles
in Ng,,, andNpg,, respectively. Furthermore, sin@edoes
not allow for number restrictions, each ruleRy, is of the
form (2) but without atoms of the formy; ~ y;. Clearly,
and(R,G, AUZ4(7)) are equisatisfiable.

We now generalize Lemma 1 to the property. (each
ABox A’ labeling a node in a derivation foR, G, and
AU Z4(7) satisfies the following properties, farb € Ny,
v a generalized individuaty;,v; € I', andr;, 7; € T.

1. Each R(s,t) € A" with R a DL-role is of the form
R(a,b), R(u,u.1), R(u,a), or R(s1,s2) for s; andss
from the same cluster.

. Each equalitys ~ ¢t € A’ is of the formu ~ u, a = u,
a.7y; = boyj, u = usy;, Orusy; = u.y;.

. In eachG(sy,...s;) € A andU(sy, s2) € A with U a

rule role, alls; are from the same cluster; in the latter

case,s; ands, occur in a graph assertion ',

Conditions 4 and 5 hold as in Lemma 1, with the differ-

ence that eaclR; in Condition 5 is a DL-role.

4.

The proof of §) is analogous to the proof of Lemma 1.
One difference is that, sincR p;, does not contain atoms
of the formy; ~ y;, the ABox.A’ cannot contain atoms of
the formu.7; ~ u.7;; thus, the “graph part” ofA’ cannot
interact with the “tree part” ofd’ by the=-rule. Since the
rules inR,. contain only atoms with roles iV, , they can
be applied only to the individuals in the same cluster; hence
each assertion derived by thiyp-rule satisfies Conditions
2 and 3 of f). Unlike in Lemma 1, the rules iR p;, can
be applied to both the “tree” and the “graph part” 4f, but
they still derive atoms satisfying Condition 1 ¢j(

Sinceg is acyclic and ) holds, the claims of Theorem 1
hold for R defined as above in essentially the same way as
in Theorem 1; the only difference is in the proof of Claim 2
in the definition of the interpretation of a DL-role:

RI = {{(s,t) | forall s,t € Al such thatR([s],t) € A’
ands andt are not from the same graph clugter

{(s,t) | forall s,t € Al such thatR([s], []) € A’
ands andt¢ are from the same graph cluster



Satisfiability of C can thus be decided by applying the hy-
pertableau algorithm tGR, G, AU E4(7)). O

Rule-Separated KBs with an Expressive DL

Propositions 1 and 2 suggest that achieving decidability
might be difficult if no weakening oDL is allowed. IfK

is rule-separated, however, the hypertableau algorithon pr
vides a semidecision procedure. The following theorem re-
lies on the standard notion of fair derivations. Intuitiveh

a fair derivation, no application of an inference rule can be
“postponed” infinitely often. Since derivations can now be
infinite, we adjust the notion of a successful derivation.

Definition 13. A derivation(T’, p) for R, G, andA is unfair
if a branchty, to, . .. of T" exists such that, for infinitely many
nodes;, , t;,, ... on that branch, the same derivation rule is
applicable to the same assertions in eagh, ). Fairis the
opposite of unfair.

A derivation (T, p) is successfulf T' contains a branch
t1,ta,... such that each(t;) is clash-free.

Theorem 4. Let X =(7,G,P,A) be a rule-separated
graph-extended KB witll” expressed ilSHOQ, and let
R =E7(T)UP. If Kis satisfiable, then each derivation
forR, G, and AU E4(7) is successful. Conversely, if a fair
and successful (but not necessarily finite) derivationRor
G, and AU E4(7) exists, therk is satisfiable.

Proof. The first claim holds in exactly the same way as
Claim 1 of Theorem 1. For the second claim, assume that
a successful derivatiofil’, p) for R, G, and AUZ4(7T)
exists. The main difference to the proof of Theorem 3
is that (T, p) is not necessarily finite. Let;,ts,... be
the branch ofl" such that each(t;) is clash-free, and let
A" = ;N> p(t;). Since(T, p) is fair, no derivation rule

is applicable ta4’. SinceK is rule-separated, each ABox
p(t) labeling a node € T satisfies propertyt} from the
proof of Theorem 3; clearly, thed’ satisfies|() as well. But
then, a model oRR, G, and AU Z4(7) can be constructed
in exactly the same way as in Theorem 3. O

Let K be a graph-extended KB as specified in Theorem 4
in which G is acyclic. By Proposition 1, checking satisfiabi-
lity of K is undecidable; however, we believe that the hyper-
tableau algorithm is “likely” to terminate in practice evién
K is satisfiable. The ABoxes generated by the algorithm sat-
isfy property §) from the proof of Theorem 3, which enables
the usage of blocking; thus, the algorithm can terminate eve
if 7 is cyclic. In contrast, general first-order model-building
calculi are unlikely to terminate i is cyclic. Nontermi-
nation can occur only due to merging of graph individuals
from different clusters.

Conclusion and Future Work

We have presented an expressive formalism that extends
DLs with description graphs, which allow one to model ar-
bitrarily connected, and not just tree-like structures.

An open problem is to determine the computational com-
plexity of graph-extended knowledge bases. Tableau algo-
rithms generally do not provide worst-case behaviors, so

a different approach will be needed. We conjecture that
adding one description graph does not increase the complex-
ity of ExPTIME-complete DLs, but adding several descrip-
tion graphs increases the complexity to K IME. An-
other open problem is to see whether the restrictions of The-
orem 3 can be relaxed. We conjecture that the usage of in-
verse roles in Proposition 1 is strictly necessary for the un
decidability result, and that Theorem 3 can be extended to
SHOQ. To confirm or refute these conjectures will be part
of our future work.

The main practical challenge is to evaluate the utility of
our formalism in applications. To facilitate this we will ex
tend the remodeling algorithm from our previous work to
support multiple graphs, extend the Protégé ontology edi
tor® to support description graphs, and apply our formalism
and tools in practical scenarios.
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