
Delta-Reasoner: a Semantic Web Reasoner for an
Intelligent Mobile Platform

Boris Motik Ian Horrocks
Department of Computer Science

Oxford University
Wolfson Building, Parks Road

OX1 3QD, Oxford, UK

Su Myeon Kim
Software Center, Samsung Electronics

416, Maetan-dong, Yeongtong-gu, Suwon-si
Gyeonggi-do

443-742 South Korea

ABSTRACT
To make mobile device applications more intelligent, one
can combine the information obtained via device sensors
with background knowledge in order to deduce the user’s
current context, and then use this context to adapt the
application’s behaviour to the user’s needs. In this paper
we describe Delta-Reasoner, a key component of the Intel-
ligent Mobile Platform (IMP), which was designed to sup-
port context-aware applications running on mobile devices.
Context-aware applications and the mobile platform impose
unusual requirements on the reasoner, which we have met
by incorporating advanced features such as incremental rea-
soning and continuous query evaluation into our reasoner.
Although we have so far been able to conduct only a very
preliminary performance evaluation, our results are very en-
couraging: our reasoner exhibits sub-second response time
on ontologies whose size significantly exceeds the size of the
ontologies used in the IMP.

Categories and Subject Descriptors
H.4.0 [Information Systems]: General

General Terms
Algorithms

Keywords
OWL, reasoning, context services

1. INTRODUCTION
The emergence of mobile devices with affordable data

plans is reshaping the daily lives of millions of people around
the world. As well as having access to all of the digital
resources available via the Internet, such devices are addi-
tionally equipped with various sensors that allow a mobile
device to detect and interact with its physical environment.
For example, mobile devices nowadays routinely contain a
GPS receiver, compass, accelerometer, and gyroscope, and
they can typically connect to WiFi and Bluetooth networks.
Using data obtained from these sensors, possibly in combi-
nation with information accessed via the Internet, a mobile
device can identify the context that it is being used in. For

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France
ACM 978-1-4503-1230-1/12/04.

example, the location of the device might be determined us-
ing GPS data, or by combining the SSIDs of the visible WiFi
networks with (online) data about the location of WiFi net-
works. Furthermore, the visible Bluetooth devices might be
used to identify nearby individuals. Finally, location and
accelerometer data might be used to determine the user’s
current activity (such as running).

The goal of context-aware applications is to exploit the
context information in an intelligent way for the purpose of
helping the device owner in organising his daily life. For
example, an application might remind the user to buy some
milk when the context indicates that the user is located
close to a grocery store. Similarly, an application might
use the calendar information to remind the user of an up-
coming family member’s birthday. Since the practical ad-
vantages of such applications seem compelling, manufac-
turers are nowadays actively exploring ways of extending
their products with context-awareness. However, although
context-awareness has been the subject of much research, it
has so far had relatively little impact on widely used applica-
tions. We believe that this is largely because existing work
in context awareness has assumed an environment in which
sensors and devices are linked to specific applications. Ap-
plication developers and/or users are thus required to deal
with each context-aware application individually, which in-
creases implementation cost considerably, limits flexibility,
and may make unrealistic demands on the user.

In order to overcome these limitations, we are develop-
ing a context-aware platform for mobile devices which we
call the Intelligent Mobile Platform (IMP). The IMP can
dynamically reconfigure itself in order to adapt to different
situations and scenarios, and it provides context-aware ser-
vices designed to support third-party applications. The goal
of the IMP is to enable the development of a wide range of
intelligent applications that can exploit the services provided
in order to provide context-aware behaviour.

To support context-aware mobile applications, the IMP
must manage information about the mobile device, its envi-
ronment, the user, and the application scenario. Moreover,
the requirements of context-aware applications are likely to
exceed the simple storage and retrieval of information, so
semantic technologies will therefore play a prominent role
in the IMP’s functionality. In particular, the IMP will use
a knowledge management system and appropriate reasoning
services to determine the current context of a mobile device
and identify the appropriate actions. For example, based
on the calendar information, the address book entries, the

user’s preferences, and the current location, a client appli-
cation might use the IMP to recognise a context in which
the user should be reminded to buy a birthday present.

To provide the required knowledge management and rea-
soning services, several nontrivial questions must be an-
swered. The first question is how to represent the knowledge
used for reasoning in an adequate way. While ad hoc mech-
anisms are certainly possible, they are unlikely to provide a
sound foundation for the IMP. Instead, using a known and
well-understood knowledge representation formalism offers
numerous important advantages. Knowledge representation
is a complex multifaceted problem for which no single so-
lution exists; hence, depending on the requirements, differ-
ent knowledge representation languages might be suitable
for different applications. Furthermore, the choice of the
knowledge representation language can impose theoretical
limitations on the scalability of reasoning.

The second question is how to efficiently implement rea-
soning for the selected knowledge representation language.
Various forms of reasoning can often be seen as (more or
less) hard combinatorial problems. Exact reasoning algo-
rithms are often of very high computational complexity (NP-
complete or beyond), so effective heuristics are typically
needed to facilitate reasoning with acceptable performance.

The third question concerns adequate tool support. De-
veloping the necessary infrastructure from scratch can be
very time consuming, so reusing existing software is likely
to considerably reduce the development cycle.

In this paper we describe Delta-Reasoner—the knowledge
management system used to support context-aware appli-
cations that was jointly developed by Samsung and Oxford
University. In particular, we discuss how the above men-
tioned questions can be effective answered by basing the rea-
soner on the W3C standard languages: Delta-Reasoner uses
the Resource Description Framework (RDF) [11] as the basic
data model, and it uses the Web Ontology Language (OWL)
[14] for representing the necessary background knowledge.
RDF and OWL were developed by relying on the results
of fundamental research into knowledge representation and
automated reasoning [1].

Since the sensor readings change very frequently, Delta-
Reasoner must continuously update the conclusions that it
can draw from its ontology. Recomputing all conclusions
from scratch every couple of seconds would clearly impose
significant load on the limited resources of mobile devices.
To this end, Delta-Reasoner uses incremental reasoning [18,
8]: after each change, our reasoner just computes the dif-
ference between the old and the new set of consequences,
which considerably conserves resources.

The rest of this paper is structured as follows. In Sec-
tion 2 we describe the context-aware setting and IMP in
more detail. In Section 3 we present a brief overview of
RDF, OWL, and reasoning systems. In Section 4 we discuss
the application requirements that influenced the design of
Delta-Reasoner. In Section 5 we present an outline of the
reasoner’s architecture. Finally, in Section 6 we present the
results of a preliminary performance evaluation.

2. INTELLIGENT MOBILE PLATFORM
Figure 1 shows the typical environment for which the IMP

is designed. In their daily lives, people usually move through
a series of different situations, such as a home, a car, an of-

	

Figure 1: Typical Environment

fice, or a restaurant. The main goal of the IMP is to deter-
mine the current situation based on various sensor readings.
Sensors may include internal sensors (those embedded in the
device, such as GPS), external sensors (those provided in a
specific situation, such as an indoor location sensors), and
even pseudo-sensors (virtual sensors such as weather infor-
mation from Internet services). The list of available external
sensors and pseudo-sensors may vary according to the situ-
ation, which will affect the services that the IMP can pro-
vide. Moreover, the kinds of sensor available and the kinds
of services required may not be known at the point the IMP
is being designed. Consequently, the IMP must be flexible
enough to allow for extending the set of available sensors
and/or services in a seamless way.

The IMP exploits semantic technologies in order to pro-
vide the necessary flexibility and configurability. In partic-
ular, the IMP uses OWL ontologies to represent different
situations and application scenarios, and it uses RDF to
represent sensor and application data. The use of seman-
tic technologies in context-aware engines has already been
proposed, and our approach is related to that of Luther
et al. [12]. While this work takes into account that the
user’s situation can change, the target application—service
recommendation—is fixed at design time. In contrast, a
change in the application setting can be reflected in the IMP
by loading appropriate ontologies into the reasoner; thus, the
system’s behaviour can be changed without modifying the
system itself. Our system thus relies on OWL reasoning to
correctly interpret the given context and decide on appropri-
ate application response. We refer to the set of ontologies
available to a given application in a given context as the
context model.

On initialisation, the context model contains only basic
information, but it can be updated on the fly as the user’s
situation changes. Such updates may be implicit or explicit.
Implicit updates occur, for example, when the user changes
location, which may result in the IMP changing the model to
reflect the new situation; such updates are typically valid for
all applications. Explicit updates occur when an intelligent
application wants to change its own behaviour; such updates
are typically valid only for the application in question. In
order to support explicit and implicit updates, the IMP must
support the addition and retraction of information, and it
must be able to reason w.r.t. a combination of context and
application-dependent information.

For such an approach to be useful in practice, it is critical

for the IMP to respond to the changes in the user’s cir-
cumstances in a timely manner [21]. Achieving this goal is
made difficult by the fact that the data acquired through the
IMP’s sensors can change very frequently, and that even the
ontology representing the application scenario can change
regularly. In the rest of this paper we present an outline of
the technical solution to this problem.

Raw sensor data is typically too fine grained for direct use
in context reasoning, and so it must be enriched via com-
plex computations, such as filtering, pattern matching, and
counting. For example, the user’s current activity might
be determined from accelerometer sensor data via activity
prediction algorithms. As another example, the ambient
temperature reading can be quantised into predetermined
ranges. Such transformations can usually be implemented
more efficiently in procedural code than by logical reason-
ing, so the IMP uses a sensor preprocessing layer (SPPL)
between the sensors and the context reasoner. The SPPL
provides certain common preprocessing functions, which can
be easily combined to obtain complex preprocessing trans-
formations; furthermore, SPPL can be easily extended with
user-developed preprocessing functions. By quantising and
interpreting sensor data, the SPPL can often reduce the
number of updates to the context model, which consider-
ably decreases the response times of the IMP.

3. STATE OF THE ART IN OWL AND RDF
Before proceeding with a discussion of how semantic tech-

nologies can be used to support context reasoning in prac-
tice, in this section we first present a brief overview of RDF,
OWL, and the existing reasoning systems.

RDF is a metadata standard that allows users to make
simple assertions. The elementary unit of information in
RDF is a triple—an assertion of the form 〈s, p, o〉 stating an
that object o is the value of a property p for a subject s.
For example, that a store identified as :s1 is a Tesco store
located at geographic longitude XYZ can be stated using
the following triples:

〈:s1 , rdf :type, :TescoStore〉 (1)

〈:s1 , :hasLongitude,XYZ 〉 (2)

Sets of triples are commonly called (RDF) graphs or ABoxes.
While RDF is mainly used for making elementary assertions,
OWL can be used to state axioms describing the structure
of the application domain. In this paper we use the OWL 2
DL version of OWL—a version of the language that was de-
signed to be decidable and thus allow for sound and complete
practical reasoning. As an example, the following OWL 2
DL axiom states that all Tesco stores are grocery stores:

SubClassOf(:TescoStore :GroceryStore) (3)

A set of axioms describing a domain of interest is commonly
called a TBox. From triples (1)–(2) and axiom (3), one
can conclude that ‘s1 is a grocery store’—that is, one can
derive triple 〈:s1 , rdf :type, :GroceryStore〉. Since reasoning
with OWL 2 DL is of high computational complexity [1],
three profiles of OWL 2 DL were developed: OWL 2 RL,
OWL 2 QL, and OWL 2 EL [13]. These profiles can be
understood as subsets of the OWL 2 DL language that offer
favourable computational properties.

In order to extend its expressivity, the Semantic Web Rule
Language (SWRL) [10] extension of OWL 2 DL was devel-

oped. SWRL allows users to state rules that check for com-
plex conditions. For example, the following rule states that
if the device location is the same as the location of another
object, then the device is located near this object:

:deviceLocation(?P, ?L) ∧ :hasLocation(?O, ?L)→
:isNear(?P, ?O)

(4)

SPARQL [17] provides a standard language for querying
Semantic Web systems. For example, the following query
retrieves pairs of objects that are near to each other:

SELECT ?X ?Y WHERE { ?X :isNear ?Y } (5)

Existing OWL reasoners can be broadly divided into two
groups, according to the kind of implemented reasoning al-
gorithm. In the first group are reasoners such as Pellet [16],
HermiT [15], FaCT++ [19], and RACER [9] that are based
on provably correct (hyper)tableau calculi. These calculi
can typically handle all or most of OWL 2 DL, and they
can solve a wide range of reasoning tasks, such as classify-
ing an ontology and checking ontology entailment; hence,
(hyper)tableau calculi are particularly useful in applications
that require extensive reasoning about the schema (i.e., rea-
soning about the definitions of classes and properties). It is
possible to implement conjunctive query answering (i.e., rea-
soning about the data) using hypertableau calculi [5]; how-
ever, such implementations are unlikely to be scalable (i.e.,
they are unlikely to be able to handle ontologies with large
numbers of assertions).

In the second group are reasoners such as Jena [3], Jena2
[23], Oracle [4], and Sesame [2] that are based on (deduc-
tive) RDF stores. These systems typically store their data
as RDF graphs, and they implement reasoning via materi-
alisation: all (relevant) consequences that follow from RDF
data and the OWL ontology are precomputed and stored in
a preprocessing step; after that, user queries can be simply
evaluated in the precomputed data. The main benefit of
such an approach is that computation-intensive processing
is concentrated in the preprocessing phase. Thus, the cost of
preprocessing is amortised over multiple query evaluations,
which makes this style of reasoning particularly attractive
for data-intensive applications. Consequently, most reason-
ers in this group aim at providing high levels of scalability—
that is, they were designed to support the management of
RDF graphs containing hundreds of millions or even billions
of triples. Materialisation, however, has two main draw-
backs. First, materialisation can significantly increase the
size of the RDF data set, thus requiring efficient storage and
management of even larger materialised data sets. Second,
materialisation can be applied only to OWL 2 RL ontolo-
gies. Thus, all reasoners in this group support only OWL
2 RL or a fragment thereof, with some also supporting (a
fragment of) SWRL.

4. REQUIREMENTS
As we explain in this section, the requirements placed on

a reasoner supporting context reasoning are quite distinct
from the requirements commonly found in applications of
Semantic Web technologies. Consequently, off-the-shelf rea-
soners are unlikely to provide a good knowledge management
platform for context reasoning applications. Based on this
discussion, in Section 5 we present the architecture of the
reasoner powering the IMP.

4.1 Focus on ABox Reasoning
The context of a mobile device can be determined at any

given point in time by checking whether the sensor data
satisfies certain conditions. Such an approach can be realised
using Semantic Web technologies in the following way:

• One can develop an ontology of terms for describing
sensor values. This ontology might contain properties
such as :deviceLocation.

• The current values obtained from the sensors can be
encoded by an ABox over the vocabulary of the sensor
ontology. For example, the current location of the mo-
bile device might be represented by instantiating the
:deviceLocation property.

• The conditions for recognising the current context can
be encoded using ontology axioms. These may involve
a mix of TBox axioms, ABox assertions, and SWRL
rules. For example, using axioms such as (3) one can
develop a vocabulary for describing real-world objects
such as shops and other points of interest. Further-
more, using triples such as (1) and (2) one can describe
individual points of interest. Finally, using rules such
as (4) one can formalise the conditions for interpreting
the sensor data and detecting the current context.

• At run-time, the current context can be determined
by evaluating a query over the current ABox and the
ontology.

The primary inference in such an application is thus an-
swering queries over a data set. Consequently, reasoners
based on (hyper)tableau techniques may not be the first
choice for the IMP, as these reasoners are designed primarily
for schema reasoning, rather than query answering.

4.2 Small Data Sets
Systems such as Jena, Oracle, and Sesame were designed

to handle ABoxes with millions or even billions of triples.
These systems, however, are typically not constrained by the
available processing resources: today, even relatively inex-
pensive servers offer large amounts of RAM and disk space,
as well as excellent processing performance.

A reasoner supporting a context reasoning application,
however, has to satisfy very different requirements. ABoxes
in such an application are unlikely to be very large: we esti-
mate that they will contain at most about 100,000 triples. In
contrast, the processing resources available to the reasoner
are severely constrained: the target hardware platform typ-
ically offers a modest processor and limited RAM, which
must be shared between several processes. Consequently, a
reasoner supporting a context reasoning application should
follow a lightweight approach to design that allows the rea-
soner to efficiently exploit the available resources.

4.3 Incremental Reasoning and Querying
In traditional applications of Semantic Web technologies,

the data typically changes slowly; for example, in many ap-
plications the data changes only daily or even weekly. There-
fore, even if materialising all consequences of a data set takes
a lot of time, this problem can usually be overcome by using
a sufficiently powerful platform for offline preprocessing of
the data set. Furthermore, in conventional Semantic Web

applications, data updates mainly involve additions rather
than retractions.

In contrast, the data in a context reasoning applications
is likely to change very frequently. The sensors will produce
fresh readings several times per second, and each reading is
likely to be different from the previous one. Although the
impact of such changes is mitigated by the sensor prepro-
cessing layer, the ABox is still likely to change frequently,
so recomputing the materialisation from scratch after every
update seems unacceptable. Consequently, to achieve the
desired levels of performance, the reasoner must be able to
efficiently handle ABox updates, consisting of both additions
and retractions; in other words, the reasoner must support
incremental reasoning.

As explained in Section 2, an important service provided
by the IMP is to track the device context and notify client
applications when the context changes. Such functionality
can be effectively supported via continuous querying—that
is, by requesting the reasoner to notify the relevant clients
whenever the answer to a query of interest changes. As we
discuss in Section 5, such functionality can be implemented
using incremental reasoning techniques.

4.4 Navigating the Class Hierarchy
SPARQL cannot express a query that retrieves only the

direct superclasses of a class. This is primarily because Se-
mantic Web languages are based on first-order logic, which
is monotonic: one cannot invalidate a conclusion by adding
triples and/or axioms. A query for direct superclasses of a
class, however, is clearly nonmonotonic, and so it cannot be
expressed in OWL and SPARQL.

Determining direct superclasses of a class, however, is
quite important for context reasoning. For example, one
might describe the types of contexts as follows:

SubClassOf(:UniversityContext :WorkContext) (6)

SubClassOf(:WorkContext :Context) (7)

By the semantics of OWL, if the current context gets clas-
sified as an instance of :UniversityContext , the current con-
text will also get classified as an instance of :WorkContext
and :Context as well. In practice, however, one needs to
distinguish the first from the latter two classes, as one is
typically only interested in the most specific context. Thus,
while queries about the class hierarchy are also important in
other applications of Semantic Web technologies, they seem
particularly important for context reasoning.

Problems such as the one mentioned above are often solved
in practice by issuing several SPARQL queries and combin-
ing their results manually. Such solutions, however, are typ-
ically hard-coded to handle only specific types of problems,
and thus lack flexibility. For example, combining class hi-
erarchy queries with instance queries then becomes much
more involved, both from the query specification and the
query evaluation points of view. Thus, the lack of adequate
support for hierarchy navigation seems to be an important
feature that has not been adequately treated in the existing
Semantic Web standards.

5. REASONER’S ARCHITECTURE
As one can see from our discussion in Section 4, a reasoner

for the IMP should satisfy quite distinct requirements from
those commonly found in Semantic Web applications. We

OWL2RL$
Ontology$

Transla1on$Into$SWRL$

In4Memory$Triple$Store$

Query$Evalua1on$

Incremental$
Reasoning$

Query$Result$
Cache$

Con1nuous$
Querying$

Datatypes$&$
Built4Ins$

SPARQL$
Query$

TBox$
Reasoning$

Figure 2: Reasoner’s Architecture

therefore developed a completely new system called Delta-
Reasoner, the architecture of which is shown schematically
in Figure 2. In the following sections we discuss in more
detail various components of the reasoner.

5.1 Translation into SWRL
As explained in Section 4.1, the main reasoning task in

context reasoning is answering queries over moderately sized
ABoxes. Consequently, we selected the OWL 2 RL profile of
OWL as the target reasoning language. There are two main
benefits of using OWL 2 RL. First, the language can readily
be extended with SWRL rules without making the result-
ing formalism undecidable. This is particularly important
because most conditions for recognising the current context
can be easily expressed as SWRL rules. Second, reasoning
with OWL 2 RL ontologies can be implemented in polyno-
mial time using techniques known from deductive databases,
which is particularly attractive given the constraints on the
hardware resources of mobile devices.

Reasoning with OWL 2 RL ontologies is typically imple-
mented by the following two-step process.

• The input ontology is loaded into an RDF triple store.

• The fixed set of rules given in [13, Section 4.3] is ex-
haustively applied to the RDF triples to derive certain
triples that follow from the ontology. These rules can
be divided into two parts: the rules in [13, Tables 4–8]
derive ABox consequences, and the rules in [13, Table
9] derive TBox consequences. Rule (8) is an example
of the former, while rule (9) is an example of the latter.

〈?X, rdf :type, ?C1〉 ∧
〈?C1, rdfs:subClassOf , ?C2〉 →

〈?X, rdf :type, ?C2〉
(8)

〈?C1, rdfs:subClassOf , ?C2〉 ∧
〈?C2, rdfs:subClassOf , ?C3〉 →

〈?C1, rdfs:subClassOf , ?C3〉
(9)

There are, however, several problems with such an ap-
proach to implementing OWL 2 RL. First, certain rules
for deriving ABox consequences are quite complex and can
therefore be difficult to evaluate. For example, rule (8) con-
tains two atoms in the body, so to evaluate the rule one
must compute a join. Second, the rules for deriving TBox

consequences do not provide any completeness guarantees.
For example, consider the OWL 2 RL ontology consisting of
the following three axioms:

SubClassOf(A B) (10)

SubClassOf(A C) (11)

SubClassOf(ObjectIntersectionOf(B C) D) (12)

These axioms imply the following subsumption relationship
between classes:

SubClassOf(A D) (13)

The rules from [13, Table 9], however, fail to derive this
consequence: axioms (10) and (11) imply that class A is
subsumed by the intersection of classes B and C, but no
rule from [13, Table 9] can draw this conclusion. One might
try to extend the rules from [13, Table 9]. We, however,
do not know of a fixed set of rules that is guaranteed to
correctly compute all TBox consequences for all OWL 2 RL
ontologies; in fact, developing such a set of rules seems to us
like a very challenging task.

Because of these drawbacks, Delta-Reasoner employs a
different implementation approach. Given an OWL 2 RL
ontology, our reasoner loads only the triples corresponding to
the ABox into its internal triple store. Furthermore, instead
of using a fixed set of rules for reasoning, Delta-Reasoner
translates the TBox of the ontology into a set of rules that
is specific to that ontology. For example, instead of using a
generic rule such as (8) to capture the semantics of the class
hierarchy, Delta-Reasoner introduces a rule of the form (15)
for each axiom of the form (14).

SubClassOf(C1 C2) (14)

〈?X, rdf :type, C1〉 → 〈?X, rdf :type, C2〉 (15)

Rules such as (15) contain only one atom in the body and
are thus easier to evaluate since they do not require the
computation of joins. The translation is implemented as a
straightforward extension of the translation described in [6].
The resulting rules correctly capture all ABox consequences
that the reasoner needs to draw.

5.2 TBox Reasoning
As explained in the previous section, implementing com-

plete TBox reasoning by a fixed set of rules seems like a
challenging task. Consequently, it seems more sensible to
derive TBox consequences using a sound and complete rea-
soner and then simply write the obtained consequences into
the in-memory triple store. For example, one can use a
reasoner such as HermiT to classify the knowledge base and
then simply convert the resulting class hierarchy into triples.

Delta-Reasoner uses a variation of the approach outlined
above. More concretely, Delta-Reasoner analyses the rules
obtained from the input ontology to extract the information
about subclasses, domains, and ranges. It then computes
the class hierarchy using a proprietary algorithm. For prac-
tical reasons Delta-Reasoner does not use a reasoner such as
HermiT for ontology classification; however, a sound and
complete TBox reasoner could be used in principle. Fi-
nally, the class hierarchy and the domain/range informa-
tion is written into the internal triple store. In the latter
step, direct class subsumptions are encoded using a propri-
etary rdfs:directSubClassOf property. This allows the users

to formulate queries about direct class subsumptions and
thus satisfies the requirement described in Section 4.4.

5.3 Triple Store
The in-memory triple store is core a component of Delta-

Reasoner that is responsible for storing ABox triples. From
a logical point of the view, the triple store can be understood
as simply a set of facts of the form

P (t1, . . . , tn) (16)

where P is called a predicate, and each ti is either an indi-
vidual or a literal. In addition to storage, the triple store is
responsible for triple retrieval. A retrieval query Q can be
understood as a fact of the form (16) in which each ti is an
individual, a literal, or a special symbol ∗. The result to such
Q contains each fact A in the triple store that differs from
Q only in the occurrences of ∗. For organisational reasons,
all assertions in the triple store that share the same pred-
icate are grouped together into extensional tables. Thus,
the triple store can equivalently be viewed as a collection of
extension tables.

ABox triples are all stored in the triple store as facts of
the following form:

T(s, p, o) (17)

Thus, the extension table for the T predicate is the main
component of the triple store, and it was realised by adapt-
ing the approach adopted in Hexastore [22]. In order to facil-
itate efficient retrieval, Delta-Reasoner employs three hier-
archical indexes: Ispo, Ipos, and Iosp. Index Ispo is schemat-
ically shown in Figure 3. The index consists of three hash
tables: the hash table at level 1 provides an index over the
s-component of triples; the hash table at level 2 provides
an index over the sp-components; and the hash table at
level 3 provides an index over the spo-components. In ad-
dition, all entries in the level 1 hash table are arranged in a
linked list; similarly, all entries in the level 2 hash table that
share the same s-component are arranged in a linked list;
finally, all entries in the level 3 hash table that share the
same sp-components are arranged in a linked list. In this
way, Ispo can be used to answer retrieval queries of the form
T(s, p, o), T(s, p, ∗), T(s, ∗, ∗), and T(∗, ∗, ∗). Index Ipos is
defined analogously, and it can be used to answer retrieval
queries of the form T(∗, p, o) and T(∗, p, ∗); finally, index Iosp
can be used to answer retrieval queries of the form T(∗, ∗, o)
and T(s, ∗, o). These three indexes thus cover all possible
retrieval queries, which allows for efficient retrieval of facts
stored in the triple store.

As explained in the following sections, Delta-Reasoner of-
ten needs to distinguish triples that were explicitly asserted
by the user from the triples that were inferred using a set
of SWRL rules. For example, a user can delete only the ex-
plicitly asserted triples, and the implicitly derived triples are
then modified automatically as needed to ensure consistency.
To this end, the extension table for the T predicate is inter-
nally split into extension tables for predicates Te and Ti,
which contain the explicit and the implicit triples, respec-
tively. The extension tables for Te and Ti are implemented
as ‘views’ over the extension table for the T predicate: each
triple in the triple store is associated with a flag that deter-
mines whether the triple belongs to Te or to Ti.

In addition to the extension table for the T predicate, the
triple store also maintains extension tables for several aux-

s1# s2#

p1# p2# p3#

Level#1#

Level#2#

o1# o2# o3# Level#3#

Figure 3: Index Ispo

iliary predicates that are used during reasoning. All these
extension tables are implemented analogously to the exten-
sion table for the T.

5.4 Datatypes and Built-Ins
Delta-Reasoner can be easily extended with new datatypes

and built-in predicates. To extend the reasoner with a new
datatype, one mainly needs to provide a procedure for pars-
ing the lexical form of the literals of the new datatype, and
associate this procedure with the datatype URI.

Built-in predicates are realised as ‘virtual’ extension ta-
bles. For example, consider the comparison built-in predi-
cate swrlb:lessThan: the predicate takes two arguments, and
a fact of the form

swrlb:lessThan(t1, t2) (18)

is true if the value of t1 is smaller than the value of t2.
Clearly, there are infinitely many facts of the form (18), so
listing all facts explicitly is infeasible. Therefore, the built-in
is implemented as an extension table capable of answering
only retrieval queries in which all arguments are different
from ∗; in other words, this extension table requires all argu-
ments of a retrieval query to be bound. As another example,
consider the built-in swrlb:subtract : the built-in takes three
arguments, and a fact of the form two arguments, and a fact
of the form

swrlb:subtract(t1, t2, t3) (19)

is true if the value if t1 is equal to t2 minus t3. Since ma-
terialising all facts of that form is infeasible, the built-in is
implemented as an extension table capable of answering re-
trieval queries of the form (19) or swrlb:subtract(∗, t2, t3).
In both cases, the built-in expects the values for t2 and t3
to be provided in the retrieval query. If t1 is provided as
well, then the implementation checks whether t1 = t2 − t3;
otherwise, the implementation returns the fact of the form
(19) in which t1 is replaced with t2 − t3.

5.5 Query Evaluation
Conjunctive queries are the basic type of query that Delta-

Reasoner can evaluate. From a logical point of view, a con-
junctive query can be understood as a rule of the following
form, where ?~x stands for a vector of variables and each Bi is
of the form (16) in which each tj is allowed to be a variable:

Q(?~x)← B1 ∧ . . . ∧Bn (20)

Note that by using Bi of the form T(si, pi, oi) and of the form
(16) with P a built-in predicate allows conjunctive queries
to capture SELECT–WHERE–FILTER queries of SPARQL.

Delta-Reasoner evaluates conjunctive queries using index
nested loop joins. More precisely, it identifies all facts that
match B1; for each match, the reasoner identifies facts that
match B2; and so on. Such an algorithm is appropriate since
the triple store is capable of answering all possible retrieval
queries efficiently. Furthermore, the amount of space that
this algorithm uses depends only on the size of the query
and not on the number of the triples in the triple store,
which makes the algorithm particularly suitable for usage
on platforms with limited memory.

It is well known that the performance of such an algorithm
can significantly depend on the order in which the atoms
are evaluated. Determining the optimal order, however, is a
hard combinatorial problem, whose solution depends on the
existence of statistics about the data in the reasoner. The
management of statistics information, however, is likely to
incur significant overhead, particularly in situations when
data changes frequently. Furthermore, since the reasoner is
expected to manage a moderate amount of data, selecting
the best order is unlikely to be critical. Consequently, the
reasoner uses a very simple greedy reordering strategy whose
goal is to propagate bindings as early as possible, while satis-
fying the restrictions on the retrieval queries for the built-in
predicates occurring in the query.

5.6 Incremental Reasoning
Delta-Reasoner implements the incremental reasoning al-

gorithm presented in [8, Section 7]. The algorithm starts
with a set of rules R of the form (21), a set of explicit facts
Fe of the form (16), and a set of implicit facts Fi obtained
by applying all the rules in R to Fe.

H ← B1 ∧ . . . ∧Bn (21)

When given a set of facts F−e that are to be deleted from Fe,
and a set of facts F+

e that are to be added to Fe, algorithm
transforms Fe and Fi into sets of facts F ′e and F ′i such that

• F ′e = (Fe \ F−e) ∪ F+
e and

• F ′i contains precisely all the facts obtained by applying
all the rules in R to F ′e.

Clearly, this goal could be achieved by simply computing
F ′e as outlined above and then computing F ′i from scratch
(i.e., without taking Fi into account). If, however, F−e and
F+
e affect only a small portion of Fe, this will involve recom-

puting most of Fi. The algorithm from [8] addresses this is-
sue by computing F ′i incrementally, repeating as little work
as possible. A complete presentation of this algorithm is be-
yond the scope of this paper; instead, we simply illustrate
how the algorithm works when applied to a set R containing
rules (22)–(23), and a set Fe containing facts (24)–(25).

T(?x, rdf :type, A)← T(?x, rdf :type, B) (22)

T(?x, rdf :type, A)← T(?x, rdf :type, C) (23)

Te(s, rdf :type, B) (24)

Te(s, rdf :type, C) (25)

Thus, the set Fi initially contains Ti(s, rdf :type, A). Please
remember that Te and Ti are just ‘views’ over T.

In order to store the sets of facts F−e and F+
e , Delta-

Reasoner uses auxiliary extension tables for predicates T−e

and T+
e . Furthermore, Delta-Reasoner also uses auxiliary

extension tables for predicates T−i and T+
i , which will con-

tain implicit triples that should be respectively deleted from
and inserted into Fi. For the purposes of our example, let
us assume that we want to delete T(s, rdf :type, B) from and
add T(t, rdf :type, B) to Fe; thus, F−e is initialised with the
fact T−e (s, rdf :type, B), and F+

e is initialised with the fact
T+

e (t, rdf :type, B).
The incremental reasoning algorithm updates Fe and Fi

using the following steps.
First, the set of rules R is transformed into a set of rules

Rdel, which is then evaluated over Fe, Fi, and F−e to com-
pute the set of triples F−i that should be deleted from Fi.
In our running example, Rdel contains the following rules:

T−i (?x, rdf :type, A)← T−e (?x, rdf :type, B) (26)

T−i (?x, rdf :type, A)← T−i (?x, rdf :type, B) (27)

T−i (?x, rdf :type, A)← T−e (?x, rdf :type, C) (28)

T−i (?x, rdf :type, A)← T−i (?x, rdf :type, C) (29)

Roughly speaking, the rules in Rdel are obtained by restrict-
ing the rules in R to the facts in F−e ∪ F−i . In this way, the
evaluation of Rdel computes the consequences of R and the
facts being deleted. In our running example, these rules
ensure that F−i contains the fact T−i (s, rdf :type, A).

Second, all facts in F−e are removed from Fe, and all
facts in F−i are removed from Fi. In our running example,
T−i (s, rdf :type, A) is contained in F−i , so Ti(s, rdf :type, A)
is removed from Fi. Note, however, that this deletion is ‘too
eager’: Ti(s, rdf :type, A) is derivable from the explicitly as-
serted fact Te(s, rdf :type, C) and rule (23).

Third, the set of rules R is transformed into a set of rules
Rred, which is then evaluated over Fe, Fi, and F−i to ‘red-
erive’ the facts that were deleted in the previous step but
that can still be derived from Fe. In our running example,
Rred contains the following rules:

T+
i (?x, rdf :type, A)←

T−i (?x, rdf :type, A) ∧ T(?x, rdf :type, B)
(30)

T+
i (?x, rdf :type, A)←

T−i (?x, rdf :type, A) ∧ T(?x, rdf :type, C)
(31)

Roughly speaking, the rules in Rred are obtained by restrict-
ing the rules in R so that they check the ‘rederivation’ only
of the facts in F−i —that is, of the facts deleted in the first
two steps. In our running example, the evaluation of Rred

over Fe, Fi, and F−i produces the fact T+
i (s, rdf :type, A);

this fact was ‘eagerly deleted’ in the previous two steps, and
it will be later added back to Fi.

Fourth, the set of rules R is transformed into a set of rules
Rins, which is then evaluated over Fe, F+

e , Fi, and F+
i to

compute the facts that follow from the newly inserted facts.
In our running example, Rins contains the following rules:

T+
i (?x, rdf :type, A)← T+

e (?x, rdf :type, B) (32)

T+
i (?x, rdf :type, A)← T+

i (?x, rdf :type, B) (33)

T+
i (?x, rdf :type, A)← T+

e (?x, rdf :type, C) (34)

T+
i (?x, rdf :type, A)← T+

i (?x, rdf :type, C) (35)

Roughly speaking, the rules in Rins are obtained by restrict-
ing the rules in R to the facts in Fe ∪ F+

e ∪ Fi ∪ F+
i . In

this way, the evaluation of Rins computes the consequences

of R and F+
e . In our running example, these rules derive

T+
i (t, rdf :type, A).
Fifth, all facts in F+

e are added to Fe, and all facts in F+
i

are added to Fi. In our running example, Te(t, rdf :type, B)
is added to Fe, and Ti(s, rdf :type, A) and Ti(t, rdf :type, A)
are added to Fi. At this point, Fe has been updated to
reflect the changes in F−e and F+

e , and Fi has been updated
to correctly reflect all the consequences of R and Fe, so the
algorithm terminates.

In all these steps, the rules are evaluated as queries whose
answers are simply added as facts to the triple store. Fur-
thermore, we modified this basic algorithm as explained in
[20] to handle schema updates as well.

This algorithm seems appropriate to the context reason-
ing setting for several reasons. First, the modification of
the rules ensures that the rules apply only to the facts being
changed; thus, if F−e and F+

e are small, the evaluation of the
rules should be reasonably efficient. Second, the algorithm
does not require complex data structures for the manage-
ment of dependencies between facts: it can be implemented
by simply evaluating suitably modified sets of rules, and
thus does not impose further requirements on the limited
resources of a mobile device.

5.7 Continuous Querying
Delta-Reasoner allows clients to register a query of inter-

est and then get a notification whenever the query’s result
changes. This functionality can straightforwardly be sup-
ported using the incremental reasoning algorithm outlined
in Section 5.6. As explained in Section 5.5, a conjunctive
query can be seen as a rule. Thus, the rules obtained from
registered queries can simply be merged with the rules ob-
tained from the input OWL 2 RL ontology; the incremental
reasoning algorithm can then be used to maintain the ma-
terialisation of the query answers and for detecting when a
query answer should change.

6. PERFORMANCE EVALUATION
In this section we present the results of a preliminary per-

formance evaluation of the Delta-Reasoner.
Integration of the Delta-Reasoner into the IMP and the

development of the appropriate ontologies are still ongoing.
Consequently, we have so far been able to conduct only a
preliminary performance evaluation using a standard lap-
top (a MacBook Pro with 4 GB RAM and an Intel Core
2 Duo processor running at 2.66 GHz) and the following
well-known benchmark ontologies.

Lehigh University Benchmark (LUBM) [7] is a de facto
standard for measuring performance of Semantic Web sys-
tems. The benchmark consists of a relatively simple ontol-
ogy that describes the university domain, an ABox genera-
tor that is parameterised with the number of universities for
which the data is to be generated, and 14 queries. In our ex-
periments, we used just one university: this ABox contains
about 100,000 triples, which is roughly of the size that our
reasoner was designed to handle.

VICODI is an ontology about European history that was
manually developed in the EU-funded VICODI project.1

The ontology contains a relatively small and simple TBox;
however, the ABox is relatively large, with many intercon-
nected individuals.

1http://www.vicodi.org/

Table 1: Test Ontologies
TBox Class Property DL
axioms assertions assertions expressivity

VICODI 223 33,238 82,943 ALHI(D)
SEMINTEC 219 17,941 47,299 ALHIF
LUBM 93 18,128 82,415 ALEHI+(D)

Table 2: Performance Test Results
Loading Initial Incremental

reasoning reasoning
VICODI 2127 2820 156
SEMINTEC 1048 1123 157
LUBM 2597 818 135

SEMINTEC is an ontology about financial services cre-
ated in the SEMINTEC project at the University of Poz-
nan.2 Like VICODI, the TBox of the ontology is relatively
simple, but the ABox is large. The main difference between
VICODI and SEMINTEC is that the former does not use the
equality predicate (owl :sameAs), whereas the latter does,
and it is known that the presence of equality can signifi-
cantly affect the performance of Semantic Web reasoners.

Table 1 presents some statistical information about the
ontologies used in the evaluation.

For each ontology, we conducted the following tests. First,
we loaded the ontology into the reasoner. Second, we in-
structed the reasoner to compute the materialisation. Third,
we updated the ABox and instructed the reasoner to adjust
the materialisation. The sets of added and removed asser-
tions were selected as follows. We selected at random an
individual in the data set. Starting from this individual, we
traversed the relationships in the data set until we gathered
a sample of 1,000 assertions. All of the selected assertions
were scheduled for deletion. Furthermore, we renamed all
the individuals in the selected sample (i.e., we replaced each
individual with a fresh name), and we scheduled assertions
for insertions. These are rather large updates relative to
what we expect in the IMP setting, but we are of course
using much more capable hardware than what is available
in a typical mobile device.

The times (in milliseconds) necessary to accomplish these
three tasks on our test ontologies are summarised in Table
2. As one can see, all actions can be completed in under a
second, and incremental reasoning is particularly effective.

7. CONCLUSION
In this paper we have described Delta-Reasoner—a key

component of the Intelligent Mobile Platform for support-
ing context-aware applications for mobile devices. Context-
aware applications and the mobile platform impose unusual
requirements on the reasoner, and these have been met by
novel design features, including extensive support for built-
ins, incremental reasoning, and continuous querying. Al-
though we have so far been able to conduct only a very pre-
liminary evaluation, the results are very encouraging, with
sub-second query response times even after relatively large-
scale changes to the data.

2http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

8. REFERENCES
[1] The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge
University Press, 2nd edition, August 2007.

[2] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In Proc. of the 1st
Int. Semantic Web Conf. (ISWC 2002), volume 2342
of LNCS, pages 54–68, Sardinia, Italy, June 9–12 2002.
Springer.

[3] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing
the Semantic Web Recommendations. In Proc. of the
13th Int. Conf. on World Wide Web (WWW
2004)—Alternate Track, pages 74–83, New York, NY,
USA, May 17–20 2004. ACM.

[4] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
Efficient SQL-based RDF Querying Scheme. In Proc.
of the 31st Int. Conf. on Very Large Data Bases
(VLDB 2005), pages 1216–1227, Trondheim, Norway,
August 30–September 2 2005.

[5] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler.
Conjunctive Query Answering for the Description
Logic SHIQ. Journal of Artificial Intelligence
Research, 31:151–198, 2008.

[6] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and
Stefan Decker. Description logic programs: Combining
logic programs with description logic. pages 48–57.
ACM, 2003.

[7] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of
Knowledge Base Systems for Large OWL Datasets. In
Proc. of the 3rd Int. Semantic Web Conference (ISWC
2004), volume 3298 of LNCS, pages 274–288,
Hiroshima, Japan, November 7–11 2004. Springer.

[8] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining Views Incrementally. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD 1993), pages 157–166, Washington, DC,
USA, May 26–28 1993. ACM.

[9] V. Haarslev and R. Möller. RACER System
Description. In Proc. of the 1st Int. Joint Conf. on
Automated Reasoning (IJCAR 2001), volume 2083 of
LNAI, pages 701–706, Siena, Italy, June 18–23 2001.
Springer.

[10] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML, W3C
Member Submission, May 21 2004.

[11] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax,
February 10 2004.

[12] Marko Luther, Yusuke Fukazawa, Matthias Wagner,
and Shoji Kurakake. Situational reasoning for
task-oriented mobile service recommendation.
Knowledge Eng. Review, 23(1):7–19, 2008.

[13] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu,
A. Fokoue, and C. Lutz. OWL 2 Web Ontology
Language: Profiles, W3C Recommendation, October
27 2009.

[14] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL
2 Web Ontology Language: Structural Specification
and Functional-Style Syntax, W3C Recommendation,
October 27 2009.

[15] B. Motik, R. Shearer, and I. Horrocks. Hypertableau
Reasoning for Description Logics. Journal of Artificial
Intelligence Research, 36:165–228, 2009.

[16] B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner.
Poster at the 3rd Int. Semantic Web Conference
(ISWC 2004), November 7–11 2004.

[17] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, W3C Recommendation, January
15 2008.

[18] M. Staudt and M. Jarke. Incremental Maintenance of
Externally Materialized Views. In Proc. of the 22th
Int. Conf. on Very Large Data Bases (VLDB ’96),
pages 75–86, Mumbai, India, September 3–6 1996.
Morgan Kaufmann.

[19] D. Tsarkov and I. Horrocks. FaCT++ Description
Logic Reasoner: System Description. In Proc. of the
3rd Int. Joint Conf. on Automated Reasoning (IJCAR
2006), volume 4130 of LNAI, pages 292–297, Seattle,
WA, USA, August 17–20 2006. Springer.

[20] R. Volz, S. Staab, and B. Motik. Incrementally
Maintaining Materializations of Ontologies Stored in
Logic Databases. Journal of Data Semantics II,
3360:1–34, 2005. LNCS, Springer.

[21] Xiaohang Wang, Daqing Zhang, Tao Gu, and
Hung Keng Pung. Ontology based context modeling
and reasoning using owl. In PerCom Workshops, pages
18–22. IEEE Computer Society, 2004.

[22] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple Indexing for Semantic Web Data
Management. Proceedings of the VLDB Endowment,
1(1):1008–1019, 2008.

[23] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF Storage and Retrieval in
Jena2. In Proc. of the 1st Int. Workshop on Semantic
Web and Databases (SBWCB 2003), pages 131–150,
Berlin, Germany, September 7-8 2003.

