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1 Introduction

The Web in its’ current form is an impressive success withavirg number of
users and information sources. However, the growing coxitglef the Web is
not reflected in the current state of the Web technology. Haxy burden of ac-
cessing, extracting, interpreting and maintaining atdéanformation is left to the
human user. Tim Berners-Lee, the inventor of the WWW, cothed/ision of a Se-
mantic Web in which knowledge about Web resources is reptedes machine-
processable metadata. Apart from this very general visieme are many applica-
tions that may exploit and profit from a semantics-drivenrapph, e.g. document
and content management, information integration or kndgdemanagement, to
name just a few.

Within these different application fields the usage andiapfon of ontolo-
gies is increasingly seen as key to enable semantics-drivenadatss and pro-
cessing. When applying ontologies in these different apfibn fields, taking into
account a distributed setting like the World Wide Web, onfated with several
challenges. In this paper we consider three important driest of all, one has
to find an appropriate representation model for ontologiadjng off between ex-
pressivity and tractability. Second, one has to be ableabwliéh multiple and dis-
tributed ontologies to enable reuse and interoperabiliyrd, one needs support
in the difficult task of managing evolution of multiple andttibuted ontologies.

To better understand the overall problem of managing malépd distributed
ontologies in the Web, we consider the following B2B catatdggration scenario
throughout the whole article. Let’s assume that some sepiovider A produces

1 An ontology is a shared and machine-executable concepiéhn a specific domain
of interest.
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various sports utilities and that he wants to publish hialogton-line. To allow

semantics-driven access to his catalog, he needs to findpao@ate represen-
tation model for it. To enable other players in the marketpléeo semantically

process the catalog, he creates a sports ontology (SO) aed bés catalog on
it. Let’s assume further that some service provider B spieesin production of

bicycles and also wants to publish his catalog on-line. ldehe wants to create
a new bicycle ontology (BO) for catalog description. Wheeating BO, service

provider B intends to reuse as many definitions as possibta B8O to speed up
the engineering and to enable interoperability. Howeves riot clear how to reuse
these definitions in BO. Assuming that this problem is soledtir reusing SO as
the basis for BO, a further problem arises when SO needs tddyeted due to a
change in business requirements — it is not clear how to ewvi#pendent ontolo-
gies. This problem is worsened by the fact that ontologiesdistributed in the

Web.

In this article we present an integrated framework for mamgagultiple and
distributed ontologies in the Semantic Web solving the abanentioned prob-
lems. Specifically, we address the following aspe€ist, we describe a concep-
tual modeling framework for single, multiple and distriedtontologies, facilitat-
ing modeling and model access with a low gap between the ptungiezation and
its implementation. We adjust the expressiveness of toedit logic-based lan-
guages to sustain tractability. As a side effect, this ma&abkzation of ontology-
based systems using existing and well-established teobiesl, such as relational
databases, possible. In our framework we provide featoreefising existing con-
ceptual modelsSecondevolution of ontologies — the timely adaptation of an on-
tology and consistent propagation of changes to the depéadédacts — is a chal-
lenging management task. We present an integrated evolptaxess for single,
multiple and distributed ontologie$hird, we provide an overview of a scalable
implementation for managing multiple and distributed ¢ogées, implemented
within KAON? — the KArlsruhe ONtology and Semantic Web infrastructuredus
as basis for our research and development.

Organization. This article is organized as follows. Section 2 presentscour
ceptual modeling approach introducing so-called Ol-meédsla basis for concep-
tual modeling in the Semantic Web. We include the definitiba esnathematical
model, the semantics and a comprehensive example. Addlitjpwe elaborate
on how to deal with multiple and distributed Ol-models. 88t8 is dedicated to
the different aspects of evolution of single, multiple amstributed Ol-models. In
section 4 we present the implementation of our system. Bef@ conclude, we
provide a comprehensive overview on related work in sedion

2 Managing Information in Ol-Models

This section introduces our conceptual modeling approacthe Semantic Web
using so-called Ol-models. We separate this section irmeetmain parts. First,
we introduce Ol-models as a basis for conceptual modelitigarSemantic Web
including the mathematical definition, the semantics andxample. Second, we

2 http://kaon.semanticweb.org/
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show how Ol-models may be reused through inclusion. Finaléy discuss how
reuse is achieved if Ol-models are distributed across nimdbg Web.

2.1 Conceptual Modeling using Ol-models

In our conceptual modeling approach we have tried to follevelasely as pos-
sible the object-oriented modeling paradigm and extendtit simple deductive
features, by keeping in mind some practical aspects. Mapyessive modeling
languages, such as DAML+OIL [7] or OWL [9], often lack thesagiical con-
siderations. This in particular relates to the support fetarconcept modeling,
interpretation of domains, ranges and cardinalities, ssudised later in this sub-
section.

This practicality reflects itself in the system’s implenegian. We base our
system primarily on deductive database techniques suctagisets [3], which
have proven themselves to be indispensable for achieviageincing tractability
and practicability. On the other hand, handling descripligics typically requires
algorithms such as tableau reasoning, which don't integeasily with existing
database infrastructure and are often intractable inipeact

Traditionally ontologies have been considered separéataty their instances.
However, this distinction is often blurred — some conceptgehwell-known in-
stances that constitute an important part of a common vdaab herefore, in
our approach the information is organized in Ol-modelstaimig both ontology
entities (concepts and properties), as well as the instarae example, an OlI-
model for geographical information might contain thexrINENT concept along
with its seven well-known instances. In the rest of this pape use the terms
Ol-model and ontology interchangeably.

Mathematical Definition. We present our approach on an abstract, mathemat-
ical level that defines the structure of our models. We mayatighis structure
with several different syntaxes.

Definition 1 (Ol-model Structure) An Ol-model (ontology-instance-model) structure
is a tuple OIM:= (E, INC) where:

— E is the set of entities of the Ol-model,
— INC is the set of included Ol-models.

An Ol-model represents a self-contained unit of structunédrmation that
may be reused. It consists of entities and may include a setheir Ol-models
(represented through the set INC). Different Ol-models tedi about the same
entity, so the sets of entities E of these Ol-models don’triede disjoint.

The name of an entity is often written in form ns:locelme, where ns is a
shorthand for a namespace prefix. By including this prefixhia ¢ntity name,
accidental name clashes are easier to avoid. The techeizalschow namespaces
and prefixes are managed are implementation dependenX{dlgnamespaces
can be used) and are not further elaborated in this paper.

Definition 2 (Ontology Structure) An ontology structure of an Ol-model is a structure
O(OIM) := (C, P, R, S,T,INV, Hc, Hp,domain range mincard maxcard where:
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— C C FEis a set of concepts,

— P C FE'is a set of properties,

— R C P is a set of relational properties (properties from the set P \ R are called
attribute properties),

— S C Ris a subset of symmetric properties,

— T C Ris a subset of transitive properties,

—INV C R x Ris a symmetric relation that relates inverse relational pedties;
if (p1,p2) € INV, thenp, is an inverse relational property gk,

— He C C x Cis an acyclic relation called concept hierarchyi(if:, c2) € Hc thenc:
is a subconcept af; andc: is a superconcept af;,

— Hp C P x Pis an acyclic relation called property hierarchy; (b1, p2) € Hp then
p1 is a subproperty op. andp- is a superproperty gb:,

— function domain P — 2¢ gives the set of domain concepts for some properyP,

— function range: R — 2 gives the set of range concepts for some relational property
pER,

— functionmincard : C x P — Np gives the minimum cardinality for each concept-
property pair,

— functionmazcard : C x P — (No U {o0}) gives the maximum cardinality for each
concept-property pair.

Each OIl-model has an ontology structure associated witlitsisting of con-
cepts (to be interpreted as sets of elements) and propédies interpreted as re-
lations between elements). Properties can have domairptswand relation prop-
erties can have range concepts, which constrain the typestafices to which the
properties may be applied. If these constraints are naifiatj the ontology is in-
consistent. Domain and range concepts define schema tiesisiand are treated
conjunctively — all of them must be fulfilled for each properistantiation. This
has been done in order to maintain compatibility with vasidi@scription logics
dialects (e.g. OWL) which do the same. Relational propgriay be marked as
transitive and/or symmetric, and it is possible to say thattelational properties
are inverse of each other. For each class-property paipibssible to specify the
minimum and maximum cardinalities. Concepts (propertias) be arranged in a
hierarchy, as specified by thé- (Hp) relation, whose reflexive transitive closure
follows from the semantics, as defined next.

Definition 3 (Instance Pool Structure) An instance pool associated with an Ol-model
is a 4-tuplel P(OIM) := (I, L, instconc, instprop) where:
— I C Fis aset of instances,
— Lis a set of literal valuesL N E = 0,
— function instconc C — 2 relates a concept with a set of its instances,
— function instprop: P x I — 2'YL assigns to each property-instance pair a set of
instances related through given property.

Each Ol-model has an instance pool associated with it, gontainstances
of different concepts and property instantiations betwtbem. Property instantia-
tions must follow the domain and range constraints, and ohesy the cardinality
constraints, as specified by the semantics.

Definition 4 (Root Ol-model Structure) Root Ol-model is defined as a particular,
well-known Ol-model with structure ROIM= ({KAON:R0OOT}, #). KAON:ROOT is the
root concept, each other concept must subclkassn: RooT (it may do so indirectly¥.

% The prefix kaon denotes http://kaon.semanticweb.org/dd@daon-lexical# names-
pace.



Managing Multiple and Distributed Ontologies in the Sen@awieb 5

Each other Ol-model must include ROIM and thus gain vidipiid the root
concept. Many knowledge representation languages cotfi@ifoP concept that
is a superconcept of all other concepts.

Definition 5 (Modularization Constraints) If Ol-model OIM imports some other Ol-
model OIM (with elements marked with subscript 1), that is, if QI INC(OIM), then
following modularization constraints must be satisfied:

-E1CECiCC,PACP,RICRTICT,INV: CINV,Hc1 C Ho,Hp1 C Hp,

—Vp € P domain (p) C domair(p),

—Vp € Py range (p) C range(p),

—Vp € P1,Vc € C; mincard (¢, p) = mincardc, p),

—Vp € P1,Ve € C1 maxcard (¢, p) = maxcardc, p),

-LCI LiCL,

—Vc € Cy instcong (c) C instcondc),

—Vp € Pi,i € I instprop (p,:) C instprop(p, ).

Cyclical inclusions aren't allowed, that is, a graph whosades are Ol-models and

whose arcs point from including to included models must notain a cycle.

Ol-model modularization is discussed in more detail in sghien 2.2.

Definition 6 (Meta-concepts and Meta-properties) In order to allow meta-con-
cepts, the following constraint is stated:N I may, but does not need to BeAlso,P N I
may, but does not need to be

The consequences of meta-concept and meta-property mgaeé discussed
later in this subsection.

Definition 7 (Lexical Ol-model Structure) Lexical Ol-model structure LOIM is a
well-known Ol-model with the structure presented in Figlfte

kaaor:references kaon:Root

kaon:LexicalEntry {kaon:inLanguage } kaon:Language

LEGEND: | kaon:Stem | ‘ kaon: Synonyrm ‘

&

Subconcept

Fig. 1 Lexical Ol-Model Structure

Lexical entries (instances of th@ON:LEXICALENTRY concept) reflect var-
ious lexical properties of ontology entities, such as lapslems or textual doc-
umentation. The propertyAON:REFERENCESestablishes n m relationship be-
tween lexical entries and instances. In this way, the sariedleentry may be as-
sociated with several entities (e.g. jaguar label may beciat®d with an instance

4 Instead a formal definition, we present a graphical view ofNM®ecause we consider
it to be more informative.
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representing a Jaguar car or a jaguar cat). The value of Xfmalentry is given
by propertyk AON:VALUE, whereas the language of the value is specified through
the KAON:INLANGUAGE property. ConceptAON:L ANGUAGE represents the set
of all languages, and its instances are defined by the IS@atdr539. The lex-
ical structure is not closed — users may freely define additisubclasses of the
KAON:LEXICALENTRY concept.

In order to associate lexical entries with a concept or a gntypit must be
viewed as an instance of th@oN:RoOT. Because of thakKAON:REFERENCES
property has the concephON:ROOT as the domain.

Denotational Semantics. In this subsection we give meaning to Ol-models by
means of a denotational semantics in the spirit of desonptgics.

Definition 8 (Ol-model Interpretation) An interpretation of an Ol-model OIM is a
structurel = (AT, Ap,ET, LT, CT, PT) where:

— Al is the set of object interpretations,

— Ap is the concrete domain for data typsiS,I NAp =0,

- ET . E — Alis an entity interpretation function that maps each entityatsingle
element in a domain,

— L' : L — Apis aliteral interpretation function that maps each litetal an element
of the concrete domain,

—cl AT S92 isa concept interpretation function by treating concegsabsets of
the domain,
I I . . . . . .
— Pl Al 24" x(A7U4D) is g property interpretation function by treating propesi
as relations on the domain.
An interpretation is a model of OIM if it satisfies the follagiproperties:
- C*(E*(kaon:Roo}) =
—Ve¢,i i € instcone(c) = EI( ) e CH(E (e
—Vcl,CQ (01702) € Ho = CI(EI(Cl)) C
—Vp,z i1 11 € mstprop(p7 i)ANiL € E= (E
I

—Vp,ip (p,ip) € = (Va,y (:w) € P’(

-Vt t € T = (Va,y,z (x,y) € PI(E'(t)) A (y,2) € PI(E'(t)) = (z,2) €
PUE 1)),

—Vp,c,i ¢ € domair(p) A (3z (E(i),x) € PL(E (p))) A EL(3) ¢ CT(E™(c)) =
ontology is inconsistent,

~Vp,c,i c € rangelp) A (3z (z, B'(i)) € P'(E'(p))) A B'(i) ¢ C'(E(c)) =
ontology is inconsistent,

~Vp,c,i E'(i) € C'(E"(c)) Amincarde,p) > [{ y| (B'(i),y) € P'(E"(p))}] =
ontology is inconsistent,

~Vp,c,i (i) € C(E'(¢)) A maxcarde,p) < [{y] (B'().y) € P'(E' (p)}| =
ontology is inconsistent.

OIM is unsatisfiable it is doesn’t have a model. Following mi&fins say what can be
inferred from an Ol-model:

— HE C C x Cis the reflexive transitive closure of the concept hieran¢hy
in all modelsC* (EX(c1)) C CT(E*(c2)) & (c1,c2) € HE,
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— Hp C P x P is the reflexive transitive closure of the property hierarih
in all modelsP (E*(p1)) € PH(E!(p2)) & (p1,p2) € Hp,

—instconé : C' — 2! represents inferred information about instances of a cphife
in all modelsE* (i) € C*(E*(c)) < i € instconc (c),

—instprog’ : P x I — 2'YL represents the inferred information about instances if:
in all modelsi> € instprop' (p,i1) < (E'(i1), B! (i2)) € PY(E'(p))A
in all models! € instprog'(p, i) < (E*(i), L' (1)) € PI(EL(p)),

— domairf (p) = (p’plL)JeH; domain(p:) denotes all domain concepts of a property,

—range'(p) = (p,p]L)JeH; range(p: ) denotes all range concepts of a property.

Meta-modeling. In real-world conceptual models, it is often unclear whethe
some element should be represented as a concept or as acéstar example, in

a semantics-driven catalog system, relationships betwperts utility types and
individual sports utilities can be modeled as in Figure 2e BrORTSUTILITY
concept represents the set of all types of sports utilitiéth its elements being
particular types of sports utilities (rafts, oars etc.) @&$i®ns can be made about
individual sport utility types (e.qg. rafts are used for vetater rafting), but each
type can be viewed as the set of individual instances as gl the raft in my
garage is an instance in that set). Information about sptility types is indepen-
dent from the information about particular instances (mgraft can be broken).
Hence, $ORTSUTILITY entity plays a dual role and can be interpreted both as a
concept and as an instance. These two interpretations anected in the image
by the spanning object (the dashed line).

| Rat | |sports iiliy |

Fig. 2 Spanning Object Example

Under usual first-order semantics (employed by languagésasiDAML+OIL
and OWL), an element of the domain is assigned to each instamnsubset of the
domain set to each concept and a relation on the domain topegapkrty symbol.
Interpreting concepts as instances is therefore not gdessib overcome these
problems, we base our interpretation on HiLog [6] — a logittwtie second-order
syntax but first-order semantics, for which a sound and cetagiroof theory ex-
ists. Technically this is achieved so that the functidhassociates a domain object
with each entity symbol, and functiordis’ and P! provide concept and property
interpretations to domain objects.

In [32] the problems of considering concepts as instancesvall explained.
The proposed solution is to isolate different domains ofalisse. A conceptin one
domain may become an instance in a higher-level domain,thvitbe two objects
being related through so called spanning object relatipn€bur approach builds
on that, however, without explicit isolation of domains @fa@burse. This has subtle
consequences on how an Ol-model should be interpretechdt iallowed to ask:
“What does entity e represent?” Instead, one must ask a npe@fie question:
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“What does e represent if it is considered as either a coneeptoperty or an
instance?”

Allowing a concept to be interpreted as an instance may cpradems. In
[27] has the original RDFS semantics been criticized faniimite meta-modeling
architecture. As specified by RDFEDFs.CLASS is an instance of itself, which
means that its interpretation must contain itself as a menitbeés seems dan-
gerously close to the Russell’'s paradox (e.g. if RDFS isradad with negation,
as in OWL, the paradox is inevitable). The same paper prapaskxed four-
layer meta-modeling architecture called RDFS(FA) intrcidg a strict separation
between concepts and instances. Our approach doesn't fufifie these prob-
lems: the model-theoretic interpretation of the statern&ns an instance of A”
is to interpret A as some domain individualand to associate ta the concept
extension containing.. Note, however, that the interpretation of A as a concept
doesn’t contain itself, so the Russell's paradox can’'t acéte follow, however,
RDFS(FA) in separating modeling primitives. This meang tfaious relations
(e.g. therRDFS:SUBCONCEPTOF property) are not available within the model,
but exist in the ontology language layer. This is done to danbiguities when
these relations are themselves redefined (e.g. what semaloies a subproperty
of RDFS:SUBCONCEPTOF have?).

Domains and Ranges. Our definition of domains and ranges differs from that of
RDFS, DAML+OIL and OWL, where domains and ranges are axiquesifying
sufficient conditions for class membership. For exampla,pfoperty P has con-
cept C as the domain, then any instance | for which P has betantiated can be
classified as an instance of C. This semantics is captureed®aing the domain
and range restrictions with the following conditions:

- Vp,c,i ¢ € domairip) A 3z (E'(i),z) € P'(E'(p))) = E'(i) € C'(E'(¢)),

— Vp,c,i c€rangdp) A (3z (z, E'(1)) € PI(E'(p)) = E'(i) € CT(E(c)).

From our experience, while sometimes such inferencing mdgead be use-
ful, often it is not needed, or even desired. Most users withng background
in databases and object-oriented systems, intuitiveleetxgomains and ranges
to specify the constraints on allowed ontology states. bittagr words, unless | is
known to be an instance of C, P can't be instantiated for | éfitist place. This has
the following benefits: First, treating domains and rangesanstraints makes it
possible to guide the user in the process of providing infdiom about instances.
If domains and ranges are treated as axioms, any propertigecapplied to any
instance, making it difficult to constrain user’s input. 8ed, similar problems oc-
cur when evolving the ontology. E.g., if | is removed from #hdension of C, it
can be computed that the instance of P for | must be remove&khdfwdomains
and ranges are axioms, however, it is not clear how to chdmgerttology so that
it still makes sense. Third, treating domains and rangesiasna introduces sig-
nificant performance overhead in query answering. For el@np compute the
extension of some concept, one must classify instancesdingao the domain
and range axioms. Therefore, if only the constraint seroaigineeded, the system
will suffer from unnecessary performance overhead.

Cardinalities. Inour approach we treat cardinalities as constraints edigigithe
number of property instances that may be specified for ins&nf each concept.
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This is different from OWL and other description logic larages, where cardi-
nalities are axioms specifying that instances with palgicaumber of property
instances can be inferred to be instances of some conceplaSarguments as in
the case of domain and range semantics apply here as well.

Example. Figure 3 graphically presents a simple Ol-model describegous
types of sports, sports utilities and their relationshipa semantical on-line cata-
log, as described in the scenario presented in section h&nght-hand side there
is a hierarchy of various sports. The concepb®&Trepresents a set of all sports,
which can be divided into team and individual sports, as agtiutdoor and indoor
sports. A particular sport can be classified under seveffaerdnt parent concepts,
thus reflecting various aspects of sports. For example,TMWATER RAFTING is
an instance of EAM SPORTand QUTDOOR SPORT concepts.

0387-6543
s

Catalog number

|Team Sportl ‘ Individual Spart H Outdoor Sport ‘ | Indoor Sport

Qar usedin

LEGEND: used with

_"@ uSed in—’[whnewater rafling } [Bpeedskating
N

r

Catalog number—W—13234-56738

Fig. 3 Example Domain Ol-model

This can be interpreted aseAM SPORT being a set of all team sports, and
WHITEWATER RAFTING being a member in this set. Sports utilities are related to
sports that they are used in. Further, some sports utitiesused together (e.qg.
OAR and RAFT). This information is represented througBED-WITH property.
This property is, by its nature, transitive and symmetrigctsinformation can be
used by the company hosting the catalog to suggest postibfs iof interest to
the buyer. Each sports utility hasc@TALOG NUMBER associated with it. This is
a property that has a literal value whose semantics is ntitduspecified.

2.2 Multiple Ol-Models

In traditional software systems significant attention igaled to keeping modules
well separated and coherent with respect to functiondlitys making sure that
changes in the system are localized to a handful of modulass&is seen as the
key method in reaching that goal, striving to completelynéiate the copy-and-
paste reuse — the prominent source of problems on softwajegbs. Ontology-
based systems in the Web are just a special class of softwatenss, so the
same principles apply. If reuse is performed through dafitim, problems arise
when the reused ontology changes, as these changes muptdyedeon various
multiple copies. Paraphrasing the open-closed reuseipié{@1], each ontology
should be a closed, consistent and a self-contained dniitgpen to extensionsin
other ontologies. These goals may be achieved by incoiipgramh explicit mech-
anism for including ontologies by reference into ontologiyduages and tools.
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According to definition 5, reuse is supported by allowing dmtdel to in-
clude other Ol-models, thus obtaining the union of the didins from all included
models. In our approach cyclical inclusions are not allolwedause evolution of
cyclically dependent Ol-models would be too difficult. lnsion is performed by-
reference — models are virtually merged, however, the mé&tion about the origin
of each entity is represented explicitly.

Figure 4 presents four example Ol-models (SO — sports ogyoRO — bicycle
ontology, CO — climbing ontology and ICO - integrated cagatmtology). BO
and CO each include SO, thus gaining immediate access té itdl definitions.
However, the information about the origin of ontology eestretained. Thus, the
following distinctions may be made:

— In SO and CO 80oRTSUTILITY concept doesn’t have any sub- or supercon-
cepts. However, in BO it has one subconcetB LE, and in ICO it has one
subconcept and one superconceptA 0G ITEM.

— Relationships between concepts also belong to approfiateodels. Hence,
it is possible to determine thatP®RTSUTILITY is made a subconcept of
CATALOG ITEMIn ICO.

— In SO the propertyySED IN has only $ORTSUTILITY as domain concept,
whereas in ICO it has an additional domain concepitvieR DRINK.

Catalog ltem

includes includes
AN

NEE Utilty | {usedin}—»— spor]
/

includes includes

BO cycling

Fig. 4 Ol-model Inclusion

On the right-hand side the direct acyclic inclusion grapfiMeen Ol-models is
shown. SO is indirectly included in ICO twice (once through Bnd once through
CO). However, ICO will contain all elements from SO only or(eeg. in ICO
there will be only one BORTSUTILITY concept). The possibility of including
an Ol-model through multiple paths has significant consegegon the ontology
evolution, as discussed in subsection 3.2.

Our approach is currently limited to including entire magehther than in-
cluding subsets. Also, when a model is reused, informatonanly be added, not
retracted. Although such advanced features may sometienasdful, we deliber-
ately limit our approach. It is much more difficult to ensune tonsistency of the
including model if only part of some model is included, sifitds not clear which
subset of elements to include. For exampl@SED IN property is not included in
ICO, itis not clear how to treat instances using this propé&iutrther, changing on-
tologies becomes more complex, because it is not clear hprnofzagate changes
in ICO to SO. Finally, we don't support resolving semanticaterogeneities be-
tween included models (e.g. establishing equivalencesdset the BcYCLE and
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FAHRRAD concepts) — we plan to extend our approach to handle sucls oase
future.

2.3 Distributed Ol-Models

Ontology inclusion allows reusing Ol-models availablehiitone node (server) in
the system. However, we envisage the Semantic Web whereo@élare spread
across many different nodes, so the inclusion mechanisnmstae used directly.
There are two possible solutions how to achieve reuse irctss.

The first solution is to make all Ol-models accessible thtpag ontology
server, which could integrate the information from incldd®l-models virtually
(on-the-fly) by accessing the servers of these Ol-modelsh Solution has the
benefit that all changes in the included Ol-models are imatebi visible in the
including Ol-models. While this desirable feature incesathe consistency, it has
several serious drawbacks:

— Servers are tightly coupled — a failure of one system willseafailure of all
servers that include the Ol-model.

— Standard top-level ontologies will be reused in many orgi@e. Servers host-
ing them will therefore be overloaded, because they wikiotte contacted by
many other servers.

— Because answering every query requires distributed psoagsthe perfor-
mance of the system with today’s infrastructure would becaaptable.

Therefore, a more practical solution to the problem in the W\tontext is
to replicate distributed Ol-models locally and to inclubern in other Ol-models.
Replication eliminates afore mentioned problems, bubihiices significant evolu-
tion and consistency problems, further discussed in se&tidhe most important
constraint is that replicated Ol-models should never beifiealdirectly. Instead,
the modification should always be performed at the sourceladges propagated
to replicas using the distributed evolution process.

Returning to the example from the section 1, Figure 5 shovedwaork of three
service providers creating their ontologies. SO and CO efieed at the server of
service provider A. Since CO is defined at the same node asdhe@&replication
is necessary. BO is defined at the server of the service poBidso to reuse SO,
it must be replicated to his server. Finally, ICO is definethatserver of service
provider C, so SO, BO and CO must be replicated to his server.

In order to replicate an Ol-model, it must be physically aseel. Ol-models
on the Web are typically known under a well-known URI, whicdnde used
to access the Ol-model through appropriate protocol (€TJ.BJ. However, this
introduces problems when the Ol-model is replicated, sineéJRI used to access
the Ol-model and the URI under which the Ol-model is originkhown become
different. To consistently handle this, we associate tvifedint URIs with each
Ol-model:

— Thelogical URIis unique for each Ol-model and is always tiras, regardless
of the Ol-model’s location. The uniqueness of the URI is¢gtly achieved by
incorporating the Internet name of the organization theatad the Ol-model.
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Service Provider B

SUO

Service Provider A BO

Suo Ontology Server
co

Service Provider C
Ontology Server

SuUo
SUO - Sports Utility Ontology

BO - Bicycle Ontology Cco BO
CO - Climbing Ontology
ICO - Integrated Catalog Ontology ICO

— original ontology Ontology Server

— ontology replica

Fig. 5 Distributed Ol-Models

— The physical URI unambiguously identifies the location & @l-model and
contains all information necessary to access the Ol-medeh as the protocol
to be used or relevant connection parameters.

For example, the SO from our example may have the logical URI
http://www.sport.com/so. No other Ol-model with that URdists anywhere in
the world. However, the Ol-model may be replicated to thedilstem, and the
physical URI will be file:/c:/so.kaon. If the Ol-model is stal in the database,
then its physical URI may be jboss://wim.fzi.de:1099?itiyww.sport.com/so.

3 Evolution

Ontology evolution can be defined as the timely adaptaticanodntology and a
consistent propagation of changes to the dependent #stifelhe complexity of

ontology evolution increases as ontologies grow in sizeg structured ontology
evolution process is required. Such a process has beeritbsir [18]. The pro-

cess starts with capturing changes either from expliciviregnents or from the
result of change discovery methods. Next, changes aresemted formally and
explicitly. The semantics of change phase prevents instarsties by computing
additional changes that guarantee the transition of thelegy into a consistent
state. In the change propagation phase all dependent#st{fantology instances
on the Web, dependent ontologies and application prograimg uhe changed
ontology) are updated. During the change implementati@sehequired and in-
duced changes are applied to the ontology in a transactissaher. In the change
validation phase the user evaluates the results and etitartycle if necessary.

In this paper we extend this process towards multiple,itisted ontologies.
As shown in Table 1, two dimensions of the overall ontologgletion problem
may be identified.

The first dimension defines the number of ontologies beindyedpwhereas
the second specifies their physical location. Since it ispustsible to fragment
[25] one ontology across many nodes, we discuss ontolodytivo at three levels
only. In subsection 3.1 we summarize the single ontologyutiam problem. In
subsection 3.2 we extend the change propagation and aapfuinases to cover
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Nodes
One Multiple
Ontologies One Single OE -
Multiple | Dependent OE Distributed OE

Table 1 Levels of Ontology Evolution (OE) Problem

the evolution of multiple dependent ontologies within agéinnode. Finally, in
subsection 3.3 we extend the change capturing and chandgnmaptation phases
of the dependent evolution process to support evolutionstfiduted ontologies.

3.1 Single Ol-Model Evolution

For evolution of single ontologies the essential phaseasstimantics of change
phase, whose task is to maintain ontology consistency.yipgpkelementary ontol-
ogy changes [30] alone will not always leave the ontologydonisistent state. For
example, deleting a concept will cause subconcepts, soopepres and instances
to be inconsistent.

Definition 9 (Single Ontology ConsistencyA single ontology is consistent if it
satisfies a set of invariants defined in the ontology modet fitee subsection 2.1
and if all used entities are defined.

Returning to the example in Figure 3, iP8RT concept is deleted, its sub-
concepts would be inconsistent, since the parent concept idefined any more.
To prevent inconsistencies, all subconcept®@®OR SPORT, OUTDOOR SPORT,
TEAM SPoRTand INDIVIDUAL SPORT) have to be deleted as well. Moreover, the
removal of concepts causes the removal of their instanagsiie SEEDSKATING
instance of theNDOOR SPORT concept) and the removal of lexical information.
Further, since the removal of a concept which is in the rarfgeome property
results in syntax inconsistency, before tiro&T concept is deleted, it must be re-
moved from the range of theseD IN property. However, properties without range
concepts are not allowed, so the property must be delete@lhsTw do that, the
SPORTSUTILITY concept must be removed from the domain. The complete list
of necessary changes obtained in the semantics of change Ehpresented in
Figure 6.

However, there are many ways to achieve consistency aftea@ge request.
For example, when a concept from the middle of the hierarstyeing deleted,
all subconcepts may either be deleted or reconnected to otimeepts. If sub-
concepts are preserved, then properties of the deleteépbmay be propagated,
its instances distributed, etc. Thus, for some change irothelogy, it is possi-
ble to generate different sets of additional changes, tegidi different final con-
sistent states. Further, the consistent state may be definedltiple ways. For
example, properties without domain and/or range may or neye considered
inconsistent. Most of existing systems for the ontologyedewgment and manage-
ment provide only one possibility for realizing a change émd is usually the
simplest one. For example, the deletion of a concept alwayses the deletion of
all its subconcepts. To overcome this, a mechanism is reddar users to man-
age changes resulting not in an arbitrary consistent dtatén a consistent state
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@ Delete concept Sport.
@ Rernove value Sport of property Kaonreferences for instance 01037 190249382-1912974490.
@ Delete concept Indoor Sport.
@ Remove value Indoor Sport of property kaon:references for instance 0:1037194440975-1771784813.
@ Delete instance Speedskating.
Remove concept indoor Sport from subconcepts of Sport.
@ Delete concept Individual Sport.
@ Delete concept Team Spaort.
@ Delete concept Outdoor Sport.
€ Remove concept Sport from the range of property usedin.
@ Delete property used in.
@ Remove value used in of propery Kaonreferences for instance 0:1037 190265793-1870890927 .
Remaove concept Sports Wility from the domain of property used in.
Remave concent Sport from subconcents of Kaon:Root.

Fig. 6 Generated Changes

fulfilling the user’s preferences. We introduce the concégin evolution strategy
encapsulating policy for evolution with respect to useeguirements. To resolve
a change, the evolution process needs to determine anstusiang resolution
points - branch points during change resolution where taking &dfit path will
produce different results. We have identified the followsetjof resolution points:

— how to handle orphaned concepts - those concepts that dorétarents any
more;

— how to handle orphaned properties - those properties that dave parents
any more;

— how to propagate properties to the concept whose parengeban

— what constitutes a valid domain of a property;

— what constitutes a valid range of a property;

— whether a domain (range) of a property can contain a conbeptig at the
same time a subconcept of some other domain (range) concept;

— the allowed shape of the concept hierarchy (i.e. multipthg#o a supercon-
cept);

— the allowed shape of the property hierarchy; (i.e. multgaths to a superprop-
erty);

— if instances must be consistent with the ontology.

Each possible answer at each resolution point isl@mentary evolution
strategy. For example, in case of the first issue, orphaned subcanoépt con-
cept may be connected to the parent concept(s) of that corammected to the
root concept of the hierarchy or deleted as well. Commorcpaionsisting of a set
of elementary evolution strategies, each giving an ansarasrie resolution point,
is anevolution strategy. Thus, an evolution strategy unambiguously defines the
way how elementary changes will be resolved [30]. A parice@volution strat-
egy is typically chosen by the user at the start of the ontolaglution process.
Let’s assume that the chosen evolution strategy deterrtiiaésrphaned concepts
should be reconnected to the root concept and that a progaantexist without a
range concept. The list of generated changes for the samesedhe removal of
a concept BorTfrom the example in Figure 3) is shown in Figure 7. This list is
quite different from the changes shown in Figure 6, sincestilected evolution
strategies are different.
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@ Delete concept Sport.
B Remove value Sport of property kaonreferences for instance 021037 190249382-1912974490.
§ Remove concept Sport from the range of property used in.
Remove value Whitewater rafting of propery used in for instance Raft.
Remaowe value Whitewater rafting of property used in for instance Oar.
@ Delete property used in.
@ Rermove value used in of property kaonoreferences for instance 0:1037190265793- 1870800927
Remaove concept Sports Wity from the domain of property used in.
Remove concept Outdoor Sport from subconcepts of Sport.
hlake concept Outdoor Sport subconcept of kaon:Root.
Rermove cancept Indoor Sport from subconcepts of Sport.
Make concept Indoor Sport subconcept of kaon:Root.
Femove concept Team Sport from subconcepts of Sport.
llake concept Team Sport subconcept of kaon:Root.
Rermove cancept Individual Sport fram subconcepts of Sport.
Make concept Individual Sport subconcept of kaon:Root.
Femaove concent Sport from subconcents of kaon:Root.

Fig. 7 Generated Changes based on the explicitly selected Eonl8trategy
3.2 Multiple Ol-Model Evolution

In this subsection we extend the single ontology evolutippraach to take into
account the inclusion relationships between ontologi¢isiwone node. However,
we still consider evolution of ontologies within one noddyoand extend this to
the distributed setting in the following subsection. Analagy that includes other
ontologies is called the dependent ontology. As the inaustgology is changed,
the consistency of the dependent ontology may be invalidate

Definition 10 (Dependent Ontology Consistencyh dependent ontology is con-
sistent if the ontology itself and all its included ontolegi observed alone and
independently of the ontologies in which are reused, arglsiontology consis-
tent.

Returning to the example of Figure 4, if the SRTSUTILITY concept from
SO is deleted, the ontology BO, and through transitivityrafiiision the 1CO as
well, will be inconsistent, since thelBycLE and CATALOG ITEM concepts will
have a parent concept and a child concept respectivelyatbatot defined. More-
over, it is important to notice that applying the deletiortted SPORTSUTILITY
conceptto the outer-most ontology (ICO) only is not suffitién ICO theusED IN
property has two domain concepts, so removing one of theimwiltrigger the
removal of the property. Therefore, if SO is considered jpafelently, it is incon-
sistent, since theseD IN property will have no domain concept in this ontology.

This example shows that maintaining consistency of a siagtelogy is not
sufficient; dependent ontology consistency must be takemancount as well.
This may be achieved by propagating changes from the chamgetbgy to all
ontologies that include it. There are two ways of doing tAdt

— Push-based approaciChanges from the changed ontology are propagated to
dependent ontologies as they happen.

— Pull-based approachChanges from the changed ontology are propagated to
dependent ontologies only at their explicit request.

The pull-based approach is better suited for less string@mistency require-
ments. Using this approach dependent ontologies may beotamily inconsistent.
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This makes recovering the consistency of dependent onésatifficult, since the
information about the original state of the changed ontpisdost. For example,
when the conceptBORTSUTILITY is deleted, its position in the concept hierar-
chy is lost and is not available when resolving inconsistsnof the BCcYCLE
conceptin BO.

The push-based approach is suitable when strict dependaibgy consis-
tency is required, since the information about the origstate of the changed
ontology is available for the evolution of the dependenbtogy. For example,
the removal of the conceptP®RTSUTILITY requires previous resolution of the
consistency of the BYCLE conceptin BO. We choose to take this approach since
in our target applications the permanent consistency aflogies within one node
is of paramount importance.

By adopting the push-based approach, there are threedtiffstrategies for
choosing the moment when changes are propagated [28]. banmeriodic deliv-
ery, changes are propagated at regular intervals. Usimgpadelivery, changes are
not propagated according to a previously defined plan. Bothese strategies are
unacceptable for dependent ontology evolution, since taeyge temporal incon-
sistencies of dependent ontologies. Therefore, we prapabanges immediately,
as they occur.

We incorporate the push-based approach by extending timgehmopagation
and change capturing phases of the single ontology evalptiocess as shown in
Figure 8.

Capturing Propagation

Semantics

. Representation By Gl

5 Implementation Validation
Ontology P Order > >

‘ Change Ordering ‘ Change Filtering

Fig. 8 Dependent Ontology Evolution Process

The role of the Ontology Propagation Order component is terdgne to
which dependent ontologies and in which order should thegbsibe propagated.
The role of the Change Filtering component is to determinelvbhanges must
be propagated to which ontologies. The Change Ordering oaent determines
the order in which changes must be received by each ontology.

Ontology Propagation Order. When propagating changes between dependent
ontologies on a single node, the following three aspectting to the ontology
propagation order must be considered:

— As changes occur in an ontology, they must be pushed to adlagies that
either directly or indirectly (through other ontologiesgiude the changed on-
tology.

— In order to propagate a change to an ontology, the change pnexsibusly
be processed by all ontologies included in the target ogtol®herefore, all
ontologies on a single node are topologically ordéamtording to their inclu-
sion relationship. The topological order organizes theedelpnt ontologies in
such a way that for each O1 and O2, if O1 includes O2 directindirectly,
then O2 occurs before O1 in the linear ordering.

5 The topological order of a directed graph is an ordering apbis nodes where each
node occurs after all of its predecessors.
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— Since all ontologies at a node are topologically orderederwbhanges are
propagated to dependent ontologies, only those ontolapasinclude the
changed ontology and that follow the changed ontology intdpelogical or-
der must be visited. Note that if cyclical inclusions of Obdels were allowed,
the propagation order would contain cycles and would besextty hard to
manage.

Returning to the example in Figure 4, changes in SO must beagated to
BO, CO and ICO (since ICO includes SO indirectly though BO @@@). Further,
several topological orders may exist (SO, BO, CO, ICO or SO, BO, ICO),
since some ontologies are independent of each other (e.gnB@O). The prop-
agation of changes must be performed in either one of thelsgrAssuming the
first topological order (SO, BO, CO and ICO), a change in BOrisppgated only
to ICO — although CO is after BO in the topological sort, it gie¢include BO so
it doesn’t receive BO'’s changes.

Change Filtering. As a change from the source ontology S is propagated to a
dependent ontology D, to maintain the consistency of D @afdit changes will
be generated as explained in subsection 3.1. These chanpt®iso be propa-
gated further up the ontology inclusion topological ord€swever, only induced
changes should be forwarded. If original changes were giated as well, then
ontologies that include D would receive the same changephatimes: directly
from S and indirectly from all ontologies on any inclusionttphetween D and S.
This would result in an invalid ontology evolution procesisice the same change
cannot be processed twice. In order to prevent that, prapdghanges are filtered.
Returning to the example in Figure 4, deletion of tire8TSUTILITY concept
in SO is propagated to BO resulting in new changes: the rehoftae BicycLE
concept as the subconcept of thedRTsSUTILITY concept and the removal of
the BicYcLE concept itself (if the evolution strategy requires the reat@f the
orphaned concepts). Only these two changes are propagalté®t Removal of
the concept BORTSUTILITY is propagated to ICO from SO directly and must
not be propagated from BO. Notice that change filtering isduote for the sake
of performance: if BORTSUTILITY were propagated to ICO from BO as well,
then ICO would receive the same change twice, and the se¢@amdje would fail,
since the concept has already been deleted.

Change Ordering. The order of processing changes in each ontology is im-
portant. Let’s assume that S is the ontology being changedsdéme ontology
that directly includes S and D is some ontology that direatigiudes I. It is
important that D processes changes generated by | beforgeb@enerated by
S. Otherwise, if D receives changes from S before changes fr&’s changes
will generate additional changes in D that include those Whd later be re-
ceived from |. This in turn will also lead to processing thensachange twice.
This approach is recursively applied when D and S are coadesith paths of
length greater than two. Returning to the example in Figut€@ should process
the removal of the BORTSUTILITY concept after processing the removal of the
subconcept BYCLE from BO. If this were not the case, processing removal of
SPORTSUTILITY in ICO would generate removal of the subconcet B LE in
ICO, which will then be later received from BO.
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The algorithm for evolution between dependent ontologiglsimone node is
presented in Algorithm 1.

Algorithm 1 Dependent Ontology Evolution Algorithm
EVOLVEONTOLOGIEYLC, 0)

Require: LC - list of changes, o - ontology being changed
1: forall ¢ € £C do

2.  PROCESEHANGE(C, 0)

3: end for

PROCESEHANGE(C, 0)

Require: ¢ - change to process, o0 - ontology being changed
: TS =topological sort of ontologies at the node
. es = evolution strategy for o

: I*Semantics of Change*/

: while generated change gc by es for c id@
processChange(gc, o)

: end while

10: /*Change Filtering*/

11: if ¢ is generated in dhen

12:  /*Ontology Propagation Order*/

13: for all ontology d after o irf7’ S do

©Co~NOUA

14: if ontology d includes ¢hen
15: [*Change Ordering*/

16: processChange(c, d)
17: end if

18: end for

19: end if

20: /*Change Implementation*/
21: change ontology o according to ¢

It processes all changes that are requested by the usegthtioe procedure
PROCESEHANGE (cf. 1-3). This procedure resolves a change by generating th
additional changes needed to keep the consistency of tbéogg for which the
method was called (cf. 7-9). Only changes generatedare propagated (cf. 11)
to the all ontologies including according to the topological order of all ontologies
within the node (cf. 13-14). The recursive call (cf. 16) te HROCESEHANGE
procedure for the filtered change and topological order peddent ontologies
guarantees that the receiving ontologies will processliamges from the directly
included ontologies before changes from the indirectijuded ontologies. Fi-
nally, the change is applied to the ontologycf. 21).

3.3 Distributed OI-Model Evolution

A distributed dependent ontology is an ontology that depairdan ontology re-
siding at a different node on the network. The physical iigtion of ontologies

is very important, since it creates additional problemg #ra not encountered
when the ontologies are collocated. This additional comwifjlestems from the

fact that reusing distributed ontologies is achieved thoeplication (see section
2.3). Since the original ontology is updated autonomously iadependently of
replicas, this in turn introduces an additional type of ¢stescy.
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Definition 11 (Replication Ontology ConsistencyAn ontology is replication con-
sistent if it is equivalent to its original and all its incled ontologies (directly and
indirectly) are replication consistent.

To explain this notion, we assume a distributed system dicaged ontologies
as shown in Figure 5. Ontology SO at service provider B iscapibn inconsistent
if it hasn’t been updated according to changes in its origihthe service provider
A. This implies the replication inconsistency of BO at pidei B (since BO in-
cludes SO which is replication inconsistent). Finallysthmplies the replication
inconsistency of ICO at the service provider C in the same Wayesolve repli-
cation inconsistencies between ontologies, first a way otlssonizing distributed
ontologies is needed. Table 2 discusses the pros and cows @fell-known ap-
proaches [4] for synchronizing distributed systems. Aliflo seemingly similar,
there is significant difference to the approaches desciibsabsection 3.2, as this
case deals with a distributed system.

Push Pull
Dependency Information centralized local
Complexity of management high medium
Type of consistency strict loose
Communication overhead high optimized

Table 2 Push vs. Pull Synchronization of Ontologies

Under push synchronization the changes of originals aneqgated to ontolo-
gies including replicas immediately. We identify severadwbacks of using this
approach for realistic scenarios on the Web. First, to gyafmchanges, for each
ontology one must know which ontologies reuse it. Thus, afitexhal centralized
component managing inclusion dependencies between gslis needed. Sec-
ond, with the increase in the number of ontologies and tleeise, the number of
dependencies will grow dramatically. Managing them céifytreill be too expen-
sive and impractical, since the problem of evolving depects emerges. Third,
forcing all ontologies to be “strictly” consistent at alirtes reduces the possibil-
ity to express diversities in a huge space such as the Welle@siton the Web
may not be ready to update their dependent ontologies imatedgliand may opt
to keep the older version deliberately. Finally, the change propagated one-
by-one, introducing significant communication overheabuping changes and
sending them on demand will perform better.

Therefore, in the distributed environment we advocateguie pull synchro-
nization. Under this approach information about includatbtogies is stored in
the dependent ontology, thus eliminating the need for eédépendency manage-
ment. Original ontologies are checked periodically to dethanges and collect
deltas. During this process, it may be possible to analyaeghs and to reject
them if they don’t match current needs. Thus, we propose @s8ly” consistent
system, since replication consistencies are enforcedjaest. Permitting tempo-
rary inconsistencies is a common method of increasing peeoce in distributed
systems [25].

Hence, we use the pull approach for synchronizing origiaad replicas,
whereas we use the push approach for maintaining consysténotologies within
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one node. Thus, our solution employs a hybrid synchrorinatirategy combining
their favorable features while avoiding their disadvaetag

Regardless of the synchronization approach, the questisrré@plication in-
consistencies are actually resolved is raised. We notegpéitation inconsisten-
cies cannot be resolved by simply replacing the replica thidnew version of the
original. This will cause inconsistencies of the dependattlogies, as discussed
in subsection 3.2. Instead, replication and dependen@ngistency must be re-
solved together in one step. This can be achieved by appigpgndent evolution
algorithms on deltas — changes that have been applied taitfieal since the last
synchronization of the replica. By using the pull synchraion strategy and by
applying the dependent evolution process from Figure 8 taslewe derive the
distributed ontology evolution process through threemsitmns.

Identification of Changed Originals ‘

Representation Hp  Semantics
Extraction of Deltas Capturing » of change

Merging Deltas
g =]

Fig. 9 Distributed Ontology Evolution Process

. Propagaton p  Implementation |y  Validation

This process, shown in Figure 9, is responsible for propagahanges from
originals to replicas. We extend the implementation phgsetooducing the evo-
lution log for keeping information about performed chandasther, we extend
the change capturing phase by three components. Durintifidation of changed
originals we identify which original ontologies have chadgIn extraction of
deltas we identify the changes performed at the original motdat the replica
by reading the evolution log. Finally, during merging oftdslwe generate a cu-
mulative list of changes that must be performed at the raplic

3.3.1 Logging Changes

In order to resolve replication inconsistencies, two knaways of identifying
deltas between originals and replicas are known [25]: (&)fthl content of the
original ontology may be compared to the replica; (2) thednisof changes to
the original may be kept explicit. The first solution regsiextracting changes
from differences between the original and the replica, Widéca complicated and
a time-consuming process. Further, to compare ontolotfiessurrent version of
the original must be copied temporarily to the replica’s @obhis may incur un-
necessary communication overhead. If a concept is addethtgeaontology, it is
better to transfer only the information about this additimstead of transferring
the whole ontology.

To avoid these drawbacks, we follow for the second option. daxh dis-
tributed ontology an instance of a special evolution log@ogy is created, which
tracks the history of changes to the ontology. Apart fromdis&ributed evolution,
the evolution log is also used to provide the following céifi@ds:

— Users often want to undo the changes to the ontology. For elechentary
change a sequence of inverse changes may be derived thaketel;npindo
the original changes. Hence, by applying inverse changesarse order any
previous state of an ontology may be reconstructed [30].
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— With each change additional meta-information may be aasedi This infor-
mation can serve as a source for different knowledge disgawethods, e.qg.
mining about change trends.

An evolution log ontology models what changes, why, whenwibypm and
how are performed in an ontology. Each change is represastath instance of
one of the subconcepts of the conceptABIGE. The structure of the hierarchy
of change types reflects the underlying ontology model biuaing all possible
types of changes (e.g.D®ENTITY, REMOVEENTITY etc.). Additional informa-
tion, such as the date and time of change, as well as the tgerftthe change
initiator, may be associated through appropriate progrthformation enabling
decision-making support, such as cost, priority, textuadiption of the reason
for change etc. may also be included. Entities from the ogtpbeing changed are
related to instances of theHBNGE concept througlHAS_REFERENCEENTITY
property. As described previously, elementary changes caage new changes
to be introduced by the evolution strategy in order to keepdhtology consis-
tent — such dependencies may be represented usingAbeECHANGE prop-
erty. Groups of changes of one request are maintained irkaditist using the
HAS_PREVIOUSCHANGE property.

3.3.2 Resolving Replication Inconsistencies

As shown in Figure 9, resolving replication inconsisteadégeperformed through
three additional components. Resolving replication irststencies is initiated by
specifying an original whose included replicas should aated and is performed
as follows.

Identification of Changed Originals. This step first checks whether resolution
of replication inconsistency can be performed at all. Iffome directly included
replica the original has replication inconsistency, thepds aborted. Otherwise,
a list of directly included replicas that have pending regdiion inconsistency (but
whose original is replication consistent) is determingdc&the dependent ontol-
ogy consistency for the ontologies on the same node is redjuinis approach is
recursively applied on all ontologies that include the tog whose replication
inconsistency is resolved.

Let's assume that the service provider C from Figure 5 wamtgs$olve the
replication inconsistency of ICO. Its directly includecplieas, namely BO and
CO, are examined. For each of them the replication consigtehthe original
is checked. If BO at the service provider B has replicatiaomsistency (due to
changes from A in SO which haven't been applied at B’s refica0), then the
process is aborted. If BO at the service provider B is repbiceconsistent, but BO
at service provider C is not (since BO at B has been chandeat) RO is identified
for further analysis. The consistency of the BO's origisakquired since ICO will
obtain changes from SO through BO'’s and CO’s evolution logrter to optimize
this step, the set of directly included ontologies to be makéo account may be
reduced by eliminating all directly included ontologieattlare available through
some other paths. In the case that the ontology ICO dirautlpdes the ontology
SO, the ontology SO would be eliminated from the further abersition, since
it can be obtained through the ontologies BO and CO. Re@itabnsistency is
performed by determining the equivalence of the ontologits original and
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by recursively determining the replication consistencinofuded ontologies. The
following information is needed to perform that:

— Each ontology must contain a physical URI of its original.

— Each ontology must contain a physical URI of its evolutiog.lo

— Each ontology has a version number associated with it thatciemented
each time when an ontology is changed. Thus, checking theaguce of the
replica and the original can be done by simple comparisohaifrumber.

Extraction of Deltas. After determining directly included replicas to be updated
the evolution log for these ontologies is accessed. Thetimtaf the evolution
log is specified within each ontology and is copied to reglidéor each log the
extracted deltas contain all changes that have been applted original after the
last update of the replica, as determined by the version susb

Merging Deltas. Deltas extracted from evolution logs in the previous step ar
merged into a unified list of changes. Since an ontology candleded in many
other ontologies, its changes will be included into evaintiogs of all of these
ontologies. Hence, the merge process must eliminate duptic Also, changes
from different deltas caused by the same change from a conmmstuded ontol-
ogy should be grouped together. For example, if the onto#@yis changed, the
evolution logs of the BO and CO will contain these changesyelsas their own
extensions. Hence, when changes from BO’s and CO'’s logs argad in order to
update ICO, the changes to SO will be mentioned twice. Thalg,ane change to
SO should be kept while discarding all others. However, gearin BO and CO
caused by a change in SO must be grouped together.

Algorithm 2 Distributed Ontology Evolution Algorithm

UPDATEDISTRIBUTEDONTOLOGY(0)

Require: o - ontology that have to be updated

: [*ldentification Of Changed Originals*/

2: inconsistentReplicas=identificationOfChangedOwmtg(o)
3: for all inconsistentReplica in inconsistentReplicks

4:  [*Extraction of Deltas*/

5. evolutionLog=findEvolutionLog(inconsistentReplica)
6:

7

8

A

deltas=readEvolutionLog(evolutionLog)
/*Merging Deltas*/
. changes=mergeDeltas(deltas)
9: end for
10: evolveOntologies(changes,0)
IDENTIFICATION OFCHANGEDORIGINALS(0)

Require: o - ontology that have to be updated

11: replicas=findFirtsLevelReplicas(0)

12: for all replica in replicagio

13:  includedOntologies=findAllincludedOIModels(reg@l)c
14: for all includedOntology in includedOntologie®

15: if includedOntology is not replication consistenen

16: generate exception(“Included models are not updatgd) ye
17: end if

18: end for

19: end for
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The algorithm of our approach for evolution between distiglol ontologies
is presented in Algorithm 2. It starts with the identificatiof changed originals
(cf. 2). This includes the checking whether the evolution ba performed at all
and returns all included replicas that are out-of-datel(t£19). For each of these
replicas, the evolution log is accessed in order to extrdeliss (cf. 5-6). These
changes are merged with the changes from the other evolotisr{cf. 8). Finally,
this integrated list of deltas from all out-of-date reptida processed using the
dependent ontology evolution process (cf. 10) as discussaabsection 3.2.

4 Implementation

KAON is an open-source ontology management infrastructugeted for seman-
tics-driven business applications. Important focus of KA on integrating tra-
ditional technologies for ontology management and apfiinawith those used
typically in business applications. The KAON architectig@resented in Figure
10.

User Interface

Ol-modeler KAON Portal
KAON API
Optimized Concurrency Change Evolution Inclusion +
loading | Conflict Detection | Reversibility | Strategy | Dependent Evolution
RDF-based Engineering Server Replication +
Access 9 9 Distributed Evolution
Back-end
RDF Server
File-based

RDF sources
Relational Databases

Fig. 10 KAON Implementation Architecture

The focal point of the KAON architecture is its ontology ARKAON API),
consisting of a set of interfaces for access to ontologyiestiFor example, there
are Concept, Property and Instance interfaces, contamithods for accessing
ontology concepts, properties and instances, respectivbe API incorporates
some other important elements required for ontology mamagé:

— Optimized loading component is responsible for bulk-logdif ontology en-
tities. To improve performance, entities are cached atlibatc

— Concurrency conflict detection is responsible for detgcéind resolving con-
flicts resulting in concurrent updates of different usews.@xample, if one user
updates the ontology, then other active users must be nbdfi¢his update.
Alternatively, if a user attempts to update the ontologygstale information,
the conflict must be detected.
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— Change reversibility is responsible for keeping track @& ¢timtology changes
in an evolution log in order to be able to reverse them at asequest. Further,
the evolution log is also used by the distributed ontologyleon.

— Evolution strategy is responsible for making sure that Birges applied to
the ontology leave the ontology in a consistent state angrirenting illegal
changes. Also the evolution strategy allows the user tamanige the evolution
process.

— Ontology inclusion facilities together with dependentletion are responsible
for managing multiple ontologies within one node.

— Ontology replication facilities together with distribdtevolution are respon-
sible for enabling reuse of distributed ontologies.

One implementation of the KAON API is based on the RDF API, #ngs
allows access to RDF repositories. Although it offers cdjis for accessing re-
mote RDF repositories, such as RDF Server, it is primarigdu®r management
of local RDF ontologies stored as files. Engineering Ses/aniimplementation of
the API directly based on relational databases and is &ddet cases where con-
currentaccess is needed. The name Engineering Serverfstamite fact that the
database schema is optimized for ontology engineeringngwhich adding and
deleting concepts are frequent operations that must betdmmsactionally. There-
fore, the engineering server uses a fixed number of tabld®rrthan a table per
concept. The server has been heavily optimized and testad ontology consist-
ing of 100,000 concepts, 66,000 properties and 1,000,G@8roes, where loading
related information about 20 ontology entities takes urddseconds, while delet-
ing a concept in the middle of the concept hierarchy takegubdseconds. This
informal test has been conducted on a usual single procdssétop computer
running Windows XP with 256MB of RAM.

To implement light-weight inferences, KAON relies on datato provide de-
sired semantics. Datalog queries are evaluated bottorfhigpevaluation strategy
manages information in sets, matching well with the way haerees are per-
formed in relational databases. In order to limit the amafrdomputation only
to facts relevant to the query, magic sets transformatiohrigue [3] is applied.
Briefly, this technique simulates top-down binding propgagethrough bottom-up
computation.

On top of KAON API various applications have been realizedON Portal is
a tool for building ontology-based Web sites. Furthermasithin KAON we have
developed Ol-modeler, an end-user application that resl& graph-based user
interface for single and distributed Ol-model creation amdlution [18]. Figure
11 shows the graph-based view of an Ol-model.

Ol-modeler supports ontology evolution at the user levet (e right side of
the screenshot). The figure shows a modeling session wheresér attempted to
remove the conceptEORTSUTILITY . Before applying this change to the ontol-
ogy, the system computed the set of additional changes thsttIne applied. The
tree of dependent changes is presented to the user, thuéngjlthe user to com-
prehend the effects of the change before it is actually agp®nly when the user
agrees, the changes will be applied to the ontology. Ol-fesdepports working
with multiple ontologies at the same time. In the upper rHgahd corner of this
picture one can see a graph showing the inclusion deperatearniong all open
Ol-models. By selecting a particular Ol-model, the usenaig that new elements
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Fig. 11 Ol-Modeler

should be created within this Ol-model. The evolution ssbay takes care of
maintaining of consistencies in all open models.

5 Related Work

In this section we discuss how our approach differs fromrotbaceptual model-
ing approaches and tools available.

Classical Conceptual Modeling. Entity-relationship modeling is usually used
for database design. During implementation are ER modaistormed into a
logical model — nowadays this is the relational model. Evavand implement-
ing such models is more complex than if only one paradigm wsesl, since the
conceptual and logical perspective must be kept in synghiorour approach we
isolate the mapping of the conceptual model to the logicalioto a separate step,
thus making the logical model hidden from the ontology uEke users of the on-
tology should use ontology in an ontology-natural way, @leihjoying the benefits
of relational database technology for information storaigg management.

There have been proposals for using UML as an ontology maglédnguage
(e.g. [8]). However, the reader may note that there are figgnit, but subtle, dif-
ferences in standard object-oriented and ontology mogleGitasses of an object-
oriented model are assigned responsibilities, which acagsulated as methods.
Often fictitious classes are introduced to encapsulate sesponsibility. On the
other hand, ontologies don’t contain methods, so respiitgémnalysis is not im-
portant. In our conceptual modeling paradigm, howevesdhstatements do not
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hold. Membership of an object in a class is often interpretedtatement that
some unary predicate is true for this object. If propertiearoobject change as
time passes, then the object should be reclassified. Mehiparfsan object in dif-
ferent classes at the same time has the notion that someediff@spects are true
for that object.

Ontology Modeling Languages. It has been argued by many (e.g. [27]) that
the definition of RDFS is very confusing, because RDFS madedrimitives are
used to define the RDFS language itself. Currently there ispseification for
modularization of RDF models. The handling of lexical infation is very messy
—languages can be attached to RDF model using XML attribEtether, only 1:m
relationships between lexical entries with elements oftfi®logy are possible.

The ideas of object-oriented modeling paradigm on ontologgeling has re-
sulted in creation of so called frame-based knowledge niagléhnguages, and
F-logic [15] is one example. In F-logic, the knowledge isustured into frames
(analogous to classes) that have different value slotslqgoas to attributes).
Frames may be instantiated, in which case slots are filleld weitues. F-logic in-
troduces other advanced modeling constructs, such assskpgemeta-statements
about classes. Also it is possible to define Horn-logic ridesnferring new in-
formation which is not explicitly present. In comparisomnir @onceptual model
approach introduces the notion of light-weight inferenedsich are intended to
be easily implementable with existing systems.

In [13] an ontology language SHOE has been proposed as lwadisef Se-
mantic Web. It distinguishes itself by an HTML syntax and achranism for
embedding ontology fragments into HTML documents. Aparhfithat, the lan-
guage provides primitives for modeling classes and ralatips of any arity, as
well as specifying Horn-type rules. Our approach distisges itself through the
paradigm of light-weight inferences instead of providingemeral rule facility, as
well as the capabilities for meta-class modeling.

A large body of research has been devoted to a subclass cofthaged lan-
guages, called description logics (a good overview is gingb]). Although de-
scription logics are founded on a well-research theory, astioned in [2], they
have proven to be difficult to use due to the non-intuitivéestf modeling. This is
due to the mismatch between with predominant object-cegbnay of thinking.

For example, a common knowledge management problem is teiass in-
stances of the DCUMENT concept with document’s topics. In object oriented
systems the only possible approach is to model all topicseambmers of the con-
cept Topric, and to introduce subtopic transitive relation betweerctopstances.
To an experienced object-oriented modeler, this solutidihbe intuitive. On the
other hand, in description logic systems, since topics aenged in a hierarchy,
a common modeling solution is to arrange all topics in a cphberarchy, to be
able to reuse the subsumption semantics of descriptiongbdilowever, if top-
ics are sets, what are the instances of this set? Most useksofhtopics as fixed
entities, and not as (empty and abstract) sets. Relating smeument d1 to a par-
ticular topic t1 is therefore awkward — d1 can'’t be related farticular instance
of t1, but to “some” instance of t1, like thiShas-topict1(d1).

5 Thanks to lan Horrocks for this discussion.
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Another important ontology modeling language is OIL [12hi§ language
combines the intuitive notions of frames, clear semantickescription logics and
the serialization syntax of RDF embedded within a layeretiisecture. Core OIL
defines constructs that handles most of RDFS (without réifich Standard OIL
defines constructs based on description logics. Howeversyhtax of the lan-
guage hides the description logics background and preadstguage with a more
frame-based “feel”. Instance OIL defines constructs foatioa of instances. De-
spite its apparent frame-based flavor, OIL is in fact a dpsion logic system, thus
our comments about description logics apply to OIL as wdthdugh it supports
ontology modularization, it doesn’t have a consistenttetafor management of
lexical information. Similar comments can be made abougtntology mod-
eling languages founded in description logics, such as DANIL [7] or OWL

[9].

Managing Multiple Ontologies. Reusing ontologies in the Semantic Web con-
text is hindered by the fact that the primary Semantic Weguage — RDF(S) —
doesn’t provide means for including elements from otheplogfies. Each RDF
fragment can freely refer to any resource defined anywherthenNeb. This
presents serious problems to tool implementors, sincenibigossible to reason
over the entire Web. Recognizing this shortcomings, manglogy languages,
including but not limiting to OIL [12], DAML+OIL [7] and OWL P], provide
means for declarative inclusion of other models.

However, most tools simply use these declarations for nepsieveral files at
the beginning and then create an integrated model. OilEdelddr editing OIL
and DAML+OIL ontologies developed as the University of Mhaester — does ex-
actly that: importing an ontology actually inserts a copythe original ontology
into the current ontology. As mentioned before in this pahés has drawbacks re-
lated to ontology evolution. On the other hand, tools sudbmslingua [11], offer
support even for cyclical ontology inclusion, based on tirenfal definitions given
in [10]. However, to the best of author’s knowledge, thesdstdon’t provide evo-
lution of included ontologies. Protege-2000 [22] — a widebgd tool for ontology
editing developed at Stanford — provides the best suppouritology inclusion
so far. In Protege it is possible to reuse definitions from@gut by including
an entire project. However, the implemented inclusion rme&m is too crude, as
it doesn't allow extension of included entities. For exaeppi is not possible to
re-classify or add a slot to a class in the including modetthar, only the outer-
most model may be changed, thus making the evolution of dipgrontologies
impossible.

Evolution. In the last decade there has been very active research irrdhe a
of ontology engineering. The majority of researches in #rsa are focused on
construction issues. However, coping with the changes emddging maintenance
facilities require a different approach. We cannot say thate exist commonly
agreed methodologies and guidelines for ontology evatufitnus, there are very
few approaches investigating the problems of changingogites.

In [14] it is pointed out that ontologies on the Web will ne@devolve. Au-
thors provide a new formal definition of ontologies for the uis dynamic, dis-
tributed environments. A web-based knowledge representinguage SHOE is
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presented. While supporting multiple version of ontolsgiad ontology reuse, the
change propagation between distributed and dependerbgigs is not treated.

In contrast to the ontology evolution that allows accesdltdeda only through
the newest ontology, the ontology versioning allows actesfata through dif-
ferent versions of the ontology. Thus, the ontology evoluttan be treated as a
part of the ontology versioning mechanism that is analyreld 6]. Authors de-
scribe a system offering support for ontology versioningcéntrast to that ap-
proach, which detects changes by comparing ontologies raek information
about all performed changes, since the change detectiorasnglicated and a
time-consuming process. Further, it is impossible to deitee the cause and the
consequences of a change, which is a crucial requiremetihéoconsistency of
the dependent ontologies.

Oliver et al. [24] discuss the kinds of changes that occur edital ontolo-
gies and propose the CONCORDIA concept model to cope witbetlthanges.
The main aspects of CONCORDIA are that all concepts haveragrent unique
identifier. Concepts are given a retired status instead ioghghysically deleted.
Moreover, special links are maintained to track the retpadents and children
of each concept. However, this approach is insufficient fanaging a change on
the Semantic Web, especially since there are no posskiliti control the whole
process.

In [19] the author presents guiding principles for buildoansistent and prin-
cipled ontologies in order to alleviate their creation,gesa@and maintenance in
distributed environments. Authors analyze the requirdmnr the tool environ-
ments that enforces consistency. We have extended thes#iopal guidelines by
taking into account the usage of an ontology.

Other research communities also have influenced our wor&.prboblem of
schema evolution and schema versioning support has beemsesly studied in
relational and database papers ([1], [29]). In [23] autltissuss the differences
that stem from different knowledge models and differengegaaradigms.

Moreover, research in ontology evolution can also benafihfthe many years
of research in evolution of knowledge-based systems [26], [The script-based
knowledge evolution [31] that identifies typical sequenckshanges to knowl-
edge base and represents them in a form of scripts, is sitoilaur approach.
In contrast to the knowledge-scripts that allow the tool talerstand the conse-
guences of each change, we go a step further by allowing #retaigontrol how
to complete the overall modification and by suggesting ttenges that could im-
prove the ontology.

The distributed ontology evolution problem is related te tksearch in dis-
tributed systems [25]. In [4] the authors develop technighat combine push and
pull synchronization in an intelligent and adaptive manamkile offering good re-
siliency and scalability. We extend this approach by takirig account not only
the coherency maintenance of the cached data but the manuef the depen-
dent and replication consistency as well.

6 Conclusion

This article presented our integrated framework for mamggnultiple and dis-
tributed ontologies. We presented a conceptual modelipgoggh along with its
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mathematical definition and formal semantics. We belieaeshch an approachis
suitable as a basis for a scalable implementation, sineadd itself to implemen-

tation using existing database technologies by addinglsiagductive capabili-

ties. Our conceptual models can be reused through inclusgmianisms. Further,
reuse in a distributed setting is supported through refpdinaAnother important

part of our work is evolving ontologies. We isolated threpasate cases: evolv-
ing single ontologies, evolving ontologies that have dejeacies and evolving
ontologies in a distributed setting.

For our future work we plan to focus on the following problerggst, we
shall investigate how to better integrate and enrich ouregagh with similar ap-
proaches, notably description logics, but without saéni§iche performance. Sec-
ond, the development of ontology mapping [17] and integrathechanisms with
evolution support will be in focus of our future researcmdily, we plan to extend
our approach for ontology evolution to not only to computiecessary changes
realizing user’s requirements, but to also realize secyrgizals, such as minimiz-
ing the total number of changes in the ontology. In such wayhee to provide
an easier way for the user to specify and execute compostges.
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