
Noname manuscript No.
(will be inserted by the editor)

Managing Multiple and Distributed Ontologies in the
Semantic Web

A. Maedche and B. Motik and L. Stojanovic

Forschungszentrum Informatik (FZI) at the University of Karlsruhe, Germany, D-76131
Karlsruhe,{maedche,motik,stojanov}@fzi.de

April 24, 2003

Keywords: Multiple and Distributed Ontologies, Ontology Evolution

1 Introduction

The Web in its’ current form is an impressive success with a growing number of
users and information sources. However, the growing complexity of the Web is
not reflected in the current state of the Web technology. The heavy burden of ac-
cessing, extracting, interpreting and maintaining available information is left to the
human user. Tim Berners-Lee, the inventor of the WWW, coinedthe vision of a Se-
mantic Web in which knowledge about Web resources is represented as machine-
processable metadata. Apart from this very general vision,there are many applica-
tions that may exploit and profit from a semantics-driven approach, e.g. document
and content management, information integration or knowledge management, to
name just a few.

Within these different application fields the usage and application of ontolo-
gies1 is increasingly seen as key to enable semantics-driven dataaccess and pro-
cessing. When applying ontologies in these different application fields, taking into
account a distributed setting like the World Wide Web, one isfaced with several
challenges. In this paper we consider three important ones:First of all, one has
to find an appropriate representation model for ontologies,trading off between ex-
pressivity and tractability. Second, one has to be able to deal with multiple and dis-
tributed ontologies to enable reuse and interoperability.Third, one needs support
in the difficult task of managing evolution of multiple and distributed ontologies.

To better understand the overall problem of managing multiple and distributed
ontologies in the Web, we consider the following B2B catalogintegration scenario
throughout the whole article. Let’s assume that some service provider A produces

1 An ontology is a shared and machine-executable conceptual model in a specific domain
of interest.

2 A. Maedche et al.

various sports utilities and that he wants to publish his catalog on-line. To allow
semantics-driven access to his catalog, he needs to find an appropriate represen-
tation model for it. To enable other players in the marketplace to semantically
process the catalog, he creates a sports ontology (SO) and bases his catalog on
it. Let’s assume further that some service provider B specializes in production of
bicycles and also wants to publish his catalog on-line. Hence, he wants to create
a new bicycle ontology (BO) for catalog description. When creating BO, service
provider B intends to reuse as many definitions as possible from SO to speed up
the engineering and to enable interoperability. However, it is not clear how to reuse
these definitions in BO. Assuming that this problem is solved, after reusing SO as
the basis for BO, a further problem arises when SO needs to be adapted due to a
change in business requirements – it is not clear how to evolve dependent ontolo-
gies. This problem is worsened by the fact that ontologies are distributed in the
Web.

In this article we present an integrated framework for managing multiple and
distributed ontologies in the Semantic Web solving the above mentioned prob-
lems. Specifically, we address the following aspects:First, we describe a concep-
tual modeling framework for single, multiple and distributed ontologies, facilitat-
ing modeling and model access with a low gap between the conceptualization and
its implementation. We adjust the expressiveness of traditional logic-based lan-
guages to sustain tractability. As a side effect, this makesrealization of ontology-
based systems using existing and well-established technologies, such as relational
databases, possible. In our framework we provide features for reusing existing con-
ceptual models.Second, evolution of ontologies – the timely adaptation of an on-
tology and consistent propagation of changes to the dependent artifacts – is a chal-
lenging management task. We present an integrated evolution process for single,
multiple and distributed ontologies.Third, we provide an overview of a scalable
implementation for managing multiple and distributed ontologies, implemented
within KAON2 – the KArlsruhe ONtology and Semantic Web infrastructure used
as basis for our research and development.

Organization. This article is organized as follows. Section 2 presents ourcon-
ceptual modeling approach introducing so-called OI-models as a basis for concep-
tual modeling in the Semantic Web. We include the definition of a mathematical
model, the semantics and a comprehensive example. Additionally, we elaborate
on how to deal with multiple and distributed OI-models. Section 3 is dedicated to
the different aspects of evolution of single, multiple and distributed OI-models. In
section 4 we present the implementation of our system. Before we conclude, we
provide a comprehensive overview on related work in section5.

2 Managing Information in OI-Models

This section introduces our conceptual modeling approach for the Semantic Web
using so-called OI-models. We separate this section into three main parts. First,
we introduce OI-models as a basis for conceptual modeling inthe Semantic Web
including the mathematical definition, the semantics and anexample. Second, we

2 http://kaon.semanticweb.org/

Managing Multiple and Distributed Ontologies in the Semantic Web 3

show how OI-models may be reused through inclusion. Finally, we discuss how
reuse is achieved if OI-models are distributed across nodesin the Web.

2.1 Conceptual Modeling using OI-models

In our conceptual modeling approach we have tried to follow as closely as pos-
sible the object-oriented modeling paradigm and extend it with simple deductive
features, by keeping in mind some practical aspects. Many expressive modeling
languages, such as DAML+OIL [7] or OWL [9], often lack these practical con-
siderations. This in particular relates to the support for meta-concept modeling,
interpretation of domains, ranges and cardinalities, as discussed later in this sub-
section.

This practicality reflects itself in the system’s implementation. We base our
system primarily on deductive database techniques such as magic sets [3], which
have proven themselves to be indispensable for achieving inferencing tractability
and practicability. On the other hand, handling description logics typically requires
algorithms such as tableau reasoning, which don’t integrate easily with existing
database infrastructure and are often intractable in practice.

Traditionally ontologies have been considered separatelyfrom their instances.
However, this distinction is often blurred – some concepts have well-known in-
stances that constitute an important part of a common vocabulary. Therefore, in
our approach the information is organized in OI-models, containing both ontology
entities (concepts and properties), as well as the instances. For example, an OI-
model for geographical information might contain the CONTINENT concept along
with its seven well-known instances. In the rest of this paper we use the terms
OI-model and ontology interchangeably.

Mathematical Definition. We present our approach on an abstract, mathemat-
ical level that defines the structure of our models. We may support this structure
with several different syntaxes.

Definition 1 (OI-model Structure) An OI-model (ontology-instance-model) structure
is a tuple OIM:= (E, INC) where:

– E is the set of entities of the OI-model,
– INC is the set of included OI-models.

An OI-model represents a self-contained unit of structuredinformation that
may be reused. It consists of entities and may include a set ofother OI-models
(represented through the set INC). Different OI-models cantalk about the same
entity, so the sets of entities E of these OI-models don’t need to be disjoint.

The name of an entity is often written in form ns:localname, where ns is a
shorthand for a namespace prefix. By including this prefix in the entity name,
accidental name clashes are easier to avoid. The technical details how namespaces
and prefixes are managed are implementation dependent (e.g.XML namespaces
can be used) and are not further elaborated in this paper.

Definition 2 (Ontology Structure) An ontology structure of an OI-model is a structure
O(OIM) := (C, P, R, S, T, INV, HC , HP , domain, range, mincard, maxcard) where:

4 A. Maedche et al.

– C ⊆ E is a set of concepts,
– P ⊆ E is a set of properties,
– R ⊆ P is a set of relational properties (properties from the setA = P \ R are called

attribute properties),
– S ⊆ R is a subset of symmetric properties,
– T ⊆ R is a subset of transitive properties,
– INV ⊆ R × R is a symmetric relation that relates inverse relational properties;

if (p1, p2) ∈ INV, thenp1 is an inverse relational property ofp2,
– HC ⊆ C ×C is an acyclic relation called concept hierarchy; if(c1, c2) ∈ HC thenc1

is a subconcept ofc2 andc2 is a superconcept ofc1,
– HP ⊆ P × P is an acyclic relation called property hierarchy; if(p1, p2) ∈ HP then

p1 is a subproperty ofp2 andp2 is a superproperty ofp1,
– function domain: P → 2C gives the set of domain concepts for some propertyp ∈ P ,
– function range: R → 2C gives the set of range concepts for some relational property

p ∈ R,
– functionmincard : C × P → N0 gives the minimum cardinality for each concept-

property pair,
– functionmaxcard : C × P → (N0 ∪ {∞}) gives the maximum cardinality for each

concept-property pair.

Each OI-model has an ontology structure associated with it,consisting of con-
cepts (to be interpreted as sets of elements) and properties(to be interpreted as re-
lations between elements). Properties can have domain concepts and relation prop-
erties can have range concepts, which constrain the types ofinstances to which the
properties may be applied. If these constraints are not satisfied, the ontology is in-
consistent. Domain and range concepts define schema restrictions and are treated
conjunctively – all of them must be fulfilled for each property instantiation. This
has been done in order to maintain compatibility with various description logics
dialects (e.g. OWL) which do the same. Relational properties may be marked as
transitive and/or symmetric, and it is possible to say that two relational properties
are inverse of each other. For each class-property pair it ispossible to specify the
minimum and maximum cardinalities. Concepts (properties)can be arranged in a
hierarchy, as specified by theHC (HP) relation, whose reflexive transitive closure
follows from the semantics, as defined next.

Definition 3 (Instance Pool Structure) An instance pool associated with an OI-model
is a 4-tupleIP (OIM) := (I,L, instconc, instprop) where:

– I ⊆ E is a set of instances,
– L is a set of literal values,L ∩ E = ∅,
– function instconc: C → 2I relates a concept with a set of its instances,
– function instprop: P × I → 2I∪L assigns to each property-instance pair a set of

instances related through given property.

Each OI-model has an instance pool associated with it, containing instances
of different concepts and property instantiations betweenthem. Property instantia-
tions must follow the domain and range constraints, and mustobey the cardinality
constraints, as specified by the semantics.

Definition 4 (Root OI-model Structure) Root OI-model is defined as a particular,
well-known OI-model with structure ROIM:= ({KAON :ROOT}, ∅). KAON :ROOT is the
root concept, each other concept must subclassKAON :ROOT (it may do so indirectly)3.

3 The prefix kaon denotes http://kaon.semanticweb.org/2001/11/kaon-lexical# names-
pace.

Managing Multiple and Distributed Ontologies in the Semantic Web 5

Each other OI-model must include ROIM and thus gain visibility to the root
concept. Many knowledge representation languages containthe TOP concept that
is a superconcept of all other concepts.

Definition 5 (Modularization Constraints) If OI-model OIM imports some other OI-
model OIM1 (with elements marked with subscript 1), that is, if OIM1 ∈ INC(OIM), then
following modularization constraints must be satisfied:

– E1 ⊆ E, C1 ⊆ C, P1 ⊆ P ,R1 ⊆ R, T1 ⊆ T , INV1 ⊆ INV,HC1 ⊆ HC ,HP1 ⊆ HP ,
– ∀p ∈ P1 domain1(p) ⊆ domain(p),
– ∀p ∈ P1 range1(p) ⊆ range(p),
– ∀p ∈ P1,∀c ∈ C1 mincard1(c, p) = mincard(c, p),
– ∀p ∈ P1,∀c ∈ C1 maxcard1(c, p) = maxcard(c, p),
– I1 ⊆ I , L1 ⊆ L,
– ∀c ∈ C1 instconc1(c) ⊆ instconc(c),
– ∀p ∈ P1, i ∈ I1 instprop1(p, i) ⊆ instprop(p, i).

Cyclical inclusions aren’t allowed, that is, a graph whose nodes are OI-models and
whose arcs point from including to included models must not contain a cycle.

OI-model modularization is discussed in more detail in subsection 2.2.

Definition 6 (Meta-concepts and Meta-properties) In order to allow meta-con-
cepts, the following constraint is stated:C ∩ I may, but does not need to be∅. Also,P ∩ I

may, but does not need to be∅.

The consequences of meta-concept and meta-property modeling are discussed
later in this subsection.

Definition 7 (Lexical OI-model Structure) Lexical OI-model structure LOIM is a
well-known OI-model with the structure presented in Figure14.

Fig. 1 Lexical OI-Model Structure

Lexical entries (instances of theKAON :LEXICAL ENTRY concept) reflect var-
ious lexical properties of ontology entities, such as labels, stems or textual doc-
umentation. The propertyKAON :REFERENCESestablishes n: m relationship be-
tween lexical entries and instances. In this way, the same lexical entry may be as-
sociated with several entities (e.g. jaguar label may be associated with an instance

4 Instead a formal definition, we present a graphical view of LOIM because we consider
it to be more informative.

6 A. Maedche et al.

representing a Jaguar car or a jaguar cat). The value of the lexical entry is given
by propertyKAON :VALUE , whereas the language of the value is specified through
theKAON :INLANGUAGE property. ConceptKAON :LANGUAGE represents the set
of all languages, and its instances are defined by the ISO standard 639. The lex-
ical structure is not closed – users may freely define additional subclasses of the
KAON :LEXICAL ENTRY concept.

In order to associate lexical entries with a concept or a property, it must be
viewed as an instance of theKAON :ROOT. Because of that,KAON :REFERENCES

property has the conceptKAON :ROOT as the domain.

Denotational Semantics. In this subsection we give meaning to OI-models by
means of a denotational semantics in the spirit of description logics.

Definition 8 (OI-model Interpretation) An interpretation of an OI-model OIM is a
structureI = (△I ,△D, EI , LI , CI , P I) where:

– △I is the set of object interpretations,
– △D is the concrete domain for data types,△I ∩△D = ∅,
– EI : E → △I is an entity interpretation function that maps each entity to a single

element in a domain,
– LI : L → △D is a literal interpretation function that maps each literalto an element

of the concrete domain,

– CI : △I → 2△
I

is a concept interpretation function by treating concepts as subsets of
the domain,

– P I : △I → 2△
I
×(△I

∪△D) is a property interpretation function by treating properties
as relations on the domain.

An interpretation is a model of OIM if it satisfies the following properties:

– CI(EI(kaon:Root)) = △I ,
– ∀c, i i ∈ instconc(c) ⇒ EI(i) ∈ CI(EI(c)),
– ∀c1, c2 (c1, c2) ∈ HC ⇒ CI(EI(c1)) ⊆ CI(EI(c2)),
– ∀p, i, i1 i1 ∈ instprop(p, i) ∧ i1 ∈ E ⇒ (EI(i), EI(i1)) ∈ P I(EI(p)),
– ∀p, i, x x ∈ instprop(p, i) ∧ x ∈ L ⇒ (EI(i), LI(x)) ∈ P I(EI(p)),
– ∀p, x, y p ∈ R ∧ (x, y) ∈ P I(EI(p)) ⇒ y ∈ △I ,
– ∀p, x, y p ∈ P \ R ∧ (x, y) ∈ P I(EI(p)) ⇒ y ∈ △D ,
– ∀p1, p2 (p1, p2) ∈ HP ⇒ P I(EI(p1)) ⊆ P I(EI(p2)),
– ∀s s ∈ S ⇒ (∀x, y (x, y) ∈ P I(EI(s)) ⇔ (y, x) ∈ P I(EI(s))),
– ∀p, ip (p, ip) ∈ INV ⇒ (∀x, y (x, y) ∈ P I(EI(ip)) ⇔ (y, x) ∈ P I(EI(p))),
– ∀t t ∈ T ⇒ (∀x, y, z (x, y) ∈ P I(EI(t)) ∧ (y, z) ∈ P I(EI(t)) ⇒ (x, z) ∈

P I(EI(t))),
– ∀p, c, i c ∈ domain(p) ∧ (∃x (EI(i), x) ∈ P I(EI(p))) ∧ EI(i) /∈ CI(EI(c)) ⇒

ontology is inconsistent,
– ∀p, c, i c ∈ range(p) ∧ (∃x (x, EI(i)) ∈ P I(EI(p))) ∧ EI(i) /∈ CI(EI(c)) ⇒

ontology is inconsistent,
– ∀p, c, i EI(i) ∈ CI(EI(c)) ∧ mincard(c, p) > |{ y | (EI(i), y) ∈ P I(EI(p))}| ⇒

ontology is inconsistent,
– ∀p, c, i EI(i) ∈ CI(EI(c)) ∧ maxcard(c, p) < |{ y | (EI(i), y) ∈ P I(EI(p))}| ⇒

ontology is inconsistent.

OIM is unsatisfiable it is doesn’t have a model. Following definitions say what can be
inferred from an OI-model:

– H∗
C ⊆ C × C is the reflexive transitive closure of the concept hierarchyif:

in all modelsCI(EI(c1)) ⊆ CI(EI(c2)) ⇔ (c1, c2) ∈ H∗
C ,

Managing Multiple and Distributed Ontologies in the Semantic Web 7

– H∗
P ⊆ P × P is the reflexive transitive closure of the property hierarchy if:

in all modelsP I(EI(p1)) ⊆ P I(EI(p2)) ⇔ (p1, p2) ∈ H∗
P ,

– instconc∗ : C → 2I represents inferred information about instances of a concept if:
in all modelsEI(i) ∈ CI(EI(c)) ⇔ i ∈ instconc∗(c),

– instprop∗ : P × I → 2I∪L represents the inferred information about instances if:
in all modelsi2 ∈ instprop∗(p, i1) ⇔ (EI(i1), E

I(i2)) ∈ P I(EI(p))∧
in all modelsl ∈ instprop∗(p, i) ⇔ (EI(i), LI(l)) ∈ P I(EI(p)),

– domain∗(p) =

⋃

(p,p1)∈H∗

P

domain(p1) denotes all domain concepts of a property,

– range∗(p) =

⋃

(p,p1)∈H∗

P

range(p1) denotes all range concepts of a property.

Meta-modeling. In real-world conceptual models, it is often unclear whether
some element should be represented as a concept or as an instance. For example, in
a semantics-driven catalog system, relationships betweensports utility types and
individual sports utilities can be modeled as in Figure 2. The SPORTSUTILITY

concept represents the set of all types of sports utilities,with its elements being
particular types of sports utilities (rafts, oars etc.) Assertions can be made about
individual sport utility types (e.g. rafts are used for whitewater rafting), but each
type can be viewed as the set of individual instances as well (e.g. the raft in my
garage is an instance in that set). Information about sportsutility types is indepen-
dent from the information about particular instances (e.g.my raft can be broken).
Hence, SPORTSUTILITY entity plays a dual role and can be interpreted both as a
concept and as an instance. These two interpretations are connected in the image
by the spanning object (the dashed line).

Fig. 2 Spanning Object Example

Under usual first-order semantics (employed by languages such as DAML+OIL
and OWL), an element of the domain is assigned to each instance, a subset of the
domain set to each concept and a relation on the domain to eachproperty symbol.
Interpreting concepts as instances is therefore not possible. To overcome these
problems, we base our interpretation on HiLog [6] – a logic with the second-order
syntax but first-order semantics, for which a sound and complete proof theory ex-
ists. Technically this is achieved so that the functionEI associates a domain object
with each entity symbol, and functionsCI andP I provide concept and property
interpretations to domain objects.

In [32] the problems of considering concepts as instances are well explained.
The proposed solution is to isolate different domains of discourse. A concept in one
domain may become an instance in a higher-level domain, withthese two objects
being related through so called spanning object relationship. Our approach builds
on that, however, without explicit isolation of domains of discourse. This has subtle
consequences on how an OI-model should be interpreted. It isnot allowed to ask:
“What does entity e represent?” Instead, one must ask a more specific question:

8 A. Maedche et al.

“What does e represent if it is considered as either a concept, a property or an
instance?”

Allowing a concept to be interpreted as an instance may causeproblems. In
[27] has the original RDFS semantics been criticized for itsinfinite meta-modeling
architecture. As specified by RDFS,RDFS:CLASS is an instance of itself, which
means that its interpretation must contain itself as a member. This seems dan-
gerously close to the Russell’s paradox (e.g. if RDFS is extended with negation,
as in OWL, the paradox is inevitable). The same paper proposes a fixed four-
layer meta-modeling architecture called RDFS(FA) introducing a strict separation
between concepts and instances. Our approach doesn’t suffer from these prob-
lems: the model-theoretic interpretation of the statement“A is an instance of A”
is to interpret A as some domain individualα and to associate toα the concept
extension containingα. Note, however, that the interpretation of A as a concept
doesn’t contain itself, so the Russell’s paradox can’t occur. We follow, however,
RDFS(FA) in separating modeling primitives. This means that various relations
(e.g. theRDFS:SUBCONCEPTOF property) are not available within the model,
but exist in the ontology language layer. This is done to avoid ambiguities when
these relations are themselves redefined (e.g. what semantics does a subproperty
of RDFS:SUBCONCEPTOF have?).

Domains and Ranges. Our definition of domains and ranges differs from that of
RDFS, DAML+OIL and OWL, where domains and ranges are axioms specifying
sufficient conditions for class membership. For example, ifa property P has con-
cept C as the domain, then any instance I for which P has been instantiated can be
classified as an instance of C. This semantics is captured by replacing the domain
and range restrictions with the following conditions:

– ∀p, c, i c ∈ domain(p) ∧ (∃x (EI(i), x) ∈ P I(EI(p))) ⇒ EI(i) ∈ CI(EI(c)),
– ∀p, c, i c ∈ range(p) ∧ (∃x (x,EI(i)) ∈ P I(EI(p))) ⇒ EI(i) ∈ CI(EI(c)).

From our experience, while sometimes such inferencing may indeed be use-
ful, often it is not needed, or even desired. Most users with strong background
in databases and object-oriented systems, intuitively expect domains and ranges
to specify the constraints on allowed ontology states. In another words, unless I is
known to be an instance of C, P can’t be instantiated for I in the first place. This has
the following benefits: First, treating domains and ranges as constraints makes it
possible to guide the user in the process of providing information about instances.
If domains and ranges are treated as axioms, any property canbe applied to any
instance, making it difficult to constrain user’s input. Second, similar problems oc-
cur when evolving the ontology. E.g., if I is removed from theextension of C, it
can be computed that the instance of P for I must be removed as well. If domains
and ranges are axioms, however, it is not clear how to change the ontology so that
it still makes sense. Third, treating domains and ranges as axioms introduces sig-
nificant performance overhead in query answering. For example, to compute the
extension of some concept, one must classify instances according to the domain
and range axioms. Therefore, if only the constraint semantics is needed, the system
will suffer from unnecessary performance overhead.

Cardinalities. In our approach we treat cardinalities as constraints regulating the
number of property instances that may be specified for instances of each concept.

Managing Multiple and Distributed Ontologies in the Semantic Web 9

This is different from OWL and other description logic languages, where cardi-
nalities are axioms specifying that instances with particular number of property
instances can be inferred to be instances of some concept. Similar arguments as in
the case of domain and range semantics apply here as well.

Example. Figure 3 graphically presents a simple OI-model describingvarious
types of sports, sports utilities and their relationships in a semantical on-line cata-
log, as described in the scenario presented in section 1. On the right-hand side there
is a hierarchy of various sports. The concept SPORT represents a set of all sports,
which can be divided into team and individual sports, as wellas outdoor and indoor
sports. A particular sport can be classified under several different parent concepts,
thus reflecting various aspects of sports. For example, WHITEWATER RAFTING is
an instance of TEAM SPORTand OUTDOOR SPORTconcepts.

Fig. 3 Example Domain OI-model

This can be interpreted as TEAM SPORT being a set of all team sports, and
WHITEWATER RAFTING being a member in this set. Sports utilities are related to
sports that they are used in. Further, some sports utilitiesare used together (e.g.
OAR and RAFT). This information is represented throughUSED-WITH property.
This property is, by its nature, transitive and symmetric. Such information can be
used by the company hosting the catalog to suggest possible items of interest to
the buyer. Each sports utility has aCATALOG NUMBER associated with it. This is
a property that has a literal value whose semantics is not further specified.

2.2 Multiple OI-Models

In traditional software systems significant attention is devoted to keeping modules
well separated and coherent with respect to functionality,thus making sure that
changes in the system are localized to a handful of modules. Reuse is seen as the
key method in reaching that goal, striving to completely eliminate the copy-and-
paste reuse – the prominent source of problems on software projects. Ontology-
based systems in the Web are just a special class of software systems, so the
same principles apply. If reuse is performed through duplication, problems arise
when the reused ontology changes, as these changes must be replayed on various
multiple copies. Paraphrasing the open-closed reuse principle [21], each ontology
should be a closed, consistent and a self-contained entity,but open to extensions in
other ontologies. These goals may be achieved by incorporating an explicit mech-
anism for including ontologies by reference into ontology languages and tools.

10 A. Maedche et al.

According to definition 5, reuse is supported by allowing an OI-model to in-
clude other OI-models, thus obtaining the union of the definitions from all included
models. In our approach cyclical inclusions are not allowedbecause evolution of
cyclically dependent OI-models would be too difficult. Inclusion is performed by-
reference – models are virtually merged, however, the information about the origin
of each entity is represented explicitly.

Figure 4 presents four example OI-models (SO – sports ontology, BO – bicycle
ontology, CO – climbing ontology and ICO – integrated catalog ontology). BO
and CO each include SO, thus gaining immediate access to all of its definitions.
However, the information about the origin of ontology entities retained. Thus, the
following distinctions may be made:

– In SO and CO SPORTSUTILITY concept doesn’t have any sub- or supercon-
cepts. However, in BO it has one subconcept BICYCLE, and in ICO it has one
subconcept and one superconcept CATALOG ITEM.

– Relationships between concepts also belong to appropriateOI-models. Hence,
it is possible to determine that SPORTSUTILITY is made a subconcept of
CATALOG ITEM in ICO.

– In SO the propertyUSED IN has only SPORTSUTILITY as domain concept,
whereas in ICO it has an additional domain concept POWER DRINK.

Fig. 4 OI-model Inclusion

On the right-hand side the direct acyclic inclusion graph between OI-models is
shown. SO is indirectly included in ICO twice (once through BO and once through
CO). However, ICO will contain all elements from SO only once(e.g. in ICO
there will be only one SPORTSUTILITY concept). The possibility of including
an OI-model through multiple paths has significant consequences on the ontology
evolution, as discussed in subsection 3.2.

Our approach is currently limited to including entire models, rather than in-
cluding subsets. Also, when a model is reused, information can only be added, not
retracted. Although such advanced features may sometimes be useful, we deliber-
ately limit our approach. It is much more difficult to ensure the consistency of the
including model if only part of some model is included, sinceit is not clear which
subset of elements to include. For example, ifUSED IN property is not included in
ICO, it is not clear how to treat instances using this property. Further, changing on-
tologies becomes more complex, because it is not clear how topropagate changes
in ICO to SO. Finally, we don’t support resolving semanticalheterogeneities be-
tween included models (e.g. establishing equivalences between the BICYCLE and

Managing Multiple and Distributed Ontologies in the Semantic Web 11

FAHRRAD concepts) – we plan to extend our approach to handle such cases in
future.

2.3 Distributed OI-Models

Ontology inclusion allows reusing OI-models available within one node (server) in
the system. However, we envisage the Semantic Web where OI-models are spread
across many different nodes, so the inclusion mechanisms cannot be used directly.
There are two possible solutions how to achieve reuse in thiscase.

The first solution is to make all OI-models accessible through an ontology
server, which could integrate the information from included OI-models virtually
(on-the-fly) by accessing the servers of these OI-models. Such solution has the
benefit that all changes in the included OI-models are immediately visible in the
including OI-models. While this desirable feature increases the consistency, it has
several serious drawbacks:

– Servers are tightly coupled – a failure of one system will cause failure of all
servers that include the OI-model.

– Standard top-level ontologies will be reused in many ontologies. Servers host-
ing them will therefore be overloaded, because they will often be contacted by
many other servers.

– Because answering every query requires distributed processing, the perfor-
mance of the system with today’s infrastructure would be unacceptable.

Therefore, a more practical solution to the problem in the WWW context is
to replicate distributed OI-models locally and to include them in other OI-models.
Replication eliminates afore mentioned problems, but introduces significant evolu-
tion and consistency problems, further discussed in section 3. The most important
constraint is that replicated OI-models should never be modified directly. Instead,
the modification should always be performed at the source andchanges propagated
to replicas using the distributed evolution process.

Returning to the example from the section 1, Figure 5 shows a network of three
service providers creating their ontologies. SO and CO are defined at the server of
service provider A. Since CO is defined at the same node as the SO, no replication
is necessary. BO is defined at the server of the service provider B, so to reuse SO,
it must be replicated to his server. Finally, ICO is defined atthe server of service
provider C, so SO, BO and CO must be replicated to his server.

In order to replicate an OI-model, it must be physically accessed. OI-models
on the Web are typically known under a well-known URI, which can be used
to access the OI-model through appropriate protocol (e.g. HTTP). However, this
introduces problems when the OI-model is replicated, sincethe URI used to access
the OI-model and the URI under which the OI-model is originally known become
different. To consistently handle this, we associate two different URIs with each
OI-model:

– The logical URI is unique for each OI-model and is always the same, regardless
of the OI-model’s location. The uniqueness of the URI is typically achieved by
incorporating the Internet name of the organization that created the OI-model.

12 A. Maedche et al.

Ontology Server

Service Provider A

Ontology Server

Service Provider A

SUO

CO

Ontology Server

Service Provider B

Ontology Server

Service Provider B

SUO

BO

Ontology Server

Service Provider C

Ontology Server

Service Provider C

SUO

ICO

CO BO
SUO – Sports Utility Ontology

BO – Bicycle Ontology

CO – Climbing Ontology

ICO – Integrated Catalog Ontology

– original ontology

– ontology replica

Fig. 5 Distributed OI-Models

– The physical URI unambiguously identifies the location of the OI-model and
contains all information necessary to access the OI-model,such as the protocol
to be used or relevant connection parameters.

For example, the SO from our example may have the logical URI
http://www.sport.com/so. No other OI-model with that URI exists anywhere in
the world. However, the OI-model may be replicated to the filesystem, and the
physical URI will be file:/c:/so.kaon. If the OI-model is stored in the database,
then its physical URI may be jboss://wim.fzi.de:1099?http://www.sport.com/so.

3 Evolution

Ontology evolution can be defined as the timely adaptation ofan ontology and a
consistent propagation of changes to the dependent artifacts. The complexity of
ontology evolution increases as ontologies grow in size, soa structured ontology
evolution process is required. Such a process has been described in [18]. The pro-
cess starts with capturing changes either from explicit requirements or from the
result of change discovery methods. Next, changes are represented formally and
explicitly. The semantics of change phase prevents inconsistencies by computing
additional changes that guarantee the transition of the ontology into a consistent
state. In the change propagation phase all dependent artifacts (ontology instances
on the Web, dependent ontologies and application programs using the changed
ontology) are updated. During the change implementation phase required and in-
duced changes are applied to the ontology in a transactionalmanner. In the change
validation phase the user evaluates the results and restarts the cycle if necessary.

In this paper we extend this process towards multiple, distributed ontologies.
As shown in Table 1, two dimensions of the overall ontology evolution problem
may be identified.

The first dimension defines the number of ontologies being evolved, whereas
the second specifies their physical location. Since it is notpossible to fragment
[25] one ontology across many nodes, we discuss ontology evolution at three levels
only. In subsection 3.1 we summarize the single ontology evolution problem. In
subsection 3.2 we extend the change propagation and capturing phases to cover

Managing Multiple and Distributed Ontologies in the Semantic Web 13

Nodes
One Multiple

Ontologies One Single OE -
Multiple Dependent OE Distributed OE

Table 1 Levels of Ontology Evolution (OE) Problem

the evolution of multiple dependent ontologies within a single node. Finally, in
subsection 3.3 we extend the change capturing and change implementation phases
of the dependent evolution process to support evolution of distributed ontologies.

3.1 Single OI-Model Evolution

For evolution of single ontologies the essential phase is the semantics of change
phase, whose task is to maintain ontology consistency. Applying elementary ontol-
ogy changes [30] alone will not always leave the ontology in aconsistent state. For
example, deleting a concept will cause subconcepts, some properties and instances
to be inconsistent.

Definition 9 (Single Ontology Consistency)A single ontology is consistent if it
satisfies a set of invariants defined in the ontology model from the subsection 2.1
and if all used entities are defined.

Returning to the example in Figure 3, if SPORT concept is deleted, its sub-
concepts would be inconsistent, since the parent concept isnot defined any more.
To prevent inconsistencies, all subconcepts (INDOOR SPORT, OUTDOOR SPORT,
TEAM SPORTand INDIVIDUAL SPORT) have to be deleted as well. Moreover, the
removal of concepts causes the removal of their instances (e.g. the SPEEDSKATING

instance of the INDOOR SPORT concept) and the removal of lexical information.
Further, since the removal of a concept which is in the range of some property
results in syntax inconsistency, before the SPORTconcept is deleted, it must be re-
moved from the range of theUSED IN property. However, properties without range
concepts are not allowed, so the property must be deleted as well. To do that, the
SPORTSUTILITY concept must be removed from the domain. The complete list
of necessary changes obtained in the semantics of change phase is presented in
Figure 6.

However, there are many ways to achieve consistency after a change request.
For example, when a concept from the middle of the hierarchy is being deleted,
all subconcepts may either be deleted or reconnected to other concepts. If sub-
concepts are preserved, then properties of the deleted concept may be propagated,
its instances distributed, etc. Thus, for some change in theontology, it is possi-
ble to generate different sets of additional changes, leading to different final con-
sistent states. Further, the consistent state may be definedin multiple ways. For
example, properties without domain and/or range may or may not be considered
inconsistent. Most of existing systems for the ontology development and manage-
ment provide only one possibility for realizing a change andthis is usually the
simplest one. For example, the deletion of a concept always causes the deletion of
all its subconcepts. To overcome this, a mechanism is required for users to man-
age changes resulting not in an arbitrary consistent state,but in a consistent state

14 A. Maedche et al.

Fig. 6 Generated Changes

fulfilling the user’s preferences. We introduce the conceptof an evolution strategy
encapsulating policy for evolution with respect to user’s requirements. To resolve
a change, the evolution process needs to determine answers at manyresolution
points - branch points during change resolution where taking a different path will
produce different results. We have identified the followingset of resolution points:

– how to handle orphaned concepts - those concepts that don’t have parents any
more;

– how to handle orphaned properties - those properties that don’t have parents
any more;

– how to propagate properties to the concept whose parent changes;
– what constitutes a valid domain of a property;
– what constitutes a valid range of a property;
– whether a domain (range) of a property can contain a concept that is at the

same time a subconcept of some other domain (range) concept;
– the allowed shape of the concept hierarchy (i.e. multiple paths to a supercon-

cept);
– the allowed shape of the property hierarchy; (i.e. multiplepaths to a superprop-

erty);
– if instances must be consistent with the ontology.

Each possible answer at each resolution point is anelementary evolution
strategy. For example, in case of the first issue, orphaned subconcepts of a con-
cept may be connected to the parent concept(s) of that concept, connected to the
root concept of the hierarchy or deleted as well. Common policy consisting of a set
of elementary evolution strategies, each giving an answer for one resolution point,
is anevolution strategy. Thus, an evolution strategy unambiguously defines the
way how elementary changes will be resolved [30]. A particular evolution strat-
egy is typically chosen by the user at the start of the ontology evolution process.
Let’s assume that the chosen evolution strategy determinesthat orphaned concepts
should be reconnected to the root concept and that a propertycan exist without a
range concept. The list of generated changes for the same request (the removal of
a concept SPORT from the example in Figure 3) is shown in Figure 7. This list is
quite different from the changes shown in Figure 6, since theselected evolution
strategies are different.

Managing Multiple and Distributed Ontologies in the Semantic Web 15

Fig. 7 Generated Changes based on the explicitly selected Evolution Strategy

3.2 Multiple OI-Model Evolution

In this subsection we extend the single ontology evolution approach to take into
account the inclusion relationships between ontologies within one node. However,
we still consider evolution of ontologies within one node only and extend this to
the distributed setting in the following subsection. An ontology that includes other
ontologies is called the dependent ontology. As the included ontology is changed,
the consistency of the dependent ontology may be invalidated.

Definition 10 (Dependent Ontology Consistency)A dependent ontology is con-
sistent if the ontology itself and all its included ontologies, observed alone and
independently of the ontologies in which are reused, are single ontology consis-
tent.

Returning to the example of Figure 4, if the SPORTSUTILITY concept from
SO is deleted, the ontology BO, and through transitivity of inclusion the ICO as
well, will be inconsistent, since the BICYCLE and CATALOG ITEM concepts will
have a parent concept and a child concept respectively, thatare not defined. More-
over, it is important to notice that applying the deletion ofthe SPORTSUTILITY

concept to the outer-most ontology (ICO) only is not sufficient. In ICO theUSED IN

property has two domain concepts, so removing one of them will not trigger the
removal of the property. Therefore, if SO is considered independently, it is incon-
sistent, since theUSED IN property will have no domain concept in this ontology.

This example shows that maintaining consistency of a singleontology is not
sufficient; dependent ontology consistency must be taken into account as well.
This may be achieved by propagating changes from the changedontology to all
ontologies that include it. There are two ways of doing that [4]:

– Push-based approach: Changes from the changed ontology are propagated to
dependent ontologies as they happen.

– Pull-based approach: Changes from the changed ontology are propagated to
dependent ontologies only at their explicit request.

The pull-based approach is better suited for less stringentconsistency require-
ments. Using this approach dependent ontologies may be temporarily inconsistent.

16 A. Maedche et al.

This makes recovering the consistency of dependent ontologies difficult, since the
information about the original state of the changed ontology is lost. For example,
when the concept SPORTSUTILITY is deleted, its position in the concept hierar-
chy is lost and is not available when resolving inconsistencies of the BICYCLE

concept in BO.
The push-based approach is suitable when strict dependent ontology consis-

tency is required, since the information about the originalstate of the changed
ontology is available for the evolution of the dependent ontology. For example,
the removal of the concept SPORTSUTILITY requires previous resolution of the
consistency of the BICYCLE concept in BO. We choose to take this approach since
in our target applications the permanent consistency of ontologies within one node
is of paramount importance.

By adopting the push-based approach, there are three different strategies for
choosing the moment when changes are propagated [28]. Usingthe periodic deliv-
ery, changes are propagated at regular intervals. Using ad-hoc delivery, changes are
not propagated according to a previously defined plan. Both of these strategies are
unacceptable for dependent ontology evolution, since theycause temporal incon-
sistencies of dependent ontologies. Therefore, we propagate changes immediately,
as they occur.

We incorporate the push-based approach by extending the change propagation
and change capturing phases of the single ontology evolution process as shown in
Figure 8.

Semantics

of change

Semantics

of change
RepresentationRepresentation ValidationValidationImplementationImplementation

PropagationPropagation

Ontology Propagation Order

Change Filtering

PropagationPropagation

Ontology Propagation Order

Change Filtering

CapturingCapturing

Change Ordering

CapturingCapturing

Change Ordering

Fig. 8 Dependent Ontology Evolution Process

The role of the Ontology Propagation Order component is to determine to
which dependent ontologies and in which order should the changes be propagated.
The role of the Change Filtering component is to determine which changes must
be propagated to which ontologies. The Change Ordering component determines
the order in which changes must be received by each ontology.

Ontology Propagation Order. When propagating changes between dependent
ontologies on a single node, the following three aspects relating to the ontology
propagation order must be considered:

– As changes occur in an ontology, they must be pushed to all ontologies that
either directly or indirectly (through other ontologies) include the changed on-
tology.

– In order to propagate a change to an ontology, the change mustpreviously
be processed by all ontologies included in the target ontology. Therefore, all
ontologies on a single node are topologically ordered5 according to their inclu-
sion relationship. The topological order organizes the dependent ontologies in
such a way that for each O1 and O2, if O1 includes O2 directly orindirectly,
then O2 occurs before O1 in the linear ordering.

5 The topological order of a directed graph is an ordering of graph’s nodes where each
node occurs after all of its predecessors.

Managing Multiple and Distributed Ontologies in the Semantic Web 17

– Since all ontologies at a node are topologically ordered, when changes are
propagated to dependent ontologies, only those ontologiesthat include the
changed ontology and that follow the changed ontology in thetopological or-
der must be visited. Note that if cyclical inclusions of OI-models were allowed,
the propagation order would contain cycles and would be extremely hard to
manage.

Returning to the example in Figure 4, changes in SO must be propagated to
BO, CO and ICO (since ICO includes SO indirectly though BO andCO). Further,
several topological orders may exist (SO, BO, CO, ICO or SO, CO, BO, ICO),
since some ontologies are independent of each other (e.g. BOand CO). The prop-
agation of changes must be performed in either one of these orders. Assuming the
first topological order (SO, BO, CO and ICO), a change in BO is propagated only
to ICO – although CO is after BO in the topological sort, it doesn’t include BO so
it doesn’t receive BO’s changes.

Change Filtering. As a change from the source ontology S is propagated to a
dependent ontology D, to maintain the consistency of D additional changes will
be generated as explained in subsection 3.1. These changes must also be propa-
gated further up the ontology inclusion topological order.However, only induced
changes should be forwarded. If original changes were propagated as well, then
ontologies that include D would receive the same change multiple times: directly
from S and indirectly from all ontologies on any inclusion path between D and S.
This would result in an invalid ontology evolution process,since the same change
cannot be processed twice. In order to prevent that, propagated changes are filtered.

Returning to the example in Figure 4, deletion of the SPORTSUTILITY concept
in SO is propagated to BO resulting in new changes: the removal of the BICYCLE

concept as the subconcept of the SPORTSUTILITY concept and the removal of
the BICYCLE concept itself (if the evolution strategy requires the removal of the
orphaned concepts). Only these two changes are propagated to ICO. Removal of
the concept SPORTSUTILITY is propagated to ICO from SO directly and must
not be propagated from BO. Notice that change filtering is notdone for the sake
of performance: if SPORTSUTILITY were propagated to ICO from BO as well,
then ICO would receive the same change twice, and the second change would fail,
since the concept has already been deleted.

Change Ordering. The order of processing changes in each ontology is im-
portant. Let’s assume that S is the ontology being changed, Iis some ontology
that directly includes S and D is some ontology that directlyincludes I. It is
important that D processes changes generated by I before changes generated by
S. Otherwise, if D receives changes from S before changes from I, S’s changes
will generate additional changes in D that include those that will later be re-
ceived from I. This in turn will also lead to processing the same change twice.
This approach is recursively applied when D and S are connected with paths of
length greater than two. Returning to the example in Figure 4, ICO should process
the removal of the SPORTSUTILITY concept after processing the removal of the
subconcept BICYCLE from BO. If this were not the case, processing removal of
SPORTSUTILITY in ICO would generate removal of the subconcept BICYCLE in
ICO, which will then be later received from BO.

18 A. Maedche et al.

The algorithm for evolution between dependent ontologies within one node is
presented in Algorithm 1.

Algorithm 1 Dependent Ontology Evolution Algorithm
EVOLVEONTOLOGIES(LC, o)
Require: LC - list of changes, o - ontology being changed
1: for all c ∈ LC do
2: PROCESSCHANGE(c, o)
3: end for

PROCESSCHANGE(c, o)
Require: c - change to process, o - ontology being changed
4: T S = topological sort of ontologies at the node
5: es = evolution strategy for o
6: /*Semantics of Change*/
7: while generated change gc by es for c in odo
8: processChange(gc, o)
9: end while

10: /*Change Filtering*/
11: if c is generated in othen
12: /*Ontology Propagation Order*/
13: for all ontology d after o inT S do
14: if ontology d includes othen
15: /*Change Ordering*/
16: processChange(c, d)
17: end if
18: end for
19: end if
20: /*Change Implementation*/
21: change ontology o according to c

It processes all changes that are requested by the user through the procedure
PROCESSCHANGE (cf. 1–3). This procedure resolves a change by generating the
additional changes needed to keep the consistency of the ontologyo for which the
method was called (cf. 7–9). Only changes generated ino are propagated (cf. 11)
to the all ontologies includingo according to the topological order of all ontologies
within the node (cf. 13–14). The recursive call (cf. 16) to the PROCESSCHANGE

procedure for the filtered change and topological order of dependent ontologies
guarantees that the receiving ontologies will process the changes from the directly
included ontologies before changes from the indirectly included ontologies. Fi-
nally, the change is applied to the ontologyo (cf. 21).

3.3 Distributed OI-Model Evolution

A distributed dependent ontology is an ontology that depends on an ontology re-
siding at a different node on the network. The physical distribution of ontologies
is very important, since it creates additional problems that are not encountered
when the ontologies are collocated. This additional complexity stems from the
fact that reusing distributed ontologies is achieved through replication (see section
2.3). Since the original ontology is updated autonomously and independently of
replicas, this in turn introduces an additional type of consistency.

Managing Multiple and Distributed Ontologies in the Semantic Web 19

Definition 11 (Replication Ontology Consistency)An ontology is replication con-
sistent if it is equivalent to its original and all its included ontologies (directly and
indirectly) are replication consistent.

To explain this notion, we assume a distributed system of replicated ontologies
as shown in Figure 5. Ontology SO at service provider B is replication inconsistent
if it hasn’t been updated according to changes in its original at the service provider
A. This implies the replication inconsistency of BO at provider B (since BO in-
cludes SO which is replication inconsistent). Finally, this implies the replication
inconsistency of ICO at the service provider C in the same way. To resolve repli-
cation inconsistencies between ontologies, first a way of synchronizing distributed
ontologies is needed. Table 2 discusses the pros and cons of two well-known ap-
proaches [4] for synchronizing distributed systems. Although seemingly similar,
there is significant difference to the approaches describedin subsection 3.2, as this
case deals with a distributed system.

Push Pull
Dependency Information centralized local
Complexity of management high medium
Type of consistency strict loose
Communication overhead high optimized

Table 2 Push vs. Pull Synchronization of Ontologies

Under push synchronization the changes of originals are propagated to ontolo-
gies including replicas immediately. We identify several drawbacks of using this
approach for realistic scenarios on the Web. First, to propagate changes, for each
ontology one must know which ontologies reuse it. Thus, an additional centralized
component managing inclusion dependencies between ontologies is needed. Sec-
ond, with the increase in the number of ontologies and their reuse, the number of
dependencies will grow dramatically. Managing them centrally will be too expen-
sive and impractical, since the problem of evolving dependencies emerges. Third,
forcing all ontologies to be “strictly” consistent at all times reduces the possibil-
ity to express diversities in a huge space such as the Web. Subjects on the Web
may not be ready to update their dependent ontologies immediately and may opt
to keep the older version deliberately. Finally, the changes are propagated one-
by-one, introducing significant communication overhead. Grouping changes and
sending them on demand will perform better.

Therefore, in the distributed environment we advocate using the pull synchro-
nization. Under this approach information about included ontologies is stored in
the dependent ontology, thus eliminating the need for central dependency manage-
ment. Original ontologies are checked periodically to detect changes and collect
deltas. During this process, it may be possible to analyze changes and to reject
them if they don’t match current needs. Thus, we propose a “loosely” consistent
system, since replication consistencies are enforced at request. Permitting tempo-
rary inconsistencies is a common method of increasing performance in distributed
systems [25].

Hence, we use the pull approach for synchronizing originalsand replicas,
whereas we use the push approach for maintaining consistency of ontologies within

20 A. Maedche et al.

one node. Thus, our solution employs a hybrid synchronization strategy combining
their favorable features while avoiding their disadvantages.

Regardless of the synchronization approach, the question how replication in-
consistencies are actually resolved is raised. We note thatreplication inconsisten-
cies cannot be resolved by simply replacing the replica withthe new version of the
original. This will cause inconsistencies of the dependentontologies, as discussed
in subsection 3.2. Instead, replication and dependency inconsistency must be re-
solved together in one step. This can be achieved by applyingdependent evolution
algorithms on deltas – changes that have been applied to the original since the last
synchronization of the replica. By using the pull synchronization strategy and by
applying the dependent evolution process from Figure 8 to deltas, we derive the
distributed ontology evolution process through three extensions.

CapturingCapturing

Identification of Changed Originals

Extraction of Deltas

Merging Deltas

Semantics

of change

Semantics

of change
RepresentationRepresentation ValidationValidationImplementationImplementationPropagationPropagation

Evolution
Log

Fig. 9 Distributed Ontology Evolution Process

This process, shown in Figure 9, is responsible for propagating changes from
originals to replicas. We extend the implementation phase by introducing the evo-
lution log for keeping information about performed changes. Further, we extend
the change capturing phase by three components. During identification of changed
originals we identify which original ontologies have changed. In extraction of
deltas we identify the changes performed at the original andnot at the replica
by reading the evolution log. Finally, during merging of deltas we generate a cu-
mulative list of changes that must be performed at the replica.

3.3.1 Logging Changes
In order to resolve replication inconsistencies, two knownways of identifying

deltas between originals and replicas are known [25]: (1) the full content of the
original ontology may be compared to the replica; (2) the history of changes to
the original may be kept explicit. The first solution requires extracting changes
from differences between the original and the replica, which is a complicated and
a time-consuming process. Further, to compare ontologies,the current version of
the original must be copied temporarily to the replica’s node. This may incur un-
necessary communication overhead. If a concept is added to alarge ontology, it is
better to transfer only the information about this addition, instead of transferring
the whole ontology.

To avoid these drawbacks, we follow for the second option. For each dis-
tributed ontology an instance of a special evolution log ontology is created, which
tracks the history of changes to the ontology. Apart from thedistributed evolution,
the evolution log is also used to provide the following capabilities:

– Users often want to undo the changes to the ontology. For eachelementary
change a sequence of inverse changes may be derived that completely undo
the original changes. Hence, by applying inverse changes inreverse order any
previous state of an ontology may be reconstructed [30].

Managing Multiple and Distributed Ontologies in the Semantic Web 21

– With each change additional meta-information may be associated. This infor-
mation can serve as a source for different knowledge discovery methods, e.g.
mining about change trends.

An evolution log ontology models what changes, why, when, bywhom and
how are performed in an ontology. Each change is representedas an instance of
one of the subconcepts of the concept CHANGE. The structure of the hierarchy
of change types reflects the underlying ontology model by including all possible
types of changes (e.g. ADDENTITY , REMOVEENTITY etc.). Additional informa-
tion, such as the date and time of change, as well as the identity of the change
initiator, may be associated through appropriate properties. Information enabling
decision-making support, such as cost, priority, textual description of the reason
for change etc. may also be included. Entities from the ontology being changed are
related to instances of the CHANGE concept throughHAS REFERENCEENTITY

property. As described previously, elementary changes maycause new changes
to be introduced by the evolution strategy in order to keep the ontology consis-
tent – such dependencies may be represented using theCAUSECHANGE prop-
erty. Groups of changes of one request are maintained in a linked list using the
HAS PREVIOUSCHANGE property.

3.3.2 Resolving Replication Inconsistencies
As shown in Figure 9, resolving replication inconsistencies is performed through

three additional components. Resolving replication inconsistencies is initiated by
specifying an original whose included replicas should be updated and is performed
as follows.

Identification of Changed Originals. This step first checks whether resolution
of replication inconsistency can be performed at all. If forsome directly included
replica the original has replication inconsistency, this step is aborted. Otherwise,
a list of directly included replicas that have pending replication inconsistency (but
whose original is replication consistent) is determined. Since the dependent ontol-
ogy consistency for the ontologies on the same node is required, this approach is
recursively applied on all ontologies that include the ontology whose replication
inconsistency is resolved.

Let’s assume that the service provider C from Figure 5 wants to resolve the
replication inconsistency of ICO. Its directly included replicas, namely BO and
CO, are examined. For each of them the replication consistency of the original
is checked. If BO at the service provider B has replication inconsistency (due to
changes from A in SO which haven’t been applied at B’s replicaof SO), then the
process is aborted. If BO at the service provider B is replication consistent, but BO
at service provider C is not (since BO at B has been changed), then BO is identified
for further analysis. The consistency of the BO’s original is required since ICO will
obtain changes from SO through BO’s and CO’s evolution log. In order to optimize
this step, the set of directly included ontologies to be taken into account may be
reduced by eliminating all directly included ontologies that are available through
some other paths. In the case that the ontology ICO directly includes the ontology
SO, the ontology SO would be eliminated from the further consideration, since
it can be obtained through the ontologies BO and CO. Replication consistency is
performed by determining the equivalence of the ontology with its original and

22 A. Maedche et al.

by recursively determining the replication consistency ofincluded ontologies. The
following information is needed to perform that:

– Each ontology must contain a physical URI of its original.
– Each ontology must contain a physical URI of its evolution log.
– Each ontology has a version number associated with it that isincremented

each time when an ontology is changed. Thus, checking the equivalence of the
replica and the original can be done by simple comparison of that number.

Extraction of Deltas. After determining directly included replicas to be updated,
the evolution log for these ontologies is accessed. The location of the evolution
log is specified within each ontology and is copied to replicas. For each log the
extracted deltas contain all changes that have been appliedto the original after the
last update of the replica, as determined by the version numbers.

Merging Deltas. Deltas extracted from evolution logs in the previous step are
merged into a unified list of changes. Since an ontology can beincluded in many
other ontologies, its changes will be included into evolution logs of all of these
ontologies. Hence, the merge process must eliminate duplicates. Also, changes
from different deltas caused by the same change from a commonincluded ontol-
ogy should be grouped together. For example, if the ontologySO is changed, the
evolution logs of the BO and CO will contain these changes, aswell as their own
extensions. Hence, when changes from BO’s and CO’s logs are merged in order to
update ICO, the changes to SO will be mentioned twice. Thus, only one change to
SO should be kept while discarding all others. However, changes in BO and CO
caused by a change in SO must be grouped together.

Algorithm 2 Distributed Ontology Evolution Algorithm

UPDATEDISTRIBUTEDONTOLOGY(o)
Require: o - ontology that have to be updated
1: /*Identification Of Changed Originals*/
2: inconsistentReplicas=identificationOfChangedOriginals(o)
3: for all inconsistentReplica in inconsistentReplicasdo
4: /*Extraction of Deltas*/
5: evolutionLog=findEvolutionLog(inconsistentReplica)
6: deltas=readEvolutionLog(evolutionLog)
7: /*Merging Deltas*/
8: changes=mergeDeltas(deltas)
9: end for

10: evolveOntologies(changes,o)
IDENTIFICATIONOFCHANGEDORIGINALS(o)
Require: o - ontology that have to be updated
11: replicas=findFirtsLevelReplicas(o)
12: for all replica in replicasdo
13: includedOntologies=findAllIncludedOIModels(replica)
14: for all includedOntology in includedOntologiesdo
15: if includedOntology is not replication consistentthen
16: generate exception(“Included models are not updated yet!”)
17: end if
18: end for
19: end for

Managing Multiple and Distributed Ontologies in the Semantic Web 23

The algorithm of our approach for evolution between distributed ontologies
is presented in Algorithm 2. It starts with the identification of changed originals
(cf. 2). This includes the checking whether the evolution can be performed at all
and returns all included replicas that are out-of-date (cf.11–19). For each of these
replicas, the evolution log is accessed in order to extractsdeltas (cf. 5–6). These
changes are merged with the changes from the other evolutionlogs (cf. 8). Finally,
this integrated list of deltas from all out-of-date replicas is processed using the
dependent ontology evolution process (cf. 10) as discussedin subsection 3.2.

4 Implementation

KAON is an open-source ontology management infrastructuretargeted for seman-
tics-driven business applications. Important focus of KAON is on integrating tra-
ditional technologies for ontology management and application with those used
typically in business applications. The KAON architectureis presented in Figure
10.

KAON API

User Interface

KAON Portal

Evolution

Strategy

OI-modeler

Change

Reversibility

Concurrency

Conflict Detection

Optimized

loading

RDF-based

Access
Engineering Server

Back-end

File-based

RDF sources

RDF Server

Relational Databases

Inclusion +

Dependent Evolution

Replication +

Distributed Evolution

Fig. 10 KAON Implementation Architecture

The focal point of the KAON architecture is its ontology API (KAON API),
consisting of a set of interfaces for access to ontology entities. For example, there
are Concept, Property and Instance interfaces, containingmethods for accessing
ontology concepts, properties and instances, respectively. The API incorporates
some other important elements required for ontology management:

– Optimized loading component is responsible for bulk-loading of ontology en-
tities. To improve performance, entities are cached at the client.

– Concurrency conflict detection is responsible for detecting and resolving con-
flicts resulting in concurrent updates of different users. For example, if one user
updates the ontology, then other active users must be notified of this update.
Alternatively, if a user attempts to update the ontology using stale information,
the conflict must be detected.

24 A. Maedche et al.

– Change reversibility is responsible for keeping track of the ontology changes
in an evolution log in order to be able to reverse them at user’s request. Further,
the evolution log is also used by the distributed ontology evolution.

– Evolution strategy is responsible for making sure that all changes applied to
the ontology leave the ontology in a consistent state and forpreventing illegal
changes. Also the evolution strategy allows the user to customize the evolution
process.

– Ontology inclusion facilities together with dependent evolution are responsible
for managing multiple ontologies within one node.

– Ontology replication facilities together with distributed evolution are respon-
sible for enabling reuse of distributed ontologies.

One implementation of the KAON API is based on the RDF API, andthus
allows access to RDF repositories. Although it offers capabilities for accessing re-
mote RDF repositories, such as RDF Server, it is primarily used for management
of local RDF ontologies stored as files. Engineering Server is an implementation of
the API directly based on relational databases and is targeted for cases where con-
current access is needed. The name Engineering Server stemsfrom the fact that the
database schema is optimized for ontology engineering, during which adding and
deleting concepts are frequent operations that must be donetransactionally. There-
fore, the engineering server uses a fixed number of tables, rather than a table per
concept. The server has been heavily optimized and tested onan ontology consist-
ing of 100,000 concepts, 66,000 properties and 1,000,000 instances, where loading
related information about 20 ontology entities takes under3 seconds, while delet-
ing a concept in the middle of the concept hierarchy takes under 5 seconds. This
informal test has been conducted on a usual single processordesktop computer
running Windows XP with 256MB of RAM.

To implement light-weight inferences, KAON relies on datalog to provide de-
sired semantics. Datalog queries are evaluated bottom-up.This evaluation strategy
manages information in sets, matching well with the way how queries are per-
formed in relational databases. In order to limit the amountof computation only
to facts relevant to the query, magic sets transformation technique [3] is applied.
Briefly, this technique simulates top-down binding propagation through bottom-up
computation.

On top of KAON API various applications have been realized. KAON Portal is
a tool for building ontology-based Web sites. Furthermore,within KAON we have
developed OI-modeler, an end-user application that realizes a graph-based user
interface for single and distributed OI-model creation andevolution [18]. Figure
11 shows the graph-based view of an OI-model.

OI-modeler supports ontology evolution at the user level (see the right side of
the screenshot). The figure shows a modeling session where the user attempted to
remove the concept SPORTSUTILITY . Before applying this change to the ontol-
ogy, the system computed the set of additional changes that must be applied. The
tree of dependent changes is presented to the user, thus allowing the user to com-
prehend the effects of the change before it is actually applied. Only when the user
agrees, the changes will be applied to the ontology. OI-modeler supports working
with multiple ontologies at the same time. In the upper right-hand corner of this
picture one can see a graph showing the inclusion dependencies among all open
OI-models. By selecting a particular OI-model, the user signals that new elements

Managing Multiple and Distributed Ontologies in the Semantic Web 25

Fig. 11 OI-Modeler

should be created within this OI-model. The evolution subsystem takes care of
maintaining of consistencies in all open models.

5 Related Work

In this section we discuss how our approach differs from other conceptual model-
ing approaches and tools available.

Classical Conceptual Modeling. Entity-relationship modeling is usually used
for database design. During implementation are ER models transformed into a
logical model – nowadays this is the relational model. Evolving and implement-
ing such models is more complex than if only one paradigm wereused, since the
conceptual and logical perspective must be kept in synchrony. In our approach we
isolate the mapping of the conceptual model to the logical one into a separate step,
thus making the logical model hidden from the ontology user.The users of the on-
tology should use ontology in an ontology-natural way, while enjoying the benefits
of relational database technology for information storageand management.

There have been proposals for using UML as an ontology modeling language
(e.g. [8]). However, the reader may note that there are significant, but subtle, dif-
ferences in standard object-oriented and ontology modeling. Classes of an object-
oriented model are assigned responsibilities, which are encapsulated as methods.
Often fictitious classes are introduced to encapsulate someresponsibility. On the
other hand, ontologies don’t contain methods, so responsibility analysis is not im-
portant. In our conceptual modeling paradigm, however, these statements do not

26 A. Maedche et al.

hold. Membership of an object in a class is often interpretedas statement that
some unary predicate is true for this object. If properties of an object change as
time passes, then the object should be reclassified. Membership of an object in dif-
ferent classes at the same time has the notion that some different aspects are true
for that object.

Ontology Modeling Languages. It has been argued by many (e.g. [27]) that
the definition of RDFS is very confusing, because RDFS modeling primitives are
used to define the RDFS language itself. Currently there is nospecification for
modularization of RDF models. The handling of lexical information is very messy
– languages can be attached to RDF model using XML attributes. Further, only 1:m
relationships between lexical entries with elements of theontology are possible.

The ideas of object-oriented modeling paradigm on ontologymodeling has re-
sulted in creation of so called frame-based knowledge modeling languages, and
F-logic [15] is one example. In F-logic, the knowledge is structured into frames
(analogous to classes) that have different value slots (analogous to attributes).
Frames may be instantiated, in which case slots are filled with values. F-logic in-
troduces other advanced modeling constructs, such as expressing meta-statements
about classes. Also it is possible to define Horn-logic rulesfor inferring new in-
formation which is not explicitly present. In comparison, our conceptual model
approach introduces the notion of light-weight inferences, which are intended to
be easily implementable with existing systems.

In [13] an ontology language SHOE has been proposed as basis for the Se-
mantic Web. It distinguishes itself by an HTML syntax and a mechanism for
embedding ontology fragments into HTML documents. Apart from that, the lan-
guage provides primitives for modeling classes and relationships of any arity, as
well as specifying Horn-type rules. Our approach distinguishes itself through the
paradigm of light-weight inferences instead of providing ageneral rule facility, as
well as the capabilities for meta-class modeling.

A large body of research has been devoted to a subclass of logic-based lan-
guages, called description logics (a good overview is givenin [5]). Although de-
scription logics are founded on a well-research theory, as mentioned in [2], they
have proven to be difficult to use due to the non-intuitive style of modeling. This is
due to the mismatch between with predominant object-oriented way of thinking.

For example, a common knowledge management problem is to associate in-
stances of the DOCUMENT concept with document’s topics. In object oriented
systems the only possible approach is to model all topics as members of the con-
cept TOPIC, and to introduce subtopic transitive relation between topic instances.
To an experienced object-oriented modeler, this solution will be intuitive. On the
other hand, in description logic systems, since topics are arranged in a hierarchy,
a common modeling solution is to arrange all topics in a concept hierarchy, to be
able to reuse the subsumption semantics of description logics6. However, if top-
ics are sets, what are the instances of this set? Most users think of topics as fixed
entities, and not as (empty and abstract) sets. Relating some document d1 to a par-
ticular topic t1 is therefore awkward – d1 can’t be related toa particular instance
of t1, but to “some” instance of t1, like this:∃has-topic.t1(d1).

6 Thanks to Ian Horrocks for this discussion.

Managing Multiple and Distributed Ontologies in the Semantic Web 27

Another important ontology modeling language is OIL [12]. This language
combines the intuitive notions of frames, clear semantics of description logics and
the serialization syntax of RDF embedded within a layered architecture. Core OIL
defines constructs that handles most of RDFS (without reification). Standard OIL
defines constructs based on description logics. However, the syntax of the lan-
guage hides the description logics background and presentsa language with a more
frame-based “feel”. Instance OIL defines constructs for creation of instances. De-
spite its apparent frame-based flavor, OIL is in fact a description logic system, thus
our comments about description logics apply to OIL as well. Although it supports
ontology modularization, it doesn’t have a consistent strategy for management of
lexical information. Similar comments can be made about other ontology mod-
eling languages founded in description logics, such as DAML+OIL [7] or OWL
[9].

Managing Multiple Ontologies. Reusing ontologies in the Semantic Web con-
text is hindered by the fact that the primary Semantic Web language – RDF(S) –
doesn’t provide means for including elements from other ontologies. Each RDF
fragment can freely refer to any resource defined anywhere onthe Web. This
presents serious problems to tool implementors, since it isnot possible to reason
over the entire Web. Recognizing this shortcomings, many ontology languages,
including but not limiting to OIL [12], DAML+OIL [7] and OWL [9], provide
means for declarative inclusion of other models.

However, most tools simply use these declarations for reading several files at
the beginning and then create an integrated model. OilEd – a tool for editing OIL
and DAML+OIL ontologies developed as the University of Manchester – does ex-
actly that: importing an ontology actually inserts a copy ofthe original ontology
into the current ontology. As mentioned before in this paper, this has drawbacks re-
lated to ontology evolution. On the other hand, tools such asOntolingua [11], offer
support even for cyclical ontology inclusion, based on the formal definitions given
in [10]. However, to the best of author’s knowledge, these tools don’t provide evo-
lution of included ontologies. Protege-2000 [22] – a widelyused tool for ontology
editing developed at Stanford – provides the best support for ontology inclusion
so far. In Protege it is possible to reuse definitions from a project by including
an entire project. However, the implemented inclusion mechanism is too crude, as
it doesn’t allow extension of included entities. For example, it is not possible to
re-classify or add a slot to a class in the including model. Further, only the outer-
most model may be changed, thus making the evolution of dependent ontologies
impossible.

Evolution. In the last decade there has been very active research in the area
of ontology engineering. The majority of researches in thisarea are focused on
construction issues. However, coping with the changes and providing maintenance
facilities require a different approach. We cannot say thatthere exist commonly
agreed methodologies and guidelines for ontology evolution. Thus, there are very
few approaches investigating the problems of changing ontologies.

In [14] it is pointed out that ontologies on the Web will need to evolve. Au-
thors provide a new formal definition of ontologies for the use in dynamic, dis-
tributed environments. A web-based knowledge representation language SHOE is

28 A. Maedche et al.

presented. While supporting multiple version of ontologies and ontology reuse, the
change propagation between distributed and dependent ontologies is not treated.

In contrast to the ontology evolution that allows access to all data only through
the newest ontology, the ontology versioning allows accessto data through dif-
ferent versions of the ontology. Thus, the ontology evolution can be treated as a
part of the ontology versioning mechanism that is analyzed in [16]. Authors de-
scribe a system offering support for ontology versioning. In contrast to that ap-
proach, which detects changes by comparing ontologies, we track information
about all performed changes, since the change detection is acomplicated and a
time-consuming process. Further, it is impossible to determine the cause and the
consequences of a change, which is a crucial requirement forthe consistency of
the dependent ontologies.

Oliver et al. [24] discuss the kinds of changes that occur in medical ontolo-
gies and propose the CONCORDIA concept model to cope with these changes.
The main aspects of CONCORDIA are that all concepts have a permanent unique
identifier. Concepts are given a retired status instead of being physically deleted.
Moreover, special links are maintained to track the retiredparents and children
of each concept. However, this approach is insufficient for managing a change on
the Semantic Web, especially since there are no possibilities to control the whole
process.

In [19] the author presents guiding principles for buildingconsistent and prin-
cipled ontologies in order to alleviate their creation, usage and maintenance in
distributed environments. Authors analyze the requirements for the tool environ-
ments that enforces consistency. We have extended these operational guidelines by
taking into account the usage of an ontology.

Other research communities also have influenced our work. The problem of
schema evolution and schema versioning support has been extensively studied in
relational and database papers ([1], [29]). In [23] authorsdiscuss the differences
that stem from different knowledge models and different usage paradigms.

Moreover, research in ontology evolution can also benefit from the many years
of research in evolution of knowledge-based systems [26], [20]. The script-based
knowledge evolution [31] that identifies typical sequencesof changes to knowl-
edge base and represents them in a form of scripts, is similarto our approach.
In contrast to the knowledge-scripts that allow the tool to understand the conse-
quences of each change, we go a step further by allowing the user to control how
to complete the overall modification and by suggesting the changes that could im-
prove the ontology.

The distributed ontology evolution problem is related to the research in dis-
tributed systems [25]. In [4] the authors develop techniques that combine push and
pull synchronization in an intelligent and adaptive mannerwhile offering good re-
siliency and scalability. We extend this approach by takinginto account not only
the coherency maintenance of the cached data but the maintenance of the depen-
dent and replication consistency as well.

6 Conclusion

This article presented our integrated framework for managing multiple and dis-
tributed ontologies. We presented a conceptual modeling approach along with its

Managing Multiple and Distributed Ontologies in the Semantic Web 29

mathematical definition and formal semantics. We believe that such an approach is
suitable as a basis for a scalable implementation, since it lends itself to implemen-
tation using existing database technologies by adding simple deductive capabili-
ties. Our conceptual models can be reused through inclusionmechanisms. Further,
reuse in a distributed setting is supported through replication. Another important
part of our work is evolving ontologies. We isolated three separate cases: evolv-
ing single ontologies, evolving ontologies that have dependencies and evolving
ontologies in a distributed setting.

For our future work we plan to focus on the following problems. First, we
shall investigate how to better integrate and enrich our approach with similar ap-
proaches, notably description logics, but without sacrificing the performance. Sec-
ond, the development of ontology mapping [17] and integration mechanisms with
evolution support will be in focus of our future research. Finally, we plan to extend
our approach for ontology evolution to not only to compute the necessary changes
realizing user’s requirements, but to also realize secondary goals, such as minimiz-
ing the total number of changes in the ontology. In such way wehope to provide
an easier way for the user to specify and execute composite changes.

References

1. J. Banerjee, W. Kim, H.J. Kim, and H. Korth. Semantics and implementation of schema
evolution in object-oriented databases. InProceedings of the Annual Conference on
Management of Data, ACM SIGMOD, 1997.

2. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not Enough. InSWWS-1,
Semantic Web working symposium, Stanford (CA), July 29th-August 1st 2001.

3. C. Beeri and R. Ramakrishnan. On the power of magic. InProc. ACM
SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems, pages 269–
284, 1987.

4. M. Bhide, P. Deoasee, A. Katkar, A. Panchbudhe, and K. Ramamritham. Adaptive
Push-Pull: Disseminating Dynamic Web Data.IEEE Transaction on Computers, June
2002.

5. A. Borgida. Description logics are not just for the FLIGHTLESS-BIRDS: A new look
at the utility and foundations of description logics. Technical Report DCS-TR-295,
Department of Computer Science, Rutgers University, 1992.

6. W. Chen, M. Kifer, and D. S. Warren. HiLog: A Foundation forHigher-Order Logic
Programming. InJournal of Logic Programming, volume 15, pages 187–230, 1993.

7. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. DAML+OIL (March 2001) ReferenceDescription,
http://www.w3.org/TR/daml+oil-reference.

8. S. Cranefield and M. Purvis. UML as an ontology modelling language. InProc. of
the Workshop on Intelligent Information Integration, 16thInt’l Joint Conf. on Artificial
Intelligence (IJCAI-99), 1999.

9. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language 1.0 Reference,
W3C Working Draft 29 July 2002, http://www.w3.org/TR/owl-ref/.

10. A. Farquhar, R. Fikes, and J. Rice. Tools for assembling modular ontologies in On-
tolingua.

11. A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: Tools for collaborative
ontology construction. Technical report, Stanford KSL 96-26, September 1996.

30 A. Maedche et al.

12. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL
in a Nutshell. InProc. 12th Int’l Conf. on Knowledge Engineering and Knowledge
Management (EKAW-2000), Juan-les-Pins, France, October 2000.

13. J. Heflin. J. Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, College Park, 2001.

14. J. Heflin and J. A. Hendler. Dynamic Ontologies on the Web.In Proc. 7th Nat’l Conf.
on Artificial Intelligence AAAI-2000, pages 443–449. AAAI/MIT Press, 2000.

15. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages.Journal of the ACM, 42:741–843, July 1995.

16. M. Klein, A. Kiryakov, D. Ognyanov, and D Fensel. Ontology Versioning and Change
Detection on the Web. InProc. 13th European Conf. on Knowledge Engineering and
Knowledge Management (EKAW-2002), Siguenza, Spain, October 2002.

17. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA — An Ontology MApping
FRAmework in the Context of the Semantic Web. InWorkshop on Ontology Transfor-
mation at ECAI - 2002, Lyon, France, July 2002.

18. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Ontologies for Enterprise
Knowledge Management.To appear in: IEEE Intelligent Systems, 2003.

19. D. McGuinness. Conceptual Modeling for Distributed Ontology Environments. In
Proceedings of The Eighth International Conference on Conceptual Structures Logical,
Linguistic, and Computational Issues (ICCS 2000), Darmstadt, Germany, 2000.

20. T. Menzis. Knowledge Maintenance: The state of the Art.The Knowledge Engineering
Review, page 10(2), 1998.

21. B. Meyer.Object-oriented Software Construction (2nd Edition). Prentice Hall, 1997.
22. N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of protege-2000:

Combining interoperability and flexibility. InProc. 12th Int’l Conf. on Knowledge En-
gineering and Knowledge Management (EKAW-2000), Juan-les-Pins, France, October
2000.

23. N. F. Noy and M. Klein. Ontology Evolution: Not the Same asSchema Evolution.
Technical Report SMI-2002-0926, Stanford, 2002.

24. D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Shortliffe.Representation of change
in controlled medical terminologies.AI in Medicine, pages 53–8076, 1999.

25. M.T. Ozsu and P. Valduriez.Principles of Distributed Database Systems. Prentice Hall
International, Inc., 1999.

26. M. Wrner P. Breche. How to remove a class in an ODBS. InProceedings of 2nd
International Conference on Application Database, Santa Clara, California, 1995.

27. J. Pan and I. Horrocks. Metamodeling architecture of webontology languages. In
Proceedings of the Semantic Web Working Symposium, pages 131–149, July 2001.

28. G. Pierre and M. van Steen. Dynamicaly Selecting OptimalDistribution Strategies on
Web Documents.IEEE Transaction on Computers, June 2002.

29. J.F. Roddick. A Survey of Schema Versioning Issues for Database Systems.Informa-
tion and Software Technology, pages 37(7):383–393, 1996.

30. L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven Ontology Evo-
lution Management. InProc. 13th European Conf. on Knowledge Engineering and
Knowledge Management (EKAW-2002), Siguenza, Spain, October 2002.

31. M. Tallis and Y. Gil. Designing scripts to guide users in modifying knowledge-based
systems. InAAAI/IAAI, pages 242–249, 1999.

32. C. A. Welty and D. A. Ferrucci. What’s in an instance? Technical report, RPI Computer
Science, 1994.

