Practical Aspects of Query Rewriting for OWL 2

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, Oxford, England
{hector. perez-urbina, ian.horrocks,boris .motik}@comlab.ox.ac.uk

Abstract. Query answering for the QL profile of OWL 2 and a substan-
tial fragment of the EL profile can be implemented via query rewriting:
a query posed over an ontology is first rewritten using the conceptual
part of the ontology and then the evaluation of the rewritten query is
delegated to a (deductive) database where the instance data resides. In
our previous work we presented a rewriting algorithm for OWL QL that
can also deal with most of the QL profile. In order to test the likely prac-
ticality of our rewriting algorithm, we have implemented it in a query
rewriting system that we call REQUIEM. A recent empirical evaluation
of REQUIEM, in which we considered OWL 2 QL ontologies, indicates
that it produces significantly smaller rewritings than existing approaches
in most cases. However, our results suggest that typical queries over re-
alistic ontologies can still lead to very large rewritings (e.g., containing
many thousands of queries). In this paper, we describe query rewriting,
briefly present the results of our evaluation, and discuss various optimiza-
tion techniques aimed at reducing the size of the rewritings. Moreover, we
present some preliminary results from an ongoing empirical evaluation

of REQUIEM in which we consider OWL 2 EL ontologies.

1 Introduction

There are several advantages to the use of an ontology with a data repository. On
the one hand, the ontology can be used as a conceptual schema in order to provide
an intuitive and unified view over one or more repositories, allowing queries to
be independent of the structure and location of the data; on the other hand, data
repositories typically provide persistence and efficient query answering over large
volumes of (instance) data. The use of ontologies as conceptual schemas has been
extensively studied in the context of, e.g., information integration [2]; the use of
data repositories to store instance data is becoming increasingly important due
to the widespread use of ontologies, e.g., in the semantic Web, and the scalability
requirements of many applications.

In OWL 2—a new version of the OWL ontology language that recently be-
came a W3C candidate recommendation—scalability requirements are addressed
by profiles: subsets of the language that enjoy desirable computational proper-
ties. The OWL 2 QL profile is designed such that queries against an OWL 2 QL
ontology and a set of instance data stored in a data repository can be answered
by using the ontology to rewrite queries such that their evaluation can be dele-
gated to the data repository. We will focus on the case where the data is stored

2 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

in a relational database and accessed using SQL queries, but the same tech-
nique could be applied to data stored in a triple store and accessed via SPARQL
queries.

OWL 2 QL is based on DL-Liteg, one of a family of description logics de-
veloped by Calvanese et al. [1]. The DL-Liteg rewriting algorithm of Calvanese
et al., which we will refer to as CGLLR, transforms a conjunctive query @ and
a DL-Liter ontology O into a union of conjunctive queries Qo such that the
answers to @ and any set of instance data A can be obtained by evaluating Qo
over A only. CGLLR is used in reasoners such as QuOnto! and Owlgres?. Unfor-
tunately, as shown by Calvanese et al., the size of Q¢ is worst-case exponential
w.r.t. the size of @ and O [1]. This means that, on the one hand, Qo may be
costly to compute, and, on the other hand, its evaluation by current database
systems may be costly or even unfeasible. Trying to produce smaller rewritings
is, therefore, of critical importance to the practical application of query rewriting
in general, and of OWL 2 QL in particular.

Motivated by the prospect of applying deductive database techniques to im-
prove the scalability of reasoners, in our previous work [7] we considered the
problem of query rewriting for various logics of the DL-Lite and ££ families,
the latter being the basis for the OWL 2 EL profile. Our algorithm, called
RQR (Resolution-based Query Rewriting), takes as input a conjunctive query Q
and an ontology O, and uses a resolution-based technique to produce a rewrit-
ten query Qo. Although Qo will, in general, be a (possibly recursive) datalog
query, and thus necessitate the use of a deductive database system, the algo-
rithm exhibits “pay-as-you-go” behavior for various logics. In particular, if O is
a DL-Liter ontology, then Qo is a union of conjunctive queries; the algorithm
can therefore be seen as a generalization and extension of CGLLR.

In order to test the likely practicality of query rewriting, and the perfor-
mance of the different rewriting techniques, we implemented RQR in a query
rewriting system that we call REQUIEM? (REsolution-based QUery rewrlting
for Expressive Models). We recently conducted an empirical evaluation [6] in
which we compared REQUIEM to an implementation of CGLLR. The compar-
ison uses a benchmark suite containing realistic DL-Liter ontologies and test
queries as well as some artificial ontologies and queries designed to highlight the
differences between the two algorithms. REQUIEM often produced significantly
smaller rewritings than its counterpart; however, our results show that, even
when using REQUIEM, typical queries over realistic ontologies can lead to very
large rewritings (e.g., containing many thousands of queries).

Both algorithms would clearly be amenable to optimizations aimed at re-
ducing the size of the rewritings. One obvious optimization would be to use
query subsumption checks to eliminate redundant conjunctive queries from the
rewriting—we discuss this optimization in more detail in Section 3. Our empiri-
cal evaluation showed that the query subsumption check can significantly reduce

! http://www.dis.uniromal.it/~quonto/
2 http://pellet.owldl.com/owlgres/
3 http://www.comlab.ox.ac.uk/projects/requiem/

Practical Aspects of Query Rewriting for OWL 2 3

the size of the rewritings, and that the optimized versions of RQR and CGLLR
produce very similar rewritings. However, the resulting rewritings can still be
very large (e.g., containing many hundreds of queries). In order to address this
problem we describe, in Section 3, an optimization technique that exploits the
relation between the ontology and the database where the instance data resides
in order to further reduce the size of the rewritings.

An advantage of using RQR as opposed to CGLLR is that, in addition to
OWL 2 QL, RQR can handle most of the EL profile. In Section 4 we go beyond
OWL 2 QL and discuss the consequences of using RQR to rewrite queries w.r.t.
OWL 2 EL ontologies. We describe an optimization that can be used to reduce
the size of the datalog queries obtained by RQR. Moreover, we characterize a
case in which such datalog queries can always be transformed into unions of
conjunctive queries. Furthermore, we present preliminary results of an ongoing
empirical evaluation of REQUIEM in which we consider realistic queries posed
over real OWL 2 EL ontologies and show that, in many cases, these can be
transformed into unions of conjunctive queries.

2 Ontology-based Data Access via Query Rewriting

We now describe how to answer queries posed over an OWL 2 QL ontology
and a database using query rewriting. We illustrate the process by means of an
example.

Suppose we have a relational database DB containing a table Professor
with attributes name, department, and telephone; and a table Student with
attributes name, major, address, and tutor. We can use a suitable ontology as
a conceptual schema that describes the structure of the data. For example, we
might use the following OWL 2 QL ontology O to describe DB:*

Professor C Jteaches (1)
Jteaches C Teacher (2)
JhasTutor™ C Professor (3)

Axiom (1) states that professors teach at least someone, axiom (2) states that
the domain of the property teaches is Teacher, and axiom (3) states that the
range of the property hasTutor is Professor.

Given suitable mappings from the classes and properties in the ontology to
data in the database, queries posed in terms of the ontology can be answered
using the database. The advantages of this are that, on the one hand, queries
can be posed in terms of the conceptual structure of the data rather than its
arrangement in the database, while on the other hand, the database provides
data persistence and scalability.

Mappings from the ontology to the database are typically defined using ex-
pressions of the form D — @p, where D is a class or property occurring in

4 We use the description logic syntax for the sake of compactness.

4 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

the ontology and @Qp is an SQL query over the database; @Qp could, however,
equally well be a SPARQL query that accesses data in an RDF triple store. In
our example, the mapping M between O and DB is defined as follows:

Professor — SELECT Name FROM Professor
hasTutor — SELECT Name, Tutor FROM Student

Queries posed over the ontology are answered in two steps: first, the ontology
is used to rewrite the query into a union of conjunctive queries—so-called rewrit-
ing—and second, the mappings are used to transform the rewriting into an SQL
query that is then evaluated using the RDBMS where the instance data resides.
Intuitively, the rewriting is an expanded query that incorporates the knowledge
encoded in the ontology that is relevant for answering the original query.

For example, consider the query @ = Q(x) < Teacher(x) posed over O. A
piece of relevant information encoded in O for answering @ is, for instance, that
all professors are teachers, and the rewriting Qo of @ w.r.t. O should reflect this
fact; in particular, Q» should retrieve instances of Professor as well as instances
of Teacher.

As mentioned in the introduction, there are currently two main algorithms
that can be used to compute the rewriting of a query w.r.t. an OWL 2 QL on-
tology: CGLLR and RQR. Even though the algorithms compute the rewritings
quite differently—CGLLR uses the axioms of the ontology as ‘rewriting’ rules,
whereas RQR employs a resolution-based calculus—both algorithms are guar-
anteed to produce unions of conjunctive queries when rewriting queries w.r.t.
OWL 2 QL ontologies. An advantage of using RQR is that in addition to OWL
2 QL, it can handle various more expressive language fragments, including most
of the fragment captured by the OWL 2 EL profile. For ontologies expressed
in such fragments, however, the rewriting might be a datalog query, and thus
require the use of a deductive database system for its evaluation.

Given the inputs @ and O as above, either algorithm will produce the fol-
lowing rewriting Qo:

(z) « Teacher(x) (4)
() < teaches(z,y) (5)
(z) < Professor(z) (6)
() (7)

x) « hasTutor(y, x)

OO0

Once Qo has been computed, we can proceed to evaluate it over the database
DB. In order to do so, we need to transform the rewriting into an SQL query.
Transforming Qo into an SQL query sql(Qo) basically amounts to using the
mappings M to replace each class or property D occurring in a query contained
in Qo with the corresponding SQL query @p, and forming the union of the
resulting queries. Note that in this case, M does not contain a mapping for
every class and property of O. The answer to any query containing an atom
for which there is no mapping will necessarily be empty, and we can therefore

Practical Aspects of Query Rewriting for OWL 2 5

discard such queries. In this case, queries (4) and (5) can be discarded. It is easy
to see that, as a result,

sql(Qo) = SELECT Name FROM Professor UNION
SELECT Tutor FROM Student.

Finally, the evaluation of sql(Qo) is delegated to the RDBMS where DB resides.

3 Applying Query Rewriting in Practice

Calvanese et al. showed that the size of the rewriting Qo of a query @ w.r.t. an
OWL 2 QL ontology O is worst-case exponential w.r.t. the size of @ and O [1].
Consider, for instance, the ontology

O={R1CRy,R;C R3,...,R,_1C R}

and the query Q = Q(xg) — Rp(z0,21) A ... A R(Zyp—1, %) posed over O. The
rewriting Qo of Q w.r.t. © will contain n™~! queries.

As the example shows, queries containing classes or properties with many
subsumers can lead to large rewritings. This means that, on the one hand, Qo
may be costly to compute, and, on the other hand, the evaluation of sql(Qo) by
existing database systems may be costly or even unfeasible. Trying to produce
small rewritings is, therefore, of critical importance to the practical application
of query rewriting in general, and of OWL 2 QL in particular.

One obvious optimization that can help to reduce the size of the rewrit-
ings is based on the notion of query subsumption. We say that a query @,
subsumes another query Qs if there is a substitution o such that Q10 C Q5.
For instance, given o = {z — z,w +— y}, the query Q(z) « isTutorOf(z, w)
subsumes Q(z) < isTutorOf(z, y) A Undergraduate(y). The query subsumption
optimization consists in checking subsumption between pairs of queries in Qo
and eliminating every clause that is subsumed by another.

In order to test the likely practicality of query rewriting, we implemented
RQR in a system that we call REQUIEM. As mentioned in the introduction,
we recently conducted an empirical evaluation [6] of REQUIEM. We also imple-
mented a version of RQR that reduces the size of the rewritings using the query
subsumption check described previously; we call this implementation REQUIEM-
SC.

Our test set mainly consisted of DL-Litep ontologies that were developed
in the context of real applications, along with test queries that are based on
canonical examples of queries used in the corresponding application.

V is an ontology capturing information about European history, and devel-
oped in the EU-funded VICODI project.’ S is an ontology capturing information
about European Union financial institutions, and developed for ontology-based

5 http://www.vicodi.org/

6 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Fig. 1. OWL 2 QL Evaluation Results

Queries Symbols Time
Q|@] R RsSC R RSC R RSC
1 15 15 454 454 16 31
2 10 10 782 762 16 47
W3 7272 6525 5525 21 62
4 185 185 11811 11,911 62 141
5 30320 3781 3781 21 63
1 & & 158 158 15 16
2 160 2 11422 154 78 108
S03 480 41 56536 488 438 1,062
4 QB0 40 111,092 463 828 2171
5] 2,880 8| 466 886 1,320| 9829 34681
1 2 2 118 118 16 3
2 148 1 10,378 &3 47 93
Uiz 224 40 29,376 516 94 203
411,628 21 113,270 124 797 4,093
51 2,960 10| 279 266 932 2234 15262
1 402 27 21933 901 94 265
2 103 50 7122 3783 47 78
Al 2 104 104 10,108 10,108 78 93
4 492 224 33454 16,068 156 422
5 624 624 70320 70320 328 1,031

data access [8]. Uis a DL-Liter version of LUBM®—a benchmark ontology devel-
oped at Lehigh University for testing the performance of ontology management
and reasoning systems—that describes the organizational structure of universi-
ties. A is an ontology capturing information about abilities, disabilities, and de-
vices, and developed to allow ontology-based data access for the South African
National Accessibility Portal [5]. The number of classes (C), properties (P) and
axioms (A) are as follows:

|V s U &
C[19418 34 74
P|10 12 26 5
A|222 51 127 137

The results of our evaluation indicated that, while REQUIEM produced sig-
nificantly smaller rewritings than the CGLLR algorithm in most cases, with
the query subsumption optimisation the two techniques produced almost iden-
tical rewritings. Unfortunately, our evaluation showed that, even when using
REQUIEM-SC, the rewritings can be extremely large.

Figure 1 shows the results of our evaluation for REQUIEM and REQUIEM-
SC. For each ontology and query, the column ‘Queries’ shows the number of
conjunctive queries in the rewriting, the column ‘Symbols’ shows the number of
symbols needed to represent the rewriting in datalog notation, and the column
‘Time’ shows the number of milliseconds taken to compute the rewritings.

As can be seen, our results suggest that typical queries over realistic ontolo-
gies can lead to REQUIEM producing very large rewritings. In the fifth queries
over S and U, for instance, REQUIEM produced nearly 3,000 queries. If we turn

S http://swat.cse.lehigh.edu/projects/lubm/

Practical Aspects of Query Rewriting for OWL 2 7

our attention to REQUIEM-SC, even though query subsumption significantly
reduced the size of some rewritings, REQUIEM-SC still produced rewritings
containing hundreds of queries (e.g., last three queries over A).

Once the rewriting has been computed and reduced using query subsumption,
we may still be able to further reduce it by exploiting the information contained
in the mappings. As explained in Section 2, the answer to any query in Qo
containing an atom for which there is no mapping will necessarily be empty;
therefore, such queries can be safely discarded before computing sql(Qo). We
believe that, in practice, it is likely that the set of mappings does not contain a
mapping for every class and property occurring in the ontology. In these cases,
we expect that pruning Qo w.r.t. the mappings would significantly reduce the
size of sql(Qo), hopefully producing an SQL query of manageable size.

4 Going Beyond OWL 2 QL

As mentioned in Section 2, an advantage of using RQR is that it can handle
fragments of OWL 2 that go beyond the QL profile. In fact, the algorithm
supports ontologies expressed in ELHZO —a description logic that captures
most of the EL profile of OWL 2.

Unlike CGLLR, RQR can handle axioms containing conjunction on the left-
hand side, e.g.,

Student M FhasSupervisor = GraduateStudent;
qualified existential restrictions on the left-hand side, e.g.,
Jstudies.Course C Student;
and a limited use of nominals—classes with only one instance—e.g.,
OxfordStudent C JstudiesAt.{OxfordUniversity}.

When dealing with OWL 2 EL ontologies, however, RQR is no longer guaran-
teed to produce a union of conjunctive queries; instead, the rewriting Q7 might
be a datalog query—that is, a set of Horn clauses [3]. In order to understand
why this is so, consider the following example. Suppose we want to rewrite the
query @ = Q(z) < Student(z) w.r.t. an OWL 2 EL ontology 7 containing the
following axiom:

FhasClassmate.Student C Student (8)

Axiom (8) states that anybody who has a classmate who is a student is also a
student.
On input @ and 7, RQR will produce the following rewriting Q7:

Q(x) « Student(x) (9)
Student(z) « hasClassmate(z, y) A Student(y) (10)

8 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Intuitively, the reason RQR produced a datalog query is that clause (10)
is recursive; therefore, Q7 cannot be transformed into a union of conjunctive
queries.

There is a straightforward a posteriori optimization that can be applied to
reduce the size of the datalog query Q7. Such an optimization is based on the
notion of the so-called dependency graph. (Note that the optimizations discussed
in Section 3 can also be applied to reduce the size of Q7.)

Given a set of clauses LP, the dependency graph G(LP) of LP is constructed
as follows: every predicate P occurring in LP is a node in G(LP) and there is
an edge from a predicate P; to a predicate P, if there is a clause C' € LP such
that P; occurs in the head of C' and P, occurs in the body of C or viceversa.
Intuitively, we can use the dependency graph G(LP) of a given set of clauses LP
to identify the set of clauses LP’ C LP that are “relevant” in order to compute
the extension of a given predicate P. For example, consider the following set of
clauses LP:

Teacher(z) «— Professor(z) (11)
Student(z) < hasTutor(y, =) (12)

Clearly, since neither Student, nor hasTutor are reachable from the predicate
Teacher in G(LP), we can immediately deduce that clause (12) is not relevant
for the computation of the extension of Teacher.

By computing the set of predicates that are reachable from the head predicate
of the query @ in @7, one can immediately identify the set of clauses that are
“relevant” for @) and discard the set of clauses that correspond to the unreachable
parts of the graph.

4.1 Using Databases for OWL EL

As shown in the last section, when rewriting queries w.r.t. OWL 2 EL ontologies,
RQR might produce a cyclic or recursive datalog query that cannot be trans-
formed into a union of conjunctive queries. However, examination of a large
corpus of ontologies [4] suggests that in many realistic cases ontologies do not
contain (or imply) cyclic axiom such as (8). In these cases, the datalog query
obtained by RQR can still be transformed into a union of conjunctive queries.
Suppose, for example, that RQR computed the following rewriting Q7

Q(z) « Teacher(x) (13)
Teacher(z) < teaches(x,y) A Student(y) (14)

It is not difficult to see that by unfolding (14) into (13), such a datalog program
can be transformed into the following union of conjunctive queries:

Q(x) < Teacher(x)
Q(z) < teaches(z,y) A Student(y)

Practical Aspects of Query Rewriting for OWL 2 9

Fig.2. OWL 2 EL Evaluation Results

o] Q| Clauses | Symbols Time
1 35 1,235 133,141
2 171 4,975 3,110
NCI 3 220 14,508 213,706
4 9,109 936485 253,659
5 176 12171] 334,522
1 24 3,532 78
2 11 1,005 328
u 3 37 4,577 188
4 36 4,800 1,922
5 1 158 188

‘We have conducted a preliminary empirical evaluation of REQUIEM in which
we consider real acyclic OWL 2 EL ontologies—that is, ontologies that do not
contain (or imply) axioms of the form of (8). Our test data includes the well-
known ontology NCI” and U—an £LHZ version of the university bechmark on-
tology® developed at Lehigh University. The number of classes (C), properties
(P) and axioms (A) are as follows:

A[395,124 171

Figure 2 shows preliminary results of our evaluation using REQUIEM-SC
enhanced with the dependency graph optimization and the greedy unfolding
discussed in this section. As before, for each ontology and query, the column
‘Queries’ shows the number of conjunctive queries in the rewriting, the column
‘Symbols’ shows the number of symbols needed to represent the rewriting in
datalog notation, and the column ‘Time’ shows the number of milliseconds taken
to compute the rewritings.

In all cases, the resulting rewriting was a union of conjunctive queries. As
can be seen, the running time was significant in the case of NCI, which is mostly
due to its size. More importantly, and similarly to our evaluation using OWL 2
QL ontologies, REQUIEM-SC produced relatively large rewritings in some cases
(e.g., fourth query over NCI).

The preliminary results presented in this section are encouraging since they
suggest that it is possible to use an off-the-shelf RDBMS for query answering
over OWL 2 EL ontologies in many realistic scenarios. However, the average
size of the rewritings obtained suggests that a further optimization based on the
mappings as described in Section 3 might be critical in order to successfully use
existing database technology in this setting.

" http://www.mindswap.org/2003/CancerOntology/
8 http://swat.cse.lehigh.edu/projects/lubm/

10 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

5 Future Work

We plan to extend our empirical evaluation of REQUIEM w.r.t. OWL EL to
include cyclic ontologies, and to analyze the type of datalog queries that arise
in such cases in order to determine the most promising strategy for further
optimization and evaluation.

Additionally, we plan to implement an OWL 2 QL ontology-based data access
system using REQUIEM enhanced with various optimizations. Based on our
results, we expect the system to be useful for answering may realistic queries even
over OWL 2 EL ontologies. We expect such a system to perform well both w.r.t.
the size of the rewritings and the time needed to compute them. The practicality
of the system is, however, still open, as our results suggest that there are cases
where the rewritings may be too large to evaluate. In such cases, we believe
that a further optimization that uses the mappings to prune irrelevant queries
(as described in Section 3) might produce rewritings of manageable proportions.
We plan to test our system with actual data in order to discover if this is indeed
the case. Finally, we plan to extend the system to support all of OWL 2 QL,
which mainly involves adding support for datatypes.

References

1. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. of Automated Reasoning, 2007.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
Logic Framework for Information Integration. In Principles of Knowledge Repre-
sentation and Reasoning, pages 2—-13, 1998.

3. M. Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

4. T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison
of description logic reasoners. volume 4273, pages 654—667, 2006.

5. C. M. Keet, R. Alberts, A. Gerber, and G. Chimamiwa. Enhancing web portals with
ontology-based data access: The case study of south africa’s accessibility portal for
people with disabilities. In OWLED, 2008.

6. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient Query Answering for OWL
2. In In Proc. ISWC 2009, Chantilly, Virginia, October 2009, 2009. To appear.

7. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable Query Answering
and Rewriting under Description Logic Constraints. J. of Applied Logic,
2009. To appear. http://web.comlab.ox.ac.uk/people/publications/date/
Hector.Perez-Urbina.html.

8. M. Rodriguez-Muro, L. Lubyte, and D. Calvanese. Realizing ontology based data
access: A plug-in for protégé. In Proc. of the Workshop on Information Integration
Methods, Architectures, and Systems (IIMAS 2008), pages 286—289. IEEE Computer
Society Press, 2008.

