

An Algebraic Theory of
Componentised Interaction

Christopher James Chilton

Balliol College, Oxford

A thesis submitted to the University of Oxford
for the Degree of Doctor of Philosophy

Trinity Term 2013

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

To my mother, father, sister and grandparents

Abstract

This thesis provides a specification theory with strong algebraic and compositionality properties,

allowing for the systematic construction of new components out of existing ones, while ensuring

that given properties continue to hold at each stage of system development. The theory shares

similarities with the interface automata of de Alfaro and Henzinger, but is linear-time in the style

of Dill’s trace theory, and is endowed with a richer collection of operators.

Components are assumed to communicate with one another by synchronisation of input and

output actions, with the component specifying the allowed sequences of interactions between it-

self and the environment. When the environment produces an interaction that the component is

unwilling to receive, a communication mismatch occurs, which can correspond to run-time error

or underspecification. These are modelled uniformly as inconsistencies. A linear-time refinement

preorder corresponding to substitutivity preserves the absence of inconsistency under all environ-

ments, allowing for the safe replacement of components at run-time.

To build complex systems, a range of compositional operators are introduced, including par-

allel composition, logical conjunction and disjunction, hiding, and quotient. These can be used

to examine the structural behaviour of a system, combine independently developed requirements,

abstract behaviour, and incrementally synthesise missing components, respectively. It is shown

that parallel composition is monotonic under refinement, conjunction and disjunction correspond

to the meet and join operations on the refinement preorder, and quotient is the adjoint of parallel

composition. Full abstraction results are presented for the equivalence defined as mutual refine-

ment, a consequence of the refinement being the weakest preorder capturing substitutivity.

Extensions of the specification theory with progress-sensitivity (ensuring that refinement can-

not introduce quiescence) and real-time constraints on when interactions may and may not occur

are also presented. These theories are further complemented by assume-guarantee frameworks

for supporting component-based reasoning, where contracts (characterising sets of components)

separate the assumptions placed on the environment from the guarantees provided by the compo-

nents. By defining the compositional operators directly on contracts, sound and complete assume-

guarantee rules are formulated that preserve both safety and progress. Examples drawn from

distributed systems are used to demonstrate how these rules can be used for mechanically deriving

component-based designs.

v

Acknowledgments

Having reached the end of my doctoral research, it remains only to acknowledge the assistance

and support I have received over the course of my studies. First and foremost I am grateful to

Professor Marta Kwiatkowska for her guidance and enthusiasm in undertaking this work. Marta’s

reassurance and suggestions in regard to the direction of my research ultimately brought the afore-

mentioned to fruition when I was unsure of its relevance and benefit. I am also grateful for the

financial assistance I received from Marta that allowed me to undertake this doctoral study, in

addition to attending numerous conferences, summer schools and meetings, as well as a stint in

Uppsala. The opportunity to work with Marta has provided a stimulating environment for fostering

my own learning and development.

Further thanks should be offered to Professor Bengt Jonsson and Dr Xu Wang with whom I

collaborated extensively over the course of my work. A number of insightful discussions with

Bengt and Wang essentially shaped various topics contained within this thesis. Thanks also to

Bengt for hosting me in Uppsala on two occasions, which provided the opportunity to test new

ideas and relate my work to practical application domains. Wang’s extensive knowledge of timed

systems made the final stages of thesis writing a less daunting task, and for that I am indebted.

This thesis was invariably influenced by numerous others, and I would like to acknowledge

the engagement I have had with colleagues on the CONNECT project and those closer to home in

Oxford, as well as my examiners: Professors Gerald Lüttgen and Joël Ouaknine. I am also grateful

for the support I have received from friends and family over the course of my studies, which has

been touching. In particular, I would like to thank my mother, father, sister and grandparents for

their love and perseverance. To them I dedicate this thesis.

Finally, this work was made possible by the generous funding provided from the CONNECT

project [ISJ+09], part of the Future and Emerging Technologies programme within the ICT theme

of the Seventh Framework Programme for Research of the European Commission. Additional

partial sponsorship was provided by ERC Advanced Grant VERIWARE, in addition to EPSRC

projects UbiVal (EP/D076625/2) and LSCITS (EP/F001096/1).

Chris Chilton

Oxford, Michaelmas 2013

vii

Contents

1 Introduction 1

1.1 Overview and Contribution of the Thesis . 2

1.2 Dissertation Structure . 5

1.3 Published Material . 5

2 Related Work 7

2.1 Emergence of Components . 7

2.2 Component Models and Specification Theories 8

2.3 Contract-based Reasoning . 13

2.4 Quantitative Extensions . 16

3 Trace-Based Theory of Components 19

3.1 A Theory of Substitutable Components . 20

3.1.1 Refinement . 21

3.1.2 Parallel Composition . 24

3.1.3 Conjunction . 27

3.1.4 Disjunction . 29

3.1.5 Hiding . 33

3.1.6 Quotient . 35

3.1.7 Full Abstraction . 39

3.2 A Progress Sensitive Theory of Substitutable Components 41

3.2.1 Refinement . 42

3.2.2 Parallel Composition . 43

3.2.3 Conjunction . 43

3.2.4 Disjunction . 45

3.2.5 Hiding . 47

3.2.6 Quotient . 48

ix

x Contents

3.2.7 Full Abstraction . 52

3.3 Summary . 53

4 Operational Theory of Components 55

4.1 Refinement . 56

4.2 Parallel Composition . 57

4.3 Conjunction . 58

4.4 Disjunction . 59

4.5 Hiding . 60

4.6 Quotient . 60

4.7 Full Abstraction . 63

4.8 On the Relationship with Interface Automata 64

4.8.1 Relation with Operational Components 65

4.8.2 Compositional Operators . 67

4.9 Summary . 68

5 Assume-Guarantee Reasoning for Components 69

5.1 Assume-Guarantee Framework for Safety Properties 70

5.1.1 Refinement . 73

5.1.2 Parallel Composition . 76

5.1.3 Conjunction . 79

5.1.4 Disjunction . 82

5.1.5 Quotient . 84

5.1.6 Decomposing Parallel Composition . 88

5.2 Assume-Guarantee Framework with Progress 89

5.2.1 Refinement . 92

5.2.2 Parallel Composition . 94

5.2.3 Conjunction . 97

5.2.4 Disjunction . 99

5.2.5 Quotient . 101

5.2.6 Decomposing Parallel Composition . 104

5.3 Case Study . 104

5.4 Summary . 108

Contents xi

6 Theory of Timed Components 111

6.1 Preliminaries . 111

6.2 Terminating Theory of Timed Components . 112

6.2.1 Operational Representation of a Timed Component 113

6.2.2 Refinement . 117

6.2.3 Parallel Composition . 119

6.2.4 Conjunction . 121

6.2.5 Disjunction . 123

6.2.6 Hiding . 124

6.2.7 Quotient . 125

6.2.8 Full Abstraction . 127

6.3 Non-Terminating Theory of Timed Components 128

6.3.1 Refinement . 129

6.3.2 Parallel Composition . 131

6.3.3 Conjunction . 132

6.3.4 Disjunction . 134

6.3.5 Hiding . 136

6.3.6 Quotient . 138

6.3.7 Full Abstraction . 141

6.4 Summary . 142

7 Assume-Guarantee Reasoning for Timed Components 143

7.1 Timed Contracts . 143

7.2 Refinement . 147

7.3 Parallel Composition . 148

7.4 Conjunction . 151

7.5 Disjunction . 153

7.6 Quotient . 155

7.7 Decomposing Parallel Composition . 157

7.8 Case Study . 158

7.9 Summary . 164

xii Contents

8 Conclusion 165

8.1 Future Work . 166

8.2 Concluding Remarks . 168

Bibliography 169

List of Figures

3.1 Printing/scanning device (Device) . 22

3.2 Printing/faxing device . 30

3.3 Conjunction of the printing/scanning and printing/faxing devices 30

3.4 Conjunction of the printing/scanning and printing/faxing devices when the com-

ponents have identical interfaces incorporating all actions 31

3.5 Disjunction of the printing/scanning and printing/faxing devices 33

3.6 Broken device unable to scan (BrokenDevice) 35

3.7 Hiding scan mode in the broken device . 35

3.8 Constraint on job details . 39

3.9 ErrorFree component . 39

3.10 Component representing User2 . 40

3.11 Progress-sensitive conjunction of the printing/scanning and printing/faxing de-

vices when the components have identical interfaces incorporating all actions . . 46

3.12 Component representing User3 . 51

4.1 Interface automata distinguishing alternating simulation and vimp 66

5.1 Assumption and guarantee of Server . 70

5.2 Implementations and non-implementation of Server 73

5.3 Assumption and guarantee of HastyClient . 77

5.4 Assumption and guarantee of RestrainedClient 77

5.5 Assumption and guarantee of Spec1 and Spec2 82

5.6 Guarantee of Spec1 ∧ Spec2 . 82

5.7 Implementations of S1, S2, S1 ∧ S2 and S1 ∨ S2 84

5.8 Assumption and guarantee of Client . 88

5.9 Assumption and guarantee of Client (the adrift fail? action indicates that this action

appears in the interface of the Client contract) 105

5.10 Assumption and guarantee of Server . 106

xiii

xiv List of Figures

5.11 Assumption and guarantee of Client || Server 107

5.12 Assumption and guarantee of LinkLayer1 . 108

5.13 Assumption and guarantee of ErrorFree and ErrorFreeLive 108

5.14 Assumption and guarantee of LinkLayer2 with full interface 109

5.15 Assumption and guarantee of LinkLayer2 with restricted interface 110

5.16 Assumption and guarantee of LinkLayer1 ∧ LinkLayer2 110

6.1 Timed printing/scanning device . 116

6.2 Timed refinement . 119

6.3 Timed spooler . 120

6.4 Timed parallel composition of the printing/scanning device and the spooler . . . 120

6.5 Timed printing/faxing device . 122

6.6 Timed conjunction of the printing/scanning and printing/faxing devices 123

6.7 Timed disjunction of the printing/scanning and printing/faxing devices 124

6.8 Hiding fax mode in the printing/faxing device 125

6.9 Non-terminating timed printing/scanning device 129

6.10 Non-terminating timed refinement . 130

6.11 Non-terminating timed conjunction of the printing/scanning and printing/faxing

devices . 135

6.12 Non-terminating timed specification of a print system (PrintSystem) 140

6.13 Non-terminating timed quotient of the printing/scanning device from PrintSystem 140

7.1 Assumption and guarantee of Client . 158

7.2 Assumption and guarantee of Server . 159

7.3 Assumption and guarantee of Client || Server 160

7.4 Assumption and guarantee of LinkLayer1 . 161

7.5 Assumption and guarantee of ErrorFree/(Client || Server) with full interface . . 162

7.6 Assumption and guarantee of ErrorFree/(Client || Server) with restricted interface 163

7.7 Guarantee of LinkLayer1 ∧ LinkLayer2 . 163

CHAPTER

ONE

Introduction

The complexity of modern computerised systems is growing at a phenomenal rate, owing to the

availability of cheap and ever more efficient hardware, along with our willingness to embrace

technology within all aspects of our lives. Physical devices and software entities are no longer

anticipated to run in isolation, but are expected to interact seamlessly with one another so as to

provide rich and cohesive services. Toleration of failure is increasingly unacceptable, whether in

safety-critical domains, or in high-dependence environments, with the latter rapidly permeating an

expanding number of application areas. While hardware failure and hardware-induced software

anomalies are inevitable, software and interaction errors are often a consequence of incorrect

design borne out of system complexity. One need only look at a handful of examples (e.g., the

Ariane 5 rocket, which exploded after lift-off due to a software error in the inertial reference

system) to see that the smallest of errors can lead to systemic malfunction on a colossal scale.

To avoid such undesirable behaviour, a sound methodology is required for the specification of

error-free software systems (along with a procedure for generating code from the specification),

and also adequate verification techniques are needed for identifying system errors. For all but the

most trivial of systems, both of these approaches become infeasible due to issues of scalability,

whether in the size of the specification, or the amount of time required for verification, unless

appropriate abstraction techniques are adopted.

One approach to circumvent this issue is to take a componentised view of software design,

whereby large systems are built compositionally out of smaller components, each of which per-

forms a distinct and clear task that can be understood in isolation from the remainder of the sys-

tem [McI68, Sha96, Sif05]. It is desirable that global properties of the composed system can be

inferred, by proof rules, from the local properties of its constituent components. Without needing

to compute the composition, a potentially exponential reduction can be obtained in the size of the

state space.

Component-based design can be supported by a specification theory along with a reasoning

framework. The specification theory provides an abstract formalism for modelling components,

together with a wide range of operations for building new components incrementally and indepen-

dently, and a refinement relation for comparing components. The reasoning framework allows for

the specification of properties, provides a satisfaction relation indicating whether a property is ful-

1

2 Chapter 1. Introduction

filled by a component, and contains a number of compositional proof rules for inferring properties

satisfied by the composition of components based on the properties satisfied individually.

A number of specification theories and reasoning frameworks have been developed previ-

ously, for a range of concurrent models of communication. This thesis provides formalisms for

modelling and reasoning about the interactions arising in component-based systems, when com-

munication is asynchronous and non-blocking. An overarching aim has been to provide support

for modelling protocols, distributed systems and asynchronous hardware designs, where an en-

vironment supporting handshaking is either an unrealistic expectation, or must be achieved in a

domain that is inherently asynchronous. The developed frameworks provide modelling notations

capable of capturing the essential behaviour of components, in order to determine and reason

about the communication mismatches that can arise through asynchrony. Existing formalisms for

this communication model (such as, e.g., interface automata [dAH01], prefix-closed trace struc-

tures [Dil88], and the receptive process theory [Jos92]) lack cohesion, in the sense that they do not

cover all of the aforementioned features, for building complex systems effectively.

1.1 Overview and Contribution of the Thesis

The topic of this thesis is firmly rooted at the heart of interface theory, where it is primarily

concerned with the specification and verification of component-based systems. Components are

assumed to communicate with one another by synchronisation of input and output (I/O) actions,

with the behaviour of a component specifying the allowed sequences of interactions between it-

self and the environment. Unlike traditional I/O models of communication, such as CCS [Mil80]

and I/O automata [LT89], outputs in the framework are assumed to be non-blocking. Taking this

in combination with the fact that components are not required to be receptive on inputs means

that composition of components can introduce incompatibilities in the form of communication

mismatches, e.g., when one component issues an output that cannot be received by another com-

ponent at that particular time. Communication mismatches and inconsistencies can be thought of

as safety violations.

An overarching aim of the thesis is to formulate a specification theory of components, for

modelling system interactions, which enjoys strong algebraic and compositional properties. The

specification theory comes equipped with an appropriate notion of component (as discussed pre-

viously), but, unlike for process calculi (such as CCS [Mil80], CSP [BHR84] and the receptive

process theory [Jos92]), components are not required to be built out of primitive terms; it is there-

fore assumed that the space of components from which new components can be built is already

sufficiently rich.

A linear-time refinement preorder is adopted, which indicates whether a component can be

safely substituted with another. Component P can be safely replaced by component Q if, for

1.1. Overview and Contribution of the Thesis 3

any environment that P can interact with that does not introduce communication mismatches,

it holds that Q will work in that environment without introducing communication mismatches.

This is the weakest preorder preserving absence of communication mismatches (or equivalently

preserving safety), which allows for the seamless replacement of any component by a refinement.

To complete the specification theory, five operators are introduced for building new components

compositionally:

• Parallel composition. This operator is used for examining the structural composition of

a system of components, meaning that it shows the combined effect of the components

interacting with one another. This is useful for examining any induced communication

mismatches.

• Conjunction. This operator supports independent development of specifications, which

loosely means that the conjunction of two components will work in any environment that

is compatible for at least one of the components. Consequently, the conjunction yields a

specification that is a refinement of both of the specifications to be conjoined.

• Disjunction. Being the dual of conjunction, the disjunction of two components yields a

component whose compatible environments are safe for both operands. Therefore, the dis-

junction is refined by both of its operands.

• Hiding. This operator supports hierarchical development by contracting the interface (col-

lection of observable I/O actions) of a component, in order to allow behaviour abstraction.

• Quotient. As the adjoint of parallel composition under the substitutive refinement preorder,

given a system specification R, together with a sub-specification P , the quotient yields the

least refined component Q such that the composition of P and Q refines R. Quotient thus

supports incremental development by means of synthesising missing components.

Strong algebraic and compositional properties are demonstrated for the operators, such as

proving that parallel composition is monotonic under refinement and conjunction corresponds to

the meet operator on the refinement preorder, which are crucial for supporting component-based

design. This framework is useful for the subsequent body of work, outlined below, which increases

the power of the base theory by developing a number of extensions for capturing more complicated

behaviours.

• Progress sensitivity. This is an extension of the specification theory that instils a notion

of finitary liveness in the form of quiescence. A component is said to be quiescent if it is

unable to produce output without further stimulation from the environment. The refinement

preorder is strengthened so that substitutivity continues to hold (corresponding to preser-

vation of safety), in addition to the competing requirement that a non-quiescent behaviour

4 Chapter 1. Introduction

cannot be refined by a quiescent behaviour. This has a profound effect on the definitions

of conjunction and quotient, since the former is the meet operator on refinement, while the

latter is the adjoint of parallel composition with respect to refinement. Consequently, the

compositionality properties need to be re-established.

• Operational representations. The substitutive and progress-sensitive specification theo-

ries are in the style of denotational semantics, in that components are defined in terms of

trace sets, the compositional operators correspond to operations on traces, and refinement is

formulated as trace containment. To support operational development, which is more akin

to actual programs, an operational theory of components is presented for both the substi-

tutive and progress-sensitive frameworks that enjoys the same compositional properties as

in the trace-based equivalents. Under the assumption of determinism, it is demonstrated

that refinement can be defined using the branching-time alternating simulation relation of

de Alfaro and Henzinger [dAH01] as defined for interface automata.

• Reasoning frameworks. Assume-guarantee frameworks are developed for reasoning com-

positionally about safety properties satisfied by components in the substitutive theory, and

progress properties satisfied by components in the progress-sensitive theory (see [JT96,

CT12] for frameworks based on temporal logic). Properties are specified by contracts (see

e.g. [Mey92, BHGQ10]), which consist of prefix closed sets of traces (corresponding to

safety properties) representing assumptions made on the environment and guarantees pro-

vided by the component. For progress properties, a set of non-quiescent traces is also in-

cluded in the contract. A satisfaction relation relates components with contracts whose

properties are satisfied, and a collection of sound and complete assume-guarantee rules are

presented for inferring the properties satisfied by compositions of components based on the

properties satisfied by their constituent parts. To obtain these rules, a compositional theory

of contracts is developed, whereby equivalents of the operators on the specification theory

are defined directly on contracts.

• Real-time modelling. While the aforementioned specification theories capture the temporal

ordering of interactions between components, they do no specify the actual time when these

interactions occur. A trace-based framework is therefore developed for modelling the criti-

cal timing constraints imposed by componentised systems, capable of capturing safety and

bounded liveness requirements. This framework comes in two flavours, in order to suit two

different kinds of timed systems. The first allows for the global clock to be stopped, which

enforces system termination, while the second insists that components must run indefinitely

without the ability to terminate.

1.2. Dissertation Structure 5

1.2 Dissertation Structure

Outlining the remainder of this dissertation, Chapter 2 highlights related work and makes explicit

how those works differ from the theories presented in the subsequent chapters. Chapter 3 intro-

duces the specification theory for modelling components, on which all of the extensions of this

dissertation are based. Specifically, Section 3.1 presents a trace-based theory of components with

respect to the substitutive refinement preorder, while Section 3.2 extends the previous section to

the setting where the refinement preorder ensures both substitutivity as well as progress. Chapter 4

gives an alternate presentation of the previous chapter in terms of operational models for both the

substitutive and progress-sensitive refinement preorders. The assume-guarantee frameworks are

introduced in Chapter 5 for both the safety setting (Section 5.1, pertaining to the substitutive theory

of components) and the progress-sensitive setting (Section 5.2, for the progress-sensitive theory

of components). In Chapter 6, a real-time extension of the trace-based specification theory is pre-

sented. First, in Section 6.2, a theory is presented whereby systems are permitted to terminate,

whereas Section 6.3 insists that components must run indefinitely. Based on Section 6.3, Chap-

ter 7 introduces a real-time assume-guarantee framework for reasoning about the non-terminating

theory of components. Finally, Chapter 8 concludes and discusses related work. Proofs for all of

the key results are included throughout the dissertation at the appropriate points.

1.3 Published Material

Substantial portions of this dissertation have appeared in the proceedings of international con-

ferences and journals. The substitutive compositional specification theory for components first

appeared at the European Symposium on Programming [CCJK12] for the operations of parallel,

conjunction and quotient, both in the trace-based and operational frameworks. An enhanced ver-

sion including disjunction and hiding, in addition to progress-sensitivity, is available as [CJK13a]

and has been recommended for publication, subject to minor revision, in Theoretical Computer

Science. The technical results contained in the papers are my own, although I am grateful to

Taolue Chen, Bengt Jonsson and Marta Kwiatkowska for their valuable guidance and fruitful dis-

cussions on the subject matter, and for assisting in the writing.

Similarly, the assume-guarantee framework appeared at the Formal Aspects of Component

Software conference [CJK13b] for the operations of parallel, conjunction and quotient in the safety

setting. An extension of the work with progress-sensitivity was published in a special issue of the

Science of Computer Programming journal [CJK14]. Again, the technical results contained in

both of the articles are my own, while the suggestion to look at the topic should be attributed to

Bengt Jonsson and Marta Kwiatkowska, both of whom provided support throughout the work, and

assisted in the writing of the papers. Special thanks should be offered to Bengt for the invitation

6 Chapter 1. Introduction

to undertake some of this work in Uppsala, and to Marta for making the visit logistically possible.

The high level ideas behind the timed specification theory can be attributed to discussions with

Xu Wang, which culminated in the FORMATS paper [CKW12] and technical report [CKW13]

(both additionally co-authored with Marta Kwiatkowska). While the contribution of those papers

should largely be credited to Xu Wang, the content of this dissertation shares only some of the

overarching principles, since it adopts an approach built on the untimed formalism of Chapter 3,

rather than games.

The terminating theory of timed components in this dissertation was conceived out of the

suggestion that components should be allowed to prevent the passage of time. This convention,

also adopted in [CKW12], permits the use of terminating environments in the formulation of

refinement, which ensures that the theory is a straightforward extension of the untimed substitutive

framework, since (in the terminating theory) inconsistencies are propagated backwards only over

output actions, rather than outputs and delays.

On the other hand, the non-terminating theory requires a more complex treatment of ‘incon-

sistency inevitability’, with the techniques described in this dissertation sharing similarity with the

⊥-backpropagation method introduced in [CKW13]. Furthermore, the conjunction and quotient

operators have a pruning operation applied to them that is closely related to the>-backpropagation

technique developed in [CKW13]; however, this also matches the error backpropagation technique

developed for the untimed theory of progress-sensitive components.

A number of papers exhibiting practical applicability of the work in this dissertation also de-

serve mention. The paper [BCIJ13], which appeared in the proceedings of the Software Engineer-

ing and Formal Methods conference, shows how the progress-sensitive specification theory can be

applied to the automatic synthesis of mediators, allowing functionally compatible yet not directly

interoperable components to communicate with one another. The high-level methodology behind

the theory (phrasing the task as a quotienting problem with an error-free and non-quiescent specifi-

cation, and encoding ontology constraints as observer components) was developed in conjunction

with Bengt Jonsson during my visit to Uppsala. The technical content related to ontological rep-

resentations and reasoning was provided by Amel Bennaceur, while the prototype implementation

was developed by Malte Isberner. The paper can be seen as a substantially refined and fleshed out

version of [ACI+10], which appeared at the International Symposium on Leveraging Applications.

This earlier paper attempted to build mediators in a compositional manner by composing atomic

components, each of which can resolve basic communication incompatibilities. Essentially, how-

ever, the approach was not as fruitful as the automatable methodology appearing in [BCIJ13],

although Inverardi and Tivoli (co-authors on the original paper) considered an enhanced version

looking at protocol mediation patterns, culminating in [IT13].

CHAPTER

TWO

Related Work

This chapter provides an exposition of work related to the topic of the thesis, by covering the emer-

gence of components, interface theories, process calculi, specification formalisms and contract-

based reasoning frameworks. While most of the formulations are qualitative in nature, some

broach the quantitative domain by encompassing real-time and stochastic behaviours. Where

appropriate, comparisons are made with the work presented in this dissertation, although some

contrasts are deferred until the technical framework has been established.

2.1 Emergence of Components

One of the earliest references to components from a computer science perspective can be traced

back to a keynote speech of Douglas McIlroy in 1968, addressed to the NATO Software Engineer-

ing conference [McI68]. By analogy of a production line with sub-assemblies, McIlroy envisaged

software engineers building systems out of componentised routines produced by third parties. The

routines would be obtained from a component market, where they would be classified along a

number of dimensions including precision, robustness, generality and time-space requirements.

For reasons of scalability, McIlroy opined that each routine should be parameterised, so that a sin-

gle implementation can satisfy all (or at least most) valuations of the aforementioned dimensions

by a suitable selection of parameters.

It can be argued that this view of a component is diametrically opposed to our intended mean-

ing nowadays. McIlroy focused on having a single component for different variants of the same

function; however, this does not allow for the prospect of different manufacturers supplying vari-

ants of the same function. Thus, what is required is the concept of an interface to a component.

This permits a user to switch between different implementations of a componentised routine, with-

out having to recode their application (assuming the components share a common interface).

It is now standard for components to come part and parcel with an interface; it is what de-

fines a component, other than its behaviour. There is no immediate point in the literature where

this definition first arises, although it probably stems from the work on adding modularisation to

programming languages. Parnas [Par72] discusses issues of modularity in such a context, and in

particular raises the concept of independent development, a notion strongly connected with this

7

8 Chapter 2. Related Work

thesis, whereby distinct requirements can be combined.

Naturally, this work on modularity was a precursor to the inception of object-oriented pro-

gramming (OOP) in the form of the Smalltalk language [GR83]. At the heart of the language lie

the principles of encapsulation and separation of implementation from interface, key properties

of component-based design. In terms of popularity, it can be argued that OOP is the epiphany of

component-based design. However, that would serve a great injustice on a number of alternate

theories that can be considered far more component-oriented than OOP, for example, WRIGHT

[AG97], BIP [Sif05], and Reo [Arb04, BSAR06], to name but a few. OOP, despite its many ad-

vantages, does not support true component-based design in the sense of this thesis, in that it is not

implementation agnostic. The content of this thesis is geared towards abstract modelling and veri-

fication, with the potential of being implemented, rather than focusing on practical application and

instantiation as a means in itself. Therefore, from hereon, the emphasis of this chapter is directed

towards mathematically abstract formalisms for modelling component-based systems.

2.2 Component Models and Specification Theories

Traditionally, components and their interactions were modelled by means of process calculi, which

are formalisms for modelling and reasoning about concurrent systems. Communication in the

process algebra CSP [BHR84] is based on handshaking, meaning that all concerned components

must synchronise on common actions, thus differing from the form of communication adopted

in this dissertation. WRIGHT [AG97] is a theory based on CSP that makes explicit the glue (a

process) handling communication between components. Given the lack of high-level operations

on CSP, such as quotient, the desired communication in the glue process must be crafted by hand,

which is not amenable to large scale system development. CCS [Mil80] is a process calculus

that distinguishes inputs from outputs and has a branching-time equivalence defined in terms of

bisimulation, which differs from the linear-time refinements defined for CSP. However, the I/O

distinction in CCS is purely syntactic, since outputs are blocking just like inputs. Consequently,

the formalism does not capture the asynchrony required for our specification theory, as discussed

in Chapter 1.

Process calculi build components out of primitive terms, such as the deadlocked process STOP

in CSP or the empty process ∅ in CCS, with a range of basic operations such as prefixing, choice,

hiding, renaming, parallel composition and recursion. This contrasts with the formalisms pre-

sented in this dissertation, where it is assumed that the space of components from which new

components can be built is already sufficiently rich. Consequently, we focus our attention towards

such formalisms from hereon, which tend to be automata-based (although there are exceptions).

Bliudze and Sifakis presented a theory of structured interaction, called BIP [Sif05] (Behaviour,

Interaction, Priority), based on automata, for describing complex patterns of system interaction.

2.2. Component Models and Specification Theories 9

However, the theory does not support reasoning about communication mismatches arising through

asynchrony, and does not provide compositional design operations, even though an algebraic the-

ory of interaction is devised, for reasoning about common forms of system interaction. Similarly,

the exogenous channel-based coordination model Reo [Arb04] does not support reasoning about

asynchrony and does not consider high-level operations such as conjunction and quotient. Refine-

ment is based on bisimulation and simulation (for the constraint automata semantics [BSAR06]),

which does not correspond with (or is too strong for) substitutivity.

The theory of I/O automata, due to Lynch and Tuttle [LT89] (and independently introduced

by Jonsson in [Jon87], an extended version of which is [Jon94]), is based on labelled transition

systems, whose communication vocabularies, annotating the transitions, are partitioned into input,

output and hidden actions. Since a component cannot prevent the environment from issuing an in-

put, the automata are required to be input-receptive, meaning that each input must be enabled in ev-

ery state. Consequently, substitutive refinement can be cast in terms of trace containment [Jon94]

or simulation [LV95] (both under the assumption that the components to be compared have the

same set of inputs). The former of these is similar to the refinement used by the formalism in this

dissertation, except that it is more straightforward for I/O automata, since inconsistencies cannot

arise due to input-receptivity. The operation of parallel composition is defined in the usual asyn-

chronous way by synchronising on common actions and interleaving on the independent ones,

while conjunction can be defined as a synchronous product, meaning that its set of traces is the

intersection of its operands’ traces (again when the input action sets are the same). Disjunction

can be defined simply as the union of the behaviours. Hiding is already defined on outputs [Jon94]

(we also define it on inputs) and quotient can be defined in a straightforward manner [DvB99],

since input-receptivity ensures that communication mismatches cannot occur.

Just over a decade later, de Alfaro and Henzinger formulated an optimistic game-based ver-

sion of I/O automata, called interface automata [dAH01], that drops the requirement of input-

receptivity on components. Therefore, an interface automaton provides assumptions on what the

environment can and cannot issue in each state. Refinement is defined in terms of an alternating

simulation [AHKV98], which is substitutive, but is stronger than the linear-time characterisation

used in this dissertation (a simplified version of alternating refinement for input-deterministic in-

terface automata is presented in [dAH05]). Alternating refinement is too strong for determining

substitutivity due to the necessity of selecting a matching transition to complete the simulation un-

der non-determinism. The operational component representation in this dissertation differs from

interface automata, in that we provide an explicit representation for inconsistency, which must be

inferred through non-input enabledness in interface automata. This has repercussions for paral-

lel composition, defined as a cross-product for interface automata, by synchronising on common

actions and interleaving on the independent ones, followed by a pruning process, which removes

any input transition from which there is a sequence of outputs and hidden actions leading to a state

10 Chapter 2. Related Work

whereby one of the components can produce an output not accepted by the other component. This

differs from the framework in this dissertation, since the explicit representation of inconsistencies

ensures that communication mismatches automatically arise as inconsistencies in the product, and

the pruning technique is included as part of refinement, rather than the parallel operator. Con-

junction and disjunction have been defined on input-deterministic interface automata when the

components to be composed have the same interface (see [LV13]), while [DHJP08] defines con-

junction (called shared refinement) on a synchronous component model. A definition of quotient

has been provided for deterministic interface automata by Bhaduri and Ramesh [BR08], which

mirrors the method developed by Verhoeff [Ver94].

Bujtor and Vogler have detailed three characterisations of error-pruning for interface automata

[BV12], with an optimistic approach based on local errors (i.e., errors reachable through output

and hidden transitions) matching that developed by de Alfaro and Henzinger, and also sharing sim-

ilarities with the component formalism described in this dissertation and presented in [CCJK12].

The full abstraction result of [BV12] is essentially the same as the one we provide for our frame-

work. The other characterisations are based on error propagation through hidden transitions alone,

and through all types of transition. However, neither of these error-pruning operations corresponds

to substitutivity, and therefore they are not relevant to this dissertation.

As a precursor to interface automata, de Nicola and Segala developed a process-algebraic char-

acterisation of I/O automata [dNS95] that is actually applicable to interface automata, due to the

introduction of non-input enabledness through the prefix and choice operators. Each process is

associated with a sort, which corresponds to the interface through which the process can interact.

Two semantics are provided for dealing with non-enabled inputs. The angelic approach assumes

that a process remains unchanged when a non-enabled input is received, while the demonic ap-

proach forces a process to become chaotic on receiving a non-enabled input. The demonic se-

mantics allows for the modelling of interface automata, since receiving a non-enabled input in an

interface automaton allows erroneous unconstrained behaviour to ensue. Refinement is defined

by trace inclusion, but does not extend to inconsistent trace containment as in this dissertation.

Consequently, the theory is not able to distinguish a non-enabled input from one that is enabled

and can subsequently behave chaotically. The process algebra supports the operations of prefixing,

parallel composition, internal and external choice, hiding, renaming and recursion, but does not

support the high-level operations of conjunction and quotient. Compositionality results and alge-

braic laws are established for the operators of the theory, with respect to the refinement relation.

A shortcoming of the framework, like for all process calculi, is that a component must be built out

of primitive terms, which can be quite tedious and impractical. It is also difficult to examine the

behaviour of such a process, without considering a semantic representation.

Logic LTSs, devised by Lüttgen and Vogler [LV07], are labelled transition system (LTS) mod-

els, without I/O distinction, augmented by an inconsistency predicate on states. A number of

2.2. Component Models and Specification Theories 11

compositional operators are considered (parallel composition, conjunction, disjunction, external

choice, and hiding [LV10], but no quotient), and refinement is given by ready-simulation, a branch-

ing time relation that requires the refining component not to introduce any new logical inconsis-

tency, and equality of offered actions at each state in the simulation chain. This formulation of

refinement differs from our intuition behind substitutivity, meaning that the Logic LTS operations

of, for example, conjunction, are incomparable to those in this dissertation. Taking inspiration

from [LV07], the operational models of components introduced in this dissertation are essentially

I/O automata augmented by an inconsistency predicate on states for indicating communication

mismatches (and, consequently, non-enabled inputs, in addition to other faults), making our for-

malism achieve goals similar to those for interface automata, but with notation and semantics

derived from I/O automata and Logic LTSs.

By considering the traces of our operational models, it is possible to extract a semantic model

of components that records essential information related to the structure of a component for de-

termining substitutivity. This trace-based model, which captures the observable and inconsis-

tent behaviour of a component, essentially matches the prefix-closed trace structures devised by

Dill [Dil88] for modelling the I/O interactions in asynchronous circuits. Dill provides a confor-

mance relation, which is similar to our substitutive refinement, except that we generalise this to al-

low non-identical (static) alphabets. A liveness extension is also provided, based on infinite traces,

while we consider the weaker notion of progress, based on quiescence, which utilises finite-length

traces. A richer collection of operators are considered in this dissertation, such as conjunction and

quotient, whereas Dill largely focuses on parallel composition and hiding.

In a style similar to Dill, Josephs et al. [JHJ89] formulate an I/O extension of CSP [BHR84]

for modelling asynchronous circuits. The work differs from this dissertation in that processes must

communicate through unbounded buffers, which eliminates the possibility of communication er-

rors arising through non-enabledness of inputs. Avoiding this, Josephs [Jos92] formulates a theory

of receptive processes, where components must communicate directly with one another. This has

connections to our progress-sensitive framework, since a receptive process is modelled by means

of its failures (communication mismatches and divergences) and quiescent traces (violations of

liveness). Consequently, the refinement relation is similar to our progress-sensitive refinement,

except that we give an explicit treatment of divergence. A further difference is that the receptive

process theory is incapable of distinguishing communication mismatches from behaviour that re-

peatedly performs any output, due to insufficient information being recorded about the process.

Josephs’ work does not consider conjunction and quotient (the latter is defined on the restricted

class of delay-insensitive networks [JK07], where it is referred to as factorisation; however, this

does not match our setting). A similar framework, due to Jonsson, is documented in [Jon91].

Substitutivity of asynchronous systems can be determined using model-based testing, such as

the ioco (input-output conformance) theory [Tre11], which checks that the outputs emitted by a

12 Chapter 2. Related Work

component after any trace conform to those permitted by the test specification. Only basic opera-

tions are defined on the ioco theory, such as parallel composition and hiding, but even for this small

subset it is demonstrated that the conformance relation is non-compositional in general. Aarts and

Vaandrager highlight the similarities between interface automata and the ioco theory [AV10], a key

result of that paper equating quiescence-extended alternating simulation refinement on interface

automata with the ioco relation, under determinism of models. The quiescence-extended alternat-

ing refinement is obtained by making quiescence observable: a self-loop annotated with a unique

symbol δ, treated as an output, is appended to each quiescent state in the interface automata. Hav-

ing performed this decoration, the standard alternating refinement check can be performed. In

comparison with our framework, this implies that the ioco relation coincides with our progress-

sensitive refinement for deterministic components free of divergence, since under such a restric-

tion, our substitutive refinement relation is identical to alternating refinement (see Section 4.8 for

the details) and a simple correspondence can be drawn between the progress-sensitive versions.

Increasingly, automata-theoretic models for component-based systems have taken the form

of a specification theory, where a specification captures the requirements for a component to

function in the intended system context, while operators and refinement relations allow for the

composing and comparing of specifications in analogy with how components are composed and

refined towards an overall system design. The justification for such frameworks is aptly described

in [RBB+09b, BCN+12], whereby the authors highlight the importance of substitutive refinement

and the necessity of being able to combine independently developed system requirements.

Larsen introduced modal specifications as a formalism for representing loose specifications,

that is, specifications whose obligations and requirements can be refined over time towards a more

concrete system description [Lar90]. A modal specification can be thought of as a (non I/O)

LTS whose transitions are labelled by interactions and modalities, the latter indicating whether

an interaction may or must be able to happen. Refinement is given by a branching-time rela-

tion approximating something between an alternating simulation and bisimulation, and the logical

operations of conjunction and disjunction are provided, together with the standard operations of

CCS. However, as highlighted in [LV13], the conjunctive and disjunctive operators are not closed

in the sense that they yield well-defined modal transition systems. A number of attempts have

been made to address this (see, e.g., [LX90, BCK11]), while [LV13] present the most satisfactory

solution, where conjunction and disjunction are defined on a subclass of disjunctive modal transi-

tion systems that permit τ transitions. In [RBB+09a, RBB+09b, RBB+11], a specification theory

for modal specifications is introduced that considers a substitutive refinement relation, along with

the operations of parallel composition, conjunction and quotient [Rac08]. The notion of liveness

and progress is based on must-modalities, and thus differs from the trace-based formulation is this

dissertation.

Extensions of modal specifications to the I/O setting are also provided in [RBB+09b, RBB+11],

2.3. Contract-based Reasoning 13

where a mapping is given from deterministic interface automata without hidden actions to modal

interfaces. These theories of modal interfaces (modal specifications with I/O distinction) are sim-

ilar to the theory of [LNW07], except that: a number of technical issues are resolved, relating

to compatibility and parallel composition; refinement is based on trace-containment, rather than

being game-based; and additional compositional operators are defined.

A weakness of [RBB+09b, RBB+11] is that the compositionality results for the different

operators must be given with respect to either strong or weak refinement relations (the former

for parallel and quotient, the latter for conjunction) when the components to be composed have

dissimilar alphabets. This has repercussions for parallel composition, which is an asynchronous

operator on interface automata, but is treated synchronously on modal interfaces by a lifting on

alphabets. This lifting is essentially equivalent to requiring that a refining component is enabled

in every state on each input that is not in the interface of the original component. Consequently,

there are also differences between the quotient operators of the two frameworks, since they should

be the adjoint of their respective parallel operations.

Lüttgen and Vogler provide a complete reformulation of the specification theory for modal

interface automata [LV13], which addresses a number of shortcomings in the existing works.

Principally, models are not required to be deterministic, and, moreover, a mapping from input-

determistic interface automata to modal interface automata is supplied. Definitions are provided

for the operations of parallel, conjunction and disjunction, which are all shown to be pre-congruences,

while the latter two are shown to be the meet and join operators on the refinement preorder, re-

spectively. However, a definition of quotient has not been formulated.

The frameworks developed in this dissertation have similarities with the modal interfaces and

modal interface automata just mentioned, but we have different component representations and

linear-time refinement preorders. However, we partially overlap in the range of operators consid-

ered, together with the compositionality properties that are demonstrated, which are essential for

supporting component-based design.

2.3 Contract-based Reasoning

Contracts within computer science have been around for decades, an early example being the

specification of a program in Floyd-Hoare logic [Hoa69] by means of pre- and post-conditions,

although it is difficult to find widespread use of the term prior to Meyer’s discursive appraisal

[Mey92]. Since then, contracts have naturally been associated with assume-guarantee (AG) rea-

soning [MC81], whereby a component provides guarantees about its behaviour, under the assump-

tion that its environment behaves in a particular way. Such frameworks should be compositional

and equipped with sound proof rules, so that properties can be inferred about composite systems

by examining the constituents from which it is composed. By not performing the composition,

14 Chapter 2. Related Work

issues of scalabilty can be circumvented or reduced when performing model checking [AENT03].

Historically, AG reasoning was concerned with compositional reasoning for processes, com-

ponents and properties expressed in temporal logics, such as LTL and CTL [Pnu85, CLM89,

GL94, JT96], where the overarching aim was to specify and verify concurrent systems. A va-

riety of rule formats have been proposed, including symmetric, asymmetric and circular types,

which are nearly always shown to be sound, and sometimes complete. It is often the case that the

premises of such rules require the learning of auxiliary assumptions [CGP03], so that systems can

be decomposed in an effective manner.

Maier [Mai01] provides an abstract framework for reasoning about parallel composition in a

circular manner, as do Amla et al. in [AENT03]. The framework that we present allows for more

types of decomposition, by also supporting the operations of conjunction, disjunction and quotient

on contracts. Moreover, it is not obvious to see that the frameworks of [Mai01, AENT03] support

the component formulation we use based on non-blocking outputs. Similarly, Ben-Hafaiedh et al.

[BHGQ10] provide a contract-based framework for reasoning about safety and progress properties

of components, in a framework where communication is encoded by a subset of the BIP [Sif05]

interaction primitives, which do not support reasoning about asynchrony. Again, composition

is restricted to parallel, and the notion of progress differs from the type we introduce based on

quiescence.

Abadi and Lamport [AL93] considered compositional reasoning for contracts in the generic

setting of state-based processes, a revised version of which is [AL95], based on the temporal

logic of actions. They formulated a Compositionality Principle for parallel, which is shown to be

sound for safety properties. A logical formulation of specifications is discussed by [AP93], where

intuitionistic and linear logic approaches are adopted. In contrast, our work considers an action-

based component model and has a richer set of composition operators, including conjunction,

disjunction and quotient.

Maier [Mai01] demonstrates through a set-theoretic setting that compositional circular AG

rules for parallel composition (corresponding to intersection) cannot be both sound and complete.

This seems to contradict the work of Namjoshi and Trefler [NT10], although the discrepancy can

be attributed to the fact that their sound and complete circular rule is non-compositional, since

they need to include auxiliary assertions. The compositional AG rule that we provide for parallel

composition is sound and complete, since we rely on the convention that an output is controlled

by at most one component, which breaks circularity.

More recent proposals focus on compositional verification for component theories such as in-

terface and I/O automata. Emmi et al. [EGP08] extend a learning-based compositional AG method

to interface automata. Sound and complete rules are presented for the original operators defined

by [dAH01], namely compatibility, parallel and refinement based on alternating simulation, but

2.3. Contract-based Reasoning 15

conjunction, disjunction and quotient are absent. Moreover, the rules are limited to being asym-

metric in nature, and furthermore involve the learning of assumptions, using an approach such as

that documented in [PGB+08].

By imposing input-receptivity on interface automata, Larsen et al. [LNW06] define an AG

framework, where assumptions and guarantees are specified as I/O automata. A parallel operator is

defined on contracts that is the weakest specification respecting independent implementability, for

which a sound and complete rule is presented. Our work differs by not requiring input-enabledness

of components or guarantees, and allowing for specifications to have non-identical alphabets to

their implementations. We also define conjunction, disjunction and quotient, and support progress

properties, thus providing a significantly richer reasoning framework.

The theory of modal interfaces [RBB+11], mentioned in the previous section, does not con-

sider a contract-based framework, but does separate the notion of implementation from specifi-

cation. Rules specifying the relationship between implementations and specifications under the

operations of parallel, conjunction and quotient are provided, which share similarities with the

sound and complete rules for our AG framework, although we define the compositional operators

directly on specifications represented by contracts.

A contract-based presentation of modal specifications is introduced in [BDH+12], where a

generic construction is provided for obtaining a contract-based framework from a component-

based specification theory equipped with the operations of parallel, conjunction and quotient.

However, the contract-based framework only comes equipped with parallel composition; the op-

erations of conjunction, disjunction and quotient are not defined directly on contracts, unlike in

our framework. We briefly remark that [DCL11] defines conjunction on contracts, but this is for a

simplified contract framework, as witnessed by the definition of parallel composition.

An abstract mathematical framework for contract-based design is presented in [BCF+08],

based on set-theoretic operations on sets of behaviours. Although parallel composition, conjunc-

tion and disjunction are defined, no attempt is made at the arguably more difficult operation of

quotient, which we also provide. The framework does not give consideration to the specifics of

the execution model, hence it is unclear whether the rules can be instantiated for any particular

communication model. Furthermore, AG rules are not provided for the framework, which prevents

it from being used for reasoning about component-based systems.

Finally, we remark that [BCN+12] includes a detailed exposition on system design within a

contract-based framework. An extensive comparison is made with related work, and large scale

case studies are presented.

16 Chapter 2. Related Work

2.4 Quantitative Extensions

While the formalisms outlined previously are capable of capturing and reasoning about the tem-

poral ordering of interactions, they are not geared towards analysing the non-functional properties

of components, such as performance. Therefore, we consider a number of formalisms that are

quantitative in nature, whether that is in terms of real-time or stochastic behaviours.

Starting with real-time models, the timed automata due to Alur and Dill [AD94] are a for-

malism for modelling timed component interactions, but without I/O distinction. Historically

the models induced timed languages consisting solely of infinite-length words, meaning that an

infinite-number of interactions must occur in an execution, but subsequent reformulations have

also considered finite length traces [OW07], as in this dissertation (note that we permit compo-

nents to terminate, and we also let components avoid interacting with the environment as long

as time can pass unimpeded). The presentation in [AD94] is foundational, being concerned with

notions of equivalence and modelling, rather than compositionality. Parallel composition has been

defined, and is supported by the timed automata modelling tool UPPAAL [BDL04], but composi-

tional operators in the form of a specification theory are scarce, unless I/O distinction is introduced.

A number of I/O sensitive timed automata formalisms have been presented, including [KLSV11,

dAHS02, DLL+10b]. The theory in [KLSV11], a natural timed extension of I/O automata [LT89],

insists on input-receptivity, meaning that communication mismatches cannot arise through com-

ponents being unwilling to accept an input at certain times. Components are not permitted to

terminate, as in our timed theory of Section 6.3, which means that every state must be able to let

time pass indefinitely, or there must be an enabled output action to another state, thus providing ur-

gency semantics. Refinement is defined both in terms of trace containment and forward simulation

[LV96], and definitions are provided for the operations of parallel composition and hiding.

The theory of timed interfaces [dAHS02], based on interface autoamata [dAH01], represents

timed components by a timed game played by the Input and Output controllers. Invariants be-

longing to Output correspond to the invariants we introduce in our formalism, while invariants

belonging to Input correspond to our co-invariants. The game consists of two transition systems,

one for each player, whereby each player proposes a move in each state. A component is compat-

ible with its environment if Input has a strategy whereby it can avoid communication mismatches

arising, and does not require time to be blocked. Confusion over the obligations of who stops

time need to be resolved by apportioning blame to the players. The timed game provides a seman-

tics for the timed interface automaton, which is conceptually similar to the operational model we

introduce. Our semantics are defined in terms of traces, and we provide a rich collection of oper-

ators and a notion of refinement, whereas only parallel composition is defined for timed interface

automata.

A timed specification theory based on I/O automata is presented in [DLL+10b], which sepa-

2.4. Quantitative Extensions 17

rates the notion of specification from implementation. Specifications and implementations must

both be input-enabled, while an implementation is a specification that satisfies output urgency,

meaning that if an output can be produced in a state then that state cannot delay, along with inde-

pendent progress, which ensures a state must either delay indefinitely or it must produce an output

at some point. Refinement is based on a timed variant of alternating simulation, differing from

our trace-based formulation, and the operations of parallel composition, conjunction and quotient

are defined. Tool support is provided by means of ECDAR [DLL+10a], with applications being

shown in [DLL+12].

Zhou et al. [ZYM01] propose a timed trace version of Dill’s theory of asynchronous circuits

[Dil88], and explain that conformance can be checked in terms of mirroring. The definition of

mirroring is more complicated in the timed setting, plus the framework does not target component-

based design, as the operations considered are limited to parallel composition.

The paper [ČGL93] introduces timed modal specifications, but using a syntax derived from

timed CCS [Wan90]. The range of operators considered is limited, consisting of delay, must

and may prefixes, choice, parallel and hiding. As for modal specifications, the refinement is

branching-time in nature, which differs from the weakest preorders preserving substitutivity that

we formulate. Similarly, Bertrand et al. [BLPR09] present a compositional specification theory

for timed modal specifications, using an automaton representation, incorporating the operations

of parallel, conjunction and quotient. Refinement is given by a branching-time relation, differing

from the linear-time formulation we provide, and there is no explicit separation of inputs from

outputs.

Finally, Thiele et al. [TWS06] consider real-time interfaces, but based on a logical formulation

different from our setting. A notion of refinement is provided, although the relationship to our

theory is unclear. Parallel composition is defined for connecting interfaces, but the operations of

conjunction, disjunction and quotient are not considered.

We now mention a number of formalisms that are probabilistic in nature. Given that a proba-

bilistic extension is not considered in this dissertation, we mainly focus on those frameworks that

take the form of a specification theory, rather than providing a detailed survey of the foundational

models.

First, Xu et al. [XGG10] present a probabilistic contract-based framework, where implementa-

tions are represented by interactive Markov chains (an automaton whose states are partitioned into

action and probabilistic states). An action state can engage in interactions with the environment,

while the probabilistic state has a distribution over successor states. This model is generalised to

a contract, characterising a set of implementations, which is an interactive Markov chain that has

intervals of probability associated with its probabilistic successors. Refinement is given by proba-

bilistic simulation, and the operations of parallel, conjunction and hiding are defined on contracts.

18 Chapter 2. Related Work

In the probabilistic setting, conjunction is only defined when the contracts to be conjoined (which

must be normalised with respect to probabilistic bisimulation) are probabilistically similar.

Caillaud et al. [CDL+10] adopt a specification theory similar to [XGG10], except that all

states are probabilistic (since interactions are encoded in terms of sets of atomic propositions

on states), while the allowable probabilities associated with successor states are encoded using

linear constraints, rather than just intervals. The theory is endowed with the operations of parallel

composition and conjunction, and refinement is akin to probabilistic simulation. In passing, we

remark that Delahaye et al. [DCL11] also introduce a probabilistic contract framework including

the operations of parallel and conjunction.

Before concluding this section, we comment that abstract probabilistic automata [DKL+11]

(and a probabilistic timed variant [HKKG13]) are formalisms suitable for representing specifica-

tions of components. A theory of probabilistic I/O automata has also been documented (including

discrete probabilistic and continuous-time behaviour) [WSS97], including their reformulation in

terms of switched probabilistic I/O automata [CLSV05] based on a scheduling mechanism.

CHAPTER

THREE

Trace-Based Theory of Components

This chapter formulates a compositional specification theory for component-based systems, where

a component model specifies the allowed sequences of input and output interactions with the envi-

ronment. Models are characterised by an interface, which specifies the interaction primitives that

the component can engage in, along with sets of traces for representing the interactive behaviours.

While outputs are controlled and issued by the component itself, inputs are under the control of,

and are issued by, the environment. Since input receptiveness is not a requirement of the theory

(unlike, for example, I/O automata [LT89]), a communication mismatch occurs when the environ-

ment issues an input that is observable, yet not accepted, by a component. Thus, a component

model places assumptions on when observable inputs can be issued by the environment.

The trace-based representation of models is in the style of denotational semantics, in that it

is deplete of structure relating to non-determinism and execution. In fact, the models capture

precisely enough information for determining whether a component is substitutable with another.

Informally, component Q is substitutable for P if, for each environment that P can interact with

without introducing communication mismatches, it follows that Q can interact with that environ-

ment, also without introducing communication mismatches. Based on this principle, a linear-time

refinement is provided, which is the weakest preorder preserving substitutivity of components.

Such a relation is essential for component-based design, since it allows for the dynamic evolu-

tion of a system at run-time by replacing its subcomponents, whilst providing a guarantee that

communication mismatches will not be introduced.

Section 3.1 introduces this substitutive specification theory, and includes the operations of

parallel composition to support the structural composition of components, logical conjunction and

disjunction for independent development, hiding to support abstraction of interfaces, and quotient

for incremental synthesis of components. The component formulation highlights the algebraic

properties of the specification theory, and is shown to be fully abstract with respect to observa-

tion of communication mismatches. These are indispensable properties for being able to reason

compositionally about component-based systems. Through simple examples, it is demonstrated

that the theory naturally supports a component-based design process that starts from some initial

design considerations and applies the operations of the theory compositionally and in a stepwise

fashion to obtain complex systems.

19

20 Chapter 3. Trace-Based Theory of Components

While substitutive refinement prevents the introduction of communication mismatches, it also

promotes behaviour suppression, since a component that refuses to produce any output is an auto-

matic refinement of any other component. To avoid such trivial refinements, Section 3.2 extends

the specification theory by formulating a refinement preorder that guarantees substitutivity along

with the preservation of progress. A behaviour of a component model is said to make progress

if it can be extended by an output without having to receive further interaction from the envi-

ronment. The enhanced refinement preorder thus stipulates that a refining component must make

progress whenever the original can, in addition to satisfying the conditions for substitutivity. Such

a strengthening of the refinement preorder requires reformulation of the compositional operators

of the theory so that the algebraic properties are restored.

The substitutive specification theory contains similarities with Dill’s prefix closed trace struc-

tures [Dil88], while the progress-sensitive theory has connections with Josephs’ receptive process

theory [Jos92]. A detailed comparison of those related works with the theory of this chapter is

deferred until Section 3.3, after the technical details have been presented. It should be remarked

that a preliminary version of the specification theory appeared in [CCJK12], although restricted

to the substitutive setting for the operations of parallel, conjunction and quotient. Applicability

of the framework was demonstrated in [IT13, BCIJ13], where the quotient operation was used to

synthesise mediator components.

3.1 A Theory of Substitutable Components

In this section, we introduce a compositional specification theory for a trace-based representation

of components. The formulation captures the essential information relating to whether a compo-

nent can work in an arbitrary environment without introducing communication mismatches, which

is vital for checking substitutability of components. Based on this representation, we introduce the

weakest refinement relation preserving safe substitutivity of components and provide definitions

for the compositional operators of the theory.

Definition 3.1 (Component). A component P is a tuple 〈AIP ,AOP , TP , FP〉 in whichAIP andAOP
are disjoint sets referred to as the inputs and outputs respectively (the union of which is denoted

by AP), TP ⊆ A∗P is a set of observable traces, and FP ⊆ A∗P is a set of inconsistent traces. The

trace sets must satisfy the constraints:

1. FP ⊆ TP

2. TP is prefix closed

3. If t ∈ TP and t′ ∈ (AIP)∗, then tt′ ∈ TP

4. If t ∈ FP and t′ ∈ A∗P , then tt′ ∈ FP .

3.1. A Theory of Substitutable Components 21

If ε 6∈ TP , we say that P is unrealisable, and is realisable contrariwise. �

The sets AIP and AOP make up the interface of P , i.e., the interaction primitives that the com-

ponent is willing to observe, while the trace sets encode the possible interaction sequences over

the component’s interface. TP consists of all observable sequences of interactions that can arise

between the component and the environment. As inputs are controlled by the environment, any

trace in TP is extendable by a sequence of inputs, since the component cannot prevent these inputs

from being issued (this is referred to as input-receptivity). Traces contained in FP are deemed to

be inconsistent, which can encode, for example, run-time errors and communication mismatches.

Thus, FP can be used to record the traces in TP that involve non-enabled inputs. Based on this

convention of distinguishing enabled from non-enabled inputs, we say that our theory is not input

receptive, even though TP is closed under input extensions. Once an inconsistency has arisen, the

resulting behaviour is unspecified, so we assume that subsequent observations of the component

are chaotic.

Example 3.2. Throughout this chapter, we use the following running example to demonstrate the

suitability of our framework for component-based design. A multi-function device capable of

printing and scanning is modelled as a component Device in Figure 3.1. The device can be placed

in print mode or scan mode, can receive job details, and can print and scan. From the perspective

of the device, actions print and scan should be treated as outputs (indicated by !), while all other

actions are inputs (indicated by ?).

Concerning the diagrammatic representation, the interface of a component is given by the ac-

tions labelling transitions in the figure (note that, in general, the interface may contain actions

that do not occur in a component’s behaviour). For compactness, we avoid giving an explicit

representation to input transitions immediately leading to an inconsistent state, since they can be

inferred from the input-receptivity of observable traces. Furthermore, at this stage of the disser-

tation, whether a node is a circle, square or contains • is irrelevant; the distinction will become

apparent later on. �

From hereon let P , Q and R be components with signatures 〈AIP , AOP , TP , FP〉, 〈AIQ,AOQ,
TQ, FQ〉 and 〈AIR,AOR, TR, FR〉 respectively.

Notation. Let A and B be sets of actions. For a trace t, write t � A for the projection of t onto

A. Now for T ⊆ A∗, write T � B for {t � B : t ∈ T}, T ⇑ B for {t ∈ B∗ : t � A ∈ T} and T ↑ B
for T · (B \ A) · (A ∪ B)∗.

3.1.1 Refinement

The refinement relation on components should support safe substitutivity, meaning that, for Q to

be used in place ofP , we requireQ to exist safely in every environment that is safe forP . Whether

22 Chapter 3. Trace-Based Theory of Components

job details? print!

job details?

job details? scan!

job details?

scan mode?

print mode?

print mode?

scan mode?

print mode?

scan mode?

scan!

print!

Figure 3.1: Printing/scanning device (Device)

an environment is safe or not for a component depends on the interaction sequences between the

two. The affirmative holds if the environment can prevent the component from performing an

inconsistent trace. As outputs are controlled by the component, it follows that a safe environment

must refuse to issue an input on any trace from which there is a sequence of output actions that

allow the trace to become inconsistent.

Given a component P , we can formulate the safe component E(P), containing all of P’s ob-

servable and inconsistent traces, but satisfying the additional property: if t ∈ TP and there exists

t′ ∈ (AOP)∗ such that tt′ ∈ FP , then t ∈ FE(P). This has the effect of making the component im-

mediately inconsistent whenever it has the potential to become inconsistent under its own control.

If the environment respects this safe component, by not issuing any input that results in an incon-

sistent trace, then the component can never encounter an inconsistent trace. Note that if ε ∈ FE(P)
then there is no environment that can prevent P from performing an inconsistent trace. However,

for uniformity we still refer to E(P) as the safe component of P .

Definition 3.3. The safe component for P is defined as E(P) = 〈AIP ,AOP , TP ∪ FE(P), FE(P)〉,
where FE(P) = {t ∈ TP : ∃t′ ∈ (AOP)∗ · tt′ ∈ FP} · A∗P . �

Based on safe components, we can now give the formal definition of substitutive refinement.

Definition 3.4 (Refinement). Q is said to be a refinement of P , written Q vimp P , iff:

I1. AIP ⊆ AIQ

I2. AOQ ⊆ AOP

I3. AIQ ∩ AOP = ∅

I4. TE(Q) ⊆ TE(P) ∪ (TE(P) ↑ AIQ)

I5. FE(Q) ⊆ FE(P) ∪ (TE(P) ↑ AIQ). �

3.1. A Theory of Substitutable Components 23

For Q to be a refinement of P , the interface of Q must be substitutable for the interface of P ,

meaning that Q must be willing to accept all of P’s inputs, while it must produce only a subset

of P’s outputs, as witnessed by I1 and I2. Condition I3 ensures that P and Q are compatible,

that is, they are not allowed to mix action types. In [CCJK12] we did not impose this constraint,

as it is not necessary to guarantee substitutivity. However, in this dissertation we choose to in-

clude the constraint for three reasons: (i) it is not necessarily meaningful to convert outputs into

inputs during refinement; (ii) compositionality of hiding does not hold without this constraint; and

(iii) mixing of action types is problematic for assume-guarantee reasoning, which deals with the

behaviour of the environment.

Condition I4 ensures that the observable behaviour of Q is contained within the behaviour of

P , except for when an input in AIQ \ AIP is encountered. The lifting TE(P) ↑ AIQ represents the

extension of P’s interface to include all inputs inAIQ \AIP . As these inputs are not accepted by P ,

they are treated as bad inputs, hence the suffix closure with arbitrary (chaotic) behaviour. Finally,

condition I5 ensures that Q cannot introduce any new errors that are not in P’s behaviour. Note

that checking FQ ⊆ FP ∪ (TE(P) ↑ AIQ) would be too strong to use for the last clause, as we are

only interested in trace containment up to the point where an environment can issue a bad input,

from which the component can become inconsistent autonomously.

The motivation for treating inputs in AIQ \ AIP as bad in P is a consequence of the behaviour

arising through encountering such an input in P being unspecified, meaning that the behaviour of

Q should be unconstrained. This convention shares similarity with the weak refinement defined by

Raclet et al. [RBB+09b], whereby the refining componentQmay provide, although is not obliged

to provide, safe behaviour after encountering an input in AIQ \AIP . However, a key difference be-

tween our refinement and that of Raclet et al. is that for the latter, a refining component is required

to respect the behaviour of the original component, after having encountered a non-specified in-

put. This is due to their framework projecting out inputs in AIQ \ AIP , while we adopt a lifting

that disregards subsequent behaviour. As an aside, Raclet et al. also provide a strong refinement,

which ensures that inputs in AIQ \ AIP must never result in unsafe behaviour. Our theory could

have adopted one of these alternative conventions for handling unspecified inputs, which would

in turn have affected the definition of refinement, and consequently the operations of conjunction,

disjunction and quotient, which are all defined with respect to the choice of refinement.

Definition 3.5 (Equivalence). ComponentsP andQ are said to be equivalent, writtenP ≡imp Q,

iff P vimp Q and Q vimp P . �

The refinement relation is reflexive, and is transitive subject to the compatibility constraint

I3 holding. Unfortunately, this compatibility constraint cannot be inferred since inequality is not

transitive. However, equivalence as defined above does form an equivalence relation without any

further conditions.

24 Chapter 3. Trace-Based Theory of Components

Lemma 3.6. Refinement is reflexive, and is transitive subject to preservation of action types:

R vimp Q, Q vimp P and AIR ∩ AOP = ∅ impliesR vimp P .

Proof. Reflexivity is trivial. Transitivity follows by transitivity of subset inclusion, given TE(P) ↑
AIQ ⊆ TE(P) ↑ AIR, and TE(Q) ↑ AIR ⊆ TE(P) ↑ AIR. �

We are now in a position to define the compositional operators of our theory. In general, the

compositional operators are only partially defined, specifically on components that are said to

be composable. This is a syntactic check on the interfaces of the components to be composed,

which ensures that their composition is meaningful. For each operator, we state the required

composability constraints.

3.1.2 Parallel Composition

The parallel composition of two components yields a component representing the combined effect

of its operands running asynchronously. The composition is obtained by synchronising on com-

mon actions and interleaving on independent actions. This makes sense even in the presence of

non-blocking outputs, because communication mismatches arising through non-enabledness of in-

puts automatically appear as inconsistent traces in the composition, on account of our component

formulation. To support broadcasting, we make the assumption that inputs and outputs synchro-

nise to produce outputs. As the outputs of a component are controlled locally, we also assume that

the output actions of the components to be composed are disjoint, in which case we say that the

components are composable. In practice, components that are not composable can be made so by

employing renaming.

Definition 3.7. Let P and Q be composable for parallel, i.e., AOP ∩ AOQ = ∅. Then P || Q is the

component 〈AIP||Q,A
O
P||Q, TP||Q, FP||Q〉, where:

• AIP||Q = (AIP ∪ AIQ) \ (AOP ∪ AOQ)

• AOP||Q = AOP ∪ AOQ

• TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q

• FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)] · A∗P||Q ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] · A∗P||Q. �

In words, the observable traces of the composition are simply those traces that are inconsistent,

plus any trace whose projection onto AP is a trace of P and whose projection onto AQ is a trace

of Q. A trace is inconsistent if it has a prefix whose projection onto the alphabet of one of the

components is inconsistent and the projection onto the alphabet of the other component is an

observable trace of that component.

3.1. A Theory of Substitutable Components 25

In the theory of interface automata [dAH01] (which also does not insist on input receptivity,

although component models are operational) a backward propagation of inconsistencies is per-

formed over output actions, followed by a pruning operation on inconsistencies. This backward

propagation is akin to the E operator of our theory. We do not need to use this operator to define

the parallel composition, since backward propagation of inconsistencies is implicitly performed

as part of our definition for refinement. Further detail can be consulted in Section 4.8.

As a further remark, we comment that the parallel composition operator for interface automata

combines input and output actions into a hidden action. Our theory eschews this decision for two

reasons. First, it is no longer possible to support broadcast communication, whereby one output

can be received by multiple components. Secondly, parallel composition is not an associative oper-

ator when inputs and outputs combine to become hidden, which constrains the algebraic properties

satisfied by the theory.

Lemma 3.8. The definition of parallel composition yields a component.

Proof. First note that FP||Q is closed under extensions, FP||Q ⊆ TP||Q and TP||Q is prefix closed.

To show receptivity, let t ∈ TP||Q and a ∈ AIP||Q. If t ∈ FP||Q, then certainly ta ∈ FP||Q and

so ta ∈ TP||Q. Instead, if t ∈ TP||Q \ FP||Q, then t � AP ∈ TP and t � AQ ∈ TQ. By input

receptivity of TP and TQ it follows that ta � AP ∈ TP and ta � AQ ∈ TQ. Hence ta ∈ TP||Q,

and so TP||Q is closed under finitary input receptiveness. �

Lemma 3.9. Parallel composition is associative and commutative.

Proof. Commutativity is trivial. For associativity, we show that FP||(Q||R) = F(P||Q)||R, given

that the T -set equivalence is similar. As a shorthand, we use A to denote AP||(Q||R), which is

equal to A(P||Q)||R.

FP||(Q||R) = [TP ⇑ A ∩ FQ||R ⇑ A] · A∗ (i)

∪ [FP ⇑ A ∩ TQ||R ⇑ A] · A∗

= [TP ⇑ A ∩ ((FQ ⇑ AQ||R ∩ TR ⇑ AQ||R) · A∗Q||R) ⇑ A] · A∗ (ii)

∪ [TP ⇑ A ∩ ((TQ ⇑ AQ||R ∩ FR ⇑ AQ||R) · A∗Q||R) ⇑ A] · A∗ (iii)

∪ [FP ⇑ A ∩ (TQ ⇑ AQ||R ∩ TR ⇑ AQ||R) ⇑ A] · A∗

∪ [FP ⇑ A ∩ FQ||R ⇑ A] · A∗ contained within (i), so within (ii) and (iii)

= [TP ⇑ A ∩ (FQ ⇑ A ∩ TR ⇑ A)] · A∗

∪ [TP ⇑ A ∩ (TQ ⇑ A ∩ FR ⇑ A)] · A∗

∪ [FP ⇑ A ∩ (TQ ⇑ A ∩ TR ⇑ A)] · A∗

26 Chapter 3. Trace-Based Theory of Components

= [(TP ⇑ A ∩ FQ ⇑ A) ∩ TR ⇑ A] · A∗

∪ [(TP ⇑ A ∩ TQ ⇑ A) ∩ FR ⇑ A] · A∗

∪ [(FP ⇑ A ∩ TQ ⇑ A) ∩ TR ⇑ A] · A∗

= [(TP ⇑ AP||Q ∩ FQ ⇑ AP||Q) ⇑ A ∩ TR ⇑ A] · A∗

∪ [(TP ⇑ AP||Q ∩ TQ ⇑ AP||Q) ⇑ A ∩ FR ⇑ A] · A∗

∪ [(FP ⇑ AP||Q ∩ TQ ⇑ AP||Q) ⇑ A ∩ TR ⇑ A] · A∗

= [FP||Q ⇑ A ∩ TR ⇑ A] · A∗

∪ [TP||Q ⇑ A ∩ FR ⇑ A] · A∗

= F(P||Q)||R

�

Parallel is not idempotent in general because of composability, which requires disjointness of

output actions. The following result shows that parallel composition is monotonic on refinement,

subject to restrictions on the interfaces to be composed and composability. A corollary of this

result is that mutual refinement is a congruence for parallel, subject (only) to composability.

Theorem 3.10. Let P , Q, P ′ and Q′ be components such that P and Q are composable, AP ′ ∩
AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AOP||Q ∩ A

I
P ′||Q′ = ∅. If P ′ vimp P and Q′ vimp Q, then

P ′ || Q′ vimp P || Q.

Proof. It is easy to show that the conditions on alphabets are satisfied. To show t ∈ FE(P ′||Q′)

implies t ∈ FE(P||Q) ∪ (TE(P||Q) ↑ AIP ′||Q′) (and respectively for the T -sets), assume that the

result holds for all strict prefixes of t.

First suppose that t 6∈ A∗P||Q. Then there exists a prefix t′a of t such that t′ ∈ A∗P||Q and

a ∈ AIP ′||Q′ \ AP||Q. As t′ is a strict prefix of t, it follows that t′ ∈ TE(P||Q) and so t′a ∈
TE(P||Q) ↑ AIP ′||Q′ . Hence t ∈ TE(P||Q) ↑ AIP ′||Q′ as required.

Instead, if t ∈ A∗P||Q, then, in the case of showing F -containment, it follows that there exists

t′′ ∈ (AOP ′||Q′)
∗ such that tt′′ ∈ FP ′||Q′ . By the conditions on alphabets, it also follows that

tt′′ ∈ A∗P||Q. It can now be shown that tt′′ � AP = tt′′ � AP ′ (and similarly forAQ andAQ′), for

suppose that there exists a ∈ AP \AP ′ on the trace tt′′. Then a ∈ AOP , which implies a 6∈ AP ′||Q′ ,
as a 6∈ AQ′ by compatibility and composability. Instead, if a ∈ AP ′ \ AP , then a ∈ AIP ′ . As

a ∈ AP ′||Q′ ∩ AP||Q, it must hold that a ∈ AIQ, but, by the conditions of the theorem, it would

follow that a ∈ AIP , which is contradictory.

So, without loss of generality, suppose tt′′ � AP ′ ∈ FP ′ and tt′′ � AQ′ ∈ TQ′ . By refinement

at the component level, it follows that tt′′ � AP ∈ FE(P) and tt′′ � AQ ∈ TE(Q). From this, it

is easy to show that tt′′ ∈ FE(P||Q), and so t ∈ FE(P||Q) as required. The T -set containment is a

simplification, since it is not necessary to consider the t′′ extension. �

3.1. A Theory of Substitutable Components 27

Note that, in [RBB+11], parallel composition is claimed to be monotonic for modal interfaces

without any conditions on the interfaces (except for composability). This is due to the authors

using strong refinement (as remarked in Section 3.1.1), which is more restrictive than vimp, since

it requires that all actions in AIS′P \ A
I
SP and AIS′Q \ A

I
SQ never produce unsafe behaviour.

Example 3.11. The most liberal User that can interact with the Device (shown in Figure 3.1) is a

component obtained from Device by interchanging inputs and outputs (given that we do not ex-

plicitly represent traces making the component receptive). The definition of parallel composition

guarantees that the composition of the Device along with the resultant User is free of inconsisten-

cies (i.e., communication mismatches), and is a component equal to the pictorial representations

of the Device and User, but with all actions converted to outputs.

Note that, if a user wished to perform the trace print mode! scan mode!, then this would also

be a trace in the parallel composition, since print mode? scan mode? is a trace of Device, albeit

an inconsistent one, which is why it is not explicitly represented in Figure 3.1. Consequently, the

trace would also be inconsistent in the parallel composition. �

3.1.3 Conjunction

The conjunction operator on components can be thought of as supporting independent develop-

ment, in the sense that it yields the coarsest component that will work in any environment safe for

at least one of its operands. Consequently, the conjunction of components is the coarsest compo-

nent that is a refinement of its operands (i.e. is the meet operator), which is why it is frequently

referred to as the shared refinement operator [DHJP08, RBB+09b].

In a number of frameworks, including [LV07], conjunction represents synchronous parallel

composition, formed as the intersection of the good behaviours of the components to be com-

posed. In contrast, our conjunction is a substitutive refinement of each component. Therefore, an

input must be accepted in the conjunction if at least one of the components accepts it, while an

input should be accepted in the synchronous parallel only if all of the appropriately alphabetised

components accept it.

Conjunction is only defined on composable components, where P and Q are composable for

conjunction if the sets AIP ∪ AIQ and AOP ∪ AOQ are disjoint.

Definition 3.12. Let P and Q be components composable for conjunction, i.e., such that the sets

AIP ∪AIQ andAOP ∪AOQ are disjoint. Then P∧Q is the component 〈AIP∧Q,AOP∧Q, TP∧Q, FP∧Q〉,
where:

• AIP∧Q = AIP ∪ AIQ

• AOP∧Q = AOP ∩ AOQ

28 Chapter 3. Trace-Based Theory of Components

• TP∧Q = (TE(P) ∪ (TE(P) ↑ AIQ)) ∩ (TE(Q) ∪ (TE(Q) ↑ AIP))

• FP∧Q = (FE(P) ∪ (TE(P) ↑ AIQ)) ∩ (FE(Q) ∪ (TE(Q) ↑ AIP)). �

The T and F sets are defined such that any trace in the conjunction is a trace of both P
and Q, unless there is an input along the trace that does not belong to the alphabet of one of

the components (say Q). On encountering such an input, the remainder of the trace would be in

TE(Q) ↑ AIP , which has the effect of leaving the behaviour of P unconstrained.

Lemma 3.13. Conjunction is associative, commutative and idempotent.

Proof. Obvious, given the algebraic properties of the set operations. �

The following theorem demonstrates that conjunction really does correspond to the meet op-

erator, and that it is monotonic under refinement, subject to composability.

Theorem 3.14. Let P and Q, and P ′ and Q′, be components composable for conjunction. Then:

• P ∧Q vimp P and P ∧Q vimp Q

• R vimp P andR vimp Q impliesR vimp P ∧Q

• P ′ vimp P and Q′ vimp Q implies P ′ ∧Q′ vimp P ∧Q.

Proof. For the first claim, we consider just inconsistent trace containment (the proof for observable

traces being similar). Let t ∈ FE(P∧Q), then there exists t′, a prefix of t and t′′ ∈ (AOP∧Q)∗, such

that t′t′′ ∈ FP∧Q. By the definition of conjunction, we have t′t′′ ∈ FE(P) ∪ (TE(P) ↑ AIQ) and

t′t′′ ∈ FE(Q) ∪ (TE(Q) ↑ AIP). By the properties of lifting, we see that t′t′′ ∈ FE(P) ∪ (TE(P) ↑
(AIP ∪ AIQ)) and t′t′′ ∈ FE(Q) ∪ (TE(Q) ↑ (AIP ∪ AIQ)). The result then follows from noting that

AIP ∪ AIQ = AIP∧Q, t′′ ∈ (AOP ∩ AOQ)∗, and extension closure of FE(P) ∪ (TE(P) ↑ AIP∧Q) and

FE(Q) ∪ (TE(Q) ↑ AIP∧Q).

For the second claim, we again show the containment on inconsistent traces, as the proof for

the observable traces is near identical. Let t ∈ FE(R). Then from R vimp P and R vimp Q we

obtain t ∈ FE(P) ∪ (TE(P) ↑ AIR) and t ∈ FE(Q) ∪ (TE(Q) ↑ AIR). Thus t ∈ FE(P) ∩ FE(Q) or

t ∈ FE(P) ∩ (TE(Q) ↑ AIR) or t ∈ FE(Q) ∩ (TE(P) ↑ AIR) or t ∈ (TE(P) ↑ AIR) ∩ (TE(Q) ↑ AIR).

The first three imply t ∈ FP∧Q (since the liftings in the second and third choices can be replaced

with ↑ AIP and ↑ AIQ respectively), while the fourth possibility implies t ∈ FP∧Q∪(TP∧Q ↑ AIR).

Hence t ∈ FE(P∧Q) ∪ (TE(P∧Q) ↑ AIR) as required.

For the third claim, we know by the first part that P ′∧Q′ vimp P ′ and P ′∧Q′ vimp Q′, from

which P ′∧Q′ vimp P and P ′∧Q′ vimp Q can be deduced by transitivity. The result now follows

by the second claim. Note that the compatibility conditions for transitivity may not hold, but this

does not matter, since the problematic cases are whenAIQ′ ∩ (AOP \AOQ) orAIP ′ ∩ (AOQ \AOP) are

3.1. A Theory of Substitutable Components 29

non-empty. To circumvent the problem, for each of P andQ it is possible to construct components

P ′′ and Q′′ that have output sets AOP ∩ AOQ, obtained by deleting all traces containing outputs not

in this set. Then it certainly holds that P ′ ∧ Q′ vimp P ′′ and P ′ ∧ Q′ vimp Q′′, from which it is

straightforward to show, by the definition of conjunction, that P ∧Q = P ′′ ∧Q′′. �

Example 3.15. To demonstrate conjunction, we consider a device that is capable of printing and

faxing documents. The behaviour of this device is shown in Figure 3.2. Note how this device is

capable of printing multiple documents after having received job details (indicated by the self-

loop labelled with print). At this stage, square nodes, and circular nodes containing •, have no

significance.

The conjunction of the original multi-function device (capable of printing and scanning, shown

in Figure 3.1) and this new printing/faxing device is shown in Figure 3.3. The resulting device is

responsive to the inputs that can be issued for each of the separate devices, but is only willing

to perform functions that can be executed by both. Therefore, the resulting device is unable to

scan or fax documents, even though it can be placed in these modes. Moreover, the device is

only able to print a single document after having received job details. Such behaviour may seem

unnecessarily restrictive and undesirable; however, the resulting device is the most general that

can be used safely in place of the original printing/scanning device and the printing/faxing device.

Consequently, the resulting device can only introduce communication mismatches that both of the

original devices can introduce.

One reason why the conjunction in Figure 3.3 is so restrictive is that it cannot perform any

output action that is not in the interface of both conjuncts. If we improve on this situation by

extending the set of actions of the device in Figure 3.1 with fax mode and fax, and extending the

set of actions of the device in Figure 3.2 with scan mode and scan, so that the components to be

conjoined have identical interfaces, then the conjunction is a component as shown in Figure 3.4.

This device is capable of scanning and faxing documents, but cannot be placed in scan mode after

it has been placed in fax mode and vice versa, although it can still be switched into print mode

and back.

We remark that if, instead, we used conjunction defined as the intersection of behaviours (i.e.

synchronous parallel, as in e.g. [LV07]), this would yield a device that cannot be used safely in

place of either. The problem is that the behaviour would be unspecified when the device is placed

in either scan mode or fax mode, which means it will not work in any environment compatible

with the printing/scanning device, nor the printing/faxing device. �

3.1.4 Disjunction

Disjunction is the dual of conjunction, so corresponds to the join operator on the refinement pre-

order. Therefore, the disjunction of a collection of components is the finest component that they

30 Chapter 3. Trace-Based Theory of Components

job details? print!

job details?

print!

job details? fax!

job details?

fax mode?

print mode?

print mode?

fax mode?

print mode?

fax mode?

fax!

print!

Figure 3.2: Printing/faxing device

job details?

job details? print!

job details?

job details? fax mode?

scan mode?

scan mode?

fax mode?

scan mode?

fax mode?

print mode?

print!

Figure 3.3: Conjunction of the printing/scanning and printing/faxing devices

each refine, meaning that an environment safe for the disjunction is an environment safe for both

of its arguments. Composability of components under disjunction is the same as for conjunction.

Definition 3.16. Let P and Q be components composable for disjunction, i.e., such that the sets

AIP ∪AIQ andAOP ∪AOQ are disjoint. Then P∨Q is the component 〈AIP∨Q,AOP∨Q, TP∨Q, FP∨Q〉,
where:

• AIP∨Q = AIP ∩ AIQ

• AOP∨Q = AOP ∪ AOQ

• TP∨Q = [(TP ∪ TQ) ∩ A∗P∨Q] ∪ FP∨Q

• FP∨Q = [(FP ∪ FQ) ∩ A∗P∨Q] · A∗P∨Q. �

Essentially, as the disjunction should be refined by its arguments, the behaviours of P and Q
should be contained within the behaviour of P ∨ Q. Similarly, if a trace is inconsistent in one of

P or Q, then it must also be inconsistent within the disjunction.

3.1. A Theory of Substitutable Components 31

•

job details? print!

job details? scan!

job details? print!

job details? fax!

job details? print!

job details?

print!

job details?

scan!

job details?

print!

job details?

fax!

job details?

print!print!

scan mode?

fax mode?

scan mode?

print mode?

scan mode?

fax mode?

print mode?

fax mode?

print mode?

scan mode?

fax mode?

print mode?

scan mode?

fax mode?

print mode?

Figure 3.4: Conjunction of the printing/scanning and printing/faxing devices when the components

have identical interfaces incorporating all actions

32 Chapter 3. Trace-Based Theory of Components

Lemma 3.17. Disjunction is associative, commutative and idempotent.

Proof. Commutativity and idempotence are trivial. For associativity, we show that FP∨(Q∨R) =

F(P∨Q)∨R, since the T -set equivalence follows by the same reasoning.

FP∨(Q∨R) = [(FP ∪ FQ∨R) ∩ A∗P∨(Q∨R)] · A
∗
P∨(Q∨R)

= [(FP ∪ [(FQ ∪ FR) ∩ A∗Q∨R] · A∗Q∨R) ∩ A∗P∨(Q∨R)] · A
∗
P∨(Q∨R)

= [(FP ∪ (FQ ∪ FR)) ∩ A∗P∨(Q∨R)] · A
∗
P∨(Q∨R)

= [((FP ∪ FQ) ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= [([(FP ∪ FQ) ∩ A∗P∨Q] · A∗P∨Q ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= [(FP∨Q ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= F(P∨Q)∨R

�

As for conjunction, disjunction has an analogous set of algebraic properties, obtained by re-

versing the direction of refinement.

Theorem 3.18. Let P and Q, and P ′ and Q′, be components composable for disjunction. Then:

• P vimp P ∨Q and Q vimp P ∨Q

• P vimp R and Q vimp R implies P ∨Q vimp R

• P ′ vimp P and Q′ vimp Q implies P ′ ∨Q′ vimp P ∨Q.

Proof. For the first claim, suppose t ∈ FE(P). Then there exists a prefix t′ of t and a trace

t′′ ∈ (AOP)∗ such that t′t′′ ∈ FP . Now either t′t′′ ∈ A∗P∨Q, implying t′t′′ ∈ FP∨Q and so

t ∈ FE(P∨Q), or there exists a prefix t1i of t′ with t1 ∈ A∗P∨Q and i ∈ AIP \ AIQ. Consequently,

t1 ∈ TP∨Q and t1i ∈ TP∨Q ↑ AIP . Hence t ∈ TP∨Q ↑ AIP as required. For observable trace

containment, suppose t ∈ TP . Then either t ∈ TP ∩ A∗P∨Q or t ∈ (TP ∩ A∗P∨Q) ↑ AIP . This

means that t ∈ TP∨Q∪(TP∨Q ↑ AIP) as required. Hence P vimp P∨Q. ShowingQ vimp P∨Q
is similar.

For the second claim, suppose t ∈ FE(P∨Q). Then there exists t′, a prefix of t and t′′ ∈
(AOP∨Q)∗, such that t′t′′ ∈ FP∨Q and, without loss of generality, t′t′′ ∈ (FP ∩ A∗P∨Q) · A∗P∨Q.

Therefore there is a prefix tp of t′t′′ such that tp ∈ FP ∩ A∗P∨Q. From P vimp R, it follows that

tp ∈ (FE(R) ∪ (TE(R) ↑ AIP)) ∩ A∗P∨Q and so tp ∈ FE(R) ∪ (TE(R) ↑ AIP∨Q). As t′t′′ ∈ A∗P∨Q,

it follows that t′t′′ ∈ (AIP∨Q ∪ AR)∗. Hence t′t′′ ∈ FE(R) ∪ (TE(R) ↑ AIP∨Q), from which

we can deduce t ∈ FE(R) ∪ (TE(R) ↑ AIP∨Q). For the observable trace t ∈ TP∨Q \ FE(P∨Q),
it holds without loss of generality that t ∈ TP ∩ A∗P∨Q. From P vimp R it follows that t ∈
(TE(R) ∪ (TE(R) ↑ AIP)) ∩ A∗P∨Q, and so t ∈ TE(R) ∪ (TE(R) ↑ AIP∨Q) as required.

3.1. A Theory of Substitutable Components 33

job details? print!

print!

job details?

print mode?

print!

Figure 3.5: Disjunction of the printing/scanning and printing/faxing devices

For the third claim, we know by the first part that P vimp P ∨ Q and Q vimp P ∨ Q,

from which P ′ vimp P ∨ Q and Q′ vimp P ∨ Q can be deduced by transitivity (assuming

the compatibility constraints are satisfied). The result now follows by the second claim. When the

compatibility constraints are not satisfied, it must be becauseAIP ′∩AOQ orAIQ′∩AOP is non-empty.

It is possible to construct components P ′′ andQ′′ with input actionsAIP ′ ∩AIQ′ , obtained from P ′

andQ′ by deleting all traces containing an input not inAIP ′∩AIQ′ . Then certainly P ′′ vimp P∨Q
andQ′′ vimp P ∨Q, from which the result can be deduced by observing that P ′∨Q′ = P ′′∨Q′′.

�

Example 3.19. A user wishing to use a multi-function device is non-deterministically allocated

the printing/scanning device (Figure 3.1) or the printing/faxing device (Figure 3.2). The most

general behaviour allowed by the user (such that communication mismatches are not introduced) is

obtained by inverting the inputs and outputs on the disjunction of the two devices. The disjunction

is shown in Figure 3.5. �

3.1.5 Hiding

We introduce hiding to support abstraction for hierarchical development. Hiding is a unary oper-

ator on components that has the effect of contracting the interface by removing an action. Taking

intuition from a simple analogy in which inputs correspond to buttons and outputs correspond to

lights, the resulting behaviour of a component under hiding of action b is as follows:

• If b is an input, then the b-button will never be pressed. This means that no behaviour is

observable beyond a b on a trace, so all traces should be pruned on encountering a b.

• If b is an output, then hiding suppresses the visibility of the b-light. The component should

thus silently skip over b, which corresponds to projecting out b from all traces.

From this, we give the formal definition, which is dependent on the type of action to be hidden.

Definition 3.20. Let P be a component and let b be an action. The hiding of b in P is a component

P/b = 〈AIP/b,A
O
P/b, TP/b, FP/b〉, where:

• AIP/b = AIP \ {b}

34 Chapter 3. Trace-Based Theory of Components

• AOP/b = AOP \ {b}

• TP/b =

TP � AP/b if b ∈ AOP

TP ∩ A∗P/b otherwise

• FP/b =

FP � AP/b if b ∈ AOP

FP ∩ A∗P/b otherwise.
�

The soundness of this definition requires careful consideration when b is an output. For a trace

tb ∈ TP and input a ∈ AIP , observe that ta is a safe trace of P/b (i.e., ta ∈ TP/b \ FP/b) iff

both ta and tba are safe traces of P . Taking intuition from b being a hidden light, this behaviour

is correct since it cannot be known precisely when the light will illuminate, so it is only safe for

the environment to issue the input a after t if the component is willing to accept a both before and

after the light has been silently illuminated.

Theorem 3.21. Let P andQ be components and let b be an action. IfQ vimp P , thenQ/b vimp
P/b.

Proof. Begin by noting that E(Q)/b = E(Q/b) (and similarly for P). In the case that b ∈ AIQ,

let t ∈ FE(Q/b). Then t ∈ FE(Q)/b and so t ∈ FE(Q) ∩ A∗Q/b. By Q vimp P we have t ∈
(FE(P) ∪ (TE(P) ↑ AIQ)) ∩A∗Q/b. This means that t ∈ (FE(P) ∩A∗P/b) ∪ (TE(P) ∩A∗P/b)(A

I
Q/b \

AP/b)(AP/b∪AIQ/b)
∗, implying t ∈ FE(P)/b∪(TE(P)/b ↑ AIQ/b). Hence t ∈ FE(P/b)∪(TE(P/b) ↑

AIQ/b) as required. The observable trace containment can be shown similarly. Note that this case

also applies when b 6∈ AP ∪ AQ.

For the case when b ∈ AOP , assume that t ∈ FE(Q/b), from which we know t ∈ FE(Q)/b.

Suppose there is a t′ ∈ FE(Q) such that t′ � AQ/b = t. Then from Q vimp P it follows that

t′ ∈ FE(P) ∪ (TE(P) ↑ AIQ). If t′ ∈ FE(P), then t′ ∈ A∗P ∩ A∗Q, which implies t′ � AP/b = t.

Hence t ∈ FE(P)/b, which implies t ∈ FE(P/b). If t′ 6∈ FE(P), then there is t′′at′′′ ≡ t′ such that

t′′ ∈ TE(P), a ∈ AIQ \ AP and t′′′ ∈ (AP ∪ AIQ)∗. From this it follows that t′′ � AP/b ∈ TE(P)/b
and a ∈ AIQ/b \ AP/b, which in conjunction with the fact that t′′a � AP/b is a prefix of t implies

t′′a � AP/b ∈ TE(P)/b ↑ AIQ/b. The remaining extension of t′′a � AP/b to t ∈ A∗Q/b (not

necessarily t′′′ � AP/b) is certainly contained in (AP/b ∪ AIQ/b)
∗, which implies t ∈ TE(P)/b ↑

AIQ/b and so t ∈ TE(P/b) ↑ AIQ/b as required. The T -set containment is similar. �

Example 3.22. Disaster strikes and the Device becomes broken such that it will no longer scan

documents (depicted as BrokenDevice in Figure 3.6). As a result, the BrokenDevice should not be

placed in scan mode. The updated behaviour of the device is given by BrokenDevice/scan mode,

3.1. A Theory of Substitutable Components 35

job details? print!

job details?

job details?

scan mode?scan mode?

print mode?

scan mode?

print!

Figure 3.6: Broken device unable to scan (BrokenDevice)

job details? print!

job details?

print mode?

print!

Figure 3.7: Hiding scan mode in the broken device

as shown in Figure 3.7. The resulting component model contracts the interface of the BrokenDevice

by being indifferent to scan mode requests. �

3.1.6 Quotient

The final operation that we consider is that of quotient, which provides functionality to synthesise

components from a global specification and partial implementation. Given a component repre-

senting a system R, together with an implementation of one component P in the system R, the

quotient yields the coarsest component for the remaining part of R to be implemented. Thus,

the parallel composition of the quotient with P should be a refinement of R. Therefore, quo-

tient can be thought of as the upper/right adjoint of parallel composition in an appropriate Galois

connection, as made explicit later on.

A necessary condition for the existence of the quotient is that AOP ⊆ AOR, as otherwise refine-

ment will fail on the alphabet containment checks.

Definition 3.23. Let P and R be components such that AOP ⊆ AOR. The quotient of P from R is

the componentR/P with signature 〈AIR/P ,A
O
R/P , TR/P , FR/P〉, where:

• AIR/P = AIR \ AIP

• AOR/P = AOR \ AOP

• TR/P is the largest prefix-closed and input-receptive subset of

{t ∈ A∗R/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒ t′ ∈ TE(R)} ∩

36 Chapter 3. Trace-Based Theory of Components

{t ∈ A∗R/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ FP =⇒ t′ ∈ FE(R)}

• FR/P = {t ∈ TR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒ t′ ∈ FE(R)}. �

Before explaining the intuition behind the definition, we first show that R/P really is a com-

ponent, since this is not evident from the formulations of TR/P and FR/P .

Lemma 3.24. The quotient operation yields a component.

Proof. Clearly TR/P is prefix-closed and input-receptive, and FR/P ⊆ TR/P by definition. To

show extension closure of FR/P , suppose t ∈ FR/P . Then for each t′ ∈ A∗R such that t′ �

AR/P = t, it follows that t′ � AP 6∈ TP or t′ ∈ FE(R). These conditions are satisfied by any

extension of t′ with words in A∗R (as are the conditions for TR/P), thus any extension of t by

words in A∗R/P is also in FR/P . �

Explaining the intuition behind the definition, observe that whenever R is inconsistent, the

parallel composition of P and the quotient can be inconsistent, and so the quotient itself can be

inconsistent. Similarly, if a trace is not in P , then it will not be encountered in the composition

P || (R/P), hence it should be inconsistent in the quotient (so that we obtain the least refined

solution). These two conditions correlate with t � AP ∈ TP =⇒ t ∈ FE(R) in the definition of

FR/P .

If P is inconsistent on a trace t when R is not inconsistent, then the parallel composition

of P and the quotient would be inconsistent if t is in the quotient. Similarly, if t is a trace of

P , but not of R, then the parallel composition would have a behaviour that is not in R, if t

were included in the quotient. Both of these situations are problematic, since the composition of

P and the quotient would not be a refinement of R. Consequently, the quotient must suppress

the last output on its behaviour of this trace, so that the composition can never encounter the

inconsistency (or additional behaviour) that P will introduce. In our definition, this correlates

with the requirement that TR/P is the largest input-receptive set satisfying the conditions that

t � AP ∈ FP =⇒ t ∈ FE(R) and t � AP ∈ TP =⇒ t ∈ TE(R).

Although R/P is always defined when AOP ⊆ AOR, it may not be a realisable component,

even if both R and P are realisable. Unfortunately, there is no syntactic check on the interfaces

of R and P that can determine whether R/P is realisable or not. This can only be inferred by

examining the behaviours ofR and P .

Theorem 3.25. Let P , Q andR be components. Then P || Q vimp R iff:

• R/P is defined (i.e., AOP ⊆ AOR)

• P || (R/P) vimp R

• AIQ = AIR/P implies Q vimp R/P .

3.1. A Theory of Substitutable Components 37

Proof. For the first claim, if P || Q vimp R, then AOP||Q ⊆ A
O
R. As AOP||Q = AOP ∪ AOQ, it

follows that AOP ⊆ AOR i.e., the quotient is defined. Instead, if R/P is defined, then AOP ⊆ AOR.

Taking Q = 〈AIR,AOR \ AOP , ∅, ∅〉 gives P || Q vimp R.

For the second claim, let t ∈ TE(P||(R/P)) such that t 6∈ A∗R, and assume that all strict prefixes

of t are in TE(R) ∪ (TE(R) ↑ AIP||(R/P)). Then there is a prefix t′a of t such that t′ ∈ A∗R and

a ∈ AIP \ AR. Therefore, t′a ∈ TE(R) ↑ AIP||(R/P), which implies t ∈ TE(R) ↑ AIP||(R/P) by

extension closure. In the case that t ∈ A∗R, first suppose t ∈ FE(P||(R/P)). Then there exists a

prefix t′ of t and t′′ ∈ (AOP||(R/P))
∗ such that t′t′′ ∈ FP||(R/P). Without loss of generality, suppose

there is no prefix of t′t′′ in FP||(R/P). Then either t′t′′ � AP ∈ FP and t′t′′ � AR/P ∈ TR/P ,

or t′t′′ � AP ∈ TP and t′t′′ � AR/P ∈ FR/P . If the former holds, then t′t′′ ∈ FE(R) by the

definition of TR/P , which implies t ∈ FE(R). In the case of the latter, if follows by the definition

of FR/P that t′t′′ ∈ FE(R), from which it can be deduced that t ∈ FE(R). Now suppose that

t ∈ TP||(R/P) \ FE(P||(R/P)). Then it follows that t � AP ∈ TP and t � AR/P ∈ TR/P . By the

definition of TR/P , it follows that t ∈ TE(R) as required.

For the third claim, let t ∈ TE(Q). Then certainly t ∈ A∗R/P , since AIQ = AIR/P and R/P
has the largest possible set of outputs. Now begin by supposing that t ∈ FE(Q). Then there exists

a prefix t′ of t and t′′ ∈ (AOQ)∗ such that t′t′′ ∈ FQ. Note that t′t′′ ∈ A∗R/P . Let t′′′ ∈ A∗R
be an arbitrary trace such that t′′′ � AR/P = t′t′′. If t′′′ � AP ∈ TP , then t′′′ ∈ FE(R), since

P || Q vimp R. Therefore, by the arbitrariness of t′′′, it follows that t′t′′ ∈ FR/P unless

t′t′′ 6∈ TR/P (which can only be if prefix-closure or input-receptiveness does not hold, but this

would imply t′t′′ 6∈ FQ). Hence t ∈ FE(R/P) as required. Now suppose that t ∈ TQ \ FE(Q).
Again, let t′′′ ∈ A∗R be an arbitrary trace such that t′′′ � AR/P = t. If t′′′ � AP ∈ TP , then

t′′′ ∈ TE(R), and if t′′′ � AP ∈ FP , then t′′′ ∈ FE(R), since P || Q vimp R. By the arbitrariness

of t′′′, it follows that t ∈ TR/P as required. �

This definition of quotient generalises that supplied in [CCJK12] and [BR08], both of which

require that the interface ofR/P synchronises with all actions of P . Although in this dissertation

we take AIR/P = AIR \ AIP , our definition works for any set such that AIR \ AIP ⊆ AIR/P ⊆ AR,

with the results of Theorem 3.25 continuing to hold. In other words, the quotient operation can

be parameterised on the set AIR/P of input actions of R/P . For any such choice of AIR/P , the

construction of TR/P and FR/P for this extended set of inputs remains unchanged from Defi-

nition 3.23 (having redefined AIR/P). Consequently, we can take AIR/P = AIR ∪ AOP , which

allows the interface of the quotient to observe all actions of P , and hence capture more specific

behaviours. In general, it is not possible to start with the original quotient R/P (having inputs

AIR \AIP) and refine it to a componentQ over the extended set of inputs such that P || Q vimp R
can be inferred, since parallel composition has interface restrictions for monotonicity to hold (cf

Theorem 3.10).

38 Chapter 3. Trace-Based Theory of Components

The following corollary formalises the quotient operator as the upper/right adjoint of parallel

composition by establishing an appropriate Galois connection on component spaces.

Corollary 3.26. Let P be a component, and let R = 〈R,vimp〉 and Q = 〈Q,vimp〉 be partially

ordered sets where R consists of all components with input set AIR and output set AOR, and Q

consists of all components with input set AIR \ AIP and output set AOR \ AOP . Then for each

R ∈ R and each Q ∈ Q, it holds that P || Q vimp R iff Q vimp R/P . Hence 〈FP : Q −→
R, GP : R −→ Q〉 forms a Galois connection between R and Q for every component P , where

FP(X) , P || X and GP(X) , X/P . Therefore, quotient can be seen as the upper/right adjoint

of parallel composition.

Proof. Follows from Theorem 3.25. �

The next theorem shows that quotient is well-behaved with respect to refinement.

Theorem 3.27. Let P , Q andR be components such that Q vimp P .

• If Q/R is defined, AIQ/R = AIP/R and AIR ∩ AOP = ∅, then Q/R vimp P/R.

• IfR/P is defined, AIR/Q = AIR/P and (AIQ \ AIP) ∩ AR = ∅, thenR/P vimp R/Q.

Proof. For the first property, note that definedness of Q/R implies definedness of P/R. Conse-

quently, R || (Q/R) vimp Q vimp P . The constraint AIR ∩ AOP = ∅ ensures that transitivity

holds, from which we deriveR || (Q/R) vimp P . Hence Q/R vimp P/R by Theorem 3.25.

For the second property, definedness of R/P implies definedness of R/Q. From Q vimp P ,

we obtain Q || (R/P) vimp P || (R/P) by Theorem 3.10 (the conditions of which are satisfied

by (AIQ \ AIP) ∩ AR = ∅). By Theorem 3.25 we know P || (R/P) vimp R, and so we obtain

Q || (R/P) vimp R by transitivity (Lemma 3.6), given that (AIQ \ AIP) ∩ AR = ∅ ensures that

action types are not mixed. Finally, by Theorem 3.25, it follows thatR/Q is the minimal solution

to Q || X vimp R, and soR/P vimp R/Q, given that AIR/P = AIR/Q. �

Example 3.28. To demonstrate quotient, we assume that the action job details can encode two

types of behaviour, depending on the mode of the device. When Device is in print mode, the

job details should encode information pertaining to printing, such as the document to be printed.

Conversely, when Device is in scan mode, the job details should contain information indicative

of scanning functionality, such as the resolution at which scanning must be performed. This

essentially means that, after the job details have been sent to Device, the device mode may not

be changed until the current job has been printed or scanned. This constraint is represented by

the component Constraint in Figure 3.8. The Constraint component is an observer that generates

errors when bad sequences of actions are seen, which is why all actions are treated as inputs. The

behaviour of the constrained device is given by Device || Constraint.

3.1. A Theory of Substitutable Components 39

job details?

print?

scan?

print mode?

scan mode?
print?

scan?

job details?

Figure 3.8: Constraint on job details

print mode!

scan mode!
job details!

print!

scan!

Figure 3.9: ErrorFree component

The most general behaviour of a user that interacts with the constrained device is given by

the quotient User2 = ErrorFree/(Device || Constraint) (as depicted in Figure 3.10). ErrorFree

is the component represented in Figure 3.9 having a single state with a self-loop for each action

(treated as an output). As ErrorFree does not possess any inconsistent states, the quotient operation

guarantees that User2 || Device || Constraint is free of inconsistencies, and hence User2 || Device
conforms to the behaviour of Constraint. �

Applications of quotient to mediator synthesis were demonstrated in [IT13, BCIJ13], as re-

marked in Section 1.3.

3.1.7 Full Abstraction

In this section, we demonstrate that our refinement relation is the weakest preorder preserving safe

substitutivity of components, by means of a testing framework that places components in parallel

with an arbitrary environment and checks for inconsistency. Based on this testing scenario, we

show that ≡imp is fully abstract for the full collection of operators in the specification theory.

Definition 3.29. Let P and Q be components. Then Q is inconsistency substitutable for P , de-

noted by Q vFimp P , iff ε ∈ FE(Q) implies ε ∈ FE(P). �

Theorem 3.30. Let P andQ be components such thatAIP ⊆ AIQ, AOQ ⊆ AOP andAIQ ∩AOP = ∅.
Then:

Q vimp P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q || R vFimp P || R.

Proof. First suppose Q vimp P . Then, from the constraint on the interface for R, we have that

Q || R vimp P || R by Theorem 3.10, since the constraints for that Theorem are satisfied. Hence

Q || R vFimp P || R as required.

40 Chapter 3. Trace-Based Theory of Components

job details!

print?

job details!

scan?

print mode!

scan mode!

print mode!

scan mode!

job details!

job details!

Figure 3.10: Component representing User2

For the other direction, suppose that Q 6vimp P . Then there exists a smallest t such that

t ∈ FE(Q) and t 6∈ FE(P) ∪ (TE(P) ↑ AIQ), or t ∈ TE(Q) and t 6∈ TE(P) ∪ (TE(P) ↑ AIQ).

In the case of the former, it follows (by the minimality of t) that t ∈ FQ. By the constraints

on the alphabets, it follows that there is a maximal prefix t′ of t such that t′ ∈ A∗R, and, moreover,

this is the same maximal prefix such that t′ ∈ A∗P . If t′ is a strict prefix of t, then by minimality of

t we have t′ ∈ TE(P) and t ∈ TE(P) ↑ AIQ, since the next action after t′ must be in AIQ \ AP , but

this is contradictory. Therefore, t′ = t, which means we can construct anR such that FR = ∅ and

TR is the smallest set containing t that makes R a component. Now t ∈ TR implies t ∈ FQ||R,

and so ε ∈ FE(Q||R) given t ∈ (AOQ||R)∗. However, as t 6∈ FE(P), it follows that t 6∈ FE(P||R),

hence ε 6∈ FE(P||R), which means Q || R 6vFimp P || R as required.

In the case of the latter, it is sufficient to consider t ∈ TQ. Again, there is a maximal prefix

t′ of t such that t′ ∈ A∗R, and, moreover, this is the same maximal prefix contained in A∗P . If t′

is a strict prefix, then the next symbol after t′ is an element of AIQ \ AP . Hence, by minimality

of t, it follows that t ∈ TE(P) ↑ AIQ, but this is contradictory. Therefore, we know t′ = t, so we

construct an R such that FR = {t′′ ∈ A∗R : t is a prefix of t′′} and TR is the least set making R
a component. Therefore t ∈ FQ||R, which yields ε ∈ FE(Q||R) given t ∈ (AOQ||R)∗. However, as

t 6∈ TE(P), it follows that t 6∈ TE(P||R), hence ε 6∈ TE(P||R). From this we obtain ε 6∈ FE(P||R), so

Q || R 6vFimp P || R as required. �

The conditions on the interfaces of P and Q are required for Theorem 3.30 to hold, since

Q || R vimp P || R does not imply that AIP ⊆ AIQ, AOQ ⊆ AOP and AIQ ∩ AOP = ∅.

From this characterisation of vimp, we obtain a full abstraction result for ≡imp on the speci-

fication theory, with respect to checking of inconsistency equivalence ≡Fimp (i.e., vFimp ∩ wFimp).
Our definition of full abstraction is taken from [vG94] (Definition 16), which means that ≡imp
is the coarsest congruence for the operators of our specification theory with respect to simple

inconsistency equivalence.

3.2. A Progress Sensitive Theory of Substitutable Components 41

Corollary 3.31. Substitutive equivalence≡imp is fully abstract for parallel composition, conjunc-

tion, disjunction, hiding and quotient with respect to observational equivalence of inconsistency.

Proof. Note that, under≡imp, none of the alphabet constraints (other than those for composability)

are required for the compositionality results to hold in Theorems 3.10, 3.14, 3.18, 3.21 and 3.27.

Consequently, ≡imp is a congruence for all of the compositional operators. Taking this along

with Theorem 3.30 shows that ≡imp is the coarsest such equivalence with respect to observational

equivalence of inconsistency. �

We do not obtain full abstraction for vimp, since the compositional operators do not form a

pre-congruence under vimp due to the compatibility constraints. The constraints are, however,

automatically satisfied for ≡imp.

3.2 A Progress Sensitive Theory of Substitutable Components

A perceived shortcoming of interface automata (and hence our theory in Section 3.1) is that the

principle of substitutivity requires a refining component to be no more expressive on the output it

can produce, in comparison to the behaviour of the original. In fact, the most refined component

will have an interface that is unwilling to produce any external stimuli whatsoever. Refinement

resulting in absence of external behaviour is frequently seen in the literature, one such example

being the trace semantics of CSP [Hoa85], in which every process can be refined by the dead-

locked process STOP. Such refinements preserve safety, but they do not require any meaningful

computation to be performed. To resolve this issue, the refinement relation should be adapted by

instilling a notion of liveness/progress.

In this section, we adapt the substitutive refinement relation of Section 3.1.1 by forcing a

refining component to make progress whenever the original can. Our choice of progress is based

on the notion of quiescence; a trace is said to be quiescent just if it cannot be extended by an

output. Quiescence differs from deadlock in that a deadlocked component is unwilling to accept

any input (or produce any output), whereas a quiescent component may be able to accept input.

The updated refinement relation requires substitutability, as in Section 3.1.1, but also that any

non-quiescent trace of the original component is non-quiescent in the refining component. Our

choice of quiescence, in place of fairness sets [Seg97, RV96], is motivated by the desire to utilise

only finite-length traces, as in Section 3.1. In addition to quiescence, a component should not

be allowed to make progress by performing an unbounded amount of internal computation. As a

result, our refinement relation must also take into account the divergence of a component. Note

that, in contrast to CSP [Hoa85], we do not require divergent traces to be extension closed.

The remainder of this section presents an updated component formulation, together with the

formal definition of the substitutive and progress-sensitive refinement relation. Revised definitions

42 Chapter 3. Trace-Based Theory of Components

for the compositional operators are presented, and the algebraic results are re-established.

Definition 3.32. A progress-sensitive component P (henceforth referred to as a component) is

a tuple 〈AIP ,AOP , TP , FP , DP ,KP〉 in which 〈AIP ,AOP , TP , FP〉 is a component as in Defini-

tion 3.4, and:

• DP is a set of extended divergent traces such that FP ⊆ DP ⊆ TP

• KP is a set of extended quiescent traces such that

{t ∈ TP : @o ∈ AOP · to ∈ TP} ∪DP ⊆ KP ⊆ TP . �

The set DP consists of all divergent and inconsistent traces of P , while KP also contains the

quiescent traces of P . Note that, due to the possibility of internal computation (which introduces

non-deterministic behaviour), the quiescent traces of a component are not completely determined

by TP and FP . In our framework, a separate treatment of divergence is given in order to guarantee

that a refining component makes observable progress. This is in contrast to, e.g., the receptive

process theory [Jos92] and the work of [Jon91].

We now redefine P , Q andR to be components with signatures 〈AIP , AOP , TP , FP , DP ,KP〉,
〈AIQ,AOQ, TQ, FQ, DQ,KQ〉 and 〈AIR,AOR, TR, FR, DR,KR〉 respectively.

3.2.1 Refinement

As in Section 3.1.1, refinement of component Q by component P needs to consider the safe

representations E(P) and E(Q). This carries across to the new setting effortlessly, by taking

DE(P) = DP ∪ FE(P) and KE(P) = KP ∪ FE(P). Based on this, we give the formal definition of

refinement.

Definition 3.33. Q is said to be a progress-sensitive refinement of P , written Q vlimp P , iff:

• Q vimp P

• DE(Q) ⊆ DE(P) ∪ (TE(P) ↑ AIQ)

• KE(Q) ⊆ KE(P) ∪ (TE(P) ↑ AIQ). �

By Q vimp P we mean refinement as in Definition 3.4 after having projected out DP , KP ,

DQ and KQ from P andQ; this condition guarantees thatQ is substitutable for P . The additional

constraints DE(Q) ⊆ DE(P) ∪ (TE(P) ↑ AIQ) and KE(Q) ⊆ KE(P) ∪ (TE(P) ↑ AIQ) ensure that Q
is only allowed to diverge when P can diverge, and can only be quiescent when P is quiescent.

It is these final clauses that force a refining component to make observable progress whenever the

original can.

3.2. A Progress Sensitive Theory of Substitutable Components 43

Equivalence of components, indicated using ≡limp, can easily be defined by means of mutual

refinement, i.e., is equal to vlimp ∩(vlimp)−1.

Lemma 3.34. Progress-sensitive refinement is reflexive, and transitive subject to preservation of

action types.

Proof. Follows by the exact same reasoning as in Lemma 3.6. �

3.2.2 Parallel Composition

As parallel composition is not related to refinement, the definition remains largely unchanged,

excepting the sets of extended divergent and quiescent traces. To compute these sets, it is straight-

forward to observe that a trace is divergent in the parallel composition if its projection onto the

alphabet of at least one of the components is a divergent trace, and is quiescent if its projections

onto the alphabets of both components are quiescent.

Definition 3.35. Let P and Q be composable for parallel. Then P ||l Q is the component

〈AIP||Q,A
O
P||Q, TP||Q, FP||Q, DP||Q,KP||Q〉, where:

• DP||Q = [(DP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪
[(TP ⇑ AP||Q) ∩ (DQ ⇑ AP||Q)] ∪ FP||Q

• KP||Q = [(KP ⇑ AP||Q) ∩ (KQ ⇑ AP||Q)] ∪DP||Q. �

Given the effect of divergence and quiescence on parallel composition, it is not surprising that

the monotonicity result is unchanged.

Theorem 3.36. Let P , P ′, Q and Q′ be components such that P and Q are composable, AP ′ ∩
AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AIP ′||Q′ ∩ A

O
P||Q = ∅. If P ′ vlimp P and Q′ vlimp Q, then

P ′ ||l Q′ vlimp P ||l Q.

Proof. By Theorem 3.10, we know that the T and F -set containments hold. In the difficult case,

suppose t ∈ DP ′||Q′ \ FE(P ′||Q′). Then, without loss of generality, we know t � AP ′ ∈ DP ′ and

t � AQ′ ∈ TQ′ . By the alphabet constraints (as elaborated in the proof of Theorem 3.10) it follows

that t � AP ′ = t � AP and t � AQ′ = t � AQ. Hence, from P ′ vlimp P andQ′ vlimp Q, it follows

that t � AP ∈ DE(P) and t � AQ ∈ TE(Q), yielding t ∈ DE(P||Q) as required. The quiescent trace

containment is similar. �

3.2.3 Conjunction

As conjunction corresponds to the meet operator on the refinement preorder, its definition in the

progress-sensitive setting is substantially altered. In particular, we require that a trace in the con-

junction can only be quiescent if it is permitted to be quiescent in both components to be conjoined.

44 Chapter 3. Trace-Based Theory of Components

For substitutability, it is necessary to synchronise on outputs, which means that the conjunction

can introduce new undesirable quiescence. Hence, it is necessary to perform backward pruning,

which removes an output at an earlier stage to avoid violating the constraints on quiescence later

on. Of course, removing outputs at an earlier stage can introduce more quiescence, so pruning

must be applied iteratively.

Definition 3.37. Let P and Q be composable for conjunction. Then P ∧l Q is the component

〈AIP∧Q,AOP∧Q, TP∧Q \ Err, FP∧Q \ Err,DP∧Q \ Err,KP∧Q \ Err〉, where:

• DP∧Q = (DE(P) ∪ (TE(P) ↑ AIQ)) ∩ (DE(Q) ∪ (TE(Q) ↑ AIP))

• KP∧Q = (KE(P) ∪ (TE(P) ↑ AIQ)) ∩ (KE(Q) ∪ (TE(Q) ↑ AIP))

• Err is the smallest set containing

{t ∈ TP∧Q : ∃t′ ∈ (AIP∧Q)∗ · tt′ 6∈ KP∧Q and ∀o ∈ AOP∧Q · tt′o 6∈ TP∧Q \ Err} · A∗P∧Q.

�

Err captures the quiescent traces inP∧Q that are not quiescent in bothP andQ. These traces

correspond to a clash of requirements between safety and progress, so are subsequently removed

from the behaviour of P ∧l Q. In removing these traces, we can introduce further quiescence,

which is why Err is defined as a least fixed point. Note that, unlike in the original definition, the

conjunction of two realisable components may not be realisable.

Theorem 3.38. Let P and Q, and P ′ and Q′, be components composable for conjunction. Then:

• P ∧l Q vlimp P and P ∧l Q vlimp Q

• R vlimp P andR vlimp Q impliesR vlimp P ∧l Q

• P ′ vlimp P and Q′ vlimp Q implies P ′ ∧l Q′ vlimp P ∧l Q.

Proof. For the first claim, we just need to show divergent and quiescent trace containment, which

is a straightforward modification to Theorem 3.14. The proof for observable and inconsistent trace

containment remains unchanged.

For the second claim, under the assumption that TE(R) ∩ Err = ∅, the observable and in-

consistent trace containments remain as in Theorem 3.14, and the divergent and inconsistent trace

containments are a straightforward extension. We therefore need to show that TE(R) ∩ Err = ∅,
by proving that TE(R)∩Xi = ∅ for each i ∈ N, whereXi is the i-th approximation ofErr defined

as a fixed point. Clearly the result holds for i = 0 (since X0 = ∅), so we show that it holds for

i = k+1 given that it holds for i = k. Suppose t ∈ TE(R)∩Xk+1. Then by Theorem 3.14 we know

t ∈ TE(P∧Q) ∩ Xk+1 (since Err ⊆ A∗P∧Q), which means that there exists t′ ∈ (AIP∧Q)∗ such

that tt′ 6∈ KE(P∧Q) and ∀o ∈ AOP∧Q · tt′o 6∈ TE(P∧Q) \Xk. From tt′ ∈ TE(P∧Q) ∩KE(P∧Q), we

3.2. A Progress Sensitive Theory of Substitutable Components 45

know that tt′ ∈ TE(R) ∩KE(R). Thus, there exists o′ ∈ AOR such that tt′o′ ∈ TE(R), which means

that tt′o′ ∈ TE(P∧Q). Hence tt′o′ ∈ Xk, but this implies tt′o′ 6∈ TE(R), which is contradictory.

For the third claim, under the assumption that (TE(P ′∧Q′) \ ErrP ′∧Q′) ∩ ErrP∧Q = ∅, the

observable and inconsistent trace containments follow as before in Theorem 3.14, and the diver-

gent and quiescent containments can be shown similarly. To show that (TE(P ′∧Q′) \ ErrP ′∧Q′) ∩
ErrP∧Q = ∅, ErrP∧Q can be approximated as for the previous claim. The proof is then a

straightforward modification, having noted that t ∈ TE(P ′∧Q′) \ ErrP ′∧Q′ and t′ ∈ (AIP∧Q)∗

implies tt′ ∈ TE(P ′∧Q′) \ ErrP ′∧Q′ . �

Example 3.39. In the progress-sensitive setting, we assume that a square node in a figure indicates

non-quiescent behaviour, meaning that some output must occur. Based on this, we now consider

the conjunction of Device in Figure 3.1 with the printing and faxing device of Figure 3.2, under the

assumption that the components have identical interfaces incorporating all actions. The T , F and

K sets (prior to the removal of the Err traces) can be obtained from the pictorial representation

of the original Figure 3.4 (note that the D set is empty, since there are no τ transitions).

The upper non-quiescent state in Figure 3.4 is problematic, because the behaviour is quiescent

in reality, since no output can be offered. Therefore, this state must be removed (including the last

output from which there is a sequence of inputs leading to this state, according to the definition

of Err), which leads to the deletion of the immediately preceding print transition. Note that the

state containing • does not need to be removed, since this state is permitted to be quiescent. The

lower non-quiescent state is not problematic, because the component can always perform the print

self-loop. Consequently, the actual conjunction, after having removed the Err traces, is shown in

Figure 3.11. �

3.2.4 Disjunction

Recall that the definition of conjunction is complicated by the fact that, after a common trace,

one of the components may be quiescent while the other is not. It is this behaviour that forces us

to prune the traces contained in Err, which are subject to the conflicts of requirements between

progress and safety. Being the dual of conjunction, the disjunctive operator does not share a similar

fate, since the disjunction can always avoid conflicts by being less strict on the requirements of

safety and progress.

Definition 3.40. Let P and Q be composable for disjunction. Then P ∨l Q is the component

〈AIP∨Q,AOP∨Q, TP∨Q, FP∨Q, DP∨Q,KP∨Q〉, where:

• DP∨Q = [(DP ∪DQ) ∩ A∗P∨Q] ∪ FP∨Q

• KP∨Q = [(KP ∪KQ) ∩ A∗P∨Q] ∪ FP∨Q. �

46 Chapter 3. Trace-Based Theory of Components

job details? print!

job details? scan!

job details?

job details? fax!

job details? print!

job details?

print!

job details?

scan!

job details?

fax!

job details?

print!print!

scan mode?

print mode?

print mode?

fax mode?

print mode?

scan mode?

fax mode?

print mode?

scan mode?

fax mode?

print mode?

Figure 3.11: Progress-sensitive conjunction of the printing/scanning and printing/faxing devices

when the components have identical interfaces incorporating all actions

3.2. A Progress Sensitive Theory of Substitutable Components 47

Under progress-sensitive refinement, the algebraic properties of disjunction continue to hold.

Theorem 3.41. Let P and Q, and P ′ and Q′ be components composable for disjunction. Then:

• P vlimp P ∨l Q and Q vlimp P ∨l Q

• P vlimp R and Q vlimp R implies P ∨l Q vlimp R

• P ′ vlimp P and Q′ vlimp Q implies P ′ ∨l Q′ vlimp P ∨l Q.

Proof. A straightforward extension of Theorem 3.18. The divergent and quiescent trace contain-

ment proofs are identical to showing containment of the observable traces. �

3.2.5 Hiding

The removal of inputs from a component’s interface can have no effect on the quiescence or

divergence of traces. This is not true for outputs in our setting, although there are a number

of ways to handle quiescence. Therefore, the reasoning needs careful attention, once we have

considered the definition.

Definition 3.42. Let P be a component and let b be an action. The hiding of b in P is a component

P /l b = 〈AIP/b,A
O
P/b, TP/b, FP/b, DP/b,KP/b〉, where:

• AIP/b = AIP \ {b}

• AOP/b = AOP \ {b}

• DP/b =

DP � AP/b ∪ div if b ∈ AOP

DP ∩ A∗P/b otherwise

• KP/b =

KP � AP/b ∪ div if b ∈ AOP

KP ∩ A∗P/b otherwise

• div = {t � AP/b : t ∈ TP and ∀i ∈ N · tbi ∈ TP}. �

According to our definition, in the case that b is an output, divergence can be introduced after

a trace t under two circumstances. The first is when there is a sequence of b actions leading to a

divergent trace, while the second corresponds to the introduction of divergence outright, whereby

t can be extended by an arbitrary number of b actions. This makes sense, and is common to a

number of formulations of hiding (e.g., CSP [Hoa85]).

48 Chapter 3. Trace-Based Theory of Components

In the case of quiescence, a trace t is quiescent if t can diverge, or if there is a sequence

of b actions leading to a quiescent state. This means that, if a component can only produce the

single output b and cannot diverge after the trace t, then it is not necessarily the case that the

component becomes quiescent on t after hiding b. This formulation of quiescence is justified

since, immediately after the trace t, the component can perform internal computation, which can

affect the subsequently offered outputs. This can be seen clearly in the operational setting (see

Section 4.5), and corresponds to the notion that quiescence should only be considered in stable

states. Moreover, this interpretation ensures that hiding is compositional under refinement.

Theorem 3.43. Let P and Q be components and let b be an action. If Q vimp P , then Q /l

b vimp P /l b.

Proof. The divergent and quiescent trace containments follow by the same reasoning as in Theo-

rem 3.21 when b ∈ AIQ or b 6∈ AP ∪ AQ, and the observable and inconsistent containments are

entirely unchanged. When b ∈ AOP , suppose that t ∈ DQ/b. Then there exists t′ ∈ TQ such that

t′ � AQ/b = t and t′ ∈ DQ or ∀i ∈ N · t′bi ∈ TQ. In the case of the former, it follows that

t′ ∈ DE(P) ∪ (TE(P) ↑ AIQ). Hence t ∈ DE(P/b) ∪ (TE(P/b) ↑ AIQ) as required. In the case of

the latter, t′ ∈ TQ implies t′ ∈ TE(P) ∪ (TE(P) ↑ AIQ). The difficult case is when t′ ∈ TE(P),

from which we can deduce t′bi ∈ TE(P) for each i ∈ N. Hence t ∈ DE(P/b). Quiescent trace

containment is similar. �

3.2.6 Quotient

The definition of quotient remains largely unchanged from the substitutive case, except for the

need to remove two types of trace:

QC1. Quiescent (resp. divergent) traces in the parallel composition of P and R/P that are non-

quiescent (resp. non-divergent) in R. As we are unable to alter the traces of P , it is nec-

essary to prune all behaviour from (and including) the last available output in AOR/P on the

projection of these traces onto AR/P , in order to avoid reaching such conflicts.

QC2. Traces of R/P that introduce new quiescence conflicts, after having repeatedly removed

traces satisfying this or the previous condition.

Definition 3.44. Let P and R be components such that AOP ⊆ AOR. The quotient of P from R is

the componentR /l P with signature 〈AIR/P ,A
O
R/P , TR/lP , , FR/lP , DR/lP ,KR/lP〉, where:

• XR/lP = X l
R/P \ Err for X ∈ {T, F,D,K}

• T lR/P is the largest prefix-closed and input-receptive subset of

TR/P ∩ {t ∈ A∗R/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ DP =⇒ t′ ∈ DE(R)}

3.2. A Progress Sensitive Theory of Substitutable Components 49

• F lR/P = T lR/P ∩ FR/P

• Dl
R/P = {t ∈ T lR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒ t′ ∈ DE(R)}

• K l
R/P = {t ∈ T lR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ KP =⇒ t′ ∈ KE(R)}

• Err is the smallest set containing

{t ∈ T lR/P : ∃t′ ∈ (AIR/P)∗ · tt′ 6∈ K l
R/P and ∀o ∈ AOR/P · tt

′o 6∈ T lR/P \Err}·A
∗
R/P . �

The definition of T lR/P ensures that, by the intersection with TR/P , any trace ofP ||l (R /l P)

must also be inR, and that any inconsistent trace of P ||l (R /l P) is also inconsistent inR. The

additional constraint intersected with TR/P ensures that P ||l (R /l P) only diverges whenR can

diverge. ForR /l P to be the least refined solution to P ||l X vlimp R, any trace in T lR/P is:

• inconsistent, when it is not a trace of P ||l (R /l P) or is inconsistent inR; is

• divergent, when it is not a trace of P ||l (R /l P) or is divergent inR; and is

• quiescent, when it is not a trace of P ||l (R /l P), is not quiescent in P ||l (R /l P) (due

to P not being quiescent) or is quiescent inR.

The resulting trace sets X l
R/P for X ∈ {T, F,D,K} do not form a component, since it does

not follow that {t ∈ T lR/P : @o ∈ AOR/P · to ∈ T lR/P} is a subset of K l
R/P . Err is defined

to capture such conflicts, which are subsequently removed from the quotient. As the removal of

traces can introduce quiescence, the set is defined as a fixed point. Due to the possibility of Err

capturing all traces in T lR/P , it follows that (as for conjunction) the quotient of two realisable

components may not be realisable, and this can only be determined by examining the behaviours

of P andR. However, the quotient is always defined when AOP ⊆ AOR.

Theorem 3.45. Let P , Q andR be components. Then P ||l Q vlimp R iff:

• R /l P is defined (i.e., AOP ⊆ AOR)

• P ||l (R /l P) vlimp R

• AIQ = AIR/P implies Q vlimp R /l P .

Proof. The reasoning for the first claim is identical to that in Theorem 3.25. For the second

claim, inconsistent and observable trace containment follows by Theorem 3.25, having noticed that

FR/lP ⊆ FR/P and TR/lP ⊆ TR/P . For divergent traces, suppose t ∈ DP||l(R/lP)\FE(P||l(R/lP))
and for the difficult case t ∈ A∗R. Then either t � AP ∈ DP and t � AR/P ∈ TR/lP , or

t � AP ∈ TP and t � AR/P ∈ DR/lP . For the former, it follows by the definition of T lR/P that

t ∈ DE(R), while, for the latter case, it follows by the definition of Dl
R/P that t ∈ DE(R). For

50 Chapter 3. Trace-Based Theory of Components

the quiescent containment, suppose t ∈ KP||l(R/lP) and t ∈ A∗R. Therefore, t � AP ∈ KP and

t � AR/P ∈ KR/lP . By the definition of K l
R/P it follows that t ∈ KE(R) as required.

For the third claim, we first show that XE(Q) ⊆ X l
E(R/P) for each X ∈ {T, F,D,K} (noting

that X l
E(R/P) = X l

R/P), and thereafter show that TE(Q) ∩Err = ∅, from which it can be inferred

that XE(Q) ⊆ XR/lP . First note that, if t ∈ TE(Q), then certainly t ∈ A∗R/P , since AIQ = AIR/P
andR /l P has the largest possible set of outputs. Now begin by supposing that t ∈ FE(Q). Then

there exists a prefix t′ of t and t′′ ∈ (AOQ)∗ such that t′t′′ ∈ FQ. Note that t′t′′ ∈ A∗R/P . By

Theorem 3.25, it follows that t′t′′ ∈ FR/P ∩ TR/P . Therefore, we must show that t′t′′ ∈ T lR/P .

So let t′′′ ∈ A∗R be an arbitrary trace such that t′′′ � AR/P = t′t′′. If t′′′ � AP ∈ DP , then

t′′′ ∈ DE(R) as required, since t′′′ ∈ DP||lQ and P ||l Q vlimp R. Thus t′t′′ ∈ T lR/P , unless if the

trace is removed due to non prefix-closure/input-receptiveness. But if either of these do not hold,

then it can be shown that t′t′′ 6∈ TE(Q). Consequently, t ∈ F lE(R/P) as required. Now suppose

that t ∈ (DQ \ FE(Q)). Then, for any t′′′ ∈ A∗R such that t′′′ � AR/P = t, if t′′′ � AP ∈ TP ,

then t′′′ ∈ DP||lQ, which by P ||l Q vlimp R yields t′′′ ∈ DE(R). Hence t ∈ Dl
R/P as required.

Similarly, if t ∈ KQ \ DE(Q), then for any t′′′ ∈ A∗R such that t′′′ � AR/P = t, it holds that, if

t′′′ � AP ∈ KP , then t′′′ ∈ KE(R), sinceP ||l Q vlimp R and it must be the case that t′′′ ∈ KP||lQ.

Thus t ∈ K l
R/P as required.

For the final part of the third claim, in order to demonstrate that TE(Q) ∩ Err = ∅, we show

TE(Q) ∩Xi = ∅ for each i ∈ N, where Xi is the i-th iteration of finding the fixed point defining

Err. When i = 0, Xi = ∅, so the result trivially holds. Now suppose i = k + 1, and assume

that the result holds for i = k. If t ∈ TE(Q) ∩ Xk+1, then we know t ∈ T lR/P ∩ Xk+1 by

the previous part. Consequently, there exists t′ ∈ (AIR/P)∗ such that tt′ 6∈ K l
R/P and @o ∈

AOR/P ·tt
′o ∈ T lR/P \Xk. Note that tt′ ∈ TE(Q), and by the previous part tt′ 6∈ KQ as tt′ 6∈ K l

R/P .

Hence, there exists o′ ∈ AOQ such that tt′o′ ∈ TE(Q), which implies tt′o′ ∈ T lR/P . It therefore

follows that tt′o′ ∈ Xk so that tt′o′ ∈ T lR/P \ Xk holds. But by the induction hypothesis, this

allows us to conclude that tt′o′ 6∈ TE(Q), which is contradictory. Thus TE(Q) ∩Xk+1 = ∅ and so

TE(Q) ∩ Err = ∅. �

By the same reasoning as in Corollary 3.26, it can be shown that quotient is the upper/right ad-

joint of parallel composition, by formulating an appropriate Galois connection. The result follows

effortlessly from Theorem 3.45.

Theorem 3.46. Let P , Q andR be components such that Q vlimp P .

• If Q /l R is defined, AIP/R = AIQ/R and AIR ∩ AOP = ∅, then Q /l R vlimp P /l R.

• IfR /l P is defined,AIR/P = AIR/Q and (AIQ\AIP)∩AR = ∅, thenR /l P vlimp R /l Q.

Proof. The proof is the same as in Theorem 3.27 when using Theorems 3.36 and 3.45 in place of

Theorems 3.10 and 3.25, and Lemma 3.34 in place of Lemma 3.6. �

3.2. A Progress Sensitive Theory of Substitutable Components 51

job details! print?

job details!

print mode!

print?

Figure 3.12: Component representing User3

Example 3.47. To demonstrate quotient in the quiescent framework, suppose that a user wishes

to interact with BrokenDevice (Figure 3.6), but without ever reaching a quiescent state, i.e., a

point from which the system as a whole is blocked waiting for input. Note that User2 (as shown

in Figure 3.10) is not a suitable candidate, since, after placing BrokenDevice in scan mode and

sending job details, the system becomes blocked due to BrokenDevice never offering to scan.

(Note that the allocation of quiescent and non-quiescent behaviours in BrokenDevice and User2

has been added arbitrarily, since the quiescent conditions on BrokenDevice do not follow from

those on Device, and similarly for User2.)

We generate a satisfying user as User3 = ErrorFree /l BrokenDevice, the result of which

is shown in Figure 3.12. ErrorFree is the component having chaotic behaviour over all actions,

which we treat as outputs (Figure 3.9). As ErrorFree does not have inconsistencies, and moreover

is non-quiescent (since the single node is a square), it follows that User3 ||l BrokenDevice is both

inconsistency free and does not become quiescent.

The quotient is computed in two phases: first the computation of the T , F , D and K sets is

performed, after which traces in Err are removed. The first phase generates a component equal

to BrokenDevice, but with inputs and outputs interchanged, along with circular and square nodes.

In the second phase, we see that the trace 〈scan mode, job details〉 is quiescent, but is required to

make progress. We therefore remove the trace 〈scan mode, job details〉 from the T , F , D and K

sets. But now the trace 〈scan mode〉 becomes quiescent, so we must also remove this trace. The

empty trace ε is not quiescent, since print mode can be performed. Consequently, the behaviour of

User3 must never place the BrokenDevice into scan mode, since any trace exhibiting scan mode

is contained within Err. This is shown in Figure 3.12.

As a variant of the example, if BrokenDevice had all circular nodes, then the T , F and

D sets of the quotient would remain as in BrokenDevice, having interchanged inputs and out-

puts, and the K set would be equal to F , meaning all nodes are squares. But then the trace

〈print mode, job details〉 would be quiescent, as is the trace 〈scan mode, job details〉, so these

traces would be included within the Err and subsequently removed. Consequently, all states

would have to be pruned, meaning that no safe user, ensuring progress, can exist. �

52 Chapter 3. Trace-Based Theory of Components

3.2.7 Full Abstraction

In Section 3.1.7 we provided a full abstraction result for substitutive equivalence that demonstrates

P ≡imp Q by checking that inconsistency is equi-reachable1 in both P andQ under each environ-

ment. This is generalised to the progress-sensitive setting by additionally checking that quiescence

is equi-reachable in both P andQ, providing that P andQ are divergent-free components. To our

knowledge, there is no basic preorder for which a full abstraction result can be provided when

components include divergence, unless divergence is equated with inconsistency. For simplicity,

as in other frameworks, we assume that P andQ have the same interface. We now define the basic

preorder that checks for inconsistency and quiescence.

Definition 3.48. Let P andQ be components. ThenQ is inconsistency and progress substitutable

for P , denoted by Q vF,limp P , iff:

• Q can become inconsistent implies P can become inconsistent (i.e., ε ∈ FE(Q) implies

ε ∈ FE(P)); and

• Q can become quiescent implies P can become quiescent. �

Based on this basic preorder, we now show that progress-sensitive refinement can be cast in

terms of contextual checking of vF,limp under every environment.

Theorem 3.49. Let P and Q be divergent-free components such that δ 6∈ AP ∪ AQ. Then:

Q vlimp P iff ∀R · AOR = AIP ∪ {δ} and AIR = AOP =⇒ Q || R vF,limp P || R.

Proof. For the only if direction, note that the addition of δ to the interface of R cannot prevent

Q || R vFimp P || R from holding, and similarly, for the if direction, it must be the case that

Q vimp P holds (for the substitutive conditions).

Now for the only if direction, suppose that Q vlimp P , and there exists R such that Q || R is

quiescent on a trace t, while P || R is not quiescent on t. Then clearly t must be a trace of P || R
by Theorem 3.30. If t is quiescent inQ || R because it is divergent, then t must be divergent inR,

which implies t is divergent in P || R, and so we reach a contradiction. Therefore, Q || R cannot

diverge, meaning that both Q and R must be quiescent. But from Q being quiescent it follows

that P is quiescent, hence P || R is quiescent. This is also contradictory, soR cannot exist.

For the if direction, suppose there exists a trace t that is quiescent in Q and non-quiescent in

P . Then we can construct an environment R that is the least prefix-closed and input-receptive

set containing the trace t such that any trace of R (excluding t) can be extended by δ and is non-

quiescent. Then, because t is quiescent in Q, it follows that t is a quiescent trace of Q || R.

1I.e., is reachable in both, or is reachable in neither.

3.3. Summary 53

However, as t is non-quiescent in P , every trace of P || R must be non-quiescent. Therefore,

Q || R 6vF,limp P || R as required. �

The only way of distinguishing divergence in our theory is to check: t diverges in Q || R
implies t diverges in P || R, for each trace t. However, such a check is not basic enough for full

abstraction, as it is essentially unchanged from the containment check on divergence performed as

part of vlimp. This is a consequence of environments not being able to suppress the behaviour of

divergence nor the quiescence it can introduce.

To obtain a full abstraction result, it is necessary to equate divergence with inconsistency (as in

other frameworks, such as the receptive process theory [Jos92]); however, there is a good reason

for not doing that. A formalism should be guided by its suitability to modelling systems, rather

than the algebraic properties that can be forced out of it. As in the substitutive framework, diver-

gence cannot make anything bad happen, as it is non-observable, which is why we do not equate

it with inconsistency. The only effect that divergence can have is to prevent progress being made.

During refinement, divergent behaviours can be removed, to leave progress-making behaviours. If

divergence is equated with inconsistency, then divergent behaviours can be refined into arbitrary

interactive behaviour, which can be highly undesirable.

We now remark that, under the assumption of divergence-freedom, progress-sensitive equiva-

lence is fully abstract with respect to contextual observation of inconsistency and quiescence for

the specification theory.

Corollary 3.50. Progress-sensitive equivalence ≡limp is fully abstract for parallel composition,

conjunction, disjunction and quotient with respect to observational equivalence of inconsistency

and quiescence, subject to divergence-freedom.

Proof. Based on Theorem 3.49 and the congruence results throughout Section 3.2. �

3.3 Summary

This chapter has developed a compositional specification theory capable of modelling compo-

nentised systems with asynchronous communication, such as hardware circuits and distributed

software systems. Components are modelled in an abstract manner by means of traces. The for-

malism highlights the algebraic properties of the compositional operators, which include parallel

composition, conjunction, disjunction, hiding and quotient. Two linear-time refinement relations

are provided, which are the weakest preorders for substitutivity and progress-sensitive substitutiv-

ity of components respectively. Based on these, a full abstraction result is provided by showing

that substitutive equivalence forms a congruence with respect to the operations defined on the

specification theory.

54 Chapter 3. Trace-Based Theory of Components

The trace-based nature of the formalism captures essential information for inferring substi-

tutability of components; however, it is not very amenable to modelling in a practical sense, due to

the difficulty of specifying behaviours in terms of trace sets. In Chapter 4, the theory is concretised

by providing an operational representation that closely mirrors actual implementations.

Contrasting with related work, the definition of a component in the substitutive setting matches

that of the prefix-closed trace structures of Dill [Dil88], although our definition was derived inde-

pendently (based on Logic LTSs [LV07]). The safe representation of a component in our frame-

work is referred to as a canonical prefix-closed trace structure by Dill, which allows conformance

(corresponding to our refinement) to be defined in terms of trace containment (although Dill re-

quires equality of interfaces, whereas we have a covariant inclusion on inputs and contravariant

inclusion on outputs). While Dill considers the operations of parallel composition and hiding on

prefix closed trace structures, he does not consider the arguably more interesting operations of

conjunction, disjunction and quotient, which support independent and incremental development.

Our progress-sensitive framework shares similarities with the receptive process theory of

Josephs [Jos92]. A receptive process captures the failures and divergences of the component that

it models. Divergences are used to encode undesirable behaviour (i.e., inconsistencies), while the

failures include the divergent and quiescent behaviours. As the receptive process theory is built

on the failures-divergences model of CSP [Hoa85], refinement is similar to our progress-sensitive

preorder, in that it consists of divergence and failure containment. However, a notable exception

is that inconsistencies are not propagated backwards over outputs in the receptive process theory,

meaning that the refinement distinguishes too many components, and our theory disambiguates

inconsistency from divergence, since the latter does not affect substitutivity. As a consequence

of the receptive process theory’s formulation, it is not possible to distinguish the component that

can repeatedly produce any output from an inconsistent component, whereas our theory is able to

distinguish such behaviours because we record more information. As a final remark, conjunction,

disjunction and quotient are not defined for the receptive process theory, although a definition of

quotient has been formulated for delay-insensitive processes [JK07].

CHAPTER

FOUR

Operational Theory of Components

In this chapter, we outline an operational representation for components, and demonstrate the re-

lationship between these operational models and the trace-based models of Sections 3.1 and 3.2.

Based on this, we supply operational definitions for the compositional operators of our theory

(Sections 4.2-4.6), and demonstrate that the full abstraction result continues to hold (Section 4.7).

A comparison of our operational framework with the interface automata of de Alfaro and Hen-

zinger [dAH05] is provided in Section 4.8. In particular, we show that our refinement relation

is weaker than the classical alternating simulation defined on interface automata, except when

components are deterministic, in which case they coincide.

Definition 4.1. An operational component P is a tuple 〈AIP,AOP , SP,−→P, s
0
P,⊥P〉, where:

• AIP is a finite set of visible input actions (excluding the hidden action τ)

• AOP is a finite set of visible output actions (excluding the hidden action τ), disjoint fromAIP,

where AP , AIP ∪ AOP

• SP is a finite set of states

• −→P⊆ SP × (AP ∪ {τ})× SP is the transition relation

• s0P ∈ SP is the designated initial state

• ⊥P ∈ SP is the designated inconsistent state.

The transition relation satisfies the properties that: (i)⊥P
a−→P ⊥P for each a ∈ AP∪{τ}; and

(ii) for each s ∈ SP and a ∈ AIP there exists s′ ∈ SP such that s a−→P s
′. These conditions ensure

that all states are input-receptive, and that the inconsistent state is chaotic. �

It is important that the set of states SP is finite, so that divergence of a state can be determined

in finite time (a state is said to be divergent if it has an infinite sequence of τ -transitions emanating

from it). This allows us to decide which inputs are safe, and which outputs may eventually be

issued, for a particular state.

55

56 Chapter 4. Operational Theory of Components

Notation For a compositional operator ⊕, and sets A and B, we write A ⊕ B for the set {a ⊕
b : a ∈ A and b ∈ B}. A relation ε

==⇒P⊆ SP × SP is defined by p ε
==⇒P p′ iff p(τ−→P)∗p′.

Generalising ε
==⇒P for visible actions a ∈ A, we obtain p a

=⇒|P p′ iff there exists pa such that

p
ε

==⇒P pa
a−→P p

′, and p a
==⇒P p

′ iff there exists pa such that p a
=⇒|P pa

ε
==⇒P p

′. The extension

to words w = a1 . . . an is defined in the natural way by p w
==⇒P p

′ iff p a1==⇒P . . .
an==⇒P p

′.

Henceforth, let P, Q and R be operational components with signatures 〈AIP,AOP , SP,−→P,

s0P,⊥P〉, 〈AIQ,AOQ, SQ,−→Q, s
0
Q,⊥Q〉 and 〈AIR,AOR , SR,−→R, s

0
R,⊥R〉 respectively.

4.1 Refinement

We now give semantic mappings from operational models to trace-based models that preserve both

substitutive and progress-sensitive behaviour.

Definition 4.2. Let P be an operational component. Then JPK is the trace-based component

〈AIP,AOP , TJPK, FJPK〉, where TJPK = {t : s0P
t

==⇒P} and FJPK = {t : s0P
t

==⇒P ⊥P}. �

The trace-based representation of an operational model simply records the component’s inter-

face, and its sets of observable and inconsistent traces.

Definition 4.3. Let P be an operational component. Then JPKl is the progress-sensitive trace-

based component 〈AIP,AOP , TJPK, FJPK, DJPKl ,KJPKl〉, where:

• DJPKl = {t : ∃s′ · s0P
t

==⇒P s
′ and s′ can diverge}

• KJPKl = {t : ∃s′ · s0P
t

==⇒P s
′ and @o ∈ AOP ∪ {τ} · s′

o−→P} ∪DJPKl . �

The progress-sensitive trace-based representation of an operational model includes the con-

stituents of a standard trace-based component, together with a set of extended divergent traces

and a set of extended quiescent traces. The inclusion of inconsistent traces within the divergent

and quiescent trace sets is a condition of being a progress-sensitive component (cf Definition 3.32).

Note thatDJPKl includes all inconsistent traces, since⊥P is divergent. Moreover, only stable states

(without outgoing τ transitions) are able to be quiescent (although the extended quiescent trace

set includes divergences). This has similarities with the stable-failures and failures-divergences

models of CSP [Hoa85].

Based on these mappings to trace-based models, we can formulate definitions of refinement

on operational models.

Definition 4.4. Let P and Q be operational components. Then Q is a substitutable refinement

of P, written Q vop P, iff JQK vimp JPK. Similarly, Q is a substitutable and progress-sensitive

refinement of P, written Q vlop P, iff JQKl vlimp JPKl. �

4.2. Parallel Composition 57

Justification of these mappings is presented in Section 4.7. But first we present operational

definitions for all of the operators considered in the trace-based section with respect to both the

substitutive and progress-sensitive refinement preorders. For each operator, we make explicit the

relationship with the trace-based definition. This allows the compositionality results from the

trace-based sections to carry across to this operational setting.

4.2 Parallel Composition

We give a single operational definition of parallel composition applicable to both the substitutive

and progress-sensitive refinements.

Definition 4.5. Let P and Q be components composable for parallel. Then the parallel composi-

tion of P and Q is the component P || Q = P ||l Q = 〈AI ,AO, S,−→, s0,⊥〉, where:

• AI = (AIP ∪ AIQ) \ (AOP ∪ AOQ)

• AO = AOP ∪ AOQ

• S = SP || SQ

• −→ is the smallest relation satisfying the following rules:

P1. If p a−→P p
′ with a ∈ AP \ AQ ∪ {τ}, then p || q a−→ p′ || q

P2. If q a−→Q q
′ with a ∈ AQ \ AP ∪ {τ}, then p || q a−→ p || q′

P3. If p a−→P p
′ and q a−→Q q

′ with a ∈ AP ∩ AQ, then p || q a−→ p′ || q′.

• s0 = s0P || s0Q

• {⊥} = (SP || {⊥Q}) ∪ ({⊥P} || SQ)1. �

Conditions P1 to P3 ensure that the parallel composition of components interleaves on inde-

pendent actions and synchronises on common actions. For P3, given the parallel composability

constraint, synchronisation can take place between an output and an input, or two inputs.

The following theorem shows the relationship between parallel composition on operational and

trace-based components. Consequently, the monotonicity results from the trace-based sections are

applicable here.

Theorem 4.6. Let P and Q be components composable for parallel composition. Then JP || QK =

JPK || JQK and JP ||l QKl = JPKl ||l JQKl.

1⊥ is a state, so the formulation involving {⊥} essentially defines an equivalence on states.

58 Chapter 4. Operational Theory of Components

Proof. Trivial, as the trace-based definition of parallel composition interleaves on independent

actions and synchronises on common actions. This is precisely captured by the operational defini-

tion. �

4.3 Conjunction

We now formulate an operational definition of conjunction. As this operator corresponds to the

meet of the refinement preorder, its definition depends on the refinement type we are considering.

For substitutive refinement, we have a straightforward definition that considers the enabled actions

in any pair of states. When considering the progress-sensitive refinement, we first apply the sub-

stitutive definition, but then have to prune bad states that violate progress. These bad states are

defined inductively.

Definition 4.7. Let P and Q be components composable for conjunction. Then the substitutive

conjunction of P and Q is a component P ∧ Q = 〈AIP ∪ AIQ,AOP ∩ AOQ, S,−→, s0,⊥〉, where:

• S = SP ∧ SQ

• −→ is the smallest relation satisfying the following rules:

C1. If a ∈ AP ∩ AQ, p a
=⇒|P p′ and q a

=⇒|Q q′, then p ∧ q a−→ p′ ∧ q′

C2. If a ∈ AIP \ AIQ and p a
=⇒|P p′, then p ∧ q a−→ p′ ∧ ⊥Q

C3. If a ∈ AIQ \ AIP and q a
=⇒|Q q′, then p ∧ q a−→ ⊥P ∧ q′

C4. If p does not diverge and p τ−→P p
′, then p ∧ q τ−→ p′ ∧ q

C5. If q does not diverge and q τ−→Q q
′, then p ∧ q τ−→ p ∧ q′

C6. If p diverges and q diverges, then p ∧ q τ−→ p ∧ q.

• s0 = s0P ∧ s0Q

• ⊥ = ⊥P ∧ ⊥Q. �

In contrast to the definition in [CCJK12], here we give a more elaborate handling of τ transi-

tions in order to use the same base definition for conjunction under substitutivity and progress. The

original definition permitted τ transitions to proceed independently, which allows the conjunction

to diverge if at least one of the components can diverge. However, this is not acceptable under our

progress-sensitive refinement preorder. Instead, we must only allow the conjunction to diverge on

occasions when both components are willing to diverge. This is achieved by condition C6 and the

fact that the remaining conditions work on the τ -closure of the components.

We now inductively define the pruned conjunction of two components, which is used for defin-

ing conjunction under the progress-sensitive preorder.

4.4. Disjunction 59

Definition 4.8. Let P and Q be components composable for conjunction. The progress-sensitive

conjunction of P and Q, denoted P ∧l Q, is obtained from P ∧ Q by pruning all states in F , the

smallest set defined inductively by:

• If p is stable, p o−→P for some o ∈ AOP , and @a ∈ AOP∧Q · p ∧ q
a−→ p′ ∧ q′ with p′ ∧ q′ 6∈ F ,

then p ∧ q ∈ F

• If q is stable, q o−→Q for some o ∈ AOQ , and @a ∈ AOP∧Q · p ∧ q
a−→ p′ ∧ q′ with p′ ∧ q′ 6∈ F ,

then p ∧ q ∈ F

• If ∃a ∈ AIP∧Q such that p ∧ q a−→ p′ ∧ q′ implies p′ ∧ q′ ∈ F , then p ∧ q ∈ F . �

The first two conditions capture conjunctive states p ∧ q that are quiescent (through all output

successors needing to be pruned, or there being no output successors) when at least one of p or q

is non-quiescent. The third condition is responsible for pruning backwards over input transitions

until a non-deterministic choice is offered on inputs, from which there is at least one choice that

does not have to be pruned.

Note that P ∧l Q may prune the initial state in P ∧ Q, in which case we say that P ∧l Q is

unrealisable. As for parallel, there is a correspondence between conjunction at the operational and

trace-based levels.

Theorem 4.9. Let P and Q be operational components composable for conjunction. Then JP ∧ QK

= JPK ∧ JQK and JP ∧l QKl = JPKl ∧l JQKl.

Proof. Showing JP ∧ QK = JPK ∧ JQK is trivial, since if t ∈ TJP∧QK, then s0P ∧ s0Q
t

==⇒P∧Q p ∧ q.

If s0P
t

==⇒P p, then t ∈ TJPK, while if s0P 6
t

==⇒P p, then t ∈ TJPK ↑ AIQ. Similarly for Q. Either way,

t ∈ TJPK∧JQK. The other direction is similar, as is the inconsistent trace containment.

To show that JP ∧l QKl = JPKl ∧l JQKl, it is sufficient to prove that t ∈ TJP∧QK implies:

t ∈ Err iff ∀p, q · s0P ∧ s0Q
t

==⇒P∧Q p ∧ q implies p ∧ q ∈ F . This can be demonstrated in

a straightforward manner using an inductive argument by approximating Err and F , which are

both obtained as fixed points. �

4.4 Disjunction

As the trace-based definition of disjunction does not need to prune error traces, the operational

definition of disjunction is applicable to both the substitutive and progress-sensitive refinements.

Definition 4.10. Let P and Q be components composable for disjunction. Then the disjunction of

P and Q is the component P ∨ Q = P ∨l Q = 〈AIP ∩ AIQ,AOP ∪ AOQ, S,−→, s0,⊥〉, where:

• S = {s0} ∪ SP ∪ SQ, for s0 6∈ SP, SQ

60 Chapter 4. Operational Theory of Components

• −→ is the smallest relation containing −→P and −→Q restricted to AP∨Q, and the transitions

s0
τ−→ s0P and s0

τ−→ s0Q

• {⊥} = {⊥P,⊥Q}. �

A correspondence can be shown between the two forms of operational disjunction and the

trace-based versions.

Theorem 4.11. Let P and Q be components composable for disjunction. Then JP ∨ QK = JPK ∨
JQK and JP ∨l QKl = JPKl ∨l JQKl.

Proof. Obvious given the definition of disjunction in both the substitutive and progress-sensitive

trace-based frameworks. �

4.5 Hiding

Since hiding is not concerned with the refinement preorder, it has a common definition for both

the substitutive and progress frameworks.

Definition 4.12. Let P be a component and let b be an action. The hiding of b from P is the

component P/b = P /l b = 〈AIP \ {b},AOP \ {b}, SP,−→, s0P,⊥P〉, where:

H1. If p a−→P p
′ and a 6= b, then p a−→ p′

H2. If p b−→P p
′ and b ∈ AOP , then p τ−→ p′. �

As for all of the previously considered operators, there is a natural correspondence between

hiding on operational and trace-based models.

Theorem 4.13. Let P be a component, and let b be an arbitrary action. Then JP/bK = JPK/b and

JP /l bKl = JPKl /l b.

Proof. Trivial given the trace-based definition of hiding. �

4.6 Quotient

The operational definition of quotient needs to consider all resolutions of non-determinism in the

components to be composed. For simplicity, we therefore restrict to deterministic components

without τ -transitions. We begin by giving an operational definition of quotient for which we must

prune a number of states that violate inconsistency containment on the substitutive refinement

preorder. We then extend the pruning so that it removes violations of the quiescence containment

4.6. Quotient 61

on the progress-sensitive refinement relation. To improve the clarity of our definition, we further

assume that the quotient can observe all of R’s actions.

Definition 4.14. Let P and R be deterministic components such thatAOP ⊆ AOR . Then the quotient

is the component R/P = 〈AIR/P,A
O
R/P, SR/P,−→, s0,⊥R/P〉, where:

• AIR/P = AIR ∪ AOP

• AOR/P = AOR \ AOP

• SR/P = (SR/SP) \ F

• −→ is the smallest relation satisfying the following rules:

Q1. If a ∈ AR/P \ AP and r a−→R r
′, then r/p a−→ r′/p

Q2. If a ∈ AR/P ∩ AP, r a−→R r
′ and p a−→P p

′, then r/p a−→ r′/p′

Q3. If a ∈ AR/P ∩ AP and p 6 a−→P, then r/p a−→ ⊥R/P.

• s0 = s0R/s
0
P, providing s0R/s

0
P 6∈ F , and the quotient is unrealisable otherwise

• {⊥R/P} = {⊥E(R)}/SP

• F ⊆ SR/SP is the smallest set satisfying:

F1. If r 6= ⊥R and p = ⊥P, then r/p ∈ F

F2. If a ∈ AOR ∩ AOP , r 6 a−→R and p a−→P, then r/p ∈ F

F3. If r/p a−→ r′/p′, a ∈ AR \ AOR/P and r′/p′ ∈ F , then r/p ∈ F . �

Conditions Q1 and Q2 essentially correspond to the parallel composition of P and R, whereby

the two components synchronise on common actions, and interleave on the independent actions

of R. Independent actions of P must be inputs, so they are irrelevant to the quotient, since an

environment safe for R will never issue them. Condition Q3 states that the quotient can become

inconsistent on an input that is never issued by P (meaning the action is an output of P). Condi-

tions F1 and F2 capture situations where substitutivity would be violated, while F3 propagates the

violation backwards to a point where the quotient can avoid it, by not producing an output from

which the environment can, under its own control, reach the violation.

As quotient is the adjoint of parallel composition under the refinement relation, we must give

an alternative characterisation for the progress-sensitive framework. We do this by removing states

that introduce quiescence errors in the definition above.

Definition 4.15. Let P and R be deterministic components such that AOP ⊆ AOR . Then the

progress-sensitive quotient is the component R /l P obtained from R/P by removing states con-

tained within the smallest F -set defined by:

62 Chapter 4. Operational Theory of Components

• If ∃o ∈ AOR · r
o−→R, @a ∈ AOP · p

a−→P and @b ∈ AOR/P · r/p
b−→R/P r

′/p′ with r′/p′ 6∈ F ,

then r/p ∈ F

• If r/p a−→ r′/p′, a ∈ AR \ AOR/P and r′/p′ ∈ F , then r/p ∈ F . �

As usual, the operational definitions are closely related to the trace-based definitions.

Theorem 4.16. Let P and R be deterministic components such that AOP ⊆ AOR . Then JR/PK =

JRK/JPK and JR /l PKl = JRKl /l JPKl.

Proof. First show that t ∈ TJR/PK ⇐⇒ t ∈ TJRK/JPK and t ∈ FJR/PK ⇐⇒ t ∈ FJRK/JPK

by induction on the length of the trace t. We use L(t) as shorthand for the predicate t � AP ∈
FJPK =⇒ t ∈ FJE(R)K and t � AP ∈ TJPK =⇒ t ∈ TJRK.

Case t ≡ ε. Suppose that ε ∈ FJRK/JPK. Then by Definition 3.23, ε ∈ FE(JRK) or ε 6∈ TJPK. If the

former holds, then s0R = ⊥E(R), hence s0R/s
0
P = ⊥R/P, meaning ε ∈ FJR/PK. If instead ε 6∈ TJPK,

then s0P is not defined, so s0R/P = ⊥R/P, meaning ε ∈ FJR/PK.

Now suppose that ε ∈ FJR/PK. Then s0R/P = ⊥R/P, so P is unrealisable or s0R = ⊥E(R). If the

former holds, then ε 6∈ TJPK, hence ε ∈ FJRK/JPK. If instead s0R = ⊥E(R), then ε ∈ FE(JRK), hence

ε ∈ FJRK/JPK.

Suppose that ε ∈ TJRK/JPK. Then for all t′ ∈ (AR \ AOR/P)∗, L(t′) holds. So s0R/P is defined

and s0R/P
t′

==⇒R/P sR/sP implies sR/sP 6∈ F . Hence ε ∈ TJR/PK.

Now suppose that ε ∈ TJR/PK. Then for all t′ ∈ (AR \ AOR/P)∗, if s0R/s
0
P

t′
==⇒R/P sR/sP, then

sR/sP 6∈ F . Hence t′ � AP 6∈ FJPK or t′ ∈ FE(R) since sR/sP 6∈ F , and moreover, t′ ∈ TE(R)
as s0R

t′
==⇒R sR. Hence L(t′) holds. If s0R/s

0
P 6

t′
==⇒R/P, then it follows that s0P 6

t′�AP===⇒P sP, since if

s0P
t′�AP===⇒P sP and s0R 6

t′
==⇒R sR then it must be because P makes an output move that R cannot

match. But then the previous composite state would be in F , which is contradictory. Hence

ε ∈ TJRK/JPK.

Case t ≡ t′o with o ∈ AOR/P. Suppose that t′o ∈ FJRK/JPK. Then t′ ∈ FJRK/JPK, so by the induction

hypothesis we derive t′ ∈ FJR/PK. Therefore, s0R/P
t′

==⇒R/P ⊥R/P and so s0R/P
t′o

==⇒R/P ⊥R/P.

Thus, t′o ∈ FJR/PK.

Now suppose that t′o ∈ FJR/PK. Then s0R/P
t′o

==⇒R/P ⊥R/P. By the definition of ⊥R/P (defined

in terms of ⊥E(R)), it follows that s0R/P
t′

==⇒R/P ⊥R/P, and so t′ ∈ FJR/PK. By the induction

hypothesis, it follows that t′ ∈ FJRK/JPK. Hence, t′o ∈ FJRK/JPK.

Now suppose that t′o ∈ TJRK/JPK. Then by the induction hypothesis we know that t′ ∈ TJR/PK.

4.7. Full Abstraction 63

Moreover, for all t′′ ∈ (AR \AOR/P)∗ it follows that L(t′ot′′) holds. So, if s0R/s
0
P

t′ot′′
===⇒R/P sR/sP,

then certainly sR/sP 6∈ F . Furthermore, s0R/s
0
P

t′o
==⇒R/P s

′
R/s
′
P for some s′R/s

′
P, since s0P

t′
==⇒P s

′′
P

for some s′′P as o 6∈ AP or o ∈ AIP.

Finally, suppose that t′o ∈ TJR/PK. Then by the induction hypothesis, we know that t′ ∈
TJRK/JPK. As s0R/s

0
P

t′o
==⇒R/P sR/sP for some state sR/sP, it follows that sR/sP 6∈ F . Therefore,

for any state s′R/s
′
P such that s0R/s

0
P

t′ot′′
===⇒R/P s′R/s

′
P with t′′ ∈ (AR \ AOR/P)∗ we know that

s′R/s
′
P 6∈ F . Consequently, if t′ot′′ � AP ∈ FP then t′ot′′ ∈ FE(R), and if t′ot′′ � AP ∈ TP, then

t′ot′′ ∈ TE(R). This means that L(t′ot′′) holds, and so we derive t′o ∈ TJRK/JPK.

Case t ≡ t′i with i ∈ AIR/P. Suppose that t′i ∈ FJRK/JPK. Then t′i � AP 6∈ TP or t′i ∈ FE(R). By

the induction hypothesis we know that t′ ∈ TJR/PK, which by input receptiveness of components,

implies that t′i ∈ TJR/PK. Now, if t′i � AP 6∈ TP, then t′ � AP 6∈ TP when a 6∈ AOP . Hence

t′ ∈ FJRK/JPK, which by the induction hypothesis gives t′ ∈ FJR/PK, and so t′i ∈ FJR/PK. When

a ∈ AOP , condition Q3 ensures that t′i ∈ FJR/PK. If instead t′i ∈ FE(R), then as t′i ∈ TJR/PK, we

know s0R/s
0
P

t′i
==⇒R/P sR/sP. But t′i ∈ FE(R) implies sR = ⊥E(R), hence sR/sP = ⊥R/P, meaning

t′i ∈ FJR/PK.

Now suppose that t′i ∈ FJR/PK. By the induction hypothesis and input receptiveness of com-

ponents it follows that t′i ∈ TJRK/JPK. As t′i ∈ FJR/PK, it follows that s0R/s
0
P

t′i
==⇒R/P ⊥R/P. But

⊥R/P = ⊥E(R)/sP for some sP. Hence, t′i ∈ FE(R), which implies t′i ∈ FJRK/JPK.

Showing that t′i ∈ TJRK/JPK iff t′i ∈ TJR/PK follows by the induction hypothesis and input

receptiveness of components.

For the liveness equivalence, it is sufficient to show that t ∈ ErrJRK/JPK iff t ∈ FR/P. This can

be demonstrated in a straightforward manner using an inductive argument on the approximations

of ErrJRK/JPK and FR/P. Note that the definition of ErrJRK/JPK can be greatly simplified, as we

assume AR = AR/P along with determinism, the latter of which implies divergence freedom. �

4.7 Full Abstraction

The close correspondence between the operational and trace-based models allows us to present

a full abstraction result for the operational framework. This relies on showing that operational

refinement vop given in terms of trace containment can be equated with contextual checking of

inconsistency in the operational models.

Definition 4.17. Let P and Q be operational components. Then Q is said to be inconsistency

substitutable for P, denoted by Q vFop P, iff ⊥Q is reachable from s0Q by hidden and output

64 Chapter 4. Operational Theory of Components

actions implies ⊥P is reachable from s0P by hidden and output actions. �

From this, Q vop P can be characterised by vFop when considering the environments that Q

and P can interact with. This shows that vop is the weakest preorder preserving substitutivity.

Theorem 4.18. Let P and Q be operational components such that AIP ⊆ AIQ, AOQ ⊆ AOP and

AIQ ∩ AOP = ∅. Then:

Q vop P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q || R vFop P || R.

Proof. A straightforward modification to Theorem 3.30. �

Based on this result, it is straightforward to show full abstraction.

Corollary 4.19. Operational equivalence ≡op is fully abstract for parallel composition, conjunc-

tion, disjunction, hiding and quotient with respect to observational equivalence of inconsistency.

Proof. Same reasoning as in Corollary 3.31 (with updated references). �

4.8 On the Relationship with Interface Automata

In this section, we relate our operational theory of components to the interface automata of de

Alfaro and Henzinger [dAH01]. We show that the theory of interface automata can be embedded

within our framework, and demonstrate that the alternating refinement relation is stronger than our

substitutive preorder.

We recall a general definition of interface automata [dAH01], which, unlike the restrictions

imposed in [dAH05], permits hidden transitions and does not insist on determinism of inputs.

Thus, an interface automaton can be thought of as a finite-state machine with transitions labelled

by input, output or τ , and does not require input enabledness in each state.

Definition 4.20. An interface automaton P is a tuple 〈SP,AIP,AOP ,−→P, s
0
P〉, where:

• SP is a finite set of states

• AIP is a finite set of visible input actions (excluding the hidden action τ)

• AOP is a finite set of visible output actions (excluding the hidden action τ), disjoint fromAIP,

where AP , AIP ∪ AOP

• −→P⊆ SP × (AP ∪ {τ})× SP is the transition relation

• s0P ∈ SP is the designated initial state. �

4.8. On the Relationship with Interface Automata 65

Substitutive refinement of interface automata is given by means of alternating simulation, with

a covariant inclusion on inputs and contravariant inclusion on outputs. Again, we reproduce the

general definition from [dAH01], which is free of unnecessary restrictions. First, we introduce

two shorthands for simplifying the definition:

• ActIP(p) , {a ∈ AIP : ∀p′ · p ε
==⇒P p

′ implies p′ a−→P}

• ActOP (p) , {a ∈ AOP : ∃p′ · p ε
==⇒P p

′ and p′ a−→P}.

The set ActIP(p) denotes the input actions that may safely be issued when P is in state p. Any

action in ActIP(p) must therefore be enabled in any state reachable from p by hidden transitions.

On the other hand,ActOP (p) represents the output actions of P that the environment must be willing

to accept. Thus, this set is the collection of outputs enabled in any state reachable from p by hidden

transitions. We now give the formal definition of alternating refinement.

Definition 4.21. Interface automaton Q is said to be an alternating refinement of P, written Q vIA
P, just if AIP ⊆ AIQ, AOQ ⊆ AOP , and s0Q R s0P, where R ⊆ SQ × SP is an alternating simulation

satisfying the property: if q R p, then:

AS1. ActIP(p) ⊆ ActIQ(q)

AS2. ActOQ(q) ⊆ ActOP (p)

AS3. For each a ∈ ActIP(p) ∪ ActOQ(q) and for each q a
=⇒|Q q′, there exists p a

=⇒|P p′ such that

q′ R p′. �

Conditions AS1 and AS2 require that q can safely accept any input that p is willing to accept,

while q will only produce a subset of outputs that p can produce. Condition AS3 propagates this

constraint on to the common successor states.

4.8.1 Relation with Operational Components

We now indicate how to map interface automata to the operational components described earlier in

this chapter. The mapping must add additional transitions for the non-enabled inputs to the special

inconsistent state ⊥.

Definition 4.22. Let P be an interface automaton. Then the corresponding operational component

is JPKIA = 〈SP ∪ {⊥},AIP,AOP ,−→, s0P,⊥〉, where:

−→ = −→P ∪ {(s, a,⊥) : s ∈ SP, a ∈ AIP and @s′ · s a−→P s
′}

∪ {(⊥, a,⊥) : a ∈ {τ} ∪ AP}. �

66 Chapter 4. Operational Theory of Components

a?

a?

b!

c!

a?

b!

c!

Figure 4.1: Interface automata distinguishing alternating simulation and vimp

Given this definition, it should be straightforward to see that interface automata are a subclass

of our operational components, in particular, the components that can only become inconsistent

by seeing a bad input, and that are not permitted to be inconsistent up front.

The following theorem shows the relationship between alternating refinement and the substi-

tutive preorder of our modelling framework.

Theorem 4.23. Let P and Q be interface automata. Then Q vIA P implies JQKIA vop JPKIA.

Proof. Begin by supposing Q vIA P and let t be the smallest trace such that t ∈ FE(JQKIA) and

t 6∈ FE(JPKIA) ∪ (TE(JPKIA) ↑ AIQ). By definition of interface automata, it follows that t ∈ FJQKIA

and t 6∈ FJPKIA ∪ (TJPKIA ↑ AIQ) as the automata can only be inconsistent on seeing a bad input.

Moreover, as the automata cannot be inconsistent up front, it follows that t ≡ t′a with a ∈ AIP. By

minimality of t, we know t′ ∈ TJPKIA \ FJPKIA and also that t′ ∈ TJQKIA \ FJQKIA . Consequently,

for each state q′ such that s0Q
t′

==⇒Q q′, it follows that there exists p′ such that s0P
t′

==⇒P p′,

where at each intermediate state AS1 and AS2 hold, and q′ R p′ for an alternating simulation

R. For at least one of these q′, it follows that q′ ε
==⇒Q 6

a−→Q (given t′a ∈ FJQKIA). However, as

t′a ∈ TJPKIA \ FJPKIA it follows that a ∈ ActIP(p′). Hence AS1 is violated, meaning q′ 6R p′,

which is contradictory. Therefore, FJQKIA ⊆ FJPKIA ∪ (TJPKIA ↑ AIQ) as required.

Now suppose that Q vIA P and let t be the smallest trace such that t ∈ TJQKIA \ FJQKIA and

t 6∈ TJPKIA ∪ (TJPKIA ↑ AIQ). It therefore follows that t = t′a with a ∈ AOQ , and t ∈ (AP ∩ AQ)∗.

Consequently, for each state q′ such that s0Q
t′

==⇒Q q′, it follows that there exists p′ such that

s0P
t′

==⇒P p′, where at each intermediate state AS1 and AS2 hold, and q′ R p′ for an alternating

simulation R. For at least one of these q′, it follows that q′ ε
==⇒Q

a−→Q, hence a ∈ ActOQ(q′).

However, as t′a 6∈ TJPKIA it follows that a 6∈ ActOP (p′) for any p′ reachable under t′. Hence AS2 is

violated, meaning q′ 6R p′, which again is contradictory. As a result, TJQKIA ⊆ TJPKIA ∪ (TJPKIA ↑
AIQ). �

Being a branching-time relation, alternating refinement is too strong for substitutivity. This is

demonstrated by the interface automata in Figure 4.1. The automaton on the left is an alternating

refinement of the one on the right, but not vice-versa, whereas the component representations of

the automata are substitutively equivalent in our framework under ≡op. Consequently, it is not the

case in Theorem 4.23 that JQKIA vop JPKIA implies Q vIA P.

4.8. On the Relationship with Interface Automata 67

The existence of a matching transition in condition AS3 is the cause of this asymmetry in

the expressive power of alternating refinement and our substitutive preorder. If we restrict to

deterministic interface automata, the choice of successor is determined, and so the two refinements

coincide.

Theorem 4.24. Let P and Q be deterministic interface automata. Then Q vIA P iff JQKIA vop
JPKIA.

Proof. Based on Theorem 4.23, alternating simulation implies our trace-based refinement. So

suppose Q 6vIA P. Then there exists a smallest trace t such that s0Q
t

==⇒Q q′, but no state p′

such that s0P
t

==⇒P p′ and q′ R p′. Note that by determinism q′ is uniquely defined, as is p′ if it

exists. If p′ exists, then q′ 6R p′ meaning either AS1 or AS2 is violated. If AS1 is violated, then

q′ 6 a−→Q while p′ a−→P for some a ∈ AIP. Hence ta ∈ FJQKIA while ta 6∈ FJPKIA , which implies

JQKIA 6vop JPKIA. Instead, if AS2 is violated, then q′ a−→Q while p′ 6 a−→P for some a ∈ AOQ . Hence

ta ∈ TJQKIA while ta 6∈ TJPKIA , which also implies JQKIA 6vop JPKIA. The final possibility is that

p′ does not exist, in which case t ≡ t′a, and s0P
t′

==⇒P while s0P 6
t

==⇒P. As Q 6vIA P, it follows

that a ∈ AOQ , but there is no matching transition in P. Consequently, t ∈ TJQKIA , but t 6∈ TJPKIA ,

which yields JQKIA 6vop JPKIA as required. �

4.8.2 Compositional Operators

In this section, we briefly remark on the relation between the composition operators for interface

automata and our operational framework.

Parallel composition of interface automata P and Q can be defined as JPKIA || JQKIA, after

propagating inconsistencies backwards over output and τ transitions, and removing the resultant

inconsistent states. The obtained model is an interface automaton only if the initial state remains.

This also provides a characterisation of compatibility for interface automata: P and Q are compat-

ible only if, after performing the parallel composition as just defined, the initial state remains.

Conjunction is more problematic to define, because of the discrepancies between alternating

simulation and our substitutive refinement. If we consider only deterministic interface automata,

for which the refinements coincide, conjunction of interface automata P and Q can be defined as

JPKIA ∧ JQKIA, after having pruned all inconsistent states. Disjunction can be defined similarly.

Hiding is also straightforward, in that removal of b from interface automaton P is given by

JPKIA/b, once all inconsistent states have been removed.

As quotient for interface automata is only defined on deterministic models [BR08], alternating

refinement and our substitutive refinement coincide. Therefore, the quotient of interface automa-

ton P from R is given by the removal of inconsistent states from JRKIA/JPKIA, but is only defined

when JRKIA/JPKIA is realisable, the latter meaning that an initial state exists.

68 Chapter 4. Operational Theory of Components

4.9 Summary

This chapter has presented an operational formulation of the substitutive and progress-sensitive

specification theories introduced in Chapter 3. Operational definitions of parallel composition,

conjunction, disjunction, hiding and quotient are included, while refinement is still defined in

terms of trace containment, so that we obtain the weakest preorder respecting substitutive and

progress-sensitive refinement. Correspondences are made explicit between the trace-based and

operational definitions of the operators, with respect to substitutive and progress-sensitive equiva-

lence, which allows users to freely move between the formalisms. Consequently, all of the com-

positionality results for the trace-based frameworks continue to hold in the operational setting. A

natural advantage of the operational representation is that it is much more akin to actual implemen-

tations (i.e., programs). This makes the theory more amenable to automating model construction

and performing component-based design and reasoning.

To make clear the links between our work and the theory of interface automata, we provided

an embedding of interface automata within our operational framework, and demonstrated that al-

ternating refinement is a stronger version of our substitutive preorder (after a trivial modification

to the alternating refinement relation so as to account for non-enabled inputs). Under the assump-

tion of determinism, it is shown that our linear-time refinement coincides with the branching-time

alternating refinement due to de Alfaro and Henzinger.

CHAPTER

FIVE

Assume-Guarantee Reasoning for Components

The components of Chapter 3 can be thought of as both implementations and specifications of

systems. They are implementations in the sense that they can interact with their surroundings by

accepting input from the environment and producing output. However, the components can also

be thought of as specifications, in that they place assumptions on the inputs issued by the environ-

ment, and provide guarantees on their own behaviour. Thus, the specification theory of Chapter 3

permits the mixing of specifications and implementations, and allows for the construction of new

components from existing ones by means of compositional operators [BCF+08, LNW07, DHJP08,

RBB+11]. For such components, treated as specifications, the assumptions and guarantees are

merged into a single behavioural representation.

In many cases, combining assumptions and guarantees avoids duplication of common infor-

mation. However, it can be desirable to manipulate the assumptions and guarantees separately.

For instance, we may want to express a simple guarantee (such as “no failure will occur”) without

having to weave it into a complex assumption. Separation of assumptions from guarantees also

supports specification reuse, in that the same guarantees (or assumptions) can be used for several

related interfaces, each representing different versions of a component.

In this chapter, we formulate a compositional assume-guarantee (AG) framework for reasoning

about the properties satisfied by components, treated as implementations, as modelled in Chap-

ter 3. An AG specification, otherwise known as a contract, consists of an assumption, guarantee

and progress property, each of which are explicitly represented by sets of finite traces. This facil-

itates reasoning about safety and progress properties, and differs from (arguably) more complex

approaches based on modal specifications and alternating simulation. Treating contracts as first-

class citizens, we define the operators of parallel, conjunction, disjunction and quotient on con-

tracts, and prove compositionality. This is the first work to present such an extensive collection of

operators directly on contracts (to our knowledge, quotient has not previously been defined), which

supports flexible development and verification of component-based systems using AG principles.

In relating implementations (components) with contracts by means of satisfaction, a notion of

refinement corresponding to implementation containment is defined on contracts. Based on this,

we formulate a collection of sound and complete AG reasoning rules for the preservation of safety

and progress properties under the operations and refinement preorder of the specification theory.

69

70 Chapter 5. Assume-Guarantee Reasoning for Components

RServer

job?

ack!

ack!

process! process! process!
ack!
error?

GServer

job? process!

ack!

Figure 5.1: Assumption and guarantee of Server

This allows for the use of compositional AG reasoning, which enables the decomposition of the

system into smaller components, each of which may be reasoned about in isolation during system

development and verification.

Outlining the remainder of this chapter, Section 5.1 introduces the AG framework for safety

properties and presents a number of sound and complete rules for the operators of the specification

theory, while Section 5.2 extends this framework with progress-sensitivity. Section 5.3 documents

a link layer protocol case study demonstrating the features of the assume-guarantee frameworks.

Finally, in Section 5.4, we conclude.

5.1 Assume-Guarantee Framework for Safety Properties

To support component-based reasoning, we introduce the concept of a contract, which consists

of two prefix-closed sets of traces referred to as the assumption and guarantee. The assumption

specifies the environment’s allowable interaction sequences, while the guarantee is a constraint on

the component’s behaviour. As assumptions and guarantees are prefix-closed, our theory ensures

that components preserve (not necessarily regular) safety properties.

Definition 5.1 (Contract). A contract S is a tuple 〈AIS ,AOS ,RS ,GS〉, in which AIS and AOS are

disjoint sets (whose union is AS), referred to as the inputs and outputs respectively, and RS and

GS are prefix closed subsets of A∗S , referred to as the assumption and guarantee respectively, such

that t ∈ RS and t′ ∈ (AOS)∗ implies tt′ ∈ RS . �

Since outputs are controlled by the component, we insist that assumptions are closed un-

der output-extensions. On the other hand, we need not insist that the guarantee is closed under

input-extensions, since the assumption can select inputs under which the guarantee is given. This

contrasts with the work of [LNW06], in which guarantees must be closed under input-extensions;

one of our contributions is to show that this is not necessary, thus allowing significantly more

flexibility when formulating contracts.

Example 5.2. Figure 5.1 presents a contract for a Server, which can receive jobs, process jobs,

acknowledge the processing of a job, and be placed in error mode. The interface is given by all the

5.1. Assume-Guarantee Framework for Safety Properties 71

actions appearing in the diagram, with the convention that actions followed by ? (resp. !) are inputs

(resp. outputs). At this stage, the distinction between square and circle nodes is irrelevant, but will

be explained in Example 5.38, Section 5.2. The assumption leaves process unconstrained, but

ensures that error will never be sent providing job and ack alternate in that order. The guarantee

requires that any job received can only be acknowledged after having been processed, and a new

job can only arrive after the previous one has been acknowledged. �

Given a contract S, we want to be able to say whether a component P satisfies S. Informally,

P satisfies S if, for any interaction between P and the environment characterised by a trace t, if

t ∈ RS , then t ∈ GS and t cannot become inconsistent in P without further stimulation from the

environment. Components can thus be thought of as implementations of contracts.

Definition 5.3 (Satisfaction). A component P satisfies the contract S, written P |= S , iff:

S1. AIS ⊆ AIP

S2. AOP ⊆ AOS

S3. AIP ∩ AOS = ∅

S4. RS ∩ TP ⊆ GS ∩ FP . �

By output-extension closure of assumptions, condition S4 is equivalent to checking RS ∩
TP ⊆ GS ∩ FE(P), which involves the safe representation E(P) of P (see Definition 3.3). The

following lemma shows that this definition of satisfaction is preserved under the component-based

refinement corresponding to safe-substitutivity, subject to compatibility.

Lemma 5.4. Let P and Q be components, and let S be a contract. If P |= S, Q vimp P and

AIQ ∩ AOS = ∅, then Q |= S.

Proof. We show that RS ∩ TQ ⊆ GS ∩ FQ. Let t ∈ RS ∩ TQ. From Q vimp P it follows that

t ∈ TE(P)∪(TE(P) ↑ AIQ). But, in fact, t ∈ TE(P) asAIS ⊆ AIP ⊆ AIQ, t ∈ A∗S andAIQ∩AOS = ∅.
Therefore, either t ∈ TP or t ∈ FE(P). For the former, t ∈ RS ∩ TP implies t ∈ GS ∩ FE(P).
As t 6∈ FE(P) (and moreover t 6∈ TE(P) ↑ AIQ) it follows that t 6∈ FE(Q) since Q vimp P . Hence

t ∈ GS∩FQ as required. If instead t ∈ FE(P), then either t ≡ ε, or there is some prefix t′i of twith

i ∈ AIP such that t′ 6∈ FE(P) while t′i ∈ FE(P). For both cases P 6|= S , which is contradictory

(the latter because t′i ∈ TP). �

Based on this result, a contract can be characterised by its least refined satisfying component,

which is the minimal satisfying component under the substitutive refinement preorder. Note that

every contract has at least one satisfying component, although it may not be realisable. In the case

that a contract has a realisable satisfying component, the contract is said to be implementable, and

72 Chapter 5. Assume-Guarantee Reasoning for Components

such a component is said to be an implementation. In order to construct such a component, it is

necessary to determine the set of violating traces of the contract. These are traces that cannot be

in any satisfying component, because they will violate the guarantee.

Definition 5.5. Let S be a contract. Then violations(S) is defined as {t ∈ A∗S : ∃t′ ∈ (AIS)∗ ·tt′ ∈
RS ∩ GS} · A∗S . �

Clearly, if t ∈ RS ∩ GS , then t cannot be a trace of any implementation of S. Moreover, if

there is a trace that can be extended by a sequence of inputs to become t, then this also cannot

be in a satisfying component, due to input-receptiveness of components. Therefore violations(S)

consists of all traces from which the environment can, under its own control, violate the guarantee.

The following definition shows how to construct the minimal satisfying component for a contract,

with respect to substitutive refinement.

Definition 5.6. Let S be a contract. Then the least refined component satisfying S is the compo-

nent I(S) = 〈AIS ,AOS , TI(S), FI(S)〉, where:

• TI(S) = violations(S)

• FI(S) = violations(S) ∩RS . �

The traces of I(S) are simply the behaviours that will never violate the contract. This means

that, if a trace of I(S) is in the assumption, then it must also be in the guarantee, which ensures

that I(S) satisfies the safety constraints of S.

We now state the properties of the least refined satisfying component.

Lemma 5.7. Let S be a contract, and let P be a component. Then:

• I(S) is non-realisable implies S is non-implementable;

• I(S) |= S; and

• P |= S iff P vimp I(S).

Proof. For the first claim, note that, if ε 6∈ TI(S), then there exists t ∈ (AIS)∗ such that t ∈
RS ∩ GS . As every realisable implementation must have t in its T -set, it follows that S has no

implementations.

For the second claim, suppose t ∈ RS ∩ TI(S). Then t ∈ RS ∩ violations(S), which implies

t ∈ GS ∩ FI(S).

For the third claim, the if direction follows by the previous claim and Lemma 5.4. For the only

if direction, we need to show that TE(P) ⊆ TI(S) ∪ (TI(S) ↑ AIP) and FE(P) ⊆ FI(S) ∪ (TI(S) ↑
AIP). If t ∈ TE(P) and t 6∈ A∗S , then there is a prefix t′a of t such that t′ ∈ A∗S and a ∈ AIP \ AS ,

5.1. Assume-Guarantee Framework for Safety Properties 73

ServerImpl

job? process!

ack!

ServerImpl2

job?

process!

NonImpl

job?

ack!

Figure 5.2: Implementations and non-implementation of Server

which by an inductive argument that assumes the result holds for all strict prefixes allows us to

derive t ∈ TI(S) ↑ AIP . So suppose that t ∈ TP ∩ A∗S . Then since P |= S, it follows that

t 6∈ violations(S). Hence t ∈ TI(S). Now suppose that t ∈ FE(P) ∩ A∗S . Then as P |= S, it

follows that t 6∈ violations(S) and t 6∈ RS . Consequently, t ∈ FI(S). �

Example 5.8. ServerImpl in Figure 5.2 is the least refined component satisfying the contract

Server of Figure 5.1. As a convention, we omit input transitions to inconsistent states when

drawing components (consequently, there are implicit inconsistent job transitions from the middle

and last states and implicit inconsistent error transitions from all states). As ServerImpl2 vimp
ServerImpl, ServerImpl2 is also an implementation of Server, even though no acknowledgement is

performed (since this is a contraction of the allowable output behaviour of Server). NonImpl is not

an implementation, because 〈ack〉 ∈ violations(Server), since 〈ack, error〉 ∈ RServer ∩ TNonImpl,

while 〈ack, error〉 6∈ GServer. �

5.1.1 Refinement

Satisfaction of a contract by a component allows us to define a natural hierarchy on contracts cor-

responding to implementation containment. A constructive definition for this refinement relation

follows.

Definition 5.9 (Refinement). Let S and T be contracts. S is said to be a refinement of T , written

S v T , iff:

R1. AIT ⊆ AIS

R2. AOS ⊆ AOT

R3. AIS ∩ AOT = ∅

R4. violations(T) ∩ A∗S ⊆ violations(S)

R5. RT ∩ A∗S ⊆ RS ∪ violations(S). �

74 Chapter 5. Assume-Guarantee Reasoning for Components

It is our intention that S v T iff the implementations of S are contained within the im-

plementations of T (subject to compatibility). Conditions R1-R3 impose necessary conditions

on the alphabets to uphold this principle. For condition R4, any component having a trace t ∈
violations(T) ∩ A∗S cannot be an implementation of T , so it should not be an implementation of

S. For this to be the case, the component must violate the guarantee on S, i.e., t ∈ violations(S).

Condition R5 deals with inconsistent traces. If a component has an inconsistent trace t ∈ RT ∩A∗S ,

then this cannot be an implementation of T . Consequently, the component must not be an imple-

mentation of S, so either t must violate the guarantee of S, i.e., t ∈ violations(S), or t must

be in RS , so that the component cannot satisfy S. These conditions guarantee implementation

containment, and also that refinement is a preorder (subject to compatibility).

Definition 5.9 gives a sound and complete characterisation of refinement, as proven in Lemma

5.10. In related work, one often sees sound and incomplete characterisations, which may be more

intuitive. One possibility is to replace conditions R4 and R5 by RT ⊆ RS and (GS ∩RT) ⊆ GT
(assuming identical interfaces of S and T). This defines an equivalence on contracts with the same

assumptions, where the guarantees differ only outside the assumptions. More formally, S and T
are equivalent ifRS = RT and (GS ∩RS) = (GT ∩RT).

Lemma 5.10. Refinement captures implementation containment:

S v T ⇐⇒ {P : P |= S and AIP ∩ AOT = ∅} ⊆ {P : P |= T }.

Proof. For the only if direction, suppose that P |= S, S v T and AIP ∩ AOT = ∅. We first

show that P |= T , so suppose that t ∈ RT ∩ TP . Then, by the definition of v, it follows that

t ∈ RS ∪ violations(S) by condition R5. If t ∈ violations(S), then t 6∈ TP , since P |= S ,

which is contradictory. Therefore, t ∈ RS , which from P |= S implies t ∈ GS ∩ FP . But as

t 6∈ violations(S), it follows that t 6∈ violations(T) and so t ∈ GT . Hence, t ∈ GT ∩ FP as

required, which implies P |= T .

For the if direction, Lemmas 5.4 and 5.7 allow us to deduce that I(S) vimp I(T). Suppose

that t ∈ violations(T) ∩ A∗S . Then t 6∈ TI(T), hence t 6∈ TI(S), meaning t ∈ violations(S).

Now suppose that t ∈ RT ∩ A∗S . Then t 6∈ FI(T), which implies t 6∈ FI(S), hence t 6∈ RS ∩
violations(S) i.e., t ∈ RS ∪ violations(S). Thus, S v T . �

[LNW06] give a sound and complete characterisation of their refinement relation (which cor-

responds to implementation containment, as in this chapter) by means of conformance tests. The

definition assumes equality of interfaces, so does not need to deal with issues of compatibility or

the complexities of both covariant and contravariant inclusion of inputs and outputs respectively

(i.e., conditions R1-R3). Thus, their definition largely corresponds to condition R4. Condition R5

is not necessary in that setting, as implementation models are required to be input-enabled.

5.1. Assume-Guarantee Framework for Safety Properties 75

Refinement can be shown to be a preorder, provided that we add the minor technical condition

that compatibility of components is maintained.

Lemma 5.11 (Weak transitivity). Let S, T and U be contracts such that AIS ∩ AOU = ∅. If

S v T and T v U , then S v U .

Proof. Essentially follows from transitivity of ⊆. �

Example 5.12. A new contract Server2 (based on Server in Figure 5.1, with assumption RServer

and guarantee obtained from GServer by removing the ack transition) is a refinement of Server,

since it has fewer implementations. In particular, I(Server2) = ServerImpl2. ServerImpl is not an

implementation of Server2 because 〈job, process, ack〉 ∈ violations(Server2). �

As we can represent a contract by its most general satisfying component, we can also do the

reverse and represent a component by its most general contract. This can be found by examining

the component’s safe traces.

Definition 5.13. The characteristic contract for component P is a contract AG(P) = 〈AIP ,AOP ,
RAG(P),GAG(P)〉, whereRAG(P) = A∗P \ FE(P) and GAG(P) = TP \ FE(P). �

The largest assumption safe for component P is the set of all traces that cannot become in-

consistent under P’s own control, while the guarantee is this same set of traces constrained to the

behaviour of P . The following lemma shows the properties of the characteristic contract.

Lemma 5.14. Let P be a component and let S be a contract. Then:

• P |= AG(P); and

• P |= S iff AG(P) v S.

Proof. For the first claim, let t ∈ RAG(P)∩TP . Then, as t ∈ RAG(P), it follows t ∈ FE(P). Given

t ∈ TP , it thus follows t ∈ GAG(P) ∩ FE(P) as required.

For the second claim, the if direction follows by the previous claim and Lemma 5.10. For the

only if direction, first suppose t ∈ violations(S) ∩ A∗P . Then t 6∈ TP ∪ FE(P) as P |= S, which

implies t ∈ RAG(P) ∩ GAG(P). Hence t ∈ violations(AG(P)). Now suppose that t ∈ RS ∩ A∗P .

Then P |= S implies t 6∈ TP or t 6∈ FE(P). Note that t 6∈ TP implies t 6∈ FE(P) (consider a prefix

in TP ∩ FE(P)), so t ∈ RAG(P). Therefore, we derive AG(P) v S. �

The final point in the previous lemma shows that satisfaction of a contract by a component

is equivalent to checking whether the characteristic contract of the component is a refinement of

the contract. This means that implementability of contracts, built up compositionally, follows

immediately from compositionality results on contracts.

In the subsequent sections, we define the compositional operators of the specification theory

directly on contracts. The operators are only defined when the contracts to be composed are

76 Chapter 5. Assume-Guarantee Reasoning for Components

composable (the conditions being specified as part of the definitions). We also present a number

of sound and complete AG rules for inferring properties of composite systems from the properties

of their subcomponents.

5.1.2 Parallel Composition

The parallel composition of contracts is defined as the least refined contract satisfying independent

implementability. Therefore, SP || SQ is the smallest contract havingP || Q as an implementation

whenever P |= SP andQ |= SQ. A constructive definition of contract composition is based on the

well-established theorem of [AL93], which has appeared in several forms [Col93, AL95, JT96].

The composed contract has the largest assumption that prevents any implementation (say P) of

one contract (SP) producing behaviour observable by the other contract (SQ) that is outside of its

assumption (RSQ). The guarantee of the composition, on the other hand, is constrained to what

can be guaranteed by both contracts to be composed.

Definition 5.15. Let SP and SQ be contracts composable for parallel composition (i.e., AOSP ∩
AOSQ = ∅). Then SP || SQ is a contract 〈AISP ||SQ ,A

O
SP ||SQ ,RSP ||SQ ,GSP ||SQ〉, where:

• AISP ||SQ = (AISP ∪ A
I
SQ) \ (AOSP ∪ A

O
SQ)

• AOSP ||SQ = AOSP ∪ A
O
SQ

• RSP ||SQ is the largest prefix closed set such thatRSP ||SQ(AOSP ||SQ)∗ is contained within the

union of:

– (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

– violations(SP) ⇑ ASP ||SQ
– violations(SQ) ⇑ ASP ||SQ

• GSP ||SQ = RSP ||SQ ∩ (violations(SP) ⇑ ASP ||SQ) ∩ (violations(SQ) ⇑ ASP ||SQ). �

The assumptionRSP ||SQ captures all behaviours whose projections ontoASP andASQ are ei-

ther contained within the assumptionsRSP andRSQ , or have violated at least one of the contracts.

This rules out a trace t that has not violated either of the contracts, but is no longer within both

assumptions (say t � ASP 6∈ RSP). For such a trace, no guarantee can be given, since SP can have

an implementation with the inconsistent trace t � ASP , while SQ can have an implementation with

the trace t � ASQ . The parallel composition of these two components would thus be inconsistent

on t, and so would not satisfy SP || SQ if t ∈ RSP ||SQ .

The guarantee GSP ||SQ is constrained to the traces in RSP ||SQ that do not violate either SP
or SQ. Any trace in an implementation of a contract must not be allowed to violate the contract,

meaning that it must suppress an output before a violation can occur. Consequently, the parallel

5.1. Assume-Guarantee Framework for Safety Properties 77

RHastyClient

job!

process?

job!

ack? ack? job!

GHastyClient

job!

process?
ack? ack?

Figure 5.3: Assumption and guarantee of HastyClient

RRestrainedClient

job! process?

ack?

job! job!

job!

GRestrainedClient

job! process?

ack?

Figure 5.4: Assumption and guarantee of RestrainedClient

composition of such an implementation with an implementation of the other contract cannot pro-

ceed beyond this suppressed output, so GSP ||SQ need not guarantee anything beyond that output.

Thus, GSP ||SQ contains only traces reachable by the composition of any two implementations of

the respective contracts that are in the assumptionRSP ||SQ .

Example 5.16. Figure 5.3 presents a contract HastyClient that can send a job to a server when-

ever the last job has been processed, regardless of whether it has been acknowledged or not.

The composition of HastyClient with Server is a contract for which nothing can be assumed or

guaranteed, since the output sequence 〈job!, process!, job!〉 is not in violations(HastyClient), but

is also not in RServer or violations(Server). This is problematic because 〈job!, process?, job!〉
can be a trace in an implementation of HastyClient, while 〈job?, process!, job?〉 can be an in-

consistent trace in an implementation of Server (providing 〈job?, process!〉 is consistent, since

〈job?, process!, job?〉 6∈ RServer). Note that 〈job!, process!, job!〉 is an inconsistent trace in the par-

allel composition of the two implementations, which explains why the assumption must be empty.

�

Example 5.17. In contrast to HastyClient, the composition of RestrainedClient (Figure 5.4) and

Server is a contract with a completely open assumption (anything may be assumed), since the

allowed behaviours of each contract cannot violate, or fall outside the assumption of, the other

contract). The guarantee is equivalent to GServer, having converted all actions to outputs. �

Subject to suitable constraints on the interfaces of contracts, it can be shown that parallel

composition is monotonic under refinement.

78 Chapter 5. Assume-Guarantee Reasoning for Components

Theorem 5.18. Let SP and SQ, and S ′P and S ′Q be contracts composable for parallel composition,

such that AS′P ∩ AS′Q ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIS′P ||S′Q ∩ A
O
SP ||SQ = ∅. If S ′P v SP and

S ′Q v SQ, then S ′P || S ′Q v SP || SQ.

Proof. Note that the alphabet constraints are satisfied, so first showRSP ||SQ∩A
∗
S′P ||S

′
Q
⊆ RS′P ||S′Q

∪ violations(S ′P || S ′Q). Suppose t ∈ RSP ||SQ ∩ A
∗
S′P ||S

′
Q

, and all strict prefixes of t are in

RS′P ||S′Q ∩ violations(S ′P || S ′Q). If t 6∈ RS′P ||S′Q , then there exists t′ ∈ (AOS′P ||S′Q)∗ such that,

without loss of generality, tt′ � AS′P 6∈ RS′P ∪ violations(S ′P) and tt′ � AS′Q 6∈ violations(S ′Q).

As tt′ � ASP = tt′ � AS′P and tt′ � ASQ = tt′ � AS′Q , it follows that tt′ � ASP 6∈ RSP ∪
violations(SP) since S ′P v SP , and tt′ � ASQ 6∈ violations(SQ) since S ′Q v SQ. Hence,

tt′ 6∈ RSP ||SQ , which implies t 6∈ RSP ||SQ as t′ ∈ (AOSP ||SQ)∗, but this is contradictory.

Now suppose t ∈ violations(SP || SQ) ∩ A∗S′P ||S′Q and there is no strict prefix of t for which

this holds. Then there exists t′ ∈ (AISP ||SQ)∗ such that tt′ ∈ RSP ||SQ ∩ GSP ||SQ . Consequently,

without loss of generality, tt′ � ASP ∈ violations(SP), which means t � ASP ∈ violations(SP).

From S ′P v SP , it follows that t � AS′P ∈ violations(S ′P), and so t ∈ RS′P ||S′Q ∩ GS′P ||S′Q . Hence

t ∈ violations(S ′P || S ′Q). �

In this theorem, the condition AIS′P ||S′Q ∩ A
O
SP ||SQ = ∅ ensures compatibility of S ′P || S ′Q and

SP || SQ, which does not necessarily follow from SP and S ′P , along with SQ and S ′Q, agreeing.

The remaining condition is standard for compositionality of parallel composition (cf [dAH01]),

and ensures that, for any trace t ∈ (ASP ||SQ ∩ AS′P ||S′Q)∗, t � ASP = t � AS′P and t � ASQ =

t � AS′Q . Based on the monotonicity result, a sound and complete AG rule can be formulated for

parallel composition.

Theorem 5.19. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIP||Q ∩ A

O
S = ∅. Then the following AG rule is both sound

and complete:

SAFE-PARALLEL
P |= SP Q |= SQ SP || SQ v S

P || Q |= S
.

Proof. For soundness, we knowAG(P) v SP andAG(Q) v SQ. By the theorem conditions, the

conditions for Theorem 5.18 are satisfied, so AG(P) || AG(Q) v SP || SQ. From compatibility

of P || Q and S, we obtainAG(P) || AG(Q) v S by weak transitivity. Now by Lemma 5.20 (be-

low), we derive AG(P || Q) v S by transitivity, given that the alphabets of AG(P || Q) coincide

with those of AG(P) || AG(Q).

For completeness, take SP = AG(P) and SQ = AG(Q). Then, by transitivity, the result

follows from Lemma 5.20. �

5.1. Assume-Guarantee Framework for Safety Properties 79

Lemma 5.20. AG(P || Q) v AG(P) || AG(Q) v AG(P || Q).

Proof. First suppose that t ∈ RAG(P)||AG(Q) and t 6∈ violations(AG(P) || AG(Q)). Then t �

AP ∈ RAG(P) and t � AQ ∈ RAG(Q), which implies that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q).
Hence, t 6∈ FE(P||Q), from which it follows that t ∈ RAG(P||Q). For the other direction, suppose

t ∈ RAG(P||Q) and t 6∈ violations(AG(P || Q)). Then, t ∈ GAG(P||Q), which implies t ∈ TP||Q \
FE(P||Q), which means that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q) i.e., t � AP ∈ RAG(P) and

t � AQ ∈ RAG(Q). From this it follows that t ∈ RAG(P)||AG(Q), having noticed that no output

extension of t can violate this constraint.

For the violations set containments, suppose that t ∈ violations(AG(P) || AG(Q)) and

t ∈ RAG(P)||AG(Q)∩RAG(P||Q). Thus, there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ RAG(P)||AG(Q)∩
GAG(P)||AG(Q). Consequently, without loss of generality, tt′ � AP ∈ violations(AG(P)), which

implies t � AP ∈ violations(AG(P)). Suppose for a contradiction that t ∈ GAG(P||Q). Then

t ∈ TP||Q \ FE(P||Q), which implies t � AP ∈ TP . But, as t � AP ∈ violations(AG(P)),

it follows that P 6|= AG(P), which is contradictory. Therefore, t 6∈ GAG(P||Q) and so t ∈
violations(AG(P || Q)).

For the other direction of the containment, suppose t ∈ violations(AG(P || Q)) and t ∈
RAG(P)||AG(Q) ∩ RAG(P||Q). Then there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ RAG(P||Q) ∩
GAG(P||Q). Hence, tt′ 6∈ TP||Q∪FE(P||Q), which implies without loss of generality that tt′ � AP 6∈
TP ∪ FE(P). Hence, tt′ ∈ RAG(P) ∩ GAG(P), which implies tt′ � ASP ∈ violations(AG(P)).

Therefore, t � AP ∈ violations(SP), which implies t 6∈ GAG(P)||AG(Q). Consequently, t ∈
violations(AG(P) || AG(Q)) as we are assuming that t ∈ RAG(P)||AG(Q). �

Abadi and Lamport [AL93] show soundness of their parallel composition rule, while Maier

[Mai03] demonstrates that compositional circular AG rules cannot be both sound and complete.

Namjoshi and Trefler [NT10] include a circular sound and complete rule for parallel composition,

but it is not compositional. These results seem at odds with our rule, but in our setting circularity

is broken, since a safety property cannot be simultaneously violated by two or more components.

This is due to an output being under the control of at most one component.

5.1.3 Conjunction

In this section, we define a conjunctive operator on contracts for combining independently devel-

oped requirements. From this, we show that the operator is compositional and corresponds to the

meet operation on the refinement relation. This allows us to conclude that implementations of a

conjunctive contract must be implementations of both contracts to be conjoined. Based on this,

we formulate a sound and complete AG rule for conjunction.

80 Chapter 5. Assume-Guarantee Reasoning for Components

Definition 5.21. Let SP and SQ be contracts composable for conjunction. Then SP ∧ SQ is a

contract 〈AISP∧SQ ,A
O
SP∧SQ ,RSP∧SQ ,GSP∧SQ〉 defined by:

• AISP∧SQ = AISP ∪ A
I
SQ

• AOSP∧SQ = AOSP ∩ A
O
SQ

• RSP∧SQ =
(
RSP ∪RSQ

)
∩ A∗SP∧SQ

• GSP∧SQ is the intersection of the following sets:

– RSP∧SQ

– violations(SP) ∪ (violations(SP) ↑ AISQ)

– violations(SQ) ∪ (violations(SQ) ↑ AISP). �

The assumption RSP∧SQ encompasses all of the assumptions made by either SP or SQ (re-

stricted to (ASP∧SQ)∗), while the guarantee GSP∧SQ is the largest subset of RSP∧SQ that cannot

violate the guarantees of SP or SQ.

The next theorem shows that our definition of conjunction corresponds to the meet operator

on the refinement relation, and is compositional under refinement. Consequently, the set of im-

plementations for SP ∧ SQ is the intersection of the implementation sets for SP and SQ, which

means that SP ∧ SQ is only implementable providing SP and SQ share a common implementa-

tion. In this AG framework for safety, if both SP and SQ are implementable, then SP ∧ SQ is

implementable.

Theorem 5.22. Let SP and SQ, and S ′P and S ′Q be contracts composable for conjunction. Then:

• SP ∧ SQ v SP and SP ∧ SQ v SQ

• SR v SP and SR v SQ implies SR v SP ∧ SQ

• S ′P v SP and S ′Q v SQ implies S ′P ∧ S ′Q v SP ∧ SQ.

Proof. First show that SP ∧ SQ v SP . Suppose t ∈ violations(SP) ∩ A∗SP∧SQ . Then there

is a prefix t′ of t such that t′ ∈ RSP ∩ A∗SP∧SQ and t′ ∈ violations(SP). Therefore, t′ ∈
RSP∧SQ ∩GSP∧SQ , implying t ∈ violations(SP ∧SQ). If t ∈ RSP ∩A∗SP∧SQ , then t ∈ RSP∧SQ
as required. By similar reasoning SP ∧ SQ v SQ.

For the second claim, suppose t ∈ violations(SP ∧ SQ) ∩ A∗R. Then there is a prefix t′ of

t and t′′ ∈ (AISP∧SQ)∗ such that t′t′′ ∈ RSP∧SQ ∩ GSP∧SQ . So, without loss of generality,

t′t′′ 6∈ violations(SP) ∪ violations(SP) ↑ AISQ . Therefore, there is a prefix t1 ∈ A∗SP of t′ such

that t1 ∈ violations(SP). Hence, t1 ∈ violations(SR) by SR v SP , and so t ∈ violations(SR) as

5.1. Assume-Guarantee Framework for Safety Properties 81

required. Now suppose that t ∈ RSP∧SQ∩A∗SR . Then without loss of generality, t ∈ RSP ∩A∗SR ,

so from SR v SP , we derive t ∈ RSR ∪ violations(SR).

For the third claim, by the first claim we have S ′P ∧ S ′Q v S ′P and S ′P ∧ S ′Q v S ′Q. Now

by transitivity, we see that S ′P ∧ S ′Q v SP and S ′P ∧ S ′Q v SQ providing AOSP ∩ A
I
S′Q

= ∅ and

AOSQ ∩ A
I
S′P

= ∅, so by the second claim, it follows that S ′P ∧ S ′Q v SP ∧ SQ as required. If

either of the compatibility conditions are not satisfied, we can obtain new contracts S ′′P for SP and

S ′′Q for SQ that have output set AOSP ∩ A
O
SQ and contain all traces from the respective contracts,

except for those with an output in (AOSP \ A
O
SQ) ∪ (AOSQ \ A

O
SP) that has been removed from the

interface. It is straightforward to show that S ′′P ∧ S ′′Q = SP ∧ SQ. �

From these strong algebraic properties, we can formulate an AG rule for conjunction that is

both sound and complete.

Theorem 5.23. Let P be a component, and let S1, S2 and S be contracts such thatAIP ∩AOS = ∅.
Then the following AG rule is both sound and complete:

SAFE-CONJUNCTION
P |= S1 P |= S2 S1 ∧ S2 v S

P |= S
.

Proof. For soundness, note by the second claim of Theorem 5.22 that AG(P) v S1 ∧ S2. Hence

AG(P) v S, as the compatibility constraint for weak transitivity is satisfied. For completeness,

the result follows by idempotence of conjunction, having taken S1 = S2 = S. �

Example 5.24. A Client is assumed to have an interface that can send jobs to, and await acknow-

ledgements from, a server, can login once instructed by a user, and can logout when it pleases.

Thus, job and logout are outputs, whereas login and ack are inputs. The combined effect of Client

and Server should satisfy the properties:

• Spec1: If the observed behaviour over login and logout is always a prefix of 〈login, logout〉∗,
then login and process should alternate.

• Spec2: If the observed behaviour over login and logout is always a prefix of 〈login, logout〉∗,
then process and logout should alternate.

Spec1 and Spec2 are represented by the contracts 〈RSpec,GSpec1〉 and 〈RSpec,GSpec2〉 re-

spectively, as depicted in Figure 5.5. The combined effect of these properties is given by the

conjunctive contract Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉, the guarantee of which is presented

in Figure 5.6. As Spec1 and Spec2 have the same interface, the guarantee of the conjunction is

obtained as the intersection of GSpec1 and GSpec2. �

82 Chapter 5. Assume-Guarantee Reasoning for Components

RSpec

login?

logout!

logout!

job! job! job!
process!
ack!

process!
ack!

process!
ack!

logout!

GSpec1

login?

process!
job!
ack!

logout!

job!
ack!

logout!

GSpec2

process!

logout!
job!
ack!
login?

job!
ack!
login?

Figure 5.5: Assumption and guarantee of Spec1 and Spec2

GSpec1∧Spec2

login? process!

logout!

job!

ack!

job!

ack!

job!

ack!

Figure 5.6: Guarantee of Spec1 ∧ Spec2

5.1.4 Disjunction

In this section, we formulate a disjunctive operator on contracts. Whereas conjunction combines

requirements in the sense that it strengthens guarantees, disjunction strengthens the assumptions

on the environment to the extent that the implementations of the disjunction contains the union

of the implementations of the contracts to be composed. Being the dual of conjunction, we show

that disjunction is the join operator on the refinement preorder, and provide a sound and complete

assume-guarantee rule.

Definition 5.25. Let SP and SQ be contracts composable for disjunction. Then SP ∨ SQ is a

contract 〈AISP∨SQ ,A
O
SP∨SQ ,RSP∨SQ ,GSP∨SQ〉 defined by:

• AISP∨SQ = AISP ∩ A
I
SQ

• AOSP∨SQ = AOSP ∪ A
O
SQ

• RSP∨SQ is the intersection of the following sets:

– RSP ∪ violations(SP) ∪ ((RSP ∪ violations(SP)) ↑ AOSQ)

– RSQ ∪ violations(SQ) ∪ ((RSQ ∪ violations(SQ)) ↑ AOSP)

• GSP∨SQ = RSP∨SQ ∩ (violations(SP) ∪ violations(SQ)). �

This definition of disjunction satisfies properties similar to those for conjunction, and hence is

the join operator on the refinement preorder.

5.1. Assume-Guarantee Framework for Safety Properties 83

Theorem 5.26. Let SP and SQ, and S ′P and S ′Q be contracts composable for disjunction. Then:

• SP v SP ∨ SQ and SQ v SP ∨ SQ

• SP v SR and SQ v SR implies SP ∨ SQ v SR

• S ′P v SP and S ′Q v SQ implies S ′P ∨ S ′Q v SP ∨ SQ.

Proof. First show that SP v SP ∨ SQ. Suppose t ∈ violations(SP ∨ SQ) ∩ A∗SP . Then there is a

prefix t′ of t such that t′ ∈ RSP∨SQ ∩ GSP∨SQ . Hence t′ ∈ violations(SP) as required. If instead

t ∈ RSP∨SQ ∩ A∗SP , then t ∈ RSP ∪ violations(SP). Showing SQ v SP ∨ SQ is similar.

For the second claim, suppose that t ∈ RSR ∩ A∗SP∨SQ . If t ≡ ε, then ε ∈ RSP∨SQ trivially,

while if t ≡ t′o for o ∈ AOSP∨SQ , then t′o ∈ RSP∨SQ by the induction hypothesis and output

extendability of assumptions or extendability of violations. Instead, if t ≡ t′i for i ∈ AISP∨SQ ,

then by the induction hypothesis in the difficult case we have t′ ∈ RSP ∩ violations(SP) and

t′ ∈ RSQ ∩ violations(SQ). As i ∈ AISP ∩ A
I
SQ , it follows from SP v SR and SQ v SR that

t′i ∈ RSP ∩RSQ . Hence, t′i ∈ RSP∨SQ .

Now suppose that t ∈ violations(SR) ∩ A∗SP∨SQ . Then there exists a smallest prefix t′ of

t such that t′ ∈ RSR ∩ violations(SR) ∩ A∗SP∨SQ . Suppose all strict prefixes of t′ are not in

violations(SP ∨ SQ). Then, by the previous part, it follows that t′ ∈ RSP∨SQ . If t′ ∈ A∗SP , then

from SP v SR it follows that t′ ∈ violations(SP), and if t′ ∈ A∗SQ , then from SQ v SR it follows

that t′ ∈ violations(SQ). Hence t′ 6∈ GSP∨SQ (noting GSP∨SQ ⊆ A∗SP ∪ A
∗
SQ), which implies

t′ ∈ violations(SP ∨ SQ). By extension closure of violations, we have t ∈ violations(SP ∨ SQ).

For the third claim, by the first claim we have that SP v SP ∨ SQ and SQ v SP ∨ SQ. Since

the contracts under consideration are composable for disjunction, it follows from S ′P v SP and

S ′Q v SQ, along with transitivity (compatibility holds), that S ′P v SP ∨ SQ and S ′Q v SP ∨ SQ.

Now by the second claim it is straightforward to derive S ′P ∨ S ′Q v SP ∨ SQ. �

Based on the algebraic properties of disjunction, we can formulate a sound and complete

assume-guarantee rule. This demonstrates that a disjunctive contract contains the union of the im-

plementations of the contracts to be composed, although there may be additional implementations

that are not implementations of either contract.

Theorem 5.27. Let P be a component, and let S1, S2 and S be contracts such that S1 and S2 are

composable for disjunction, and AIP ∩ AOS = ∅. Then the following AG rule is both sound and

complete:

SAFE-DISJUNCTION
P |= S1 or P |= S2 S1 ∨ S2 v S

P |= S
.

Proof. For soundness, assume P |= S1. Then AG(P) v S1 and S1 v S1 ∨ S2 by Theorem 5.26.

84 Chapter 5. Assume-Guarantee Reasoning for Components

I(S1 ∧ S2)

I(S1) I(S2)

I(S1 ∨ S2)

Figure 5.7: Implementations of S1, S2, S1 ∧ S2 and S1 ∨ S2

Since AIP ∩ AOS = ∅, it follows that transitivity holds, and so AG(P) v S , implying P |= S. For

completeness, take S1 = S2 = S. The result then holds by idempotence of ∨. �

The disjunction S1 ∨ S2 is the strongest contract containing the union of the implementations

for S1 and S2. In contrast to conjunction, which precisely characterises the intersection of the

implementation sets, there may be implementations of the disjunction that are not implementations

of either S1 or S2. The Hasse diagram of Figure 5.7 makes this relationship clear by depicting

the least refined implementations of the contracts S1 and S2, along with their conjunction and

disjunction. The implementations of a contract S are simply those implementations that appear

above (i.e., can be reached from) I(S).

5.1.5 Quotient

The AG rule for parallel composition in Theorem 5.19 makes use of the composition SP || SQ.

To support incremental development, we need a way of decomposing the composition to find SQ
given SP . We can do this using a quotient operator.

Definition 5.28. Let SP and SW be contracts. Then the quotient SW/SP is a contract 〈AISW/SP ,
AOSW/SP ,RSW/SP ,GSW/SP 〉, defined only when AOSP ⊆ A

O
SW , where:

• AISW/SP = AISW \ A
I
SP

• AOSW/SP = AOSW \ A
O
SP

• RSW/SP = [RSW ∩ (violations(SP) ⇑ ASW)] � ASW/SP

• GSW/SP is the largest subset ofRSW/SP disjoint from

[RSW ∩ (violations(SP) ⇑ ASW) ∩ (violations(SW) ∪ (RSP ⇑ ASW))] � ASW/SP . �

Although not immediately obvious from the formulation of the previous definition, the as-

sumption is closed under output-extensions, and the assumption and guarantee are both prefix-

closed. Therefore, the quotient is a well-formed contract. Before explaining the intuition behind

5.1. Assume-Guarantee Framework for Safety Properties 85

the definition, we introduce the following theorem, which shows that the quotient operator on

contracts yields the weakest decomposition of the parallel composition.

Theorem 5.29. Let SP and SW be contracts. Then there exists a contract SQ such that SP ||
SQ v SW iff the following properties hold:

• The quotient SW/SP is defined

• SP || (SW/SP) v SW

• AISQ = AISW/SP implies SQ v SW/SP .

Proof. For the first claim, if SP || SQ v SW , thenAOSP ||SQ = AOSP ∪A
O
SQ ⊆ A

O
SW , which implies

AOSP ⊆ A
O
SW . Now suppose thatAOSP ⊆ A

O
SW . Then we construct a contract SQ = 〈AISW ,A

O
SW \

AOSP ,A
∗
SQ , ∅〉, which, having no implementations, implies SP || SQ has no implementations. The

constraints R1 to R3 are satisfied, so SP || SQ v SW as required.

For the second claim, suppose t ∈ RSW ∩ A∗SP ||(SW/SP). If t 6∈ RSP ||(SW/SP), then there

exists a prefix t′ of t and t′′ ∈ (AOSP ||(SW/SP))
∗ such that t′t′′ � ASP 6∈ RSP or t′t′′ � ASW/SP 6∈

RSW/SP , and t′t′′ � ASP 6∈ violations(SP) and t′t′′ � ASW/SP 6∈ violations(SW/SP). It follows

that t′t′′ ∈ RSW , so t′t′′ � ASW/SP ∈ RSW/SP , which means t′t′′ � ASP 6∈ RSP . There-

fore, t′t′′ � ASW/SP 6∈ GSW/SP , which implies t′t′′ � ASW/SP ∈ violations(SW/SP). But this

contradicts t′t′′ � ASW/SP 6∈ violations(SW/SP). Hence t ∈ RSP ||(SW/SP).

Now suppose that t ∈ violations(SW) ∩ A∗SP ||(SW/SP). Then, there exists a prefix t′ of t

such that t′ ∈ RSW ∩ violations(SW). By the previous part, it follows that t′ ∈ RSP ||(SW/SP).
Now suppose for a contradiction that t′ ∈ GSP ||(SW/SP). Then t′ � ASP 6∈ violations(SP) and

t′ � ASW/SP 6∈ violations(SW/SP). But it follows that t′ � ASW/SP ∈ violations(SW/SP),

since t′ � ASW/SP ∈ RSW/SP ∩ GSW/SP . This contradicts t′ ∈ GSP ||(SW/SP). Hence t′ ∈
violations(SP || (SW/SP)) and so t ∈ violations(SP || (SW/SP)).

For the third claim, suppose that t ∈ RSW/SP ∩ A
∗
SQ . Then there exists t′ ∈ A∗SW such that

t′ � ASW/SP = t with t′ ∈ RSW and t′ � ASP 6∈ violations(SP). From t′ ∈ RSW we derive

t′ ∈ RSP ||SQ ∪ violations(SP || SQ), given that SP || SQ v SW . If t′ ∈ RSP ||SQ , then it follows

that t′ � ASQ ∈ RSQ ∪ violations(SQ). If instead t′ ∈ violations(SP || SQ), then it follows that

t′ � ASQ ∈ violations(SQ). Note that t′ � ASQ = t.

Now suppose that t ∈ violations(SW/SP) ∩ A∗SQ . Then there exists t′ a prefix of t such that

t′ ∈ RSW/SP ∩ violations(SW/SP). So there is a prefix and input extension t′′ of t′ such that

there exists tw ∈ RSW with tw � ASW/SP = t′′, tw � ASP 6∈ violations(SP), and either tw ∈
violations(SW) or tw � ASP 6∈ RSP . If tw ∈ violations(SW), then tw ∈ violations(SP || SQ),

since SP || SQ v SW . Therefore, it follows that tw � ASQ ∈ violations(SQ). Alternatively,

if tw � ASP 6∈ RSP , then if tw � ASQ 6∈ violations(SQ) it follows that tw 6∈ RSP ||SQ . Since

86 Chapter 5. Assume-Guarantee Reasoning for Components

SP || SQ v SW , it must hold that tw ∈ violations(SP || SQ), which again implies tw � ASQ ∈
violations(SQ). Note that tw � ASQ = t′′, so t ∈ violations(SQ). �

In explaining the intuition behind the definition of quotient, it is necessary to consider the

properties of Theorem 5.29 along with the formulation of refinement and parallel composition

(Definitions 5.9 and 5.15). To obtain the least refined solution SW/SP for SP || X v SW , it is

essential that the quotient roughly1 satisfies the following properties for t ∈ A∗SW :

• If t ∈ violations(SW) and:

– t � ASP ∈ violations(SP), then t ∈ violations(SP || (SW/SP)), so there is no need

for t � ASW/SP ∈ RSW/SP
– t � ASP 6∈ violations(SP), then it must hold that t � ASW/SP ∈ violations(SW/SP)

(i.e., take t � ASW/SP ∈ RSW/SP ∩ GSW/SP so that t ∈ violations(SP || (SW/SP)).

• If t ∈ RSW \violations(SW), first attempt to ensure that t ∈ RSP ||(SW/SP)\violations(SP ||
(SW/SP)) holds, and failing that ensure t ∈ violations(SP || (SW/SP)):

– If t � ASP ∈ violations(SP), then t ∈ RSP ||(SW/SP), so there is no need for t �

ASW/SP ∈ RSW/SP .

– If t � ASP 6∈ violations(SP) and t � ASP ∈ RSP , simply take t � ASW/SP ∈
RSW/SP , so that t ∈ RSP ||(SW/SP) \ violations(SP || (SW/SP)).

– If t � ASP 6∈ violations(SP) and t � ASP 6∈ RSP , then we require t � ASW/SP ∈
violations(SW/SP), so take t � ASW/SP ∈ RSW/SP ∩ GSW/SP .

Note that, in the definition of GSW/SP , the set required to be disjoint from RSW/SP es-

sentially characterises a subset of traces that must be in violations(SW/SP). Furthermore, in

the definition of quotient, the set of inputs AISW/SP is taken to be the smallest set such that

AISW ⊆ AISP ||(SW/SP), the latter being a necessary condition for SP || (SW/SP) v SW .

Yet, in fact, the set of inputs for quotient can be parameterised without affecting the results of

Theorem 5.29. This is useful, since enlarging the set of inputs allows for the possibility of the

quotient to observe the behaviour of SP , which yields a contract with more specific behaviour.

Such a contract cannot be obtained through refinement alone, as SQ v SW/SP does not imply

SP || SQ v SP || (SW/SP) in general, since monotonicity only holds on a restricted set of

interfaces (cf Theorem 5.18).

We now present a sound and complete AG rule for quotient on contracts.

Theorem 5.30. Let SP and SW be contracts such that SW/SP is defined, let P range over com-

ponents having the same interface as SP , and let Q be a component having the same interface as
1Exceptions need to be made since the conditions are not mutually exclusive, and properties like prefix closure and

output-extendability must be maintained.

5.1. Assume-Guarantee Framework for Safety Properties 87

SW/SP (where the quotient is parameterised on the set AIQ). Then the following AG rule is both

sound and complete:

SAFE-QUOTIENT
∀P · P |= SP implies P || Q |= SW

Q |= SW/SP
.

Proof. For soundness, first note that I(SP) |= SP , and so I(SP) || Q |= SW . Consequently,

AG(I(SP) || Q) v SW , and from the proof of Theorem 5.19 we know that AG(I(SP)) ||
AG(Q) v SW . Moreover, SP v AG(I(SP)) v SP , so by Theorem 5.29 it follows that

AG(Q) v SW/SP as required.

For completeness, by the interfaces of P and SP , as well as Q and SW/SP , matching, it

follows that if AG(P) v SP , then AG(P) || AG(Q) v SP || (SW/SP), since the conditions

for monotonicity in Theorem 5.18 are satisfied. Now by transitivity (the conditions being trivially

satisfied) and Theorem 5.29, we obtain AG(P) || AG(Q) v SW . Hence AG(P || Q) v SW by

Lemma 5.20. �

We insist that the components P and Q must have the same interfaces as their respective con-

tracts, since parallel composition is only monotonic when restrictions are placed on the interfaces

of the contracts to be composed (cf Theorem 5.18). The proof of the rule hints that the universal

quantification over all components P can be replaced by the single component I(SP), meaning

that it is not necessary to quantify over an infinite number of components in order to satisfy the

premise.

Corollary 5.31. Let SP and SW be contracts such that SW/SP is defined, and let Q be a com-

ponent having the same interface as SW/SP (where the quotient is parameterised on the set AIQ).

Then the following AG rule is both sound and complete:

SAFE-QUOTIENT-REVISED
I(SP) || Q |= SW
Q |= SW/SP

.

Proof. For soundness, note thatAG(I(SP) || Q) v SW , which by Lemma 5.20 yieldsAG(I(SP))

|| AG(Q) v SW . As AG(I(SP)) v SP v AG(I(SP)), it follows by Theorem 5.29 that

AG(Q) v SW/SP given AG(Q) and SW/SP have identical interfaces. Completeness follows

by Theorem 5.30. �

Example 5.32. We now derive a Client contract (having an interface as described in Example 5.24)

that can interact with Server (Figure 5.1), whilst satisfying the requirements of Spec1 ∧ Spec2

(Figures 5.5 and 5.6). This is obtained as (Spec1 ∧ Spec2)/Server, where the quotient operator is

parameterised on the set of inputs {login, ack}. The resulting contract is shown in Figure 5.8. The

guarantee is obtained from the assumption by pruning any trace that is in violations(Spec1 ∧ Spec2)

88 Chapter 5. Assume-Guarantee Reasoning for Components

RClient

login?

logout!

logout!

login?

logout!

logout!

login?

logout!

logout!

job!

job!

ack?job!

job!

ack? job!

job!

ack?

logout!

logout!

job!
ack?

logout!

job!
ack?

job!
ack?

GClient

login?

job!

ack?

logout!

Figure 5.8: Assumption and guarantee of Client

or not inRServer. The most general implementation of Client has the same pictorial representation

as GServer, although there are implicit inconsistent input transitions from each state in order to en-

sure input-receptivity. �

5.1.6 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel composition so that

it makes use of quotient on contracts. This is useful for system development, as we will often

have the specification of a whole system, rather than the specifications of the subsystems to be

composed.

Corollary 5.33. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ASP ||SQ ⊆ ASP ∩ASQ andAIP||Q ∩A

O
S = ∅. When the quotient is parameterised onAISQ ,

the following rule is both sound and complete:

SAFE-PARALLEL-DECOMPOSE
P |= SP Q |= SQ SQ v S/SP

P || Q |= S
.

Proof. Follows immediately from Theorems 5.19 and 5.29. �

This rule, based on Theorem 5.19, differs in having the premise SQ v S/SP in place of

SP || SQ v S . Note that this substitution requires no change to the constraints on the contracts

and components. The rule is useful for scenarios when the contract S is supplied along with a

subcontract SP (or for when a subcontract SP can easily be inferred). In such circumstances, the

missing contract SQ can be taken as any refinement of S/SP .

5.2. Assume-Guarantee Framework with Progress 89

5.2 Assume-Guarantee Framework with Progress

In this section, we introduce an AG framework for reasoning about the safety and liveness prop-

erties satisfied by components. Since we continue to work with finite-length traces, our notion

of liveness corresponds to progress, which is based on quiescence, as in Section 3.2. A trace is

said to be quiescent if it can result in an observable behaviour from which the component cannot

produce an output without first having to receive input from the environment. Quiescence has

similarities with, although is not equivalent to, deadlock. In the case of the latter, a trace is said

to be deadlocked just if there is some behaviour that is both unable to produce any output and is

unwilling to accept any inputs.

To instil this notion of progress within our framework, we extend contracts by including a

set of liveness traces. These are traces on which any implementing component may not become

quiescent.

Definition 5.34. A progress-sensitive contract S is a tuple 〈AIS ,AOS ,RS ,GS ,LS〉, in which AIS
andAOS are disjoint sets (whose union isAS), referred to as the inputs and outputs respectively,RS
and GS are prefix closed subsets of A∗S , referred to as the assumption and guarantee respectively,

such that t ∈ RS and t′ ∈ (AOS)∗ implies tt′ ∈ RS , and LS ⊆ RS ∩ GS is a (not necessarily

prefix-closed) set of liveness traces. �

We will often drop the term ‘progress-sensitive’ and simply refer to S as a contract. As in the

safety framework, the assumption is closed under output-extensions since the environment cannot

constrain the output behaviour of a component, while the guarantee is not required to be closed

under input-extensions, because the assumption can specify the inputs under which the guarantee

is given. Note that, by taking the set of liveness traces to be the empty set, the framework supports

reasoning about safety properties as in Section 5.1.

Example 5.35. We now adopt the convention that square nodes within the figure of a guarantee

indicates that progress must be made, while a circular node has no such requirement. Considering

the contract for the Server, as depicted in Figure 5.1, the assumption leaves process unconstrained,

but ensures that error will never be sent providing job and ack alternate in that order (as in the

safety setting). The guarantee requires that any job received can only be acknowledged after

having been processed, a new job can only arrive after the previous one has been acknowledged,

and whenever a job is received it must be processed (the progress condition). �

The inclusion of liveness strengthens the definition of satisfaction, meaning that a progress-

sensitive contract will, in general, have fewer implementations than a contract disregarding live-

ness.

Definition 5.36. A progress-sensitive component P satisfies the contract S, written P |=l S , iff

P |= S (as in Definition 5.1) and LS ∩ TP ⊆ KP . �

90 Chapter 5. Assume-Guarantee Reasoning for Components

Therefore, any implementation P of S must not be allowed to become inconsistent under its

own control when offered inputs in the assumption, and any trace of P that is contained in LS
must make observational progress.

Lemma 5.37. Let P andQ be progress-sensitive components, and let S be a contract. If P |=l S ,

Q vlimp P , and AIQ ∩ AOS = ∅, then Q |=l S .

Proof. We need to show that LS ∩ TQ ⊆ KQ, while the remainder of the result follows from

Lemma 5.4. Suppose that t ∈ LS ∩ TQ. Then t ∈ A∗P , so, from Q vlimp P , we have t ∈ TE(P).
If t ∈ TP \ FE(P), then from P |=l S we derive t ∈ KP , thus t ∈ KQ from Q vlimp P . If instead

t ∈ FE(P), then, by the same reasoning as in Lemma 5.4, we see that P 6|=l S. �

Example 5.38. In the progress-sensitive setting, ServerImpl (Figure 5.2) is still an implementa-

tion of Server, as is ServerImpl2 given ServerImpl2 vl
imp ServerImpl. NonImpl is still not an

implementation, because NonImpl 6|= Server due to 〈ack〉 ∈ violations(Server) ∩ TNonImpl as in

the safety setting, and secondly because progress is not made after receiving a job. Note that, if

the square node in ServerImpl2 was circular, this component would also not be an implementation

of Server, since by non-determinism there could be a behaviour of the component that does not

perform process after receiving a job. �

We now show how to construct the least refined component satisfying a contract. Unlike in

the safety case, the progress-sensitive setting is complicated by the requirement of liveness, which

can conflict with safety. We therefore define the error traces of a component, which generalises

the violations set by including liveness conflicts. Traces contained in this error set cannot be in

any satisfying component, because they will violate the guarantee or progress condition.

Definition 5.39. Let S be a contract. Then error(S) is defined as the smallest set containing

violations(S) ∪ {t ∈ A∗S : ∃t′ ∈ (AIS)∗ · tt′ ∈ LS and ∀o ∈ AOS · tt′o ∈ error(S)} · A∗S . �

error(S) should consist of all traces that are not in any satisfying component of S. Therefore,

error(S) consists of all traces in violations(S), along with any trace that is required to be live, but

cannot be so, due to all output successors violating a safety or progress error. By reducing the

allowed behaviours of satisfying components, further progress errors can be introduced, which is

why error(S) is defined recursively. Note that, in the safety setting when LS = ∅, it holds that

error(S) = violations(S).

Naturally, error(S) can be defined as the least fixed point of the defining equation above.

Therefore, error(S) = ∪i∈NXi, where X0 = ∅ and Xi+1 , violations(S) ∪ {t ∈ A∗S : ∃t′ ∈
(AIS)∗ · tt′ ∈ LS and ∀o ∈ AOS · tt′o ∈ Xi} · A∗S .

The least refined component satisfying a contract can now be defined in a straightforward

manner in terms of the error traces.

5.2. Assume-Guarantee Framework with Progress 91

Definition 5.40. Let S be a contract. Then the least refined component satisfying S is the compo-

nent Il(S) = 〈AIS ,AOS , TIl(S), FIl(S),KIl(S)〉, where:

• TIl(S) = error(S)

• FIl(S) = error(S) ∩RS

• KIl(S) = error(S) ∩ LS . �

Since violations(S) ⊆ error(S), it follows that the traces of Il(S) cannot violate the safety

constraints of S. In addition, if t is a trace of Il(S), then no extension of t can be allowed to violate

the progress conditions. Therefore, KIl(S) allows the component to be quiescent whenever it is

not required to be live.

Lemma 5.41. Let S be a contract, and let P be a component. Then:

• Il(S) is non-realisable implies S is non-implementable;

• Il(S) |=l S; and

• P |=l S iff P vlimp Il(S).

Proof. For the first claim, we show that t ∈ Xi implies t is not a trace in any implementation of S
for each i ∈ N, where Xi is the i-th iteration of defining error(S) as a least fixed point. For i = 0,

the result holds trivially as X0 = ∅. So suppose that the result holds for i = k. Now t ∈ Xk+1

implies that t ∈ violations(S) or there is t′ ∈ (AIS)∗ such that tt′ ∈ LS and ∀o ∈ AOS · tt′o ∈ Xk.

If t ∈ violations(S), then clearly t cannot be a trace of any implementation of S, since condition

S4 of Definition 5.3 will not be satisfied. If instead t satisfies the second property, then it follows

by the induction hypothesis that tt′ is a quiescent trace, which contradicts tt′ ∈ LS . Therefore, tt′

cannot be a trace of any implementation of S, and so t also cannot be a trace, by input receptiveness

of components. Taking t ≡ ε, it follows that S is non-implementable.

For the second claim, suppose t ∈ RS ∩ TIl(S). Then t ∈ RS ∩ error(S), which implies

t ∈ GS . Moreover, as t ∈ RS , it follows that t ∈ FIl(S). Hence condition S4 of Definition 5.3 is

satisfied. Now suppose that t ∈ LS∩TIl(S). Then clearly t 6∈ KIl(S) by definition, so Il(S) |=l S.

For the third claim, the if direction follows by the previous claim and Lemma 5.37. For the only

if direction, we need to show that TE(P) ⊆ TIl(S)∪(TIl(S) ↑ A
I
P), FE(P) ⊆ FIl(S)∪(TIl(S) ↑ A

I
P)

and KE(P) ⊆ KIl(S) ∪ (TIl(S) ↑ A
I
P). If t ∈ TE(P) and t 6∈ A∗S , then there is a prefix t′a of t

such that t′ ∈ A∗S and a ∈ AIP \ AS , which by an inductive argument that assumes the result

holds for all strict prefixes allows us to derive t ∈ TIl(S) ↑ A
I
P . So suppose that t ∈ TP ∩ A∗S .

Then by the first claim, since P |=l S, it follows t 6∈ error(S). Hence t ∈ TIl(S). Now suppose

that t ∈ FE(P) ∩ A∗S . Then as P |=l S, it follows that t 6∈ error(S) and t 6∈ RS . Consequently,

92 Chapter 5. Assume-Guarantee Reasoning for Components

t ∈ FIl(S). Finally, suppose that t ∈ KP ∩ A∗S . Then as t ∈ TP it follows that t 6∈ LS , since

P |=l S. Hence, t ∈ KIl(S). �

5.2.1 Refinement

The definition of refinement in the progress-sensitive framework is stronger, and so implies safety

refinement v. Accordingly, the refinement relation still corresponds to implementation contain-

ment.

Definition 5.42. Let S and T be contracts. S is said to be a progress-sensitive refinement of T ,

written S vl T , iff:

RP1. AIT ⊆ AIS

RP2. AOS ⊆ AOT

RP3. AIS ∩ AOT = ∅

RP4. error(T) ∩ A∗S ⊆ error(S)

RP5. RT ∩ A∗S ⊆ RS ∪ error(S)

RP6. LT ∩ A∗S ⊆ LS ∪ error(S). �

Conditions RP1-RP3 are syntactic constraints on the interfaces of the contracts to be compared

and so remain unchanged from Definition 5.9. Conditions RP4 and RP5 match conditions R4

and R5 of Definition 5.9, except that references to violations are replaced by error, the latter

of which is a generalisation of violations in the progress-sensitive framework. The new condi-

tion RP6 forces implementations of S to be live on a trace t whenever t is required to be live

on T , unless a safety or progress violation is inevitable, in which case the implementation would

have suppressed an output in the assumption at an earlier stage. This requirement guarantees

implementation containment, and also that refinement is a preorder (subject to compatibility).

Lemma 5.43. Refinement captures implementation containment:

S vl T ⇐⇒ {P : P |=l S and AIP ∩ AOT = ∅} ⊆ {P : P |=l T }.

Proof. For the only if direction, suppose P |=l S and AIP ∩ AOT = ∅. We first show that P |= T ,

so suppose t ∈ RT ∩ TP . Then, by the definition of vl, it follows that t ∈ RS ∪ error(S). If

t ∈ error(S), then t 6∈ TP , since P |=l S, which is contradictory. Therefore, t ∈ RS , which

from P |= S, implies t ∈ GS ∩ FP . But as t 6∈ error(S), it follows that t 6∈ error(T). Hence

t 6∈ violations(T), which implies t ∈ GT . Hence t ∈ GT ∩ FP as required. Now suppose that

t ∈ LT ∩ TP . Then from S vl T it follows that t ∈ LS ∪ error(S). If t ∈ LS , then t ∈ KP ,

5.2. Assume-Guarantee Framework with Progress 93

since P |=l S. If instead t ∈ error(S), then P 6|=l S, which is contradictory. Hence, P |=l T as

required.

For the if direction, Lemmas 5.37 and 5.41 allow us to conclude that Il(S) vlimp Il(T).

Suppose that t ∈ error(T) ∩ A∗S . Then t 6∈ TIl(T), hence t 6∈ TIl(S), meaning t ∈ error(S). Now

suppose that t ∈ RT ∩ A∗S . Then t 6∈ FIl(T), which implies t 6∈ FIl(S), hence t 6∈ RS ∩ error(S)

i.e., t ∈ RS ∪ error(S). Finally, suppose that t ∈ LT ∩ A∗S . Then t 6∈ KIl(T), hence t 6∈ KIl(S).
Thus t 6∈ LS ∩ error(S), and so t ∈ LS ∪ error(S) as required. Thus, S vl T . �

As previously remarked in Section 5.1.1, Larsen et al. [LNW06] provide a sound and com-

plete characterisation of their refinement relation in terms of conformance tests, which largely

corresponds to condition RP4. Condition RP5 is not necessary in their setting because implemen-

tations are required to be input-enabled, while condition RP6 is not necessary, since they only

consider safety properties, rather than safety and progress.

Refinement is naturally reflexive, and it is also transitive subject to compatibility of interfaces.

Lemma 5.44. For contracts S , T and U such that AIS ∩ AOU = ∅, if S vl T and T vl U , then

S vl U .

Proof. Follows from transitivity of ⊆. �

As in the safety framework, we now show how to construct the characteristic contract for a

progress-sensitive component.

Definition 5.45. The characteristic contract for the component P is a contract AG(P) = 〈AIP ,
AOP ,RAG(P),GAG(P),LAG(P)〉, where:

• RAG(P) = A∗P \ FE(P)

• GAG(P) = TP \ FE(P)

• LAG(P) = TP \KE(P). �

The assumption and guarantee are unchanged from the safety setting, while the set of liveness

traces LAG(P) contains the non-inconsistent traces of P that are not quiescent.

Lemma 5.46. Let P be a component and let S be a contract. Then:

• P |=l AG(P); and

• P |=l S iff AG(P) vl S.

Proof. For the first claim, by the properties of Lemma 5.14, it follows that P |= AG(P). So

suppose that t ∈ LAG(P) ∩ TP . Then t 6∈ KE(P), hence t 6∈ KP as required. Thus, P |=l AG(P).

94 Chapter 5. Assume-Guarantee Reasoning for Components

For the second claim, the if direction follows by the previous claim and Lemma 5.43. For the

only if direction, suppose that t ∈ error(S) ∩ A∗P . Hence t 6∈ TP ∪ FE(P) as P |=l S, which

implies t ∈ RAG(P) ∩ GAG(P). Hence, t ∈ violations(AG(P)), which implies t ∈ error(AG(P)).

Now suppose that t ∈ RS ∩ A∗P . Then P |=l S implies t 6∈ TP or t 6∈ FE(P). Note that t 6∈ TP
implies t 6∈ FE(P) (consider a prefix in TP ∩ FE(P)). Hence t ∈ RAG(P). Finally, suppose that

t ∈ LS ∩ A∗P . Then from P |=l S, it follows that t 6∈ TP or t 6∈ KP . In the case of the former,

t 6∈ FE(P) as P |=l S, so t ∈ violations(AG(P)), which implies t ∈ error(AG(P)). For the latter,

if t 6∈ LAG(P), then t 6∈ TP or t ∈ TP ∩ FE(P), both of which imply t ∈ violations(AG(P)), and

so t ∈ error(AG(P)). �

Based on these results, we define the compositional operators directly on progress-sensitive

contracts. As usual, the compositions are only defined when the contracts to be acted upon are

composable. The conditions for composability remain unchanged from Section 5.1, with parallel

composition requiring disjointness of outputs, conjunction and disjunction insisting that action

types are not mixed, and quotient needing the outputs of the subsystem to be contained within

those for the whole system.

5.2.2 Parallel Composition

Again, the parallel composition of two contracts is defined as the weakest contract satisfying

independent implementability. The assumption and guarantee remain largely unchanged from the

safety case, except for the replacement of violations by error trace sets. On the other hand, the

addition of liveness requires that a trace in the composition must make progress if at least one of

the contracts requires this. This is due to the fact that parallel composition cannot suppress the

output behaviour of implementing components.

Definition 5.47. Let SP and SQ be contracts composable for parallel composition. Then SP ||l
SQ is a contract 〈AISP ||SQ ,A

O
SP ||SQ ,RSP ||lSQ ,GSP ||lSQ ,LSP ||lSQ〉, where:

• RSP ||lSQ is the largest prefix closed set such that RSP ||lSQ(AOSP ||SQ)∗ is contained within

the union of:

– (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

– error(SP) ⇑ ASP ||SQ

– error(SQ) ⇑ ASP ||SQ

• GSP ||lSQ = RSP ||lSQ ∩ (error(SP) ⇑ ASP ||SQ) ∩ (error(SQ) ⇑ ASP ||SQ)

• LSP ||lSQ = GSP ||lSQ ∩ [(LSP ⇑ ASP ||SQ) ∪ (LSQ ⇑ ASP ||SQ)]. �

5.2. Assume-Guarantee Framework with Progress 95

By the definition of LSP ||lSQ , we know that LSP ||lSQ ⊆ RSP ||lSQ ∩ GSP ||lSQ as required, and

any trace in LSP ||lSQ requires that at least one of SP or SQ is live. Therefore, the parallel compo-

sition of any pair of implementations of SP and SQ must be live on this trace. The monotonicity

result and the AG rule are the same as in the non-quiescent case, but in order to show this, we first

present a lemma on the decomposition of error traces arising in the parallel composition.

Lemma 5.48. t ∈ error(SP ||l SQ) implies t � ASP ∈ error(SP) or t � ASQ ∈ error(SQ).

Proof. Show that t ∈ Xi implies t � ASP ∈ error(SP) or t � ASQ ∈ error(SQ), where Xi

is the i-th iteration of error(SP ||l SQ) defined as a least fixed point. When i = 0, the result

hold trivially, since X0 = ∅. So suppose that t ∈ Xk+1. Then t ∈ violations(SP ||l SQ),

or there exists t′ ∈ (AISP ||SQ)∗ such that tt′ ∈ LSP ||lSQ and ∀o ∈ AOSP ||SQ · tt
′o ∈ Xk. If

t ∈ violations(SP ||l SQ), then there exists a prefix and input extension t′ ∈ RSP ||lSQ ∩GSP ||lSQ .

So, without loss of generality, t′ � ASP ∈ error(SP) by the definition of ||l, from which it follows

t � ASP ∈ error(SP). For the latter case, without loss of generality suppose that tt′ � ASP ∈ LSP .

If tt′ � ASP 6∈ error(SP), then it follows that there exists o′ ∈ AOSP · tt
′o′ � ASP 6∈ error(SP).

As tt′o′ ∈ Xk, it follows that tt′o′ � ASQ ∈ error(SQ). Moreover, as o′ 6∈ AOSQ , it follows that

t � ASQ ∈ error(SQ) as required. �

The monotonicity result for parallel composition can now be presented.

Theorem 5.49. Let SP and S ′P , and SQ and S ′Q be contracts composable for parallel composition,

such that AS′P ∩ AS′Q ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIS′P ||S′Q ∩ A
O
SP ||SQ = ∅. If S ′P vl SP and

S ′Q vl SQ, then S ′P ||l S ′Q vl SP ||l SQ.

Proof. Note that the alphabet constraints are satisfied, so first showRSP ||lSQ∩A
∗
S′P ||S

′
Q
⊆ RS′P ||lS′Q∪

error(S ′P ||l S ′Q). Suppose t ∈ RSP ||lSQ ∩ A
∗
S′P ||S

′
Q

, and all strict prefixes of t are in RS′P ||lS′Q ∩
error(S ′P ||l S ′Q). If t 6∈ RS′P ||lS′Q , then there exists t′ ∈ (AOS′P ||S′Q)∗ such that, without loss of

generality, tt′ � AS′P 6∈ RS′P ∪ error(S ′P) and tt′ � AS′Q 6∈ error(S ′Q). As tt′ � ASP = tt′ � AS′P
and tt′ � ASQ = tt′ � AS′Q , it follows that tt′ � ASP 6∈ RSP ∪ error(SP) since S ′P vl SP , and

tt′ � ASQ 6∈ error(SQ) since S ′Q vl SQ. Hence, tt′ 6∈ RSP ||lSQ , which implies t 6∈ RSP ||lSQ as

t′ ∈ (AOSP ||SQ)∗, but this is contradictory.

Now suppose that t ∈ error(SP ||l SQ) ∩ A∗S′P ||S′Q , and assume for the difficult case that t ∈
RSP ||lSQ . Then by Lemma 5.48 it follows that, without loss of generality, t � ASP ∈ error(SP).

Since t � ASP = t � AS′P , it follows from S ′P vl SP that t � AS′P ∈ error(S ′P). Now from the

first part, we know t ∈ RS′P ||lS′Q ∪ error(S ′P ||l S ′Q), so it follows that t ∈ error(S ′P ||l S ′Q), since

certainly t 6∈ GS′P ||lS′Q .

Finally, show t ∈ LSP ||lSQ ∩ A
∗
S′P ||S

′
Q

implies t ∈ LS′P ||lS′Q ∪ error(S ′P ||l S ′Q). Suppose

that t 6∈ error(S ′P ||l S ′Q). Then by the first part, as t ∈ RSP ||lSQ ∩ A
∗
S′P ||S

′
Q

, it follows that

t ∈ RS′P ||lS′Q , and so t ∈ GS′P ||lS′Q . Hence t � AS′P 6∈ error(S ′P) and t � AS′Q 6∈ error(S ′Q). Now,

96 Chapter 5. Assume-Guarantee Reasoning for Components

without loss of generality, t � ASP ∈ LSP , so from S ′P vl SP , it follows that t � AS′P ∈ LS′P .

Hence t ∈ LS′P ||lS′Q as required. �

Based on this result, a sound and complete AG rule can be formulated.

Theorem 5.50. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIP||Q ∩ A

O
S = ∅. Then the following AG rule is both sound

and complete:

LIVE-PARALLEL
P |=l SP Q |=l SQ SP ||l SQ vl S

P ||l Q |=l S
.

Proof. The result follows from the same reasoning in Theorem 5.19, when making use of Lemma

5.51 below, which is a generalisation of Lemma 5.20 in the safety setting. �

Lemma 5.51. AG(P ||l Q) vl AG(P) ||l AG(Q) vl AG(P ||l Q).

Proof. First suppose that t ∈ RAG(P)||lAG(Q) and t 6∈ error(AG(P) ||l AG(Q)). Then t � AP ∈
RAG(P) and t � AQ ∈ RAG(Q), which implies that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q).

Hence, t 6∈ FE(P||lQ), from which it follows that t ∈ RAG(P||lQ). For the other direction, suppose

t ∈ RAG(P||lQ) and t 6∈ error(AG(P ||l Q)). Then, t ∈ GAG(P||lQ), which implies t ∈ TP||lQ \
FE(P||lQ), which means that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q) i.e., t � AP ∈ RAG(P) and

t � AQ ∈ RAG(Q). From this it follows that t ∈ RAG(P)||lAG(Q), having noticed that no output

extension of t can violate this constraint.

For the error set containments, suppose that t ∈ error(AG(P) ||l AG(Q)) and t ∈ RAG(P||lQ)∩
RAG(P)||lAG(Q). We demonstrate that Xi ⊆ error(AG(P ||l Q)) for each i ∈ N, where Xi is the

i-th iteration of defining the least fixed point characterising error(AG(P) ||l AG(Q)). The result

holds trivially when i = 0, since Xi = ∅. For the inductive case, suppose t ∈ Xk+1. Then

t ∈ violations(AG(P) ||l AG(Q)), or there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ LAG(P)||lAG(Q)
and for each o ∈ AOP||Q it holds that tt′o ∈ Xk. For the former, it follows that there exists

t′ ∈ (AIP||Q)∗ such that tt′ ∈ RAG(P)||lAG(Q) ∩ GAG(P)||lAG(Q). Consequently, without loss of

generality, tt′ � AP ∈ error(AG(P)), which implies t � AP ∈ error(AG(P)). Suppose for a

contradiction that t ∈ GAG(P||lQ). Then t ∈ TP||lQ \ FE(P||lQ), which implies t � AP ∈ TP .

But, as t � AP ∈ error(AG(P)), it follows that P 6|=l AG(P), which is contradictory. Therefore,

t 6∈ GAG(P||lQ) and so t ∈ error(AG(P ||l Q)). For the latter case, by the induction hypothesis we

have that tt′o ∈ error(AG(P ||l Q)), which implies that tt′ ∈ error(AG(P ||l Q)), given that tt′ ∈
LAG(P)||lAG(Q) implies tt′ ∈ LAG(P||lQ). To see this last implication, from tt′ ∈ LAG(P)||lAG(Q)
it holds without loss of generality that tt′ � AP ∈ LAG(P) and tt′ � AQ ∈ RAG(Q), since

tt′ � AQ 6∈ error(AG(Q)). Hence, tt′ � AP ∈ TP \KE(P) and tt′ � AQ ∈ TQ ∩ FE(Q). Thus,

tt′ ∈ TP||lQ \ KE(P||lQ), implying tt′ ∈ LAG(P||lQ). Consequently, t ∈ error(AG(P ||l Q)) as

required.

5.2. Assume-Guarantee Framework with Progress 97

For the other direction of the containment, suppose that both t ∈ error(AG(P ||l Q)) and t ∈
RAG(P||lQ)∩RAG(P)||lAG(Q). Using a similarXi argument it follows t ∈ violations(AG(P ||l Q)),

or there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ LAG(P||lQ) and for each o ∈ AOP||Q, it holds that

tt′o ∈ error(AG(P) ||l AG(Q)). For the former, suppose that there exists t′ ∈ (AIP||Q)∗ such

that tt′ ∈ RAG(P||lQ) ∩ GAG(P||lQ). Then tt′ 6∈ TP||lQ ∪ FE(P||lQ), which implies without loss

of generality that tt′ � AP 6∈ TP ∪ FE(P). Hence, tt′ ∈ RAG(P) ∩ GAG(P), which implies tt′ �

AP ∈ error(AG(P)). Therefore, t � AP ∈ error(AG(P)), which implies t 6∈ GAG(P)||lAG(Q).
Consequently, t ∈ error(AG(P) ||l AG(Q)) as we are assuming that t ∈ RAG(P)||lAG(Q). For the

latter, from tt′ ∈ LAG(P||lQ), it follows that tt′ ∈ TP||lQ\KE(P||lQ). Consequently, without loss of

generality, tt′ � AP ∈ TP \KE(P) and tt′ � AQ ∈ TQ\FE(Q). This means that tt′ � AP ∈ LAG(P)
and tt′ � AQ ∈ RAG(Q). Thus tt′ ∈ LAG(P)||lAG(Q) ∪ error(AG(P) ||l AG(Q)). Either way, we

derive t ∈ error(AG(P) ||l AG(Q)).

The reasoning for the liveness set containments can be extracted from the error set contain-

ments mentioned previously. �

5.2.3 Conjunction

We now give an updated definition of conjunction that works in the progress-sensitive setting.

The assumption remains unchanged from the safety framework, and the guarantee is modified

by making reference to the error traces, rather than the violations traces, of the contracts to be

composed. Progress, on the other hand, must be made when at least one of the contracts can make

progress, and the other contract has not violated its guarantee.

Definition 5.52. Let SP and SQ be contracts composable for conjunction. Then SP ∧l SQ is a

contract 〈AISP∧SQ ,A
O
SP∧SQ ,RSP∧lSQ ,GSP∧lSQ ,LSP∧lSQ〉, where:

• RSP∧lSQ = (RSP ∪RSQ) ∩ A∗SP∧SQ

• GSP∧lSQ is the intersection of the following sets:

– RSP∧lSQ
– error(SP) ∪ (error(SP) ↑ AISQ)

– error(SQ) ∪ (error(SQ) ↑ AISP)

• LSP∧lSQ = GSP∧lSQ ∩ (LSP ∪ LSQ). �

Unlike conjunction on safety contracts, the conjunctive operator in the progress-sensitive set-

ting may not be implementable, even if the two contracts to be conjoined have implementations.

This is a consequence of the conflicting nature between safety and progress. It can be shown that

this conjunctive operator on contracts is the meet operator for the progress-sensitive refinement

preorder, corresponds to intersection of implementations, and is monotonic under refinement.

98 Chapter 5. Assume-Guarantee Reasoning for Components

Theorem 5.53. Let SP and SQ, and S ′P and S ′Q be contracts composable for conjunction. Then:

• SP ∧l SQ vl SP and SP ∧l SQ vl SQ

• SR vl SP and SR vl SQ implies SR vl SP ∧l SQ

• S ′P vl SP and S ′Q vl SQ implies S ′P ∧l S ′Q vl SP ∧l SQ.

Proof. First show that SP ∧l SQ vl SP . Suppose t ∈ error(SP)∩A∗SP∧SQ . Then there is a prefix

t′ of t such that t′ ∈ RSP ∩ A∗SP∧SQ and t′ ∈ error(SP). Therefore, t′ ∈ RSP∧lSQ ∩ GSP∧lSQ ,

implying t ∈ error(SP ∧l SQ). If t ∈ RSP ∩ A∗SP∧SQ , then t ∈ RSP∧lSQ as required. Finally,

suppose t ∈ LSP ∩ A∗SP∧SQ . As t ∈ RSP ∩ A∗SP∧SQ , it follows that t ∈ RSP∧lSQ . Moreover, if

t 6∈ error(SP ∧l SQ), then t ∈ GSP∧lSQ . So from t ∈ LSP , it is easy to see that t ∈ LSP∧lSQ as

required. By similar reasoning SP ∧l SQ vl SQ.

For the second claim, we show error(SP ∧l SQ) ∩ A∗SR ⊆ error(SR) by demonstrating that

t ∈ Xi ∩ A∗SR implies t ∈ error(SR) by induction on i, where Xi is the i-th iteration of defin-

ing error(SP ∧l SQ) as a least fixed point. When i = 0 the result holds trivially as Xi = ∅.
Now suppose i = k for k > 0. If t ∈ violations(SP ∧l SQ), then there is a prefix t′ of t

and input extension t′′ ∈ (AISP∧SQ)∗ such that t′t′′ ∈ RSP∧lSQ ∩ GSP∧lSQ . So without loss

of generality, t′t′′ 6∈ error(SP) ∪ (error(SP) ↑ AISQ). This means that there is a prefix of t′t′′

contained in error(SP), which must also be in error(SR) since SR vl SP . If instead there exists

t′ ∈ (AISP∧SQ)∗ such that tt′ ∈ LSP∧lSQ and ∀o ∈ AOSP∧SQ · tt
′o ∈ Xi−1, then ∀o′ ∈ AOSR it fol-

lows that tt′o′ ∈ error(SR) by the induction hypothesis. Moreover, from tt′ ∈ LSP∧lSQ , it follows

that without loss of generality, tt′ ∈ LSP . So from SR vl SP we derive tt′ ∈ LSR ∪ error(SR).

But tt′ ∈ LSR also implies tt′ ∈ error(SR), hence t ∈ error(SR) as required. Now suppose that

t ∈ RSP∧lSQ ∩ A∗SR . Then without loss of generality, t ∈ RSP ∩ A∗SR , so from SR vl SP , we

derive t ∈ RSR ∪ error(SR). Finally, suppose t ∈ LSP∧lSQ ∩ A∗SR . If t 6∈ error(SR), then we

have t ∈ RSR ∩GSR , since t ∈ LSP∧lSQ implies t ∈ RSP∧lSQ , which implies t ∈ RSR . Without

loss of generality, t ∈ LSP , so from SR vl SP it follows that t ∈ LSR as required.

For the third claim, by the first claim we have S ′P ∧l S ′Q vl S ′P and S ′P ∧l S ′Q vl S ′Q. Now

by transitivity, we see that S ′P ∧l S ′Q vl SP and S ′P ∧l S ′Q vl SQ providing AOSP ∩A
I
S′Q

= ∅ and

AOSQ ∩ A
I
S′P

= ∅, so by the second claim, it follows that S ′P ∧l S ′Q vl SP ∧l SQ as required. If

either of the compatibility conditions are not satisfied, we can obtain new contracts S ′′P for SP and

S ′′Q for SQ that have output set AOSP ∩ A
O
SQ and contain all traces from the respective contracts,

except for those with an output in (AOSP \ A
O
SQ) ∪ (AOSQ \ A

O
SP) that has been removed from the

interface. It is straightforward to show that S ′′P ∧l S ′′Q = SP ∧l SQ. �

Given these strong algebraic properties, we can formulate a sound and complete AG rule for

conjunction, based on the one presented in Section 5.1.3.

5.2. Assume-Guarantee Framework with Progress 99

Theorem 5.54. Let P be a component, and let S1, S2 and S be contracts such thatAIP ∩AOS = ∅.
Then the following AG rule is both sound and complete:

LIVE-CONJUNCTION
P |=l S1 P |=l S2 S1 ∧l S2 vl S

P |=l S
.

Proof. Follows from Theorem 5.23, with minimal change. �

Example 5.55. Reverting to Example 5.24, we stipulate that, for the property Spec2, if the ob-

served behaviour over login and logout is always a prefix of 〈login, logout〉∗, then process and

logout should alternate, and progress must be made whenever a job has been processed and before

a logout request is seen. This can be achieved by making the right-hand state live in GSpec2 of

Figure 5.5. This liveness requirement manifests itself as a liveness requirement after process and

before logout in the conjunction, indicated by the square node in Figure 5.6. �

5.2.4 Disjunction

In this section, we generalise the disjunctive rule from the safety setting for the progress-sensitive

framework. The assumption and guarantee are obtained by replacing references to violations with

references to error in the definitions from the safety case. The progress condition, on the other

hand, must ensure that progress is made only when each of the contracts to be composed can make

progress, unless an error has been encountered, or an output has been seen not belonging to that

contract.

Definition 5.56. Let SP and SQ be contracts composable for disjunction. Then SP ∨l SQ is a

contract 〈AISP∨SQ ,A
O
SP∨SQ ,RSP∨lSQ ,GSP∨lSQ ,LSP∨lSQ〉 defined by:

• RSP∨lSQ is the intersection of the following sets:

– RSP ∪ error(SP) ∪ ((RSP ∪ error(SP)) ↑ AOSQ)

– RSQ ∪ error(SQ) ∪ ((RSQ ∪ error(SQ)) ↑ AOSP)

• GSP∨lSQ = error(SP) ∪ error(SQ)

• LSP∨lSQ is the intersection of the following sets:

– RSP∨lSQ ∩ GSP∨lSQ
– LSP ∪ error(SP) ∪ ((RSP ∪ error(SP)) ↑ AOSQ)

– LSQ ∪ error(SQ) ∪ ((RSQ ∪ error(SQ)) ↑ AOSP). �

This definition of disjunction satisfies the same algebraic properties as the disjunctive operator

in the safety framework, but with respect to the progress-sensitive refinement preorder. Conse-

quently, ∨l is the join operator for vl.

100 Chapter 5. Assume-Guarantee Reasoning for Components

Theorem 5.57. Let SP and SQ, and S ′P and S ′Q be contracts composable for disjunction. Then:

• SP vl SP ∨l SQ and SQ vl SP ∨l SQ

• SP vl SR and SQ vl SR implies SP ∨l SQ vl SR

• S ′P vl SP and S ′Q vl SQ implies S ′P ∨l S ′Q vl SP ∨l SQ.

Proof. For the first claim of SP vl SP ∨ SQ, we first show that error(SP ∨l SQ) ∩ A∗SP ⊆
error(SP). So let Xi be the i-th iteration of error(SP ∨l SQ) being defined as a least fixed point.

Then by induction on i, we show that Xi ∩ A∗SP ⊆ error(SP). Suppose that t ∈ Xk+1 ∩ A∗SP . If

t ∈ violations(SP ∨l SQ), then there is a prefix t′ of t such that t′ ∈ RSP∨lSQ ∩ GSP∨lSQ . Hence

t′ ∈ error(SP) and so t ∈ error(SP) as required. Otherwise, there is a trace t′ ∈ (AISP∨SQ)∗

such that tt′ ∈ LSP∨lSQ and for all o ∈ AOSP∨SQ it holds that tt′o ∈ Xk. Consequently, as

t′ ∈ (ASP ∩ ASQ)∗, it follows that tt′ ∈ A∗SP , and so tt′ ∈ LSP . As a result, tt′ ∈ error(SP)

since tt′o′ ∈ error(SP) for each o′ ∈ AOSP by the induction hypothesis. From this we derive

t ∈ error(SP). Now suppose that t ∈ RSP∨lSQ ∩ A∗SP . Then t ∈ RSP ∪ error(SP) by definition.

Similarly, if t ∈ LSP∨lSQ∩A∗SP , then t ∈ LSP ∪error(SP) as required. Showing SQ vl SP∨lSQ
is similar.

For the second claim, suppose that t ∈ RSR ∩ A∗SP∨SQ . If t ≡ ε, then ε ∈ RSP∨lSQ
trivially, while if t ≡ t′o for o ∈ AOSP∨SQ , then t′o ∈ RSP∨lSQ by the induction hypothesis and

output extendability of assumptions or extendability of violations/error. Instead, if t ≡ t′i for

i ∈ AISP∨SQ , then by the induction hypothesis in the difficult case we have t′ ∈ RSP ∩ error(SP)

and t′ ∈ RSQ ∩ error(SQ). As i ∈ AISP ∩ A
I
SQ , it follows from SP vl SR and SQ vl SR that

t′i ∈ RSP ∩RSQ . Hence, t′i ∈ RSP∨lSQ .

Now suppose that t ∈ error(SR) ∩ A∗SP∨SQ . Then there exists a smallest prefix t′ of t such

that t′ ∈ RSR ∩ error(SR)∩A∗SP∨SQ . Suppose all strict prefixes of t′ are not in error(SP ∨l SQ).

Then by the previous part, it follows that t′ ∈ RSP∨lSQ . If t′ ∈ A∗SP , then from SP vl SR it

follows that t′ ∈ error(SP), and if t′ ∈ A∗SQ , then from SQ vl SR it follows that t′ ∈ error(SQ).

Hence t′ 6∈ GSP∨lSQ (noting GSP∨lSQ ⊆ A∗SP ∪ A
∗
SQ), which implies t′ ∈ error(SP ∨l SQ). By

extension closure of error, we have t ∈ error(SP ∨l SQ).

For the progress condition, suppose t ∈ LSR ∩ A∗SP∨SQ . Assuming t 6∈ error(SP ∨l SQ), we

can infer that t ∈ RSP∨lSQ ∩GSP∨lSQ . Suppose for a contradiction that t 6∈ LSP∨lSQ . Then since

t ∈ RSP∨lSQ , it follows that t ∈ A∗SP and t 6∈ LSP , or t ∈ A∗SQ and t 6∈ LSQ . However, both of

these contradict SP vl SR and SQ vl SP . Hence t ∈ LSP∨lSQ as required.

The third claim follows by the same reasoning as in Theorem 5.26. �

Based on the algebraic properties of disjunction, we can formulate a sound and complete

assume-guarantee rule. This demonstrates that a disjunctive contract contains the union of the

5.2. Assume-Guarantee Framework with Progress 101

implementations of the contracts to be composed, but, as in the safety framework, there may be

additional implementations that are not implementations of either of the contracts to be composed.

Theorem 5.58. Let P be a component, and let S1, S2 and S be contracts such that S1 and S2 are

composable for disjunction, and AIP ∩ AOS = ∅. Then the following AG rule is both sound and

complete:

LIVE-DISJUNCTION
P |=l S1 or P |=l S2 S1 ∨l S2 vl S

P |=l S
.

Proof. The reasoning of Theorem 5.27 applies. �

5.2.5 Quotient

The definition of quotient in the progress-sensitive setting corresponds to the adjoint of the progress-

sensitive parallel composition operator, with respect to the vl preorder. Consequently, its defini-

tion is based on the definitions of ||l and / (Definitions 5.47 and 5.28).

Definition 5.59. Let SP and SW be contracts. Then the quotient SW /l SP is a contract 〈AISW/SP ,
AOSW/SP ,RSW/lSP ,GSW/lSP ,LSW/lSP 〉, defined only when AOSP ⊆ A

O
SW , where:

• RSW/lSP = [RSW ∩ (error(SP) ⇑ ASW)] � ASW/SP

• GSW/lSP is the largest subset ofRSW/lSP disjoint from

[RSW ∩ (error(SP) ⇑ ASW) ∩ (error(SW) ∪ (RSP ⇑ ASW))] � ASW/SP

• LSW/lSP = GSW/lSP ∩ [LSW ∩ (error(SP) ⇑ ASW) ∩ (LSP ⇑ ASW)] � ASW/SP . �

LSW/lSP is defined such that the parallel composition SP ||l (SW /l SP) is live whenever

SW is live. Moreover, to ensure that SW /l SP is the least refined solution to SP ||l X vl SW ,

SW /l SP is only live when SP ||l (SW /l SP) needs to be live and SP is not live. The next

theorem shows that our definition satisfies the characteristic properties of quotient.

Theorem 5.60. Let SP and SW be contracts. Then there exists a contract SQ such that SP ||l
SQ vl SW iff the following properties hold:

• The quotient SW /l SP is defined

• SP ||l (SW /l SP) vl SW

• AISQ = AISW/lSP implies SQ vl SW /l SP .

Proof. The first claim follows by the reasoning in Theorem 5.29.

For the second claim, suppose t ∈ RSW ∩ A∗SP ||l(SW/lSP). If t 6∈ RSP ||l(SW/lSP), then there

exists a prefix t′ of t and t′′ ∈ (AOSP ||(SW/SP))
∗ such that t′t′′ � ASP 6∈ RSP or t′t′′ � ASW/SP 6∈

102 Chapter 5. Assume-Guarantee Reasoning for Components

RSW/lSP , and t′t′′ � ASP 6∈ error(SP) and t′t′′ � ASW/SP 6∈ error(SW /l SP). It follows

that t′t′′ ∈ RSW , so t′t′′ � ASW/SP ∈ RSW/lSP , which means t′t′′ � ASP 6∈ RSP . Therefore,

t′t′′ � ASW/SP 6∈ GSW/lSP , which implies t′t′′ � ASW/SP ∈ violations(SW /l SP). But this

contradicts t′t′′ � ASW/SP 6∈ error(SW /l SP). Hence t ∈ RSP ||l(SW/lSP).

Now suppose that t ∈ error(SW) ∩ A∗SP ||(SW/SP). Then, there exists a prefix t′ of t such that

t′ ∈ RSW ∩ error(SW). By the previous part, it follows that t′ ∈ RSP ||l(SW/lSP). Now suppose

for a contradiction that t′ ∈ GSP ||l(SW/lSP). Then t′ � ASP 6∈ error(SP) and t′ � ASW/SP 6∈
error(SW /l SP). But it follows that t′ � ASW/SP ∈ violations(SW /l SP), since t′ � ASW/SP ∈
RSW/lSP ∩ GSW/lSP . This contradicts t′ ∈ GSP ||l(SW/lSP). Hence t′ ∈ error(SP ||l (SW /l SP))

and so t ∈ error(SP ||l (SW /l SP)).

Finally, suppose that t ∈ LSW ∩ A∗SP ||l(SW/lSP), and t 6∈ error(SP ||l (SW /l SP)). Then

by the previous part, t 6∈ error(SW), so t ∈ RSP ||l(SW/lSP) ∩ GSP ||l(SW/lSP). Hence t � ASP ∈
RSP ∩ error(SP) and t � ASW/SP ∈ RSW/lSP ∩ GSW/lSP . If t � ASP ∈ LSP , then t ∈
LSP ||l(SW/lSP) as required, since t � ASP 6∈ error(SP) implies t � ASP ∈ GSP . If instead

t � ASP 6∈ LSP , then t � ASW/SP ∈ LSW/lSP , which implies t ∈ LSP ||l(SW/lSP) as required.

For the third claim, suppose that t ∈ RSW/lSP ∩ A
∗
SQ . Then there exists t′ ∈ A∗SW such

that t′ � ASW/SP = t with t′ ∈ RSW and t′ � ASP 6∈ error(SP). From t′ ∈ RSW we derive

t′ ∈ RSP ||lSQ ∪ error(SP ||l SQ), given that SP ||l SQ vl SW . If t′ ∈ RSP ||lSQ , then it

follows that t′ � ASQ ∈ RSQ ∪ error(SQ). If instead t′ ∈ error(SP ||l SQ), then it follows that

t′ � ASQ ∈ error(SQ) by Lemma 5.48. Note that t′ � ASQ = t.

Now suppose that t ∈ error(SW /l SP) ∩ A∗SQ . Then there exists a prefix t′ of t such

that t′ ∈ RSW/lSP ∩ error(SW /l SP). We show that Xi ∩ RSW/lSP ∩ A
∗
SQ ⊆ error(SQ) by

induction on i, where Xi is the i-th iteration of defining error(SW /l SP) as a least fixed point.

The case of i = 0 is trivial, since X0 = ∅. For the difficult case of t′ ∈ Xk+1, either: (i)

t′ ∈ violations(SW /l SP); or (ii) there exists t′′ ∈ (AISW/SP)∗ such that t′t′′ ∈ LSW/lSP and

∀o ∈ AOSW/SP · t
′t′′o ∈ Xk. For (i), there is a prefix and input extension t′′ of t′ such that there

exists tw ∈ RSW with tw � ASW/SP = t′′, tw � ASP 6∈ error(SP), and either tw ∈ error(SW)

or tw � ASP 6∈ RSP . If tw ∈ error(SW), then tw ∈ error(SP ||l SQ), since SP ||l SQ vl SW .

By Lemma 5.48, it follows that tw � ASQ ∈ error(SQ). Alternatively, if tw � ASP 6∈ RSP ,

then if tw � ASQ 6∈ error(SQ) it follows that tw 6∈ RSP ||lSQ . Since SP ||l SQ vl SW , it must

hold that tw ∈ error(SP ||l SQ), which again by Lemma 5.48 implies tw � ASQ ∈ error(SQ).

Note that tw � ASQ = t′′, so t ∈ error(SQ). For (ii), by the induction hypothesis we know that

∀o′ ∈ AOSQ · t
′t′′o′ ∈ error(SQ). To show that t′t′′ ∈ LSQ , note from t′t′′ ∈ LSW/lSP that there

exists tw ∈ LSW with tw � ASW/SP = t′t′′ such that tw � ASP 6∈ LSP and tw � ASP 6∈ error(SP).

Since SP ||l SQ vl SW , it follows that tw ∈ LSP ||lSQ or tw ∈ error(SP ||l SQ). For the former,

it follows that tw � ASQ ∈ LSQ , while for the latter tw � ASQ ∈ error(SQ) (Lemma 5.48). Either

way, since tw � ASQ = t′t′′, it follows that t′t′′ ∈ error(SQ), which in turn yields t′ ∈ error(SQ).

5.2. Assume-Guarantee Framework with Progress 103

Finally, suppose that t ∈ LSW/lSP ∩ A
∗
SQ . Then there exists t′ ∈ A∗SW with t′ � ASW/SP = t

such that t′ ∈ LSW , t′ � ASP 6∈ LSP and t′ � ASP 6∈ error(SP). From t′ ∈ LSW we derive

t′ ∈ LSP ||lSQ ∪ error(SP ||l SQ). If t′ ∈ LSP ||lSQ , then certainly t′ � ASQ ∈ LSQ . If instead

t′ ∈ error(SP ||l SQ), then by Lemma 5.48 t′ � ASQ ∈ error(SQ). It is easy to see that t′ �

ASQ = t. �

The intuition behind the definition remains largely unchanged from the text proceeding The-

orem 5.29, having updated references to violations with error. In the case of the liveness set, if

t ∈ LSW \ error(SW) and t 6∈ error(SP ||l (SW /l SP)), then we require t ∈ LSP ||l(SW/lSP). If

t � ASP ∈ LSP , then it need not hold that t � ASW/SP ∈ LSW/lSP . If instead t � ASP 6∈ LSP ,

then it must hold that t � ASW/SP ∈ LSW/lSP . Moreover, note that if t � ASP ∈ error(SP), then

t ∈ error(SP ||l (SW /l SP)), so we do not require t � ASW/SP ∈ LSW/lSP .

Parameterisation of the input set for progress-sensitive quotient is applicable just as in the

safety setting. Based on these properties of quotient, we can formulate a sound and complete AG

rule, closely mirroring the rule of Theorem 5.30.

Theorem 5.61. Let SP and SW be contracts such that SW /l SP is defined, let P range over

components having the same interface as SP , and letQ be a component having the same interface

as SW /l SP (where the quotient is parameterised on the set AIQ). Then the following AG rule is

both sound and complete:

LIVE-QUOTIENT
∀P · P |=l SP implies P ||l Q |=l SW

Q |=l SW /l SP
.

Proof. Follows by straightforward modification to Theorem 5.30, having updated concepts to the

progress-sensitive equivalents. �

As in Theorem 5.30, we insist that the components P and Q must have the same interfaces

as their respective contracts, since parallel composition is only monotonic when restrictions are

placed on the interfaces of the contracts to be composed (cf Theorem 5.49). Furthermore, the rule

can be reformulated so as to avoid the universal quantification by considering the least refined

implementation Il(SP) of SP .

Corollary 5.62. Let SP and SW be contracts such that SW /l SP is defined, and let Q be a

component having the same interface as SW /l SP (where the quotient is parameterised on the set

AIQ). Then the following AG rule is both sound and complete:

LIVE-QUOTIENT-REVISED
Il(SP) ||l Q |=l SW
Q |=l SW /l SP

.

Proof. Unchanged from Corollary 5.31, having updated references. �

104 Chapter 5. Assume-Guarantee Reasoning for Components

Example 5.63. We now reconsider the Client contract in the progress-sensitive setting, first in-

troduced in Example 5.32. Note that the bottom right node of GClient is required to be live in

Figure 5.8, since Spec1 ∧ Spec2 requires liveness after the trace 〈login, job, process〉, whereas

Server does not need to be live after this trace (projected on to its own interface). As all out-

put extensions of the trace 〈login, job〉 in Client are contained within error(Client), it follows that

〈login, job〉 ∈ error(Client). Consequently, every implementation of the Client contract is unable

to issue a job after a successful login, because, if it were to do so, there would be no guarantee that

the Server will acknowledge the processing, meaning that a liveness violation can arise. �

5.2.6 Decomposing Parallel Composition

As in the case of dealing with safety properties, we present a modification to the progress-sensitive

AG rule for parallel composition, by making use of quotient on contracts.

Corollary 5.64. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ASP ||SQ ⊆ ASP ∩ASQ andAIP||Q ∩A

O
S = ∅. When the quotient is parameterised onAISQ ,

the following rule is both sound and complete:

LIVE-PARALLEL-DECOMPOSE
P |=l SP Q |=l SQ SQ vl S /l SP

P ||l Q |=l S
.

Proof. Follows directly from Theorems 5.50 and 5.60. �

This rule is useful for scenarios when the contract S is supplied along with a sub-contract SP
(or for when a subcontract SP can easily be inferred). In such circumstances, the missing contract

SQ can be taken as any refinement of S /l SP .

5.3 Case Study

To demonstrate our assume-guarantee framework at work, and to relate it to previously proposed

frameworks, we consider a link layer protocol case study drawn from distributed systems, which

is a variant of the running example used in [LNW06]. A Client (see Figure 5.9) can communicate

with a Server (Figure 5.10) by sending data, and can observe whether the transmission was ok

or whether it failed. The Server, on the other hand, is an intermediary between the Client and a

Database server. It receives data from the Client via the send interaction, and then transmits it to

the Database engine via some communication medium, after which it waits for positive or negative

confirmation that the data has been written into the database, in the form of ack and nack signals,

respectively. In the case that the transmission is acknowledged, the Server indicates to the Client

that all is ok. Otherwise, if nack is received from the Database, the Server attempts to retransmit,

and if nack is received for a second time in succession, the Server will signify to the Client that a

5.3. Case Study 105

RClient GClient

send!

ok?

send!

fail?

send!

ok?

Figure 5.9: Assumption and guarantee of Client (the adrift fail? action indicates that this action

appears in the interface of the Client contract)

failure has occurred. The models of the Client and Server are taken from [LNW06] (where they are

referred to as Client and TryTwice respectively), in order to highlight the differentiating features

of our work.

Through this case study, we aim to illustrate how to generate automatically the most general

contract for the communication medium by applying the AG rules, instead of constructing such a

contract working from informal requirements. We will first compute a contract for the combined

behaviour of the Client and Server, which we then use to derive the contract for the communication

medium by means of the quotient operation.

We begin by considering the parallel composition of the Client with Server, which is shown in

Figure 5.11. To understand intuitively how Figure 5.11 is derived, note that fail appears in the static

interface of Client, yet Client assumes that fail will never be issued by the environment. It follows

that Client || Server can never guarantee that there is a safe behaviour containing fail. Therefore,

to prevent such a behaviour arising, the environment must never issue the preceding nack, which

will in turn prevent an implementation of Server from issuing fail to an implementation of the

Client.

When contrasting Figure 5.11 with the parallel composition of Client and Server in [LNW06]

(where our Server corresponds to TryTwice), after accounting for the difference in parallel compo-

sition (whereby we do not automatically hide the actions that are shared between components, i.e,

send, ok, and fail), one observes that our guarantee can be expressed in a simpler manner, given

that it need not be input-enabled.

We now wish to construct a contract representing the behaviour of the communication medium

that transmits information between the Server and Database. As a first attempt, working from

the requirements, we formulate a contract that merely represents an abstract protocol for inter-

action between the Server and Database, reproduced as LinkLayer1 in Figure 5.12. The pro-

tocol awaits a transmission request (transmit), after which it attempts to write the data to the

database. Successful writing of the data results in a positive acknowledgment, while a nack oc-

curs if the write request does not complete successfully, or if the write request cannot be performed

for some reason. Unfortunately, the parallel composition of LinkLayer1 with Client || Server
is a contract for which nothing can be assumed, meaning that no safety or progress proper-

106 Chapter 5. Assume-Guarantee Reasoning for Components

RServer

send? transmit! nack? transmit!

ack?ok!

nack?fail!

ack?

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

transmit!
fail!

transmit!
ok!

GServer

send? transmit! nack? transmit!

ack?ok!

nack?fail!

ack?

Figure 5.10: Assumption and guarantee of Server

ties can be inferred. To see why, note that the assumption of the composition must be empty

because 〈send, transmit, nack, transmit, nack〉 is a trace over outputs whose projections onto

Server || Client and LinkLayer1, respectively, are not contained in both assumptions, while they

are also not in the respective error sets (cf Definition 5.15 for parallel).

As a second attempt, we therefore use our theory to automate the derivation of the weakest

restrictions to the communication medium that allows all three of the Client, Server and Database

to communicate. This can be formulated as the quotient ErrorFree/(Client || Server), where

ErrorFree is the component having a single chaotic state labelled by all actions, which should

be treated as outputs (Figure 5.13). The only significant constraint imposed by ErrorFree is that

no communication mismatches will occur. Note that the state is not required to be live, and hence

the assumption is the same as the guarantee. The resulting contract, referred to as LinkLayer2, is

depicted in Figure 5.14 when the set of input actions is taken to be {send, transmit, ok}, whereas

Figure 5.15 is the corresponding contract synthesised by the quotient operation when the set of

inputs is taken to be {transmit}.

5.3. Case Study 107

RClient‖Server

send! transmit! nack? transmit!

ack?ok!

ack?

transmit!
ok!
fail!

ok!
fail!
send!

transmit!
ok!
fail!
send!

ok!
fail!
send!

transmit!
ok!
fail!
send!

transmit!
fail!
send!

GClient‖Server

send! transmit! nack? transmit!

ack?ok!

ack?

Figure 5.11: Assumption and guarantee of Client || Server

LinkLayer2 (parameterised on {transmit}) is thus a contract that will allow Server and Client

to interact with one another, but it may not respect the protocol of LinkLayer1, meaning that it may

not meaningfully interact with the Database. Therefore, we define LinkLayer1 ∧ LinkLayer2 as

the contract for implementations that should communicate with Database (shown in Figure 5.16).

Any implementation of this contract must never nack two transmissions in succession.

We now consider the impact of considering liveness, in addition to safety. Let ErrorFreeLive be

the ErrorFree contract, but with the requirement that the sole state must be live (also shown in Fig-

ure 5.13). Then ErrorFreeLive/(Client || Server) is the contract in Figure 5.14 (when the quotient

is parameterised on {send, transmit, ok}) and Figure 5.15 (when parameterised on {transmit}),
but with states containing • treated as though they are live (i.e., they should be squares). Similarly,

LinkLayer1 ∧ LinkLayer2 is as depicted in Figure 5.16, but with the • filled nodes converted to

squares. In the liveness setting, an implementation of the conjunction must always ack after write

and must never nack, because, if the latter were to happen, we would be in a live state from which

the implementation cannot safely issue any output, which conflicts with the progress requirements

imposed by ErrorFreeLive.

To summarise, this case study demonstrates how our framework adds significant flexibility

over previous frameworks, such as the one in [LNW06]. Specifically, we provide a simpler for-

malism that does not require input-enabledness of guarantees, while supporting compositional

108 Chapter 5. Assume-Guarantee Reasoning for Components

RLinkLayer1

transmit?

write!

ack!

nack!

nack!

ack!
nack!
write!

ack! write!

GLinkLayer1

transmit?

write!

ack!

nack!

nack!

Figure 5.12: Assumption and guarantee of LinkLayer1

RErrorFree
GErrorFree
RErrorFreeLive

GErrorFreeLive

send!
ok!
fail!

transmit!
ack!
nack!
write!

send!
ok!
fail!

transmit!
ack!
nack!
write!

Figure 5.13: Assumption and guarantee of ErrorFree and ErrorFreeLive

reasoning not only for safety, but also liveness properties. A rich collection of operators are

defined beyond those in [LNW06]. Our quotient operator facilitates the automated incremen-

tal construction of contracts for missing components, while conjunction combines independently

developed requirements represented by multiple contracts. These features provide a range of ad-

ditional checks for the validity of derived contracts, and support a truly contract-based design

methodology.

5.4 Summary

This chapter has presented a compositional specification theory for reasoning about safety and

progress properties of component behaviours, where we explicitly separate the assumptions made

on the environment’s behaviour from the guarantees provided by the component. The theory

supports refinement based on traces, which relates specifications by implementation containment.

We define the compositional operations of parallel composition, as well as – for the first time in

this setting – conjunction, disjunction and quotient, directly on contracts. Sound and complete AG

reasoning rules are provided for the four operators, preserving both safety and progress properties,

which facilitates reasoning about, e.g., substitutivity of components synthesised at run-time.

The theory can be extended with hiding, providing a proper treatment of divergence is given

for components, as reported in Chapter 3. Allowing divergence necessitates the extension of the

5.4. Summary 109

RLinkLayer2

send? transmit? nack! transmit?

ack!ok?

ack!

ack!
nack!
write!

ack!
nack!
write!

write! ack!
nack!
write!

nack!
write!

ack!
nack!
write!

GLinkLayer2

• • •send? transmit? nack! transmit?

ack!ok?

ack!

write! write! write! write! write!

write!

Figure 5.14: Assumption and guarantee of LinkLayer2 with full interface

contract framework (for progress) to include sets of traces that must not diverge, in addition to

the traces that must make progress. This is in contrast to works such as [Jon94], which assume

that a diverging process makes progress. The work of this chapter takes a more pragmatic view in

requiring that progress is observable.

The AG rules can be fully automated, when restricting to regular properties (which can be rep-

resented by finite-state automata), as they are based on simple set-theoretic operations and do not

require the learning of assumptions. The composition operations are polynomial-time construc-

tions on finite-state automata, while the refinement relation can also be checked in polynomial-

time, when the participating specifications are deterministic finite automata. In the general case of

non-deterministic automata, refinement checking of individual contracts (i.e. Q v P) is PSPACE-

hard, as for the FDR model checker of CSP [Ros10], since the specification P needs to be nor-

malised. However, in practice this tends not to be a limitation.

When considering systems of contracts, checking Q1 || . . . || Qk v P1 || . . . || Pl is also

PSPACE-hard, since the individual contracts can be normalised before performing the parallel

composition, which preserves normalisation.

110 Chapter 5. Assume-Guarantee Reasoning for Components

RLinkLayer2

transmit?

nack! transmit?

ack!

ack!ack!
nack!
write!

write! ack!
nack!
write!

nack!
write!

GLinkLayer2

• • •

transmit?

nack! transmit?

ack!

ack!write! write! write! write!

Figure 5.15: Assumption and guarantee of LinkLayer2 with restricted interface

RLinkLayer1∧LinkLayer2

transmit?

ack!
nack!

ack!
nack!
write!

write!

GLinkLayer1∧LinkLayer2

•

••

transmit? write!

nack!
nack!

transmit?write!

ack!

ack!

Figure 5.16: Assumption and guarantee of LinkLayer1 ∧ LinkLayer2

CHAPTER

SIX

Theory of Timed Components

The compositional specification theory of Chapter 3 places constraints on the temporal ordering

of interactions between components and the environment, but does not specify when these in-

teractions actually occur. In this chapter, we generalise the theory of Chapter 3 to the real-time

setting, where critical timing constraints are imposed on the interactions between components and

the environment. We begin by constructing a theory of timed systems for which the global system

clock can be stopped. This supports reasoning about systems that only have to run over a finite

period of time, that is to say, they are able to terminate. Afterwards, we reformulate the theory to

the setting where components must interact with the environment indefinitely, without the ability

to stop the passage of time. The setting where time can be stopped is closely related to the substi-

tutive framework of Section 3.1, whereas the non-terminating formulation shares similarities with

the progress-sensitive framework of Section 3.2.

Both theories are capable of modelling safety and bounded-liveness errors. A safety error

occurs through communication mismatches, or performance of an action that leads to an error

state, as in Chapter 3. On the other hand, a bounded-liveness error occurs when a component

passes a certain moment of time, potentially signifying that it has failed to perform an interaction

earlier. As we will see, safety and bounded-liveness errors are equated in our theory.

6.1 Preliminaries

In this section, we briefly introduce some terminology for dealing with timed traces, and also

redefine the lifting operators to the timed setting.

Timed words. Define R+
0 to be the set of non-negative real numbers and define R∞0 to be R+

0 ∪
{∞}, where∞ is the special number defined such that sup(R∞0) =∞ and τ +∞ =∞ for each

τ ∈ R+
0 . For a set of actions A disjoint from R∞0 , the set of timed words over A is the union of:

• the finite timed words:

{τ0a1τ1 . . . anτn : n ≥ 0, ai ∈ A, τi ∈ R+
0 for i < n, tn ∈ R∞0 and i < j =⇒ τi ≤ τj}

111

112 Chapter 6. Theory of Timed Components

• and the infinite timed words:

{τ0a1τ1a2τ2 · · · : ai ∈ A, τi ∈ R+
0 and i < j =⇒ τi ≤ τj}.

An untimed word a1a2 . . . an ∈ A∗ can be interpreted as the timed word 0a10a20 . . . 0an0.

For a finite timed word t = τ0a1τ1 . . . amτm and (possibly infinite) timed word t′ = τ ′0a
′
1τ
′
1 . . . ,

we define the concatenation of t and t′, written tt′, as the timed word t if τm =∞ and as the timed

word τ0a1τ1 . . . am(τm + τ ′0)a
′
1(τm + τ ′1)a

′
2(τm + τ ′2) . . . otherwise. If t is an infinite timed word,

then tt′ = t. Based on concatenation, the timed word t′ is said to be a prefix of t if there exists a

timed word t′′ such that t′t′′ ≡ t.

Zenoness and time convergence. An infinite timed word t = τ0a1τ1a2τ2 . . . is said to be time

convergent if limi→∞ τi ∈ R+
0 , and is said to be time divergent otherwise (i.e., limi→∞ τi =

∞). Moreover, an infinite timed word is said to be Zeno if an infinite number of actions are

encountered within a finite amount of time. In our framework, time convergent traces are Zeno

and vice versa; this is a consequence of our formulation of timed traces, since consecutive delays

are not permitted. As time convergent and Zeno words cannot arise in practice, they will be treated

as undesirable and will be removed from our component models. We use T (A) to denote the set

of all non-Zeno timed words over A. Note that concatenation and taking prefixes of non-Zeno

timed traces maintains non-Zenoness.

Alphabet manipulations. LetA and B be sets of actions. For a timed trace t, write t � (A∪R∞0)

for the projection of t ontoA∪R∞0 obtained by removing all actions not inA∪R∞0 and replacing

runs of consecutive time values with the supremum of the values. Now, for X ⊆ T (A), write

X � (B ∪ R∞0) for {t � (B ∪ R∞0) : t ∈ X}, X ⇑ B for {t ∈ T (B) : t � (A ∪ R∞0) ∈ X} and

X ↑ B for X · (B \ A) · T (A ∪ B).

6.2 Terminating Theory of Timed Components

In this section, we present a real-time theory of components for systems that may terminate, mean-

ing that the passage of time can be halted. This has practical applicability in modelling embedded

systems and is also useful in circuit design (cf [MTC+00]). Since time cannot be stopped in real-

ity, by termination we mean that we are not interested in the subsequent behaviour of a system of

components.

We begin by giving the definition of a timed component, which is based on Definition 3.1 from

the untimed setting.

Definition 6.1 (Timed component). A timed componentP is a tuple 〈AIP ,AOP , TP , FP〉 in which

AIP and AOP are disjoint sets referred to as the inputs and outputs respectively (the union of which

6.2. Terminating Theory of Timed Components 113

is denoted by AP), TP ⊆ T (AP) is a set of observable traces, and FP ⊆ T (AP) is a set of

inconsistent traces. The trace sets must satisfy the constraints:

T1. FP ⊆ TP

T2. TP is prefix closed

T3. If t ∈ TP and t′ ∈ (AIP)∗, then tt′ ∈ TP

T4. If t ∈ FP and t′ ∈ T (AP), then tt′ ∈ FP .

If 0 6∈ TP , we say that P is unrealisable, and is realisable contrariwise. �

This formulation of a timed component is near identical to the definition of a substitutive trace-

based component as provided in Definition 3.1. The key differences are that the trace-sets are now

timed, and inconsistent traces are extension-closed on timed traces. The conditions on the timed

trace sets do not conflict with the non-Zenoness requirement on traces, since prefix closure and

concatenation maintains non-Zenoness. Condition T3, which ensures input-receptivity, needs only

append finite length input sequences to t, since an infinite sequence of inputs t′ ∈ (AIP)ω would

make tt′ Zeno when t is a finite length trace of finite duration. Recall that the trace a1 . . . an ∈
(AIP)∗ is interpreted as the timed trace 0a10 . . . 0an0.

Such a definition hints that the compositional operators of the timed theory are likely to be

very similar to the operators defined in the untimed case, which they are.

From hereon let P , Q and R be timed components with signatures 〈AIP , AOP , TP , FP〉, 〈AIQ,
AOQ, TQ, FQ〉 and 〈AIR,AOR, TR, FR〉 respectively.

6.2.1 Operational Representation of a Timed Component

In order to provide examples demonstrating the features of our timed formalism, we require an

operational representation for timed components, as in Chapter 3, so that components may be

represented pictorially. Unlike in Chapter 4, we do not provide a complete theory of operational

components by defining the compositional operators; that is deferred as future work.

Timed components are modelled using finite-state automata, but with the addition of timing in-

formation. The underlying automaton specifies the temporal ordering of interactions, while guards

on transitions, and invariants and co-invariants on states, specify the timing constraints. These are

given with respect to clock-variables, which can be reset to 0, as for timed automata [AD94].

Figure 6.1 shows the multi-function device of Chapter 3 with timing constraints.

Transitions are labelled with either an input or output interaction. In the case of output label-

ings, the guard specifies the possible times when the component is willing to fire that transition,

while for transitions labelled by inputs the guard specifies the available times when the compo-

nent is willing to accept such an interaction from the environment. Interactions are assumed to

114 Chapter 6. Theory of Timed Components

take place instantaneously, meaning that they have zero duration. Therefore, the component must

sojourn in its states. An invariant on a state is used to specify the bound beyond which time is

not permitted to pass. A co-invariant, on the other hand, specifies the bound beyond which the

component becomes inconsistent, most likely because an interaction did not take place earlier.

In the spirit of timed automata, the timing constraints are specified using Boolean combina-

tions of comparisons between clock variables and rational time values. Invariants are a concept

that have already been defined for timed automata, while the notion of a co-invariant, which is

particularly relevant to I/O systems, is new. Considering how the two interplay, if the invariant

is violated in a state before or at the same time as the co-invariant, time stops there and then.

However, if the co-invariant is violated first, then the component becomes inconsistent for all time

values beyond that point, so the invariant has no effect.

We now introduce the notation used for representing timing constraints.

Definition 6.2. Let X be a global set of clock variables. For X ⊆ X , define Φ(X) to be the set

of Boolean combinations of clock constraints ϕ over X:

ϕ := tt | x ≤ k | x < k | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ,

where x ∈ X and k ∈ Q+
0 . The constraint ϕ is downward-closed if it does not include ¬. �

A valuation for a set of clock variables X ⊆ X is a function v : X −→ R∞0 that assigns

time values to the clock variables. For Y ⊆ X , we write v[Y := 0] for the valuation that maps

all clocks in Y to 0, and leaves all other clocks unchanged from the valuation v. Similarly, for

d ∈ R∞0 , we write v + d for the valuation that adds d to the v-valuation of each clock variable.

The notation 0X is used to denote the valuation that maps all clocks in X to 0.

Given these preliminary definitions, we can define a timed operational component.

Definition 6.3. A timed operational component P is a tuple 〈AIP,AOP , XP, SP, BP,−→P, s
0
P, invP,

coP〉, where:

• AIP is a finite set of input actions

• AOP is a finite set of output actions, disjoint from AIP, where AP , AIP ∪ AOP

• XP is a finite collection of clock variables

• SP is a finite set of states

• BP ⊆ SP is the set of Büchi accepting states

• −→P⊆ SP ×AP × Φ(XP)× 2XP × SP is the transition relation

• s0P ∈ SP is the designated initial state

6.2. Terminating Theory of Timed Components 115

• invP : SP −→ Φ(XP) is the invariant, a mapping to downward-closed clock constraints

• coP : SP −→ Φ(XP) is the co-invariant, a mapping to downward-closed clock constraints.

The component must satisfy the additional constraint that (s, a, g, Y, s′) ∈−→P when a ∈ AIP only

if for each valuation v it holds that invP(s)(v) and g(v) implies invP(s′)(v[Y := 0]). �

We use the notation s
a,g,Y−−−→P s

′ to mean that (s, a, g, Y, s′) ∈−→P, which can be interpreted

as: if the component is in state s, the guard g is satisfied and the interaction a is performed, then

the component moves to state s′ and resets all clocks in Y to 0.

The final constraint in the definition above ensures that a component cannot avoid being recep-

tive to inputs by terminating. This is essential, because our trace-based formulation of components

is required to be input-receptive. In fact, such a restriction can be dropped without affecting the

results in Section 6.2, as it leads to a simplification of the theory, and actually brings it inline with

the design decision adopted in [CKW12].

Based on the operational definition of a timed component, we formulate the definition of a

timed transition system, which can be used to ascribe semantics to the compact automaton model,

by making explicit the time delays. The approach is largely based on that adopted for timed

automata, but with some subtle modifications to account for non-enabled inputs and inconsistency.

Definition 6.4. The semantics of P is a timed transition system JPK = 〈AIP,AOP , S, s0,−→〉,
where:

• S , (SP × (R∞0)XP × {act, delay})] {⊥} is the set of configurations, consisting of state-

valuation-successor triples (act and delay indicate the next type of transition permitted),

plus the special inconsistent state ⊥

• s0 =

(s0P, 0

XP , delay) if invP(s0P)(0XP) and coP(s0P)(0XP)

⊥ if invP(s0P)(0XP) and ¬coP(s0P)(0XP)

undefined if ¬invP(s0P)(0XP)

• −→⊆ S × (AP ∪ R∞0)× S is the smallest set satisfying:

– (s, v, delay)
t−→ (s, v + t, action), if invP(s)(v + t) and coP(s)(v + t)

– (s, v, delay)
t−→ ⊥, if invP(s)(v + t) and ¬coP(s)(v + t)

– If s
a,g,Y−−−→P s

′, g(v) and invP(s′)(v[Y := 0]) then:

* (s, v, action)
a−→ (s′, v[Y := 0], delay), providing coP(s′)(v[Y := 0])

* (s, v, action)
a−→ ⊥, providing ¬coP(s′)(v[Y := 0])

– (s, v, action)
a−→ ⊥, if a ∈ AIP and @g, Y, s′ · g(v) and s

a,g,Y−−−→ s′. �

116 Chapter 6. Theory of Timed Components

co
:
x
≤

3

in
v

:
x
≤

5

in
v

:
x
≤

5

inv : x ≤ 4

co : x ≤ 3

• inv : x ≤ 4

in
v

:
x
≤

5

co
:
x
≤

2

job details?
x ≤ 2

print!
x ≤ 3

job details?
x := 0

job details?

x := 0

scan!
x = 5

job details?

1 ≤ x ≤ 2

scan mode?

print mode?

print mode?
x := 0

scan mode?
x := 0

print mode?
x := 0

scan mode?
x := 0

scan!

print!

Figure 6.1: Timed printing/scanning device

The semantics of an operational model provides all the information required for generating a

trace-based component representing the behaviour of the operational model. Within such a model,

the special state ⊥ is used to encode safety and bounded-liveness errors.

We now explain how the traces can be extracted from the timed transition system, by consid-

eration of its accepted runs. A finite trace t = τ0a1τ1 . . . anτn is accepted by JPK if there exist

configurations s1, . . . , s2n+1 such that s0
τ0−→ s1

a1−→ s2 . . . s2n−1
an−→ s2n

τn−→ s2n+1. An in-

finite trace t = τ0a1τ1 . . . is accepted by JPK if there exist configurations s1, s2, . . . such that

s0
τ0−→ s1

a1−→ s2
τ1−→ . . . and there exists a state s ∈ BP which occurs infinitely often in the

configurations along the run. For a possibly infinite trace t = τ0a1τ1a2τ2 . . . , we use %t to denote

the trace τ0a1(τ1 − τ0)a2(τ2 − τ1)

Definition 6.5. The timed component JPK∗ represented by P is the structure 〈AIP,AOP , TJPK∗ , FJPK∗〉,
where:

• TJPK∗ = {t ∈ T (AP) : %t is a trace of JPK} ∪ FJPK∗

• FJPK∗ = {t ∈ T (AP) : there is a finite run over %t in JPK ending in ⊥} · T (AP). �

Note that Definition 6.5 yields a timed component in the sense of Definition 6.1 (i.e., all of the

conditions on Definition 6.1 are satisfied). Thus, we can use the operational representation for a

timed component when presenting examples throughout this section. The pictorial representation

of operational components, as in Figure 6.1, is self-explanatory, although we comment that states

containing • are designated as being Büchi accepting, and the invariant and co-invariant are not

explicitly mentioned when they are true.

Example 6.6. Figure 6.1 shows a timed component representing the multi-function device first

6.2. Terminating Theory of Timed Components 117

introduced in Figure 3.1, but with the addition of timing constraints. Explaining the behaviour,

the device waits until it is placed in print mode or scan mode. When placed in print mode, the

component expects some input from the user within 3 time units (specified by the co-invariant), but

the only acceptable input is job details, which must be received within 2 time units. If job details

is not supplied within 3 time units, the component will generate a bounded-liveness error, while

if the input is issued at a time greater than 2, but at most 3, time units later, a communication

mismatch (safety error) will occur. After having successfully received job details, the component

can print the document within 3 time units of having being placed in print mode, and otherwise

the device will sit idly for 5 time units, after which it will terminate due to the expiration of the

invariant. Once the document has printed, the user must either issue more job details, or must

place the device in scan mode, both within 5 time units of the device having being placed in

print mode, otherwise the component will terminate. If job details are received, the component

must either receive a request to be placed in scan mode, or must print the document, within 3 time

units, otherwise a bounded-liveness error will occur (represented by the co-invariant). Note that

the invariant in the upper right-hand state has no effect, because the co-invariant (which expires

earlier) takes precedence. The scan mode functionality can be explained similarly.

Note that, if the device is placed and left in print mode, then the device is only permitted to

print a finite number of times, since there are no Büchi accepting states in the printing loop. This

is in contrast to the scan mode functionality, which allows the device to scan infinitely often when

it is left in scan mode. �

6.2.2 Refinement

Substitutive refinement in the timed setting prevents the introduction of safety and bounded live-

ness errors. Safety errors encode the inconsistencies mentioned in Chapter 3, which encompass

communication mismatches, run-time errors and underspecification. On the other hand, a bounded

liveness error occurs when a timed trace becomes inconsistent by allowing time to pass a certain

point, rather than encountering a bad action. In essence, this means that the component has failed

to engage in some interaction within the specified time bound.

As in the untimed case, we define the safe representation of a component, which propagates

inconsistencies backwards over output actions, since the environment cannot influence the be-

haviour of these interactions. It is not correct to propagate inconsistencies back over timed output

words, since the environment is able to prevent the passage of time. As a direct consequence, a

refining component is not permitted to become inconsistent earlier than the original component.

Definition 6.7. The safe component for P is defined as E(P) = 〈AIP ,AOP , TP ∪ FE(P), FE(P)〉,
where FE(P) = {t ∈ TP : ∃t′ ∈ (AOP)∗ · tt′ ∈ FP} · T (AP). �

Given the reformulated safe specification of a component, we can give the definition of refine-

118 Chapter 6. Theory of Timed Components

ment, which is essentially unchanged from the untimed setting.

Definition 6.8 (Refinement). Q is said to be a timed refinement of P , written Q vtimp P , iff:

TR1. AIP ⊆ AIQ

TR2. AOQ ⊆ AOP

TR3. AIQ ∩ AOP = ∅

TR4. TE(Q) ⊆ TE(P) ∪ (TE(P) ↑ AIQ)

TR5. FE(Q) ⊆ FE(P) ∪ (TE(P) ↑ AIQ). �

As usual, conditions TR1 and TR2 ensure that the interfaces of P and Q are substitutive,

while TR3 in conjunction with the previous two conditions guarantees that the components cannot

mix action types (that is to say they are compatible). Condition TR4 ensures that the observable

behaviour of Q is also observable in P (or lies outside of P’s interface), while condition TR5

stipulates that Q’s inconsistent behaviour must also be inconsistent in P (or lie outside of P’s

interface).

Equivalence of timed components corresponds to substitutive equivalence, so is defined in

terms of mutual refinement.

Definition 6.9. P and Q are equivalent, written P ≡timp Q, iff P vtimp Q and Q vtimp P . �

Example 6.10. Figure 6.2 shows a number of timed components. (a) vtimp (b), meaning that a

safety or bounded-liveness error arising through the interaction of (a) in an environment E implies

there is a safety or bounded-liveness error in the interaction between (b) and E . (b) 6vtimp (a) due

to the trace 〈3, a, 3〉 being consistent in (a), while it is inconsistent in (b). Even though 〈3, a, 3.1〉
is inconsistent in (a), an environment can force (a) to terminate at time x = 3, thus avoiding the

expiration of the co-invariant and the associated bounded-liveness error.

Similarly, (a) vtimp (c) and (c) 6vtimp (a), the latter being a consequence of 〈2.5, a, 2.5〉 being

a consistent trace of (a), while it is inconsistent in (c). For (b) and (c), we have that (b) ≡timp (c),

due to the fact that any a action being issued when 2 < x ≤ 3 results in a bounded-liveness error

in (b), while it results in a safety error in (c), since the component is not enabled on that action.

All other behaviours are the same. �

As refinement is defined in terms of set containment, and its formulation is not altered from

the untimed setting, it is not surprising that the relation is a preorder (subject to compatibility).

Lemma 6.11. Refinement is reflexive, and is transitive subject to preservation of action types:

R vtimp Q, Q vtimp P and AIR ∩ AOP = ∅ impliesR vtimp P .

6.2. Terminating Theory of Timed Components 119

inv : x ≤ 6

co : x ≤ 5

inv : x ≤ 4

co : x ≤ 3
a?

x ≤ 3

(a)

inv : x ≤ 7

co : x ≤ 5

inv : x ≤ 3

co : x ≤ 2
a?

x ≤ 3

(b)

inv : x ≤ 8

co : x ≤ 5

inv : x ≤ 4

co : x ≤ 3
a?

x ≤ 2

(c)

Figure 6.2: Timed refinement

Proof. Follows by transitivity of subset containment and the reasoning in Lemma 3.6. �

We are now in a position to define the compositional operators of the theory, which are in

general only defined on composable components, the conditions of which remain unchanged from

Chapter 3. Note that the definitions make use of the redefined ⇑ and ↑ operators from Section 6.1.

6.2.3 Parallel Composition

The parallel composition of timed components with disjoint output alphabets is a component rep-

resenting the combined effect of the components running asynchronously.

Definition 6.12. Let P and Q be composable for parallel, i.e., AOP ∩ AOQ = ∅. Then P ||t Q is

the component 〈AIP||Q,A
O
P||Q, TP||tQ, FP||tQ〉, where:

• AIP||Q = (AIP ∪ AIQ) \ (AOP ∪ AOQ)

• AOP||Q = AOP ∪ AOQ

• TP||tQ = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||tQ

• FP||tQ = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)] · T (AP||Q) ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] · T (AP||Q). �

This definition of parallel composition differs from Definition 3.7 in that it requires the incon-

sistent trace set FP||Q to be closed under extension of timed words T (AP||Q), rather than A∗P||Q.

The lifting operation ⇑ ensures that P andQ synchronise on time and common actions, while they

interleave on independent actions. Therefore, if one component can stop the passage of time, then

their composition will also stop time.

Lemma 6.13. Parallel composition is associative and commutative.

Proof. The result essentially follows from Lemma 3.9. �

It is easy to show that parallel composition is monotonic under timed refinement, subject to

the same interface constraints as in the untimed setting.

120 Chapter 6. Theory of Timed Components

in
v

:
x
≤

4

in
v

:
x
≤

3

job details!
x ≤ 3

print?

job details!
x := 0

job details! scan?
4 ≤ x ≤ 5

job details!

1 ≤ x ≤ 2

print mode?
x := 0

scan mode?
x := 0

scan?

print?

Figure 6.3: Timed spooler

co
:
x
≤

3

in
v

:
x
≤

4

in
v

:
x
≤

5

inv : x ≤ 3

co : x ≤ 3

inv : x ≤ 4

in
v

:
x
≤

5

co
:
x
≤

2

job details!

2 < x ≤ 3 co : false

job details!
x ≤ 2

print!
x ≤ 3

job details!
x := 0

job details!

x := 0

scan!
x = 5

job details!

1 ≤ x ≤ 2

print mode?
x := 0

scan mode?
x := 0

scan!

print!

Figure 6.4: Timed parallel composition of the printing/scanning device and the spooler

Theorem 6.14. Let P , Q, P ′ and Q′ be timed components such that P and Q are composable,

AP ′ ∩ AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AOP||Q ∩ A
I
P ′||Q′ = ∅. If P ′ vtimp P and Q′ vtimp Q, then

P ′ ||t Q′ vtimp P ||t Q.

Proof. Straightforward modification to Theorem 3.10. Projections of the form � A should be

replaced with � (A∪R∞0). Note that the techniques used in the proof of Theorem 3.10 are equally

applicable to both finite- and infinite-length traces. �

Example 6.15. Figure 6.3 shows a spooler (a device responsible for issuing job details to the

printing/scanning device). The parallel composition of the spooler with the printing/scanning

device is shown in Figure 6.4. When placed into print mode, a communication mismatch will

occur if the spooler attempts to send the job details after 2 time units and at most 3 time units have

6.2. Terminating Theory of Timed Components 121

passed (this is indicated by the transition to the state having a false co-invariant). Furthermore, it

is no longer safe for the device mode to be switched after the initial choice (this is a constraint

imposed by the spooler), and when in scan mode it is no longer possible for scanning to be

performed infinitely often, since the spooler does not have any Büchi accepting states. �

6.2.4 Conjunction

As conjunction should correspond to the meet operator on the refinement preorder, the behaviour

of the conjunction should be contained within the behaviours of its arguments. Therefore, con-

junction must stop the passage of time if at least one of its arguments can do so.

Definition 6.16. Let P and Q be components composable for conjunction, i.e., such that the sets

AIP∪AIQ andAOP∪AOQ are disjoint. ThenP∧tQ is the component 〈AIP∧Q,AOP∧Q, TP∧tQ, FP∧tQ〉,
where:

• AIP∧Q = AIP ∪ AIQ

• AOP∧Q = AOP ∩ AOQ

• TP∧tQ = (TE(P) ∪ (TE(P) ↑ AIQ)) ∩ (TE(Q) ∪ (TE(Q) ↑ AIP))

• FP∧tQ = (FE(P) ∪ (TE(P) ↑ AIQ)) ∩ (FE(Q) ∪ (TE(Q) ↑ AIP)). �

This definition is syntactically identical to Definition 3.12, but note that, as TP is a set of timed

traces, it follows that TE(P) ↑ AIQ is closed under extensions of timed words over the alphabet

AP ∪ AIQ (and similarly for TE(Q) ↑ AIP), due to the way that ↑ is defined. Consequently, on

encountering an input that lies outside the interface of one of the components, that component can

no longer constrain the behaviour of the other component, and nor can it prevent the passage of

time.

Lemma 6.17. Conjunction is associative, commutative and idempotent.

Proof. Obvious, given the set-theoretic definition of conjunction. �

The following theorem shows that timed conjunction enjoys the same strong algebraic prop-

erties as in the untimed setting. In particular, conjunction is the meet operator on the timed refine-

ment preorder.

Theorem 6.18. Let P and Q, and P ′ and Q′, be components composable for conjunction. Then:

• P ∧t Q vtimp P and P ∧t Q vtimp Q

• R vtimp P andR vtimp Q impliesR vtimp P ∧t Q

122 Chapter 6. Theory of Timed Components

co
:
y
≤

4

inv : y ≤ 4

co : y ≤ 3

inv : y ≤ 4

in
v

:
y
≤

5

co
:
y
≤

4

job details?

y ≤ 2.5

print!

job details?
y := 0

print!

job details?

y := 0

fax!
4 ≤ y ≤ 5

job details?

1 ≤ y ≤ 4

fax mode?

print mode?

print mode?
y := 0

fax mode?
y := 0

print mode?
y := 0

fax mode?
y := 0

fax!

print!

Figure 6.5: Timed printing/faxing device

• P ′ vtimp P and Q′ vtimp Q implies P ′ ∧t Q′ vtimp P ∧t Q.

Proof. Follows by elementary modification to Theorem 3.14, since the original theorem makes

reference to arbitrary traces, without consideration of their length or structure. �

Example 6.19. Figure 6.5 ascribes timing constraints to the print/fax device represented in Fig-

ure 3.2. The conjunction of the print/scan and print/fax devices (in Figures 6.1 and 6.5, respec-

tively) is shown in Figure 6.6, when the interfaces of each device are based on the actions appear-

ing in their respective diagrams. The conjunction arguably looks cumbersome, but its behaviour

can be explained clearly in terms of the components that have been conjoined, by appealing to

Figure 3.3.

First, the behaviour associated with putting the device in scan mode or fax mode matches

that in Figure 3.3, with the timing constraints being lifted straight out of Figures 6.1 and 6.5.

This is because scan mode and fax mode are mutually independent functions of the devices to be

conjoined.

Placing the device in print mode needs more careful examination, as this is a behaviour com-

mon to both devices. Note that, after being placed in print mode, the co-invariant associated with

the conjunctive device is the disjunction of the co-invariants in the sub-devices, since the conjunc-

tion is only allowed to be inconsistent when both of the sub-devices are inconsistent. Now, the

issuing of job details is partitioned according to the guards in the devices to be conjoined. The

upper transition corresponds to where the sub-devices overlap, whereas the lower one is for the

print/fax device, since the print/scan device will be inconsistent, due to a communication mis-

match arising when job details are issued at those particular times. Therefore, the upper transition

must respect the requirements of both devices, whereas the lower one leaves the print/fax device

6.2. Terminating Theory of Timed Components 123

co
:
x
≤

2

in
v

:
x
≤

5

co : x ≤ 4 in
v

:
x
≤

5

in
v

:
x
≤

5

inv : x ≤ 4

co : x ≤ 3

in
v

:
x
≤

4

co
:
x
≤

3

in
v

:
x
≤

5

co
:
x
≤

4

scan mode?
x := 0

fax mode?

x := 0

print mode?

x := 0

job details?
1 ≤ x ≤ 2

x ≤ 2
job details?

print!

x ≤ 3

job details?
x := 0

print!

job details?

2 < x ≤ 2.5 print!

job details?
x := 0

print!

print!

job details?

1 ≤ x ≤ 4

fax mode?

scan mode?

scan mode?

x := 0

fax mode?

x := 0

Figure 6.6: Timed conjunction of the printing/scanning and printing/faxing devices

unconstrained. This is why printing can be repeatedly performed on the lower transition, while it

is not the case it can be repeatedly performed on the upper transition, due to it not being a common

output behaviour of the two devices. �

6.2.5 Disjunction

Being the dual of conjunction, each behaviour of the disjunction should be a behaviour in at least

one of its arguments. Therefore, time should only be stopped providing it is stopped in both of the

components to be composed.

Definition 6.20. Let P and Q be components composable for disjunction, i.e., such that the sets

AIP∪AIQ andAOP∪AOQ are disjoint. ThenP∨tQ is the component 〈AIP∨Q,AOP∨Q, TP∨tQ, FP∨tQ〉,
where:

• AIP∨Q = AIP ∩ AIQ

• AOP∨Q = AOP ∪ AOQ

• TP∨tQ = [(TP ∪ TQ) ∩ T (AP∨Q)] ∪ FP∨tQ

• FP∨tQ = [(FP ∪ FQ) ∩ T (AP∨Q)] · T (AP∨Q). �

124 Chapter 6. Theory of Timed Components

co
:
y
≤

3

inv : y ≤ 4

co : y ≤ 3

job details?

y ≤ 2

print!

job details?
y := 0

print!

print mode?

y := 0

print!

Figure 6.7: Timed disjunction of the printing/scanning and printing/faxing devices

This definition differs from Definition 3.16 in that TP∨tQ and FP∨tQ should be restricted to

timed words in T (AP∨Q), hence the intersection with this set, rather thanA∗P∨Q, and inconsistent

traces should be closed under extensions with timed words over AP∨Q.

Lemma 6.21. Disjunction is associative, commutative and idempotent.

Proof. Follows by Lemma 3.17, given that the proof is based on the syntactic constructions of

TP∨Q and FP∨Q. �

Disjunction enjoys strong algebraic properties in that it is the join operator on the refinement

preorder and is monotonic under refinement.

Theorem 6.22. Let P and Q, and P ′ and Q′, be components composable for disjunction. Then:

• P vtimp P ∨t Q and Q vtimp P ∨t Q

• P vtimp R and Q vtimp R implies P ∨t Q vtimp R

• P ′ vtimp P and Q′ vtimp Q implies P ′ ∨t Q′ vtimp P ∨t Q.

Proof. Follows from straightforward modification to Theorem 3.18 by replacing references to

A∗P∨Q with T (AP∨Q). �

Example 6.23. Figure 6.7 shows the disjunction of the printing/scanning device (Figure 6.1) and

the printing/faxing device (Figure 6.5), when the interfaces of the respective devices consist of the

actions arising in each of their models. Therefore, the independent functions of scan mode and

fax mode are removed, while the union of the print mode observable and inconsistent behaviours

is included. Consequently, the disjunction can become inconsistent through a bounded-liveness

error 3 time units after having been placed in print mode, and job details need only be safely

accepted within 2 time units. The remaining invariants and co-invariants (excluding those in the

right-most state) are true, since they are true in the printing/faxing device. �

6.2.6 Hiding

Hiding is an operation that contracts the interface of a component, meaning that it can remove an

interaction primitive that the component has the potential to issue or can observe. Therefore, it

6.2. Terminating Theory of Timed Components 125

co
:
y
≤

4

inv : y ≤ 4

co : y ≤ 3

job details?

y ≤ 2.5

print!

job details?
y := 0

print!

print mode?

y := 0

print!

Figure 6.8: Hiding fax mode in the printing/faxing device

does not make sense to hide a time delay, and so we explicitly rule out this possibility.

Definition 6.24. Let P be a component and let b be an action. The hiding of b in P is a component

P /t b = 〈AIP/b,A
O
P/b, TP/tb, FP/tb〉, where:

• AIP/b = AIP \ {b}

• AOP/b = AOP \ {b}

• TP/tb =

TP � (AP/b ∪ R∞0) if b ∈ AOP

TP ∩ T (AP/b) otherwise

• FP/tb =

FP � (AP/b ∪ R∞0) if b ∈ AOP

FP ∩ T (AP/b) otherwise.
�

Modifications to this definition from the untimed setting (Definition 3.20) include projecting

onto timed words over AP/b when b is an output, rather than just onto AP/b, and restricting trace

sets to be contained in T (AP/b) when b is not an output, rather than A∗P/b. These changes leave

the monotonicity result unaffected.

Theorem 6.25. Let P and Q be components and let b be an action. If Q vtimp P , then Q /t

b vtimp P /t b.

Proof. Follows by the reasoning in Theorem 3.21 when making use of timed projections. �

Example 6.26. Figure 6.8 shows the print/fax device of Figure 6.5, after having hidden the fax mode

functionality. The print mode functionality remains unchanged. �

6.2.7 Quotient

The definition of quotient in the timed framework is a straightforward generalisation from the

untimed setting by incorporating time-sensitive projections. This ensures that a timed trace in the

126 Chapter 6. Theory of Timed Components

parallel composition of the sub-component P and the quotient must also be a timed trace in the

specificationR.

Definition 6.27. Let P and R be components such that AOP ⊆ AOR. The quotient of P from R is

the componentR /t P with signature 〈AIR/P ,A
O
R/P , TR/tP , FR/tP〉, where:

• AIR/P = AIR \ AIP

• AOR/P = AOR \ AOP

• TR/tP is the largest prefix-closed and input-receptive subset of

{t ∈ T (AR/P) : ∀t′ ∈ T (AR) · t′ � (AR/P ∪ R∞0) = t implies

[t′ � (AP ∪ R∞0) ∈ TP =⇒ t′ ∈ TE(R)] and

[t′ � (AP ∪ R∞0) ∈ FP =⇒ t′ ∈ FE(R)]}

• FR/tP = {t ∈ TR/tP : ∀t′ ∈ T (AR) · t′ � (AR/P ∪ R∞0) = t implies

[t′ � (AP ∪ R∞0) ∈ TP =⇒ t′ ∈ FE(R)]}. �

The definition of TR/tP requires that the defining set is both prefix-closed and input-receptive,

since it is not necessarily the case that Conditions T2 and T3 of Definition 6.1 hold. Unsurpris-

ingly, the compositionality results for quotient remain unchanged, in that the operator yields the

weakest decomposition of the specificationR when presented with the sub-component P .

Theorem 6.28. Let P , Q and R be components. Then there exists Q such that P ||t Q vtimp R
iff:

• R /t P is defined (i.e., AOP ⊆ AOR)

• P ||t (R /t P) vtimp R

• AIQ = AIR/P implies Q vtimp R /t P .

Proof. The reasoning is unchanged from Theorem 3.25, which is to be expected given that the

definition of parallel composition and refinement are largely unchanged in the timed setting. �

Theorem 6.29. Let P , Q andR be components such that Q vtimp P .

• If Q /t R is defined, AIP/R = AIQ/R and AIR ∩ AOP = ∅, then Q /t R vtimp P /t R.

• IfR /t P is defined,AIR/P = AIR/Q and (AIQ\AIP)∩AR = ∅, thenR /t P vtimp R /t Q.

Proof. Follows by the previous results in this section, which should be substituted in place of the

cited results occurring in the proof of Theorem 3.27. �

6.2. Terminating Theory of Timed Components 127

6.2.8 Full Abstraction

In this section, we demonstrate that our timed refinement relation precisely characterises safe

substitutivity of components, meaning that a refining component cannot introduce any safety or

bounded-liveness errors in a particular environment, unless the errors can be introduced by the

original component in the same environment. This is achieved by means of a testing framework

that places components in parallel with an arbitrary environment and checks for inconsistency.

Based on this testing scenario, we show that ≡timp is fully abstract for all of the operators in the

specification theory.

Definition 6.30. Let P and Q be components. Then Q is inconsistency substitutable for P , de-

noted by Q vF,timp P , iff for each t ∈ T (AOQ) it holds that t ∈ FE(Q) implies t ∈ FE(P). �

From this definition, we can show that vtimp is the weakest preorder preserving substitutivity

of components by relating the relation with the testing framework.

Theorem 6.31. Let P andQ be components such thatAIP ⊆ AIQ, AOQ ⊆ AOP andAIQ ∩AOP = ∅.
Then:

Q vtimp P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q ||t R v
F,t
imp P ||t R.

Proof. The only if direction follows by the monotonicity result of Theorem 6.14, given that the

considitions on the interface ofR implies that the conditions are satisfied for Theorem 6.14.

For the if direction, we show the contrapositive, so suppose that Q 6vtimp P . Then there

exists a smallest t such that t ∈ TE(Q) ∩ T (AP) and t 6∈ TE(P), or t ∈ FE(Q) ∩ T (AP) and

t 6∈ FE(P). For the former, we construct a component R = 〈AOQ,AIP , TR ∪ FR, FR〉, where

TR = {t′ : t′ is a prefix of t} · (AIR)∗ and FR = {t} · T (AR). From this, it follows that t ∈
T (AOQ||R) ∩ T (AOP||R), t ∈ FQ||R and t 6∈ TP||R. Consequently, t ∈ FE(Q||tR), but t 6∈ FE(P||tR)

because t 6∈ TE(P), Hence, Q ||t R 6v
F,t
imp P ||t R. For the latter, we can construct the component

R, where TR is defined as before and FR = ∅. �

As remarked in Section 3.1.7, the conditions on the interfaces of P and Q are required for

Theorem 6.31 to hold, since Q ||t R vtimp P ||t R does not imply that AIP ⊆ AIQ, AOQ ⊆ AOP
and AIQ ∩ AOP = ∅.

From this characterisation of vtimp, it follows that ≡timp is the coarsest congruence for all

operators of the specification theory with respect to the inconsistency equivalence≡F,timp (i.e.,vF,timp
∩ wF,timp). Thus, ≡timp is fully abstract for the operators of the theory with respect to observation

of safety and bounded-liveness errors.

Corollary 6.32. Substitutive equivalence≡timp is fully abstract for parallel composition, conjunc-

tion, disjunction, hiding and quotient with respect to observational equivalence of inconsistency.

128 Chapter 6. Theory of Timed Components

Proof. Follows from the fact that ≡timp is a congruence for the compositional operators of the

specification theory along with Theorem 6.31, the latter of which demonstrates that ≡timp must be

the coarsest such congruence. �

6.3 Non-Terminating Theory of Timed Components

In this section, we consider the subclass of timed components that are not allowed to prevent

the passage of time, meaning that they are not permitted to terminate. Despite being a subclass

of the components presented in the previous section, the theory is more complicated, because

the definitions provided for the compositional operators in the previous section do not maintain

closure. For example, the conjunction of two non-terminating components (as defined previously)

may terminate. Therefore, we introduce a pruning operator on components that can remove such

bad behaviours so that non-termination is guaranteed.

In keeping with the progress-sensitive trace-based theory of components (Section 3.2), the

troublesome operators are conjunction and quotient. Consequently, our non-terminating theory

of timed components shares similarities with the progress-sensitive framework of Section 3.2,

unlike the terminating theory of timed components, which shared similarities with the substitutive

(safety) framework of Section 3.1. However, our timed theory does not need to record all of the

structure of a progress-sensitive component. For instance, there is no need to record the quiescent

traces, since progress can now be stipulated by means of the timing constraints. Furthermore, we

do not need to consider the divergent traces, because any divergent behaviour of a component must

be time-convergent; such traces are excluded from our models by definition.

Definition 6.33 (Non-terminating timed component). A non-terminating timed component P
is a tuple 〈AIP ,AOP , TP , FP〉 in which AIP and AOP are disjoint sets referred to as the inputs and

outputs respectively (the union of which is denoted by AP), TP ⊆ T (AP) is a set of observable

traces, and FP ⊆ T (AP) is a set of inconsistent traces. The trace sets must satisfy the constraints:

NT1. FP ⊆ TP

NT2. TP is prefix closed

NT3. If t ∈ TP and t′ ∈ (AIP)∗, then tt′ ∈ TP

NT4. If t ∈ FP and t′ ∈ T (AP), then tt′ ∈ FP

NT5. If t ∈ TP , then there exists t′ ∈ T (AOP) such that tt′ ∈ TP and tt′ is of infinite duration.

If 0 6∈ TP , we say that P is unrealisable, and is realisable contrariwise. �

6.3. Non-Terminating Theory of Timed Components 129

co
:
x
≤

3

in
v

:
x
≤

3

inv : x ≤ 4

co : x ≤ 3

• inv : x ≤ 3

in
v

:
x
≤

5

co
:
x
≤

2

job details?
x ≤ 2

print!
x ≤ 3

job details?
x := 0

job details?

x := 0

scan!
x = 5

job details?

1 ≤ x ≤ 2

scan mode?

print mode?

print mode?
x := 0

scan mode?
x := 0

print mode?
x := 0

scan mode?
x := 0

scan!

print!

Figure 6.9: Non-terminating timed printing/scanning device

A non-terminating timed component differs from the potentially terminating variant of Sec-

tion 6.2 by including the additional constraint that any observable trace can be extended by a timed

trace of infinite duration over outputs (NT5). The restriction to outputs ensures that the component

can always allow time to pass, regardless of how the environment behaves.

Example 6.34. The printing/scanning device in Figure 6.1 is not a well-formed non-terminating

component, because it contains a range of terminating traces, such as 〈0, print mode, 2, job details,

5〉 and 〈0, print mode, 2, job details, 3, print, 5〉, which cannot be extended by a timed trace over

outputs of infinite duration. Figure 6.9 adapts the timing constraints on the printing/scanning de-

vice so that it is non-terminating (in particular, the invariants on the upper middle states and the

lower right state). The printing/faxing device in Figure 6.5 is a well-formed non-terminating com-

ponent, because no trace is forced to terminate. �

We now redefine P , Q and R to be non-terminating timed components (henceforth referred

to as components) with signatures 〈AIP ,AOP , TP , FP〉, 〈AIQ,AOQ, TQ, FQ〉 and 〈AIR,AOR, TR, FR〉
respectively.

6.3.1 Refinement

As usual, the refinement relation guarantees substitutivity, meaning that it preserves the absence

of safety and bounded liveness errors. As in Section 6.2, the definition of refinement needs to

deal with the safe representations E(P) and E(Q) of P andQ, but the definition of the E operator

should be adjusted, since the environment is no longer capable of distinguishing components by

stopping time.

130 Chapter 6. Theory of Timed Components

co : x ≤ 5

(a)

co : x ≤ 4

(b)

co : x ≤ 4
a?

x = 3

(c)

inv : x ≤ 10

b!
x := 0

(d)

Figure 6.10: Non-terminating timed refinement

Definition 6.35. The safe component for P is defined as E(P) = 〈AIP ,AOP , TP ∪ FE(P), FE(P)〉,
where FE(P) is defined as the least extension-closed set containing:

FP ∪ {t ∈ TP : ∃t′ ∈ (AOP)∗ · tt′ ∈ FE(P)} ∪
{t ∈ TP : ∃t′ ∈ R∞0 · tt′ ∈ FE(P), and t′′ ≤ t′ and i ∈ AIP =⇒ tt′′i ∈ FE(P)}. �

Essentially, FE(P) is the set of traces that are either inconsistent (i.e., are contained in FP)

or from which it is inevitable that an inconsistency will be encountered. A trace will inevitably

become inconsistent providing it can be extended by a timed trace over outputs to become in-

consistent, and there is no input that can be issued by the environment along that path so that an

inconsistency is not inevitable. This formulation ensures that the enabled interactions at any instant

of time occur non-deterministically with one another, and also that interactions take precedence

over the passage of time.

The definition of refinement is syntactically unchanged from the terminating theory, having

redefined the E operator.

Definition 6.36. Q is said to be a non-terminating timed refinement of P , written Q vntimp P , iff:

NTR1. AIP ⊆ AIQ

NTR2. AOQ ⊆ AOP

NTR3. AIQ ∩ AOP = ∅

NTR4. TE(Q) ⊆ TE(P) ∪ (TE(P) ↑ AIQ)

NTR5. FE(Q) ⊆ FE(P) ∪ (TE(P) ↑ AIQ). �

The intuition behind this definition remains unchanged from Definition 6.8. Equivalence of

components, indicated using ≡ntimp, can easily be defined by means of mutual refinement, i.e., is

equal to vntimp ∩(vntimp)−1.

Example 6.37. We now consider refinements among the components shown in Figure 6.10. First

note that (a) ≡ntimp (b), while in the terminating theory we have (b) vtimp (a), but (a) 6vtimp (b).

This is because, in the terminating theory, an environment could terminate time after, say, 4.5

time units, whereas this is not possible in the non-terminating theory. Therefore, (a) and (b) will

inevitably become inconsistent in the non-terminating theory, and hence should be equated.

6.3. Non-Terminating Theory of Timed Components 131

Looking at (c), we have (c) vntimp (a) and (c) vntimp (b) (but not equivalence), because the

environment that issues a after 3 time units will prevent the inconsistencies in (a) and (b) from

being reached. Therefore, inconsistency is not inevitable in (c) from the trace 〈0〉.

Finally, we remark that (d) is not well-formed, because no trace of the component can be ex-

tended by a timed output word of infinite duration, due to the sole state not being Büchi accepting.

�

Given that the definition of refinement has not changed syntactically from the terminating

setting, the reflexivity and transitivity results continue to hold.

Lemma 6.38. Non-terminating timed refinement is reflexive, and is transitive subject to preserva-

tion of action types.

Proof. Unchanged from Lemma 6.11. �

6.3.2 Parallel Composition

The parallel composition of two components synchronises on common actions and time, and in-

terleaves on independent actions. Given that the outputs of the components to be composed must

be disjoint (for composability) and observable traces are extendable by inputs, it follows that the

composition of two non-terminating components must also be non-terminating. Consequently, the

definition of parallel composition is unchanged from the terminating timed theory.

Definition 6.39. Let P and Q be composable for parallel composition (i.e., AOP ∩ AOQ = ∅). The

parallel composition of P and Q, denoted P ||nt Q, is the component P ||t Q as defined in

Definition 6.12. �

The following lemma demonstrates that ||nt yields a non-terminating timed component.

Lemma 6.40. ||nt preserves infinite extendability of traces.

Proof. Suppose t ∈ TP||ntQ \ FP||ntQ. Then t � (AP ∪ R∞0) ∈ TP and t � (AQ ∪ R∞0) ∈ TQ.

Now there exists tp ∈ T (AOP) and tq ∈ T (AOQ), both of infinite duration, such that ttp � (AP ∪
R∞0) ∈ TP and ttq � (AQ ∪ R∞0) ∈ TQ. Thus we can construct t′ ∈ T (AOP||Q) such that

t′ � (AP ∪ R∞0) = tp and t′ � (AQ ∪ R∞0) = tq. It is necessarily the case that t′ is of infinite

duration, and moreover, tt′ ∈ TP||ntQ as required. �

Theorem 6.41. Let P , P ′, Q and Q′ be components such that P and Q are composable, AP ′ ∩
AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AIP ′||Q′ ∩ A

O
P||Q = ∅. If P ′ vntimp P and Q′ vntimp Q, then

P ′ ||nt Q′ vntimp P ||nt Q.

Proof. Despite the fact that ||nt equals ||t, the proof of monotonicity for parallel composition

does not follow immediately from Theorem 6.14, because the definition of the E operator has

132 Chapter 6. Theory of Timed Components

changed. Therefore, we must show that FE(P ′||ntQ′) ⊆ FE(P||ntQ) ∪ (TE(P||ntQ) ↑ A
I
P ′||Q′) and

TE(P ′||ntQ′) ⊆ TE(P||ntQ) ∪ (TE(P||ntQ) ↑ A
I
P ′||Q′). Begin by supposing that t ∈ TE(P ′||ntQ′) and

t 6∈ T (AP||Q). Then, by the same reasoning as in Theorem 3.10, it follows that t ∈ TE(P||ntQ) ↑
AIP ′||Q′ . Now suppose that t ∈ FE(P ′||ntQ′) ∩ T (AP||Q). We demonstrate that Xi ∩ T (AP||Q) ⊆
FE(P||ntQ) for each i ∈ N, where Xi is the i-th approximation of FE(P ′||ntQ′) defined as a fixed

point. If i = 0, then the result holds trivially, because Xi = ∅. If instead t ∈ Xk+1 ∩ T (AP||Q),

then either (i) t ∈ FP ′||ntQ′ , (ii) there exists t′ ∈ (AOP ′||Q′)
∗ such that tt′ ∈ Xk, or (iii) there exists

t′ ∈ R∞0 such that tt′ ∈ Xk and for every prefix t′′ of t′ and a ∈ AIP ′||Q′ it holds that tt′′a ∈ Xk.

For (i), it holds without loss of generality that t � (AP ′ ∪R∞0) ∈ FP ′ and t � (AQ′ ∪R∞0) ∈ TQ′ .
By the same reasoning as in Theorem 3.10, it follows that t � (AP ′ ∪ R∞0) = t � (AP ∪ R∞0)

and t � (AQ′ ∪ R∞0) = t � (AQ ∪ R∞0). Therefore, by P ′ vntimp P and Q′ vntimp Q we

have t � (AP ∪ R∞0) ∈ FE(P) and t � (AQ ∪ R∞0) ∈ TE(Q), from which it can be inferred

that t ∈ FE(P||ntQ). For (ii), by the induction hypothesis it follows tt′ ∈ FE(P||ntQ), and so

t ∈ FE(P||ntQ) by the definition of the E operator. For (iii), by the induction hypothesis we

obtain tt′ ∈ FE(P||ntQ), and tt′′a ∈ FE(P||ntQ) for each a ∈ AIP||Q given that tt′a ∈ T (AP||Q).

Since AIP||Q ⊆ A
I
P ′||Q′ , it follows by the definition of the E operator that t ∈ FE(P||ntQ) as

required. The result therefore holds for all i ∈ N, hence FE(P ′||ntQ′) ⊆ FE(P||ntQ) ∪ (TE(P||ntQ) ↑
AIP ′||Q′). Now to show that TE(P ′||ntQ′) ⊆ TE(P||ntQ) ∪ (TE(P||ntQ) ↑ A

I
P ′||Q′), suppose that

t ∈ (TP ′||ntQ′ \ FE(P ′||ntQ′)) ∩ T (AP||Q). Then by the same reasoning as in Theorem 6.14, it

follows that t ∈ TE(P||ntQ), given that t � (AP ∪ R∞0) ∈ TE(P) and t � (AQ ∪ R∞0) ∈ TE(Q)

implies t ∈ TE(P||ntQ). �

6.3.3 Conjunction

The definition of conjunction supplied in Definition 6.16 is not adequate for the non-terminating

theory, because the conjunction is required to constrain its output behaviour to common behaviours

of both components. To see why this is problematic, suppose that t is a trace of finite duration that

is common to both P and Q, while tp ∈ T (AOP) is the only trace of infinite duration such that

ttp ∈ TP , and tq ∈ T (AOQ) is the only trace of infinite duration such that ttq ∈ TQ. If tp 6= tq,

then there is no t′ ∈ T (AOP∧Q) of infinite duration such that tt′ ∈ TP∧Q. As a result, we must

remove all subsequent behaviour from (and including) the last observed output on the trace t. Such

a pruning should be applied repeatedly to the conjunction construction supplied in Definition 6.16

until all remaining traces can be extended by a timed output trace of infinite duration. Naturally,

this means that the conjunction of two realisable components may not be realisable.

Definition 6.42. Let P and Q be composable for conjunction (i.e., AIP ∪ AIQ is disjoint from

AOP ∪AOQ). Then P ∧ntQ is the component 〈AIP∧Q,AOP∧Q, TP∧tQ \Err, FP∧tQ \Err, 〉, where

Err is the smallest set containing:

6.3. Non-Terminating Theory of Timed Components 133

{t ∈ TP∧tQ : ∃t′ ∈ (AIP∧Q)∗ · @t′′ ∈ T (AOP∧Q)·
tt′t′′ ∈ TP∧tQ \ Err and tt′t′′ is of infinite duration}.

Note that, in our reference to P ∧t Q, we assume that the E operator corresponds to the one

provided in Definition 6.35. �

It is obvious by the definition of the Err set that P ∧nt Q is a non-terminating component,

since all traces that can lead to termination are pruned. Despite this pruning, the compositionality

results continue to hold, as the next theorem shows.

Theorem 6.43. Let P and Q, and P ′ and Q′ be components composable for conjunction. Then:

• P ∧nt Q vntimp P and P ∧nt Q vntimp Q

• R vntimp P andR vntimp Q impliesR vntimp P ∧nt Q

• P ′ vntimp P and Q′ vntimp Q implies P ′ ∧nt Q′ vntimp P ∧nt Q.

Proof. In order to show that P ∧nt Q vntimp P , we need to show that FE(P∧ntQ) ⊆ FE(P) ∪
(TE(P) ↑ AIP∧Q) and TE(P∧ntQ) ⊆ TE(P) ∪ (TE(P) ↑ AIP∧Q). First suppose t ∈ TE(P∧ntQ),

t 6∈ T (AP) and assume that the result holds for all strict prefixes. Then there is a prefix t′i of t

such that t′ ∈ T (AP) and i ∈ AIP∧Q \ AP . Thus, t′ ∈ TE(P) and t′i ∈ TE(P) ↑ AIP∧Q. Hence

t ∈ TE(P) ↑ AIP∧Q. Now assume that t ∈ FE(P∧ntQ) ∩ T (AP). We show that t ∈ Xi ∩ T (AP)

implies t ∈ FE(P) for each i ∈ N, where Xi is the i-th approximation of FE(P∧ntQ). In the

case that i = 0, the result hold trivially as Xi = ∅. Now suppose that t ∈ Xk+1. Then (i)

t ∈ FP∧tQ \ Err, (ii) there exists t′ ∈ (AOP∧Q)∗ such that tt′ ∈ Xk, or (iii) t ∈ TP∧tQ \ Err
and there exists t′ ∈ R∞0 such that tt′ ∈ Xk, and for all t′′ a prefix of t′ and a ∈ AIP∧Q it holds

that tt′′a ∈ Xk. For (i), it holds that t ∈ FE(P) by the definition of ∧nt. For (ii), it holds that

tt′ ∈ Xk ∩ T (AP), so by the induction hypothesis we have tt′ ∈ FE(P), yielding t ∈ FE(P)

by the definition of the E operator. Similarly for (iii), by the induction hypothesis it follows that

tt′ ∈ FE(P) and tt′′a ∈ FE(P) when a ∈ AIP . As AIP ⊆ AIP∧Q, it holds that t ∈ FE(P) by the

definition of the E operator. Thus, FE(P∧ntQ) ⊆ FE(P) ∪ (TE(P) ↑ AIP∧Q). For the remaining

case of t ∈ (TP∧ntQ \ FE(P∧ntQ)) ∩ T (AP), it follows that t ∈ TP∧tQ, from which we see that

t ∈ TE(P), as required.

For the second claim, it is straightforward to show that FE(R) ⊆ FP∧tQ ∪ (TP∧tQ ↑ AIR) and

TE(R) ⊆ TP∧tQ ∪ (TP∧tQ ↑ AIR) by the proof for Theorem 6.18 (based on Theorem 3.14), since

the E operator is only used syntactically. Note that the E operator does not need to occur on the

right hand side of the inclusions. It is therefore sufficient to show that TE(R) ∩ Err = ∅, from

which it follows that FE(R) ⊆ FP∧ntQ ∪ (TP∧ntQ ↑ AIR) and TE(R) ⊆ TP∧ntQ ∪ (TP∧ntQ ↑
AIR). So let Xi be the i-th approximation of Err defined as a fixed point. Then we show that

Xi ∩ TE(R) = ∅ for each i ∈ N. When i = 0 the result holds trivially because Xi = ∅. So

134 Chapter 6. Theory of Timed Components

suppose that t ∈ Xk+1 ∩ TE(R). Then t ∈ TP∧tQ and there exists t′ ∈ (AIP∧Q)∗ for which there

is no t′′ ∈ T (AOP∧Q) such that tt′t′′ ∈ TP∧tQ \ Xk and tt′t′′ is of infinite duration. Note that

t′ ∈ (AIR)∗, so tt′ ∈ TE(R). As R is a non-terminating component, it follows that there is a trace

tr ∈ T (AOR) such that tt′tr ∈ TE(R) and tt′tr is of infinite duration. But tr ∈ T (AOP∧Q), and

moreover, tt′tr ∈ TP∧tQ. Consequently, tt′tr ∈ Xk, but this is contradictory. Therefore, t 6∈ Err
as required, and so TE(R) ∩ Err = ∅.

The third claim follows by the same reasoning as in Theorem 6.18, which is based on the proof

of Theorem 3.14. However, we need to show that P ∧nt Q = P ′′ ∧nt Q′′, where P ′′ and Q′′ are

obtained from P and Q by removing any trace containing actions in (AOP \ AOQ) ∪ (AOQ \ AOP).

Clearly P ∧t Q = P ′′ ∧t Q′′, so it is sufficient to show that ErrP∧ntQ = ErrP ′′∧ntQ′′ . This can

be demonstrated by considering the fixed-point approximations of the Err sets. �

Example 6.44. Under the assumption that the interfaces of the non-terminating print/scan device

(Figure 6.9) and the print/fax device in which fax mode has been hidden (Figure 6.8) consist of the

actions in the respective diagrams, the conjunction, prior to removing the Err traces, is as shown

in Figure 6.11, but having removed the scan transitions. However, 〈0, scan mode, 1, job details, 1〉 ∈
Err because the trace is terminating, so 〈0〉 ∈ Err, meaning that the conjunction is undefined.

When the components to be conjoined are assumed to have the same interfaces that include the

union of their actions, the conjunction is precisely as depicted in Figure 6.11. No pruning of Err

traces is required, because all of the original traces defined according to ∧t are non-terminating.

�

6.3.4 Disjunction

As the disjunction P ∨t Q contains all of the timed traces in P or Q whose actions lie in AP∨Q,

it follows that the disjunction of two non-terminating components must itself be non-terminating,

becauseAOP∨Q = AOP∪AOQ. Therefore, the definition of disjunction in the non-terminating setting

should match Definition 6.20, which is applicable to components that can terminate.

Definition 6.45. Let P and Q be composable for disjunction (i.e., AIP ∪ AIQ is disjoint from

AOP ∪ AOQ). Then the disjunction of P and Q, denoted P ∨nt Q, is the component P ∨t Q as

defined in Definition 6.20. �

To see that P ∨nt Q preserves non-termination, suppose that t ∈ TP∨ntQ \ FP∨ntQ. Then,

without loss of generality, it follows that t ∈ TP ∩ T (AP∨Q). Since P is non-terminating, there

is t′ ∈ T (AOP) such that tt′ ∈ TP and tt′ is of infinite duration. Since AOP ⊆ AOP∨Q, it follows

that tt′ ∈ T (AOP∨Q) as required, and so tt′ ∈ TP∨ntQ. FP∨ntQ is automatically closed under all

extensions.

6.3. Non-Terminating Theory of Timed Components 135

co : x ≤ 4

co
:
x
≤

3

in
v

:
x
≤

3

inv : x ≤ 4

co : x ≤ 3

job details?

x ≤ 2

print!

x ≤ 3

job details?
x := 0

print!

co
: x
≤
2

in
v
: x
≤
5

• inv : x ≤ 3
job details?

1 ≤ x ≤ 2

scan!

x = 5

job details?
x := 0

scan!

in
v

:
x
≤

3
inv : x ≤ 4

co : x ≤ 3

inv : x ≤ 4

co : x ≤ 3

scan mode?
x := 0

print mode?
x := 0

x ≤ 2
job details?

print!

x ≤ 3

job details?
x := 0

print!

job details?

2 < x ≤ 2.5 print!

job details?
x := 0

print!

print!

scan mode?
scan mode?

x := 0

scan mode?

scan mode? print mode?

print mode?

x := 0

x := 0

Figure 6.11: Non-terminating timed conjunction of the printing/scanning and printing/faxing de-

vices

As the definition of disjunction on non-terminating components matches that for the terminat-

ing theory, it follows that the operator continues to be the join operator for the refinement preorder.

Theorem 6.46. Let P and Q, and P ′ and Q′ be components composable for disjunction. Then:

• P vntimp P ∨nt Q and Q vntimp P ∨nt Q

• P vntimp R and Q vntimp R implies P ∨nt Q vntimp R

• P ′ vntimp P and Q′ vntimp Q implies P ′ ∨nt Q′ vntimp P ∨nt Q.

Proof. The results do not follow immediately from Theorem 6.22, which is itself based on Theo-

rem 3.18, because the original proof needs to make use of the actual definition for the E operator,

rather than using it syntactically.

For the first claim, we show that P vntimp P ∨nt Q by demonstrating FE(P) ⊆ FE(P∨ntQ) ∪
(TE(P∨ntQ) ↑ AIP) and TE(P) ⊆ TE(P∨ntQ) ∪ (TE(P∨ntQ) ↑ AIP). First suppose t ∈ TE(P), t 6∈
T (AP∨Q) and the result holds for all strict prefixes. Then there exists t′ a prefix of t and i ∈ AIP

136 Chapter 6. Theory of Timed Components

such that t′ ∈ T (AP∨Q) and i ∈ AIP \ AP∨Q. Thus, t′ ∈ TE(P∨ntQ) and t′i ∈ TE(P∨ntQ) ↑ AIP .

Hence t ∈ TE(P∨ntQ) ↑ AIP as required. Now suppose that t ∈ FE(P) ∩ T (AP∨Q). We show that

t ∈ Xi ∩ T (AP∨Q) implies t ∈ FE(P∨ntQ) for each i ∈ N, where Xi is the i-th approximation of

FE(P). The result holds trivially when i = 0, because Xi = ∅. For the inductive case of t ∈ Xk+1,

either (i) t ∈ FP , (ii) there exists t′ ∈ (AOP)∗ such that tt′ ∈ Xk, or (iii) there exists t′ ∈ R∞0 such

that tt′ ∈ Xk, and for every prefix t′′ of t′ and a ∈ AIP it holds that tt′′a ∈ Xk. For (i), it obviously

holds that t ∈ FP∨ntQ by the definition of ∨nt, and so t ∈ FE(P∨ntQ). For (ii), by the induction

hypothesis it holds that tt′ ∈ FE(P∨ntQ) since AOP ⊆ AOP∨Q, implying tt′ ∈ T (AP∨Q). Hence

t ∈ FE(P∨ntQ) by the definition of the E operator. For (iii), by the induction hypothesis it holds that

tt′ ∈ FE(P∨ntQ) and tt′′a ∈ FE(P∨ntQ) for each a ∈ AIP∨Q. Since AIP∨Q ⊆ AIP , it holds by the

definition of the E operator that t ∈ FE(P∨ntQ). Hence FE(P) ⊆ FE(P∨ntQ) ∪ (TE(P∨ntQ) ↑ AIP).

To show T -set containment, suppose that t ∈ (TP \FE(P))∩T (AP∨Q). Then from the definition

of ∨nt it holds that t ∈ TP∨ntQ, and so t ∈ TE(P∨ntQ) as required. Showing Q vntimp P ∨nt Q is

similar.

For the second claim, we need to show that FE(P∨ntQ) ⊆ FE(R) ∪ (TE(R) ↑ AIP∨Q) and

TE(P∨ntQ) ⊆ TE(R) ∪ (TE(R) ↑ AIP∨Q). When t ∈ TE(P∨ntQ) and t 6∈ T (AR), it follows by the

same reasoning as in the previous case that t ∈ TE(R) ↑ AIP∨Q. Now suppose t ∈ FE(P∨ntQ) ∩
T (AR). We show that t ∈ Xi∩T (AR) implies t ∈ FE(R) by induction on i ∈ N, where Xi is the

i-th approximation of FE(P∨ntQ). The base case of i = 0 is trivial, so suppose t ∈ Xk+1∩T (AR).

Then either (i) t ∈ FP∨ntQ, (ii) there exists t′ ∈ (AOP∨Q)∗ such that tt′ ∈ Xk, or (iii) there exists

t′ ∈ R∞0 such that tt′ ∈ Xk and for every prefix t′′ of t′ and a ∈ AIP∨Q it holds that tt′′a ∈ Xk.

For (i), there exists a prefix tf of t such that, without loss of generality, it holds that tf ∈ FP .

Therefore, from P vntimp R, it follows that tf ∈ FE(R), which given that t ∈ T (AR), implies

t ∈ FE(R). For (ii), by the same reasoning as in the first claim, it follows that t ∈ FE(R) by the

induction hypothesis, given thatAOP∨Q ⊆ AOR. Similarly for (iii), by the reasoning in the previous

claim, it holds that t ∈ FE(R), since AIR ⊆ AIP∨Q. Therefore, FE(P∨ntQ) ⊆ FE(R) ∪ (TE(R) ↑
AIP∨Q). Now suppose that t ∈ (TP∨ntQ\FE(P∨ntQ))∩T (AR). Then by the definition of TP∨ntQ,

it holds without loss of generality that t ∈ TP . From P vntimp R, we derive t ∈ TE(R), given that

t ∈ T (AR), as required.

The third claim follows from Theorem 6.22 because the proof, which is based on Theo-

rem 3.18, would make use of the previous two claims without any reference to the E operator. �

6.3.5 Hiding

Hiding of an action cannot make a non-terminating component terminate, so the definition of

the operator in the non-terminating theory should match that provided in Definition 6.24 for the

framework with termination. In fact, hiding has the potential to make a terminating component

6.3. Non-Terminating Theory of Timed Components 137

non-terminating.

Definition 6.47. Let P be a component and let b be an action. Then the hiding of b in P , denoted

P /nt b, is the component P /t b as defined in Definition 6.24. �

To see why the hiding operator preserves non-termination, suppose t ∈ TP/ntb. If b ∈ AIP or

b 6∈ AP , then t ∈ TP . So there exists t′ ∈ T (AOP) such that tt′ ∈ TP and tt′ has infinite duration.

But then tt′ ∈ T (AP/b), so tt′ ∈ TP/ntb. If instead b ∈ AOP , then there exists t′ ∈ TP such that

t′ � (AP/b ∪R∞0) = t. As P is non-terminating, there is t′′ ∈ T (AOP) such that t′t′′ ∈ TP and t′t′′

is of infinite duration. Therefore, t′t′′ � (AP/b ∪R∞0) ∈ TP/ntb. By the way projection is defined,

it follows that t′t′′ � (AP/b ∪ R∞0) is of infinite duration. Therefore, we can take t′′′ ∈ T (AOP/b)
such that t′′′ = t′′ � (AP/b ∪ R∞0). Hence tt′′′ ∈ TP/ntb as required.

We now show that the hiding operator is compositional under refinement.

Theorem 6.48. Let P and Q be components and let b be an action such that b 6∈ AOP . If Q vntimp
P , then Q /nt b vntimp P /nt b.

Proof. We begin by showing that FE(Q/ntb) ⊆ FE(P/ntb) ∪ (TE(P/ntb) ↑ AIQ/b) and TE(Q/ntb) ⊆
TE(P/ntb) ∪ (TE(P/ntb) ↑ AIQ/b). First suppose that t ∈ TE(Q/ntb) and t 6∈ T (AP/b), and assume

that the containment holds for all strict prefixes. Then there is a prefix t′a of t with t′ ∈ T (AP/b)
and a ∈ AIQ/b \AP/b, for which one can conclude that t′ ∈ TE(P/ntb) and t′a ∈ TE(P/ntb) ↑ AIQ/b.
Consequently, t ∈ TE(P/ntb) ↑ AIQ/b as required. Now suppose that t ∈ FE(Q/ntb) ∩ T (AP/b).

We show that Yi ∩ T (AP/b) ⊆ FE(P)/ntb ⊆ FE(P/ntb), the latter containment being demonstrated

further below, where Yi is the i-th approximation of FE(Q/ntb). When i = 0, the result holds

trivially because Y0 = ∅, so suppose that t ∈ Yk+1 ∩ T (AP/b). Then either (i) t ∈ FQ/ntb, (ii)

there exists t′ ∈ (AOQ/b)
∗ such that tt′ ∈ Yk, or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Yk, and

for all prefixes t′′ of t′ and a ∈ AIQ/b, it holds that tt′′a ∈ Yk. For (i), begin by supposing that

b 6∈ AOP . Then t ∈ FQ ∩ T (AQ/b), so from Q vntimp P we derive t ∈ FE(P), as t ∈ T (AP/b)
by initial assumption. Therefore, t ∈ FE(P)/ntb. When b ∈ AOP , there exists t′ ∈ FQ such that

t′ � AQ/b = t. Consequently t′ ∈ FE(P), given that t′ ∈ T (AP), itself due to t ∈ T (AP/b).

From this, it follows that t ∈ FE(P)/ntb, since t′ � AP/b = t. In the subsequent paragraphs we

show that FE(P)/ntb ⊆ FE(P/ntb). For (ii), note that t′ ∈ (AOP/b)
∗, so tt′ ∈ Yk ∩ T (AP/b), which

by the induction hypothesis yields tt′ ∈ FE(P/ntb) and so t ∈ FE(P/ntb) by the definition of the

E operator. For (iii), by the induction hypothesis we derive tt′ ∈ FE(P/ntb) and tt′′a ∈ FE(P/ntb)

when a ∈ AIP/b, given AIP/b ⊆ A
I
Q/b. Hence, by the definition of the E operator, it holds that

t ∈ FE(P/ntb).

We now need to show that FE(P)/ntb ⊆ FE(P/ntb) (for case (i) previously), by demonstrating

that Xi∩T (AP/b) ⊆ FE(P/ntb) when b 6∈ AOP and Xi � (AP/b∪R∞0) ⊆ FE(P/ntb) when b ∈ AOP ,

where Xi is the i-th approximation of FE(P). The base case is trivial, since X0 = ∅, so we only

consider the inductive cases below.

138 Chapter 6. Theory of Timed Components

First suppose that t ∈ Xk+1 ∩ T (AP/b) and b 6∈ AOP . Then either (i) t ∈ FP , (ii) there exists

t′ ∈ (AOP)∗ such that tt′ ∈ Xk, or (iii) t ∈ TP and there exists t′ ∈ R∞0 such that tt′ ∈ Xk

and for each prefix t′′ and a ∈ AIP it holds that tt′′a ∈ Xk. For (i), it follows that t ∈ FP/ntb

and so t ∈ FE(P/ntb). For (ii), it holds that t′′ ∈ (AOP/b)
∗, so tt′ ∈ Xk ∩ T (AP/b). By the

induction hypothesis, tt′ ∈ FE(P/ntb) and so t ∈ FE(P/ntb) by the definition of the E operator. For

(iii), tt′ ∈ Xk ∩ T (AP/b) so by the induction hypothesis we derive tt′ ∈ FE(P/ntb). Moreover,

tt′′a ∈ FE(P/ntb) for each a ∈ AP/b, given that AIP/b ⊆ A
I
P , which means t ∈ FE(P/ntb) by the

definition of the E operator.

Now suppose that t ∈ Xk+1 � (AP/b ∪ R∞0) and b ∈ AOP . Then there exists tp ∈ Xk+1

such that tp � (AP/b ∪ R∞0) = t. So either (i) tp ∈ FP , (ii) there exists t′ ∈ (AOP)∗ such

that tpt′ ∈ Xk, or (iii) tp ∈ TP and there exists t′ ∈ R∞0 such that tpt′ ∈ Xk, and for each

prefix t′′ of t′ and a ∈ AIP it holds that tpt′′a ∈ Xk. For (i), it follows that t ∈ FP/ntb and so

t ∈ FE(P/ntb). For (ii), it follows that tpt′ � (AP/b ∪ R∞0) ∈ Xk � (AP/b ∪ R∞0), and so, by

the induction hypothesis, tpt′ � (AP/b ∪ R∞0) ∈ FE(P/ntb). As t′ � (AP/b ∪ R∞0) ∈ (AOP/b)
∗,

it follows that tp � (AP/b ∪ R∞0) ∈ FE(P/ntb) and so t ∈ FE(P/ntb). For (iii), by the induction

hypothesis we have tpt′ � (AP/b ∪ R∞0) ∈ FE(P/ntb) and tpt′′a � (AP/b ∪ R∞0) ∈ FE(P/ntb).

As t′′a = t′′a � (AP/b ∪ R∞0) and t′ = t′ � (AP/b ∪ R∞0), it follows that t ∈ FE(P/ntb) by the

definition of the E operator.

The T -set containments are unchanged from Theorem 6.25, since it is necessary to only con-

sider the traces in (TQ/b \ FE(Q/b)), which do not involve the E operator. �

6.3.6 Quotient

The definition of quotient makes use of the construction in Definition 6.27 for the theory permitting

termination; however, this may yield a component that can terminate, even when both P and R
are non-terminating. It is necessary, therefore, to apply a pruning operation to the construction

R /t P that removes all traces from which the component can terminate under its own control.

Note that the /t operator has the same syntactic definition as in Section 6.2.7, but it does not yield

the same component as in that section, because the definition of the E operator has changed.

Definition 6.49. Let P and R be components such that AOP ⊆ AOR. The quotient of P from R is

the component R /nt P with signature 〈AIR/P ,A
O
R/P , TR/tP \ Err, FR/tP \ Err〉, where Err

is the smallest set containing:

{t ∈ TR/tP : ∃t′ ∈ (AIR/P)∗ · @t′′ ∈ T (AOR/P)·
tt′t′′ ∈ TR/tP \ Err and tt′t′′ is of infinite duration}. �

It is obvious that R /nt P is a non-terminating component, given the formulation of the

Err set. The following theorem shows that the construction satisfies the standard properties for

quotient.

6.3. Non-Terminating Theory of Timed Components 139

Theorem 6.50. Let P , Q andR be components. Then P ||nt Q vntimp R iff:

• R /nt P is defined (i.e., AOP ⊆ AOR)

• P ||nt (R /nt P) vntimp R

• AIQ = AIR/P implies Q vntimp R /nt P .

Proof. The first claim is standard. For the second claim, we show that FE(P||nt(R/ntP)) ⊆ FE(R)∪
(TE(R) ↑ AIP||(R/P)) and TE(P||nt(R/ntP)) ⊆ TE(R) ∪ (TE(R) ↑ AIP||(R/P)). First suppose that

t ∈ TE(P||nt(R/ntP)) and t 6∈ T (AR). Then there is a prefix t′i of t such that t′ ∈ T (AR) and

i ∈ AIP||(R/P) \ AR. As t′ is a strict prefix of t, it holds that t′ ∈ TE(R), and so t′i ∈ TE(R) ↑
AIP||(R/P). Consequently, t ∈ TE(R) ↑ AIP||(R/P) as required. If instead t ∈ FE(P||nt(R/ntP)) ∩
T (AR), then we demonstrate that Xi ∩ T (AR) ⊆ FE(R) for each i ∈ N, where Xi is the i-th

approximation of FE(P||nt(R/ntP)) defined as a fixed point. The case of i = 0 holds trivially,

because Xi = ∅. For the inductive case, suppose t ∈ Xk+1 ∩ T (AR). Then either (i) t ∈
FP||nt(R/ntP), (ii) there exists t′ ∈ (AOP||(R/P))

∗ such that tt′ ∈ Xk, or (iii) t ∈ TP||nt(R/ntP) and

there exists t′ ∈ R∞0 such that tt′ ∈ Xk and for all prefixes t′′ of t′ and a ∈ AIP||(R/P) it holds

that tt′′a ∈ Xk. For (i), we derive t � (AP ∪ R∞0) ∈ FP and t � (AR/P ∪ R∞0) ∈ TR/ntP , or

t � (AP ∪ R∞0) ∈ TP and t � (AR/P ∪ R∞0) ∈ FR/ntP , both of which imply that t ∈ FE(R) by

the definition of quotient. For (ii), it holds by the induction hypothesis that tt′ ∈ FE(R), given that

AOP||(R/P) ⊆ A
O
R, and so t ∈ FE(R) by the definition of the E operator. For (iii), it follows by the

induction hypothesis that tt′ ∈ FE(R) and tt′′a ∈ FE(R) for each a ∈ AIR. As AIR ⊆ AIP||(R/P),
it follows that t ∈ FE(R) by the definition of the E operator. Thus, FE(P||nt(R/ntP)) ⊆ FE(R) ∪
(TE(R) ↑ AIP||(R/P)). Finally, to show TE(P||nt(R/ntP)) ⊆ TE(R) ∪ (TE(R) ↑ AIP||(R/P)), suppose

that t ∈ (TP||nt(R/ntP) \ FE(P||nt(R/ntP))) ∩ T (AR). By the definition of ||nt, it follows that

t � (AP ∪ R∞0) ∈ TP and t � (AR/P ∪ R∞0) ∈ TR/ntP . Now, by the definition of TR/ntP , it

follows that t ∈ TE(R) as required.

For the third claim, we first show that FE(Q) ⊆ FR/tP ∪ (TR/tP ↑ AIQ) and TE(Q) ⊆ TR/tP ∪
(TR/tP ↑ AIQ), and then show that TE(Q) ∩ Err = ∅. The reasoning for t ∈ TE(Q) and t 6∈
T (AR/P) is the same as in the second claim. So we show that Xi ∩ T (AR/P) ⊆ FR/tP for

each i ∈ N, where Xi is the i-th approximation of FE(Q). The base case is trivial, so suppose

t ∈ Xk+1 ∩ T (AR/P). Then either (i) t ∈ FQ, (ii) there exists t′ ∈ (AOQ)∗ such that tt′ ∈ Xk,

or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Xk and for every prefix t′′ of t′ and a ∈ AIQ it holds

that tt′′a ∈ Xk. For (i), let tr ∈ T (AR) be an arbitrary trace such that tr � (AQ ∪ R∞0) = t.

Then if t � (AP ∪ R∞0) ∈ TP , it holds that t ∈ FP||ntQ, so t ∈ FE(R), since P ||nt Q vntimp R.

Hence t ∈ FR/tP by definition, as required, given that tr � (AR/P ∪ R∞0) = t. For (ii) and

(iii), the result holds by the usual reasoning on the induction hypothesis. It is easy to show that

FE(R/tP) = FR/tP by an inductive argument, so t ∈ FR/tP as required. When t ∈ TQ \ FE(Q),

140 Chapter 6. Theory of Timed Components

co
:
x
≤

2.
5

inv : x ≤ 3.5

co : x ≤ 3

job details! print!

x ≤ 4 job details!
x := 0

print mode?

x := 0

print!

Figure 6.12: Non-terminating timed specification of a print system (PrintSystem)
co

:
x
≤

2.
5

co
:
x
≤

3
co : x ≤ 3

job details!

x ≤ 2

print?

x ≤ 3 job details!
x := 0

print mode?

x := 0

print?

Figure 6.13: Non-terminating timed quotient of the printing/scanning device from PrintSystem

it is straightforward to show that t ∈ TR/tP , the reasoning matching that in Theorem 3.25. Now,

to show that TE(Q) ∩ Err = ∅, we demonstrate that TE(Q) ∩ Yi = ∅ for each i ∈ N, where Yi

is the i-th approximation of Err defined as a fixed point. The base case is trivial, so suppose

t ∈ TE(Q) ∩ Yk+1. Then there exists t′ ∈ (AIR/P)∗ for which @t′′ ∈ T (AOR/P) such that tt′t′′ ∈
TR/tP \ Yk and tt′t′′ is of infinite duration. Since AIQ = AIR/P , it holds that tt′ ∈ TE(Q). Now as

Q is a non-terminating component, there exists tq ∈ T (AOQ) such that tt′tq ∈ TE(Q) and tt′tq is

of infinite duration. But as AOQ ⊆ AOR/P , it follows that tq ∈ T (AOR/P), hence tt′tq ∈ T (AR/P).

By the first part of the claim, we derive tt′tq ∈ TR/tP , hence tt′tq ∈ Yk. But this contradicts the

induction hypothesis TE(Q)∩Yk = ∅. Therefore, TE(Q)∩Err = ∅ as required. Consequently, it is

actually the case that FE(Q) ⊆ FR/ntP ∪ (TR/ntP ↑ AIQ) and TE(Q) ⊆ TR/ntP ∪ (TR/ntP ↑ AIQ).

�

Unsurprisingly, the compositionality result for quotient continues to hold in the non-terminating

theory of timed components.

Theorem 6.51. Let P , Q andR be components such that Q vntimp P .

• If Q /nt R is defined, AIP/R = AIQ/R and AIR ∩ AOP = ∅, then Q /nt R vntimp P /nt R.

• If R /nt P is defined, AIR/P = AIR/Q and (AIQ \ AIP) ∩ AR = ∅, then R /nt P vntimp
R /nt Q.

Proof. Follows by the same reasoning as in Theorem 3.27, having updated the references to the

corresponding results from this section. �

Example 6.52. Figure 6.12 presents a specification for a print system (PrintSystem), consist-

ing of a printer and spooler. The quotient of the printing/scanning device in Figure 6.9 from

6.3. Non-Terminating Theory of Timed Components 141

PrintSystem is the component shown in Figure 6.13, which can be thought of as a specification

for the spooler. After being placed in print mode, the spooler is willing to generate a bounded-

liveness error within 2.5 time units, since this is allowed by PrintSystem. However, the spooler

may only issue the job details within 2 time units, as this is the only time range when the print-

ing/scanning device will successfully accept them, without generating a communication mismatch,

the latter of which is not permitted by PrintSystem. After issuing the job details, the spooler may

time-out within 3 time units, even though this is not permitted by PrintSystem, since the invariant

x ≤ 3 in the printing/scanning device forces the print action to be taken. The remaining behaviour

is self-explanatory. Note that none of the traces arising in the diagrammatic representation of the

spooler component are terminating. Therefore, the pruning operation defined as part of the quo-

tient operator does not need to be applied. �

6.3.7 Full Abstraction

In this section, we demonstrate that the refinement preorder on components in the non-terminating

timed theory preserves the absence of safety and bounded-liveness errors, as has been shown for

the relation in the terminating theory. Based on this, component equivalence in the terminating

theory is shown to be fully abstract with respect to observation of inconsistency.

Definition 6.53. Let P and Q be components. Then Q is inconsistency substitutable for P , de-

noted by Q vF,ntimp P , iff for each t ∈ T (AOQ) it holds that t ∈ FE(Q) implies t ∈ FE(P). �

Theorem 6.54. Let P andQ be components such thatAIP ⊆ AIQ, AOQ ⊆ AOP andAIQ ∩AOP = ∅.
Then:

Q vntimp P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q ||nt R v
F,nt
imp P ||nt R.

Proof. Straightforward modification of Theorem 6.31. �

Consequently, vntimp is the weakest preorder preserving substitutivity of components, and so

≡ntimp is the coarsest equivalence on components with respect to observation of inconsistency.

Given that ≡ntimp is shown to be a congruence for all of the operators, subject to composability,

it follows that ≡ntimp is fully abstract for the specification theory with respect to observational

equivalence of safety and bounded-liveness errors.

Corollary 6.55. Substitutive equivalence≡ntimp is fully abstract for parallel composition, conjunc-

tion, disjunction, hiding and quotient with respect to observational equivalence of inconsistency.

Proof. The same reasoning as in Corollary 6.32. �

142 Chapter 6. Theory of Timed Components

6.4 Summary

In this chapter, we have extended the trace-based compositional specification theory of Chapter 3

to the real-time setting, by recording the times at which interactions occur, in addition to their

temporal ordering. Two variants of the framework are provided, in order to support the realistic

modelling of different types of timed systems. First, we present a framework that allows for the

passage of time to be halted, which corresponds to systems that can terminate, while in the subse-

quent framework we remove the possibility of termination, so that systems must run indefinitely.

Linear-time refinements are provided for each framework, which are shown to be the weakest pre-

orders preserving the absence of safety and bounded-liveness errors. Safety errors correspond to

the arising of unexpected interactions, while bounded-liveness errors occur when a system passes

a certain point in time without having performed a particular interaction. Definitions of parallel

composition, conjunction, disjunction, hiding and quotient are provided for each framework, and

full abstraction results are supplied.

The conceptual simplicity of the frameworks highlights the essential structure required for

reasoning compositionally about safety and bounded-liveness errors. By equating these two types

of violations, we have presented a formalism that enjoys strong algebraic properties, and is capable

of modelling a range of asynchronous timed systems.

CHAPTER

SEVEN

Assume-Guarantee Reasoning for Timed Components

In this chapter, we present an assume-guarantee reasoning framework for the theory of non-

terminating timed components, on the basis that the non-terminating theory has greater practical

applicability and is more complicated than the terminating theory. The framework is based largely

on the constructs from Chapter 5, both in the safety and progress-sensitive settings. For exam-

ple, the structure of a timed contract is closely related to the definition of a contract in the safety

setting, while the definition of refinement is more akin to the version from the progress-sensitive

framework. As in Chapter 5, we define the usual collection of operators directly on contracts (i.e.,

parallel composition, conjunction, disjunction and quotient), and further present sound and com-

plete assume-guarantee rules that allow for the inference of properties satisfied by compositions

of timed components, based on the compositions of their satisfying contracts.

7.1 Timed Contracts

We begin by defining contracts for the timed case.

Definition 7.1 (Contract). A contract S is a tuple 〈AIS ,AOS ,RS ,GS〉, in which AIS and AOS are

disjoint sets (whose union is AS), referred to as the inputs and outputs respectively, and RS and

GS are prefix closed subsets of T (AS), referred to as the assumption and guarantee respectively,

such that t ∈ RS and t′ ∈ T (AOS) implies tt′ ∈ RS . �

This definition of a contract is a generalisation of the one provided in Definition 5.1, by taking

the assumption and guarantee to be timed trace sets. In the untimed setting, the assumption had to

be closed under output extensions, because the environment cannot constrain the output behaviour

of a satisfying component. However, here in the timed setting, the assumption must be closed

under timed output extensions, since the environment also cannot constrain the passage of time.

Definition 7.2 (Satisfaction). A non-terminating timed component P satisfies the contract S,

written P |=nt S , iff:

S1. AIS ⊆ AIP

S2. AOP ⊆ AOS

143

144 Chapter 7. Assume-Guarantee Reasoning for Timed Components

S3. AIP ∩ AOS = ∅

S4. RS ∩ TP ⊆ GS ∩ FP . �

The conditions for the satisfaction of a contract by a non-terminating timed component remain

unchanged from Definition 5.3, since any common interaction between the environment and com-

ponent that lies within the assumption must also be contained within the guarantee, and must not

allow the component to become inconsistent under its own control.

At this stage, we make an important distinction between satisfaction in the untimed and timed

settings. For the untimed setting, assume that ∆ (representing an assumption) is a prefix closed set

of traces overAP . Then checking ∆∩TP ⊆ FE(P) is equivalent to verifying ∆·(AOP)∗∩TP ⊆ FP .

That is to say, by making ∆ closed under output extensions, it is sufficient to check exclusion of

common traces between the environment and component from the set of inconsistent traces FP ,

rather than checking that they are excluded from the set of traces FE(P) which have the potential to

become inconsistent underP’s own control. However, when ∆ is a prefix closed subset of T (AP),

an analogous result does not hold, even when considering ∆·T (AOP) in place of ∆·(AOP)∗. This is

because interactions are assumed to take precedence over the passage of time (cf. Definition 6.35).

Considering the phenomenon in more detail, a timed trace t is not necessarily in FE(P) even if there

exists t′ ∈ T (AOP) such that tt′ ∈ FP . This is because the environment could issue some input on

a prefix of t′ that will deflect away from the behaviour tt′, due to the issuance of an input taking

precedence over the passage of time. But, as the contract has no way of ensuring that such an input

will be issued by the environment, it is not possible to guarantee that the behaviour tt′ will not

materialise. This is why it is essential that the assumption is closed under timed output extensions

in the timed setting.

Any timed component that satisfies a contract can be replaced by a refinement such that the

new component will automatically satisfy the contract, as the following lemma shows.

Lemma 7.3. Let P and Q be components, and let S be a contract. If P |=nt S, Q vntimp P and

AIQ ∩ AOS = ∅, then Q |=nt S.

Proof. Suppose that t ∈ RS ∩ TQ. Then it is necessarily the case that t ∈ T (AP), so from

Q vntimp P we derive t ∈ RS ∩ TE(P). If t ∈ TP , then t ∈ GS ∩ FP , from P |=nt S. If instead

t ∈ FE(P), then there exists t′ ∈ T (AOP), such that tt′ ∈ FP . But as tt′ ∈ RS , it would follow

that P 6|=nt S, which is contradictory. So, from t 6∈ FE(P), we derive t 6∈ FE(Q) from Q vntimp P ,

which implies t 6∈ FQ. Thus, t ∈ GS ∩ FQ as required. �

In keeping with the untimed setting, we show how to construct the least refined component

satisfying a contract. To do this, we need to determine the set of traces, denoted error(S), that

cannot arise in any implementation of S. This set is obtained by appealing to the definition of the

E operator (Definition 6.35), having transposed inputs with outputs.

7.1. Timed Contracts 145

Definition 7.4. Let S be a contract. Then:

• violations(S) is defined as {t ∈ T (AS) : ∃t′ ∈ (AIS)∗ · tt′ ∈ RS ∩ GS} · T (AS)

• error(S) is defined as the smallest set containing:

violations(S) ∪ {t ∈ T (AS) : ∃t′ ∈ (AIS)∗ · tt′ ∈ error(S)} ∪
{t ∈ T (AS) : ∃t′ ∈ R∞0 · tt′ ∈ error(S), and

t′′ is a prefix of t′ and o ∈ AOS =⇒ tt′′o ∈ error(S)}. �

Essentially, the formulation of violations(S) is unchanged from the non-timed setting. A

timed trace is a violation if there exists a sequence of inputs that leads to a trace in the assumption

while not being in the guarantee. Note that the sequence of inputs is not timed, as this is handled

by the formulation of the error(S) set, owing to the difference in precedence afforded between

interactions and the passage of time (interactions occur non-deterministically and take precedence

over the passage of time (cf. Definition 6.35)). The error(S) set is designed to capture all traces

from which there is no possibility of a component avoiding a violation. Thus, error(S) is the

smallest set containing violations(S), along with any trace t that can be extended by a sequence

of timed inputs t′ such that tt′ ∈ error(S) and, for any prefix t′′ of t′, at least one of the following

holds.

• There exists i ∈ AIS such that t′′i is a prefix of t′. Since the component cannot prevent the

environment from issuing the input i after t′′, under some resolution of non-determinism t′′i

must be a behaviour of the component, even if the component can issue outputs immediately

after t′′.

• If t′′ can delay such that it is still a prefix of t′, then for each o ∈ AOS we require that tt′′o ∈
error(S). If instead there was some o′ such that tt′′o′ 6∈ error(S), then some component

could always issue this o′ after t′′, which would automatically take precedence over the

delay, always allowing the component to steer away from the trace tt′.

As usual, error(S) can be defined iteratively as a least fixed point. More precisely, error(S) =∑
i∈NXi, where X0 = ∅ and

Xk+1 = violations(S) ∪ {t ∈ T (AS) : ∃t′ ∈ (AIS)∗ · tt′ ∈ Xk} ∪
{t ∈ T (AS) : ∃t′ ∈ R∞0 · tt′ ∈ Xk, and

t′′ is a prefix of t′ and o ∈ AOS =⇒ tt′′o ∈ Xk}.

Note that error(S) is a collection of non-terminating traces, meaning that, for each t ∈
error(S), there exists t′ ∈ T (AOS) such that tt′ ∈ error(S) and tt′ has infinite duration. Thus,

error(S) can be used to define the traces of the least refined component satisfying S, as per Defi-

nition 5.6 in the untimed setting.

146 Chapter 7. Assume-Guarantee Reasoning for Timed Components

Definition 7.5. Let S be a contract. Then the least refined component satisfying S is the compo-

nent Int(S) = 〈AIS ,AOS , TInt(S), FInt(S)〉, where:

• TInt(S) = error(S)

• FInt(S) = error(S) ∩RS . �

Based on the construction of Int(S), it is fairly obvious that the following properties hold.

Lemma 7.6. Let S be a contract and P be a component. Then:

• Int(S) is non-realisable implies S is non-implementable;

• Int(S) |=nt S; and

• P |=nt S iff P vntimp Int(S).

Proof. For the first claim, we begin by showing that t ∈ error(S) implies t is not a trace of any

implementation of S, by demonstrating that t ∈ Xi implies t is not a trace in an implementation

of S for each i ∈ N, where Xi is the i-th approximation of error(S). The base case is trivial,

so suppose that t ∈ Xk+1. Then (i) t ∈ violations(S), (ii) there exists t′ ∈ (AIS)∗ such that

tt′ ∈ Xk, or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Xk, and for each t′′ a prefix of t′ and

o ∈ AOS it holds that tt′′o ∈ Xk. For (i), if t ∈ violations(S), then there exists t′ ∈ (AIS)∗ such

that tt′ ∈ RS ∩ GS . Hence tt′ cannot be in any implementation of S, which implies t is not in

any implementation by input-receptivity. For (ii), tt′ is not in any implementation by the induction

hypothesis, which implies t is not in any implementation by input-receptivity. For (iii), by the

induction hypothesis, we know that tt′ and each of the tt′′o cannot be in any implementation,

hence tt′′ is a terminating trace, which implies that it cannot be in any implementation. Hence

t cannot be in any implementation. Now if Int(S) is non-realisable, then 0 6∈ TInt(S), which

implies 0 ∈ error(S). Thus 0 cannot be a trace in any implementation of S, which implies that S
has no implementations.

For the second claim, suppose that t ∈ RS ∩ TInt(S). Then t 6∈ error(S), which implies

t 6∈ FInt(S) and t 6∈ violations(S). From the latter, it follows that t ∈ GS .

For the third claim, the if direction follows by the previous claim and Lemma 7.3. For the

only if direction, we need to show that TE(P) ⊆ TE(Int(S)) ∪ (TE(Int(S)) ↑ AIP) and FE(P) ⊆
FE(Int(S)) ∪ (TE(Int(S)) ↑ AIP). So suppose that t ∈ TE(P) and assume that the result holds for all

strict prefixes. If t 6∈ T (AS), then there is a prefix t′i of t such that t′ ∈ T (AS) and i ∈ AIP \AS .

Hence, t′ ∈ TE(Int(S)) by the induction hypothesis and t′i ∈ TE(Int(S)) ↑ AIP , which implies

t ∈ TE(Int(S)) ↑ AIP . Now suppose that t ∈ FE(P)∩T (AS). In the usual manner, we approximate

FE(P) with Yi. So for the inductive case of t ∈ Yk+1 ∩ T (AP), either (i) t ∈ FP , (ii) there exists

t′ ∈ (AOP)∗ such that tt′ ∈ Yk, or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Yk and for each t′′ a

7.2. Refinement 147

prefix of t′ and a ∈ AIP it holds that tt′′a ∈ Yk. For (i), it follows that t ∈ TP , which implies (by

the first claim) t 6∈ error(S). Moreover, sinceP |=nt S , it follows that t 6∈ RS . Hence t ∈ FInt(S),

meaning t ∈ FE(Int(S)) as required. For (ii), since AOP ⊆ AOS , it follows that tt′ ∈ T (AS). By

the induction hypothesis we derive tt′ ∈ FE(Int(S)), which implies t ∈ FE(Int(S)) by the definition

of the E operator. For (iii), again by the induction hypothesis we see that tt′ ∈ FE(Int(S)) and

tt′′a ∈ FE(Int(S)) when a ∈ AIS , since AIS ⊆ AIP . Thus, by the definition of the E operator,

we derive t ∈ FE(Int(S)). Finally, when t ∈ TP ∩ T (AS), it follows by the first claim that

t 6∈ error(S). Hence t ∈ TInt(S), implying t ∈ TE(Int(S)). �

7.2 Refinement

The principles behind refinement are largely unchanged in the timed setting, and indeed the defini-

tion is syntactically similar to Definitions 5.9 and 5.42. As was the case in the untimed frameworks

of Chapter 5, refinement continues to correspond to implementation containment.

Definition 7.7 (Refinement). Let S and T be contracts. S is said to be a non-terminating timed

refinement of T , written S vnt T , iff:

TCR1. AIT ⊆ AIS

TCR2. AOS ⊆ AOT

TCR3. AIS ∩ AOT = ∅

TCR4. error(T) ∩ T (AS) ⊆ error(S)

TCR5. RT ∩ T (AS) ⊆ RS ∪ error(S). �

The intuition behind this definition is unchanged from Chapter 5. The following lemma makes

clear the intended understanding of refinement in terms of implementation containment.

Lemma 7.8. Refinement captures implementation containment:

S vnt T ⇐⇒ {P : P |=nt S and AIP ∩ AOT = ∅} ⊆ {P : P |=nt T }.

Proof. The proof follows by Lemma 5.43, omitting the liveness trace containment. Note that the

proof treats the error sets syntactically, so there is no need to recourse to the actual definition. �

Given that the definition of refinement is syntactically unchanged from the untimed setting, it

is not surprising that vnt is reflexive and transitive subject to compatibility.

148 Chapter 7. Assume-Guarantee Reasoning for Timed Components

Lemma 7.9 (Weak transitivity). Let S , T and U be contracts such that AIS ∩ AOU = ∅. If

S vnt T and T vnt U , then S vnt U .

Proof. Follows from the transitivity of subset inclusion. �

Having established the key properties of refinement, we can now show how to construct the

characteristic contract for a component, which is the contract having the component as the least

refined implementation.

Definition 7.10. The characteristic contract for componentP is a contractAGnt(P) = 〈AIP ,AOP ,
RAGnt(P),GAGnt(P)〉, whereRAGnt(P) = T (AP) \ FE(P) and GAGnt(P) = TP \ FE(P). �

Given that the definition of the characteristic contract is hardly changed from the untimed

setting, it is straightforward to show that the following properties continue to hold.

Lemma 7.11. Let P be a component and let S be a contract. Then:

• P |=nt AGnt(P); and

• P |=nt S iff AGnt(P) vnt S .

Proof. The first claim in unchanged from Lemma 5.14. For the second claim, the if direction

follows by the previous claim and Lemma 7.8. For the only if direction of the second claim, the

reasoning follows by the same reasoning as in Lemma 7.8, having disregarded the liveness set

containment. �

7.3 Parallel Composition

In the timed setting, the parallel composition of two contracts continues to be a contract having

the least number of implementations that satisfies independent implementability. The definition is

syntactically equivalent to that in the progress-sensitive theory without time, having updated the

definition of the error traces to the timed setting.

Definition 7.12. Let SP and SQ be contracts composable for parallel composition (i.e., AOSP ∩
AOSQ = ∅). Then SP ||nt SQ is a contract 〈AISP ||SQ ,A

O
SP ||SQ ,RSP ||ntSQ ,GSP ||ntSQ〉, where:

• AISP ||SQ = (AISP ∪ A
I
SQ) \ (AOSP ∪ A

O
SQ)

• AOSP ||SQ = AOSP ∪ A
O
SQ

• RSP ||ntSQ is the largest prefix closed set such that RSP ||ntSQ · T (AOSP ||SQ) is contained

within the union of:

– (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

7.3. Parallel Composition 149

– error(SP) ⇑ ASP ||SQ
– error(SQ) ⇑ ASP ||SQ

• GSP ||ntSQ = RSP ||ntSQ ∩ (error(SP) ⇑ ASP ||SQ) ∩ (error(SQ) ⇑ ASP ||SQ). �

Given that the definition of parallel composition is syntactically unchanged from the progress-

sensitive setting (cf Definition 5.47) it is not surprising that the monotonicity result continues

to hold, subject to the usual constraints on interfaces. First, however, we present a decomposi-

tion result on traces in the error set for the parallel composition, which is a timed extension of

Lemma 5.48. This result is useful for proving that parallel composition is monotonic.

Lemma 7.13. t ∈ error(SP ||nt SQ) implies t � (ASP ∪R∞0) ∈ error(SP) or t � (ASQ ∪R∞0) ∈
error(SQ).

Proof. Show that t ∈ Xi implies t � (ASP ∪ R∞0) ∈ error(SP) or t � (ASQ ∪ R∞0) ∈ error(SQ),

where Xi is the i-th iteration of defining error(SP ||nt SQ) as a least fixed point. When i = 0, the

result hold trivially, sinceX0 = ∅. So suppose that t ∈ Xk+1. Then (i) t ∈ violations(SP ||nt SQ),

(ii) there exists t′ ∈ (AISP ||SQ)∗ such that tt′ ∈ Xk, or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Xk

and for each t′′ a prefix of t′ and o ∈ AOSP ||SQ it holds that tt′′o ∈ Xk. For (i), there exists a prefix

and input extension t′ ∈ RSP ||ntSQ∩GSP ||ntSQ . So, without loss of generality, t′ � (ASP ∪R∞0) ∈
error(SP) by the definition of ||nt, from which it follows t � (ASP ∪ R∞0) ∈ error(SP). For (ii),

t′ ∈ (AISP ||SQ)∗ implies t′ � (ASP ∪ R∞0) ∈ (AISP)∗ and t′ � (ASQ ∪ R∞0) ∈ (AISQ)∗. By

the induction hypothesis we have, without loss of generality, tt′ � (ASP ∪ R∞0) ∈ error(SP),

hence t � (ASP ∪ R∞0) ∈ error(SP). For (iii), by the induction hypothesis, we have without

loss of generality tt′ � ASP ∈ error(SP). Now for each prefix t′′ and o ∈ AOSP , we have that

tt′o � (ASP ∪ R∞0) ∈ error(SP) or tt′o � ASQ ∈ error(SQ), given that AOSP ⊆ A
O
SP ||SQ . If the

latter holds, then o 6∈ AQ or o ∈ AIQ, which implies tt′′ � (ASQ ∪ R∞0) ∈ error(SQ). Therefore,

by the definition of error(SP), it holds that tt′′ � (ASP ∪R∞0) ∈ error(SP) or tt′′ � (ASQ∪R∞0) ∈
error(SQ). �

We can now present the monotonicity result for parallel composition.

Theorem 7.14. Let SP and SQ, and S ′P and S ′Q be contracts composable for parallel composition,

such that AS′P ∩ AS′Q ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIS′P ||S′Q ∩ A
O
SP ||SQ = ∅. If S ′P vnt SP and

S ′Q vnt SQ, then S ′P ||nt S ′Q vnt SP ||nt SQ.

Proof. Note that the alphabet constraints are satisfied, so we need to show that RSP ||ntSQ ∩
T (AS′P ||S′Q) ⊆ RS′P ||ntS′Q∪error(S

′
P ||nt S ′Q) and error(SP ||nt SQ)∩T (AS′P ||S′Q) ⊆ error(S ′P ||nt

S ′Q).

First suppose that t ∈ RSP ||ntSQ ∩ T (AS′P ||S′Q), and assume that all strict prefixes of t are in

RS′P ||ntS′Q ∩ error(S ′P ||nt S ′Q). If t 6∈ RS′P ||ntS′Q , then there exists t′ ∈ T (AOS′P ||S′Q) such that,

150 Chapter 7. Assume-Guarantee Reasoning for Timed Components

without loss of generality, tt′ � (AS′P ∪ R∞0) 6∈ RS′P ∪ error(S ′P) and tt′ � (AS′Q ∪ R∞0) 6∈
error(S ′Q). As tt′ � (ASP ∪R∞0) = tt′ � (AS′P ∪R

∞
0) and tt′ � (ASQ ∪R∞0) = tt′ � (AS′Q ∪R

∞
0),

it follows that tt′ � (ASP ∪ R∞0) 6∈ RSP ∪ error(SP) since S ′P vnt SP , and tt′ � (ASQ ∪
R∞0) 6∈ error(SQ) since S ′Q vnt SQ. Hence, tt′ 6∈ RSP ||ntSQ , which implies t 6∈ RSP ||ntSQ as

t′ ∈ T (AOSP ||SQ), but this is contradictory.

Now suppose that t ∈ error(SP ||nt SQ) ∩ T (AS′P ||S′Q), and assume for the difficult case that

t ∈ RSP ||ntSQ . Then by Lemma 7.13 it follows that, without loss of generality, t � (ASP ∪R∞0) ∈
error(SP). Since t � (ASP ∪ R∞0) = t � (AS′P ∪ R∞0), it follows from S ′P vnt SP that t �

(AS′P ∪ R∞0) ∈ error(S ′P). Now from the first part, we know t ∈ RS′P ||ntS′Q ∪ error(S ′P ||nt S ′Q),

so it follows that t ∈ error(S ′P ||nt S ′Q), since certainly t 6∈ GS′P ||ntS′Q . �

From the monotonicity of parallel composition under refinement, it is possible to formulate a

sound and complete assume-guarantee rule, akin to the one presented in Theorem 5.50.

Theorem 7.15. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AIP||Q ∩ A

O
S = ∅. Then the following AG rule is both sound

and complete:

TIMED-PARALLEL
P |=nt SP Q |=nt SQ SP ||nt SQ vnt S

P ||nt Q |=nt S
.

Proof. The result follows from the reasoning in Theorem 5.19, having shown thatAGnt(P ||nt Q) vnt
AGnt(P) ||nt AGnt(Q) vnt AGnt(P ||nt Q) (i.e., Lemma 7.16, below), and updating the refer-

ences to the corresponding results from this chapter. �

The ancillary result required to prove soundness and completeness of the parallel composition

AG rule is duly presented below.

Lemma 7.16. AG(P ||nt Q) vnt AG(P) ||nt AG(Q) vnt AG(P ||nt Q).

Proof. First suppose that t ∈ RAG(P)||ntAG(Q) and t 6∈ error(AG(P) ||nt AG(Q)). Then t �

AP ∈ RAG(P) and t � AQ ∈ RAG(Q), which implies that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q).
Hence, t 6∈ FE(P||ntQ), from which it follows that t ∈ RAG(P||ntQ). For the other direction,

suppose t ∈ RAG(P||ntQ) and t 6∈ error(AG(P ||nt Q)). Then, t ∈ GAG(P||ntQ), which implies

t ∈ TP||ntQ \ FE(P||ntQ), which means that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q) i.e., t � AP ∈
RAG(P) and t � AQ ∈ RAG(Q). From this it follows that t ∈ RAG(P)||ntAG(Q), having noticed

that no output extension of t can violate this constraint.

For the error set containments, suppose that t ∈ error(AG(P) ||nt AG(Q)) and t ∈ RAG(P||ntQ)

∩RAG(P)||ntAG(Q). We demonstrate that Xi ⊆ error(AG(P ||nt Q)) for each i ∈ N, where Xi is

the i-th iteration of defining the least fixed point characterising error(AG(P) ||nt AG(Q)). The

result holds trivially when i = 0, since Xi = ∅. For the inductive case, suppose t ∈ Xk+1. Then

7.4. Conjunction 151

(i) t ∈ violations(AG(P) ||nt AG(Q)), (ii) there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ Xk, or (iii)

there exists t′ ∈ R∞0 such that tt′ ∈ Xk and for each t′′ a prefix of t′ and o ∈ AOP||Q, it holds that

tt′′o ∈ Xk. For (i), it follows that there exists t′ a prefix and input extension over (AIP||Q)∗ of t

such that t′ ∈ RAG(P)||ntAG(Q) ∩ GAG(P)||ntAG(Q). Consequently, without loss of generality, t′ �

(AP ∪R∞0) ∈ error(AG(P)), which implies t � (AP ∪R∞0) ∈ error(AG(P)). Suppose for a con-

tradiction that t ∈ GAG(P||ntQ). Then t ∈ TP||ntQ\FE(P||ntQ), which implies t � (AP∪R∞0) ∈ TP .

But, as t � (AP ∪ R∞0) ∈ error(AG(P)), it follows that P 6|=nt AG(P), which is contradictory.

Therefore, t 6∈ GAG(P||ntQ) and so t ∈ error(AG(P ||nt Q)). For (ii), by the induction hypothesis

we have tt′ ∈ error(AG(P ||nt Q)), which implies t ∈ error(AG(P ||nt Q)) by the formulation

of the error set. For (iii), by the induction hypothesis we know that tt′ ∈ error(AG(P ||nt Q)), and

moreover tt′′o ∈ error(AG(P ||nt Q)).Therefore, t ∈ error(AG(P ||nt Q)) by the formulation of

the error set, as required.

For the other direction of the error containment, suppose t ∈ error(AG(P ||nt Q)) and t ∈
RAG(P||ntQ) ∩RAG(P)||ntAG(Q). Using a similar Xi argument for defining the least fixed point, it

follows that (i) t ∈ violations(AG(P ||nt Q)), (ii) there exists t′ ∈ (AIP||Q)∗ such that tt′ ∈ Xk,

or (iii) there exists t′ ∈ R∞0 such that tt′ ∈ Xk and for each prefix t′′ of t′ and o ∈ AOP||Q, it holds

that tt′′o ∈ Xk. For (i), there exists t′ a prefix and input extension over (AIP||Q)∗ of t such that

t′ ∈ RAG(P||ntQ) ∩ GAG(P||ntQ). Then t′ 6∈ TP||ntQ ∪ FE(P||ntQ), which implies without loss of

generality that t′ � (AP ∪R∞0) 6∈ TP ∪FE(P). Hence, t′ � (AP ∪R∞0) ∈ RAG(P)∩GAG(P), which

implies t′ � (AP ∪ R∞0) ∈ error(AG(P)). Therefore, t � (AP ∪ R∞0) ∈ error(AG(P)), which

implies t 6∈ GAG(P)||ntAG(Q). Consequently, t ∈ error(AG(P) ||nt AG(Q)) as we are assuming

that t ∈ RAG(P)||ntAG(Q). For (ii) and (iii), the reasoning is the same as in the other direction. We

conclude that t ∈ error(AG(P) ||nt AG(Q)). �

7.4 Conjunction

We now introduce the timed conjunction operator, which corresponds to the meet operation on the

refinement preorder. This means that the conjunction of two contracts contains the intersection

of the respective contracts’ implementations. Consequently, an implementation in the conjunction

must not be allowed to violate either of the contracts to be composed.

Definition 7.17. Let SP and SQ be contracts composable for conjunction (i.e., AISP ∪ A
I
SQ and

AOSP ∪A
O
SQ are disjoint). Then SP∧ntSQ is a contract 〈AISP∧SQ ,A

O
SP∧SQ ,RSP∧ntSQ ,GSP∧ntSQ〉

defined by:

• AISP∧SQ = AISP ∪ A
I
SQ

• AOSP∧SQ = AOSP ∩ A
O
SQ

152 Chapter 7. Assume-Guarantee Reasoning for Timed Components

• RSP∧ntSQ =
(
RSP ∪RSQ

)
∩ T (ASP∧SQ)

• GSP∧ntSQ is the intersection of the following sets:

– RSP∧ntSQ

– error(SP) ∪ (error(SP) ↑ AISQ)

– error(SQ) ∪ (error(SQ) ↑ AISP). �

The definition is syntactically unchanged from the progress-sensitive setting without time,

excepting the restriction to timed traces over ASP∧SQ . Consequently, the usual compositionality

results hold, as the following theorem demonstrates.

Theorem 7.18. Let SP and SQ, and S ′P and S ′Q be contracts composable for conjunction. Then:

• SP ∧nt SQ vnt SP and SP ∧nt SQ vnt SQ

• SR vnt SP and SR vnt SQ implies SR vnt SP ∧nt SQ

• S ′P vnt SP and S ′Q vnt SQ implies S ′P ∧nt S ′Q vnt SP ∧nt SQ.

Proof. First show that SP ∧nt SQ vnt SP . Suppose t ∈ error(SP)∩T (ASP∧SQ). Then there is a

prefix t′ of t such that t′ ∈ RSP ∩ T (ASP∧SQ) and t′ ∈ error(SP). Therefore, t′ ∈ RSP∧ntSQ ∩
GSP∧ntSQ , implying t ∈ error(SP ∧nt SQ). If t ∈ RSP ∩ T (ASP∧SQ), then t ∈ RSP∧ntSQ as

required. By similar reasoning, it can be shown that SP ∧nt SQ vnt SQ.

For the second claim, we show error(SP ∧nt SQ) ∩ T (ASR) ⊆ error(SR) by demonstrating

that t ∈ Xi ∩ T (ASR) implies t ∈ error(SR) by induction on i, where Xi is the i-th iteration

of defining error(SP ∧nt SQ) as a least fixed point. When i = 0, the result holds trivially, as

Xi = ∅. Now suppose i = k for k > 0. If t ∈ violations(SP ∧nt SQ), then there is a prefix t′

of t and input extension t′′ ∈ (AISP∧SQ)∗ such that t′t′′ ∈ RSP∧ntSQ ∩ GSP∧ntSQ . So, without

loss of generality, t′t′′ 6∈ error(SP) ∪ (error(SP) ↑ AISQ). This means that there is a prefix

of t′t′′ contained in error(SP), which must also be in error(SR) since SR vnt SP . Therefore,

t′ ∈ error(SR), which implies t ∈ error(SR). For the case when there exists t′ ∈ (AISP∧SQ)∗

such that tt′ ∈ Xk−1, it follows that tt′ ∈ error(SR), given that AISP∧SQ ⊆ A
I
SR . Therefore,

t ∈ error(SR), by the definition of the error construction. Finally, when there exists t′ ∈ R∞0
such that tt′ ∈ Xk−1 and for each t′′ a prefix of t′ and o ∈ AOSP∧SQ it holds that tt′′o ∈ Xk−1,

then by the induction hypothesis we derive that tt′ ∈ error(SR) and tt′′o ∈ error(SR), when

o ∈ AOSR . As AOSR ⊆ A
O
SP∧SQ , it holds by the error construction that t ∈ error(SR). To show the

assumption containment, suppose that t ∈ RSP∧ntSQ ∩T (ASR). Then, without loss of generality,

t ∈ RSP ∩ T (ASR), so from SR vnt SP , we derive t ∈ RSR ∪ error(SR) as required.

For the third claim, by the first claim we have S ′P∧ntS ′Q vnt S ′P and S ′P∧ntS ′Q vnt S ′Q. Now

by transitivity, we see that S ′P ∧nt S ′Q vnt SP and S ′P ∧nt S ′Q vnt SQ providingAOSP ∩A
I
S′Q

= ∅

7.5. Disjunction 153

andAOSQ∩A
I
S′P

= ∅, so by the second claim, it follows that S ′P∧ntS ′Q vnt SP∧ntSQ as required.

If either of the compatibility conditions are not satisfied, we can obtain new contracts S ′′P for SP
and S ′′Q for SQ that have output set AOSP ∩ A

O
SQ and contain all of the traces from the respective

contracts, except for those with an output in (AOSP \ A
O
SQ) ∪ (AOSQ \ A

O
SP) that has been removed

from the interface. It is straightforward to show that S ′′P ∧nt S ′′Q = SP ∧nt SQ. �

From these properties of conjunction, we can formulate an AG rule that finds a contract sat-

isfiable by a component, whenever the component satisfies multiple independently developed re-

quirements. Naturally, such a contract must be a refinement of each of the contracts representing

the requirements, so it can be taken as their conjunction.

Theorem 7.19. Let P be a component, and let S1, S2 and S be contracts such thatAIP ∩AOS = ∅.
Then the following AG rule is both sound and complete:

TIMED-CONJUNCTION
P |=nt S1 P |=nt S2 S1 ∧nt S2 vnt S

P |=nt S
.

Proof. The reasoning is unchanged from Theorem 5.23, when making use of Theorem 7.18 in

place of Theorem 5.22. �

7.5 Disjunction

We now introduce the dual operator of conjunction, namely disjunction, which works by strength-

ening assumptions and weakening guarantees. As expected, the disjunctive operator corresponds

to the join operation on the refinement preorder, meaning that the disjunction of two contracts

contains the union of their implementations.

Definition 7.20. Let SP and SQ be contracts composable for disjunction (i.e., the same conditions

as for conjunction). Then SP ∨nt SQ is a contract 〈AISP∨SQ ,A
O
SP∨SQ ,RSP∨ntSQ ,GSP∨ntSQ〉,

where:

• RSP∨ntSQ is the intersection of the following sets:

– RSP ∪ error(SP) ∪ ((RSP ∪ error(SP)) ↑ AOSQ)

– RSQ ∪ error(SQ) ∪ ((RSQ ∪ error(SQ)) ↑ AOSP)

• GSP∨ntSQ = RSP∨ntSQ ∩ (error(SP) ∪ error(SQ)). �

The usual compositionality results can now be presented, which show that disjunction really

is the join operator for the refinement preorder in the timed assume-guarantee framework.

154 Chapter 7. Assume-Guarantee Reasoning for Timed Components

Theorem 7.21. Let SP and SQ, and S ′P and S ′Q be contracts composable for disjunction. Then:

• SP vnt SP ∨nt SQ and SQ vnt SP ∨nt SQ

• SP vnt SR and SQ vnt SR implies SP ∨nt SQ vnt SR

• S ′P vnt SP and S ′Q vnt SQ implies S ′P ∨nt S ′Q vnt SP ∨nt SQ.

Proof. For the first claim of SP vnt SP ∨ntSQ, we first show that error(SP ∨ntSQ)∩T (ASP) ⊆
error(SP). So let Xi be the i-th iteration of error(SP ∨nt SQ) being defined as a least fixed point.

Then, by induction on i, we show that Xi ∩ T (ASP) ⊆ error(SP). When i = 0, the result holds

trivially, since Xi = ∅. So for the inductive case, suppose that t ∈ Xk+1 ∩ T (ASP). Then either

(i) t ∈ violations(AG(P ∨nt Q)), (ii) there exists t′ ∈ (AISP∨SQ)∗ such that tt′ ∈ Xk, or (iii) there

exists t′ ∈ R∞0 such that tt′ ∈ Xk, and for each t′′ ≤ t′ and o ∈ AOSP∨SQ it holds that tt′′o ∈ Xk.

If (i) holds, then there is a prefix t′ of t such that t′ ∈ RSP∨ntSQ∩GSP∨ntSQ . Hence t′ ∈ error(SP)

and so t ∈ error(SP) as required. If instead (ii) holds, then since t′ ∈ (AISP)∗, it follows by the

induction hypothesis that tt′ ∈ error(SP), and so t ∈ error(SP). Finally, if (iii) holds, then by the

induction hypothesis we derive tt′ ∈ error(SP) and tt′′o ∈ error(SP) for each o ∈ AOSP , given

thatAOSP ⊆ A
O
SP∨SQ . Consequently, t ∈ error(SP). Now suppose that t ∈ RSP∨ntSQ ∩T (ASP).

Then t ∈ RSP ∪ error(SP) by definition. Showing SQ vnt SP ∨nt SQ is similar.

For the second claim, suppose that t ∈ RSR ∩ T (ASP∨SQ). If t ∈ T (ASP), then from

SP vnt SR it follows that t ∈ RSP ∪ error(SP). If t 6∈ T (ASP), then there exists a prefix t′o

of t with t′ ∈ T (ASP) and o ∈ AOQ \ AP . By the induction hypothesis on the strictly shorter

trace t′, we derive t′ ∈ RSP ∪ error(SP) and t′o ∈ (RSP ∪ error(SP)) ↑ AOSQ , itself implying

t ∈ (RSP ∪ error(SP)) ↑ AOSQ . A similar result holds on SQ, and so t ∈ RSP∨ntSQ as required.

Now suppose that t ∈ error(SR) ∩ T (ASP∨SQ). Then there exists a smallest prefix t′ of

t such that t′ ∈ RSR ∩ error(SR) ∩ T (ASP∨SQ). Suppose all strict prefixes of t′ are not in

error(SP ∨nt SQ). Then by the previous part, it follows that t′ ∈ RSP∨ntSQ . If t′ ∈ T (ASP),

then from SP vnt SR it follows that t′ ∈ error(SP), and if t′ ∈ T (ASQ), then from SQ vnt SR
it follows that t′ ∈ error(SQ). Hence t′ 6∈ GSP∨ntSQ (noting GSP∨ntSQ ⊆ T (ASP) ∪ T (ASQ)),

which implies t′ ∈ error(SP∨ntSQ). By extension closure of error, we have t ∈ error(SP∨ntSQ).

The third claim follows by the same reasoning as in Theorem 5.26. �

Theorem 7.22. Let P be a component, and let S1, S2 and S be contracts such that S1 and S2 are

composable for disjunction, and AIP ∩ AOS = ∅. Then the following AG rule is both sound and

complete:

TIMED-DISJUNCTION
P |=nt S1 or P |=nt S2 S1 ∨nt S2 vnt S

P |=nt S
.

Proof. Follows by the argument in Theorem 5.27, having replaced the reference to Theorem 5.26

with Theorem 7.21. �

7.6. Quotient 155

7.6 Quotient

In this section, we formulate the definition of quotient on timed contracts, which can be used to

decompose a system-wide contract, given a subcontract fulfilling part of that system. The contract

produced by the quotient thus stipulates the remaining portion of the system that needs to be

implemented. More formally, the quotient is the adjoint of the parallel operator under contract-

based refinement. The definition is largely unchanged from Definition 5.28, although note that the

lifting operations, as well as the error sets, have been redefined.

Definition 7.23. Let SP and SW be contracts. Then the quotient SW /nt SP is a contract

〈AISW/SP ,A
O
SW/SP ,RSW/ntSP ,GSW/ntSP 〉, defined only when AOSP ⊆ A

O
SW , where:

• RSW/ntSP = [RSW ∩ (error(SP) ⇑ ASW)] � (ASW/SP ∪ R∞0)

• GSW/ntSP is the largest subset ofRSW/ntSP disjoint from

[RSW ∩ (error(SP) ⇑ ASW) ∩ (error(SW) ∪ (RSP ⇑ ASW))] � (ASW/SP ∪ R∞0). �

The intuition behind this definition is completely unchanged from that for Definition 5.28,

having updated references to violations with error. The next theorem shows that our definition

satisfies the characteristic properties of quotient, in that it yields the weakest decomposition of a

contract.

Theorem 7.24. Let SP and SW be contracts. Then there exists a contract SQ such that SP ||nt
SQ vnt SW iff the following properties hold:

• The quotient SW /nt SP is defined

• SP ||nt (SW /nt SP) vnt SW

• AISQ = AISW/SP implies SQ vnt SW /nt SP .

Proof. The first claim follows by the reasoning in Theorem 5.29. The remaining proofs, which

we reproduce below, are largely unchanged from the proofs contained in Theorem 5.60, excepting

the revised definition of error.

For the second claim, suppose t ∈ RSW ∩ T (ASP ||(SW/SP)). If t 6∈ RSP ||nt(SW/ntSP), then

there exists a prefix t′ of t and t′′ ∈ T (AOSP ||(SW/SP)) such that t′t′′ � (ASP ∪ R∞0) 6∈ RSP or

t′t′′ � (ASW/SP ∪R
∞
0) 6∈ RSW/ntSP , and t′t′′ � (ASP ∪R∞0) 6∈ error(SP) and t′t′′ � (ASW/SP ∪

R∞0) 6∈ error(SW /nt SP). It follows that t′t′′ ∈ RSW , so t′t′′ � (ASW/SP ∪ R∞0) ∈ RSW/ntSP ,

which means t′t′′ � (ASP ∪ R∞0) 6∈ RSP . Therefore, t′t′′ � (ASW/SP ∪ R∞0) 6∈ GSW/ntSP ,

which implies t′t′′ � (ASW/SP ∪ R∞0) ∈ violations(SW /nt SP). But this contradicts t′t′′ �

(ASW/SP ∪ R∞0) 6∈ error(SW /nt SP). Hence t ∈ RSP ||nt(SW/ntSP).

156 Chapter 7. Assume-Guarantee Reasoning for Timed Components

Now suppose that t ∈ error(SW) ∩ T (ASP ||(SW/SP)). Then, there exists a prefix t′ of t such

that t′ ∈ RSW ∩ error(SW). By the previous part, it follows that t′ ∈ RSP ||nt(SW/ntSP). Now

suppose for a contradiction that t′ ∈ GSP ||nt(SW/ntSP). Then t′ � (ASP ∪ R∞0) 6∈ error(SP)

and t′ � (ASW/SP ∪ R∞0) 6∈ error(SW /nt SP). But it follows that t′ � (ASW/SP ∪ R∞0) ∈
violations(SW /nt SP), since t′ � (ASW/SP ∪ R∞0) ∈ RSW/ntSP ∩ GSW/ntSP . This contradicts

t′ ∈ GSP ||nt(SW/ntSP). Hence t′ ∈ error(SP ||nt (SW /nt SP)) and so t ∈ error(SP ||nt (SW /nt

SP)).

For the third claim, suppose that t ∈ RSW/ntSP ∩ T (ASQ). Then there exists t′ ∈ T (ASW)

such that t′ � (ASW/SP ∪ R∞0) = t with t′ ∈ RSW and t′ � (ASP ∪ R∞0) 6∈ error(SP). From

t′ ∈ RSW we derive t′ ∈ RSP ||ntSQ ∪ error(SP ||nt SQ), given that SP ||nt SQ vnt SW . If

t′ ∈ RSP ||ntSQ , then it follows that t′ � (ASQ ∪ R∞0) ∈ RSQ ∪ error(SQ). If instead t′ ∈
error(SP ||nt SQ), then it follows that t′ � (ASQ ∪ R∞0) ∈ error(SQ) by Lemma 7.13. Note that

t′ � (ASQ ∪ R∞0) = t.

Now suppose that t ∈ error(SW /nt SP)∩T (ASQ). We show thatXi∩T (ASQ) ⊆ error(SQ)

by induction on i, where Xi is the i-th iteration of defining error(SW /nt SP) as a least fixed

point. The case of i = 0 is trivial, since X0 = ∅. For the difficult case of t ∈ Xk+1, either:

(i) t ∈ violations(SW /nt SP), (ii) there exists t′ ∈ (AISW/SP)∗ such that tt′ ∈ Xk, or (iii)

there exists t′ ∈ R∞0 such that tt′ ∈ Xk and for each t′′ ≤ t′ and o ∈ AOSW/SP it holds that

tt′′o ∈ Xk. For (i), there is a prefix and input extension t′ of t such that there exists tw ∈ RSW
with tw � (ASW/SP ∪ R∞0) = t′, tw � (ASP ∪ R∞0) 6∈ error(SP), and either tw ∈ error(SW)

or tw � (ASP ∪ R∞0) 6∈ RSP . If tw ∈ error(SW), then tw ∈ error(SP ||nt SQ), since SP ||nt
SQ vnt SW . By Lemma 7.13, it follows that tw � (ASQ ∪ R∞0) ∈ error(SQ). Alternatively, if

tw � (ASP ∪ R∞0) 6∈ RSP , then if tw � (ASQ ∪ R∞0) 6∈ error(SQ) it follows that tw 6∈ RSP ||ntSQ .

Since SP ||nt SQ vnt SW , it must hold that tw ∈ error(SP ||nt SQ), which again by Lemma 7.13

implies tw � (ASQ ∪ R∞0) ∈ error(SQ). Note that tw � (ASQ ∪ R∞0) = t′, so t ∈ error(SQ).

For (ii), by the induction hypothesis we know that tt′ ∈ error(SQ), given that t′ ∈ A∗SQ . Hence

t ∈ error(SQ). Finally for (iii), by the induction hypothesis we derive tt′ ∈ error(SQ), and

tt′′o′ ∈ error(SQ) for each o′ ∈ AOSQ , given that AOSQ ⊆ A
O
SW/SP . Hence, t ∈ error(SQ) as

required. �

Parameterisation of the input set for the timed quotient is applicable just as in the safety setting.

Based on these properties of quotient, we can formulate a sound and complete AG rule, closely

mirroring the rule of Theorem 5.30.

Theorem 7.25. Let SP and SW be contracts such that SW /nt SP is defined, let P range over

components having the same interface as SP , and letQ be a component having the same interface

as SW /nt SP (where the quotient is parameterised on the setAIQ). Then the following AG rule is

7.7. Decomposing Parallel Composition 157

both sound and complete:

TIMED-QUOTIENT
∀P · P |=nt SP implies P ||nt Q |=nt SW

Q |=nt SW /nt SP
.

Proof. Follows by straightforward modification to Theorem 5.30, having updated concepts to the

timed equivalents. �

As in Theorem 5.30, we insist that the components P and Q must have the same interfaces

as their respective contracts, since parallel composition is only monotonic when restrictions are

placed on the interfaces of the contracts to be composed (cf Theorem 7.14). Furthermore, the rule

can be reformulated so as to avoid the universal quantification by considering the least refined

implementation Int(SP) of SP .

Corollary 7.26. Let SP and SW be contracts such that SW /nt SP is defined, and let Q be a

component having the same interface as SW /nt SP (where the quotient is parameterised on the

set AIQ). Then the following AG rule is both sound and complete:

TIMED-QUOTIENT-REVISED
Int(SP) ||nt Q |=nt SW
Q |=nt SW /nt SP

.

Proof. Unchanged from Corollary 5.31, having updated references. �

7.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel composition so that

it makes use of quotient on contracts. This is useful for system development, as we will often

have the specification of a whole system, rather than the specifications of the subsystems to be

composed.

Corollary 7.27. Let P and Q be components, and let SP , SQ and S be contracts such that AP ∩
AQ ∩ASP ||SQ ⊆ ASP ∩ASQ andAIP||Q ∩A

O
S = ∅. When the quotient is parameterised onAISQ ,

the following rule is both sound and complete:

TIMED-PARALLEL-DECOMPOSE
P |=nt SP Q |=nt SQ SQ vnt S /nt SP

P ||nt Q |=nt S
.

Proof. Follows immediately from Theorems 7.15 and 7.24. �

This rule, based on Theorem 7.15, differs in having the premise SQ vnt S /nt SP in place of

SP ||nt SQ vnt S . Note that this substitution requires no change to the constraints on the contracts

and components. The rule is useful for scenarios when the contract S is supplied along with a

subcontract SP (or for when a subcontract SP can easily be inferred). In such circumstances, the

missing contract SQ can be taken as any refinement of S /nt SP .

158 Chapter 7. Assume-Guarantee Reasoning for Timed Components

RClient GClient

•

send!

ok?

send!

y := 0 y := 0

2 ≤ y ≤ 4 2 ≤ y ≤ 4

fail?

send!

ok?

Figure 7.1: Assumption and guarantee of Client

7.8 Case Study

Building on the case study introduced in Section 5.3, we introduce timing constraints to demon-

strate the features of our timed assume-guarantee framework in practice. In the pictorial represen-

tation, assumptions and guarantees are modelled by timed operational components (Definition 6.3)

that are not required to satisfy the well-formedness condition at the end of Definition 6.3, and

whose co-invariants are always true in the guarantee.

The semantics of an assumption R and a guarantee G are given in terms of the timed transition

systems JRK and JGK respectively, as presented in Definition 6.4. Based on these operational

(infinite-state) models, we can extract the assumption and guarantee traces in accordance with the

definition below. Note that the initial states of JRK and JGK cannot be ⊥ by definition.

Definition 7.28. The assumption JRK∗ and guarantee JGK∗ represented by R and G are:

• JRK∗ = {t ∈ T (AP) : there is an accepting run over %t in JRK not encountering ⊥}·T (AOP)

• JGK∗ = {t ∈ T (AP) : there is an accepting run over %t in JGK not encountering ⊥}. �

Recall that the case study in Section 5.3 is concerned with a link layer protocol drawn from

distributed systems, which is a variant of the running example used in [LNW06]. A Client (see

Figure 7.1) can communicate with a Server (Figure 7.2) by sending data, and can observe whether

the transmission was ok or whether it failed. The Server, on the other hand, is an intermediary

between the Client and a Database server. It receives data from the Client via the send interaction,

and then transmits it to the Database engine via some communication medium, after which it

waits for positive or negative confirmation that the data has been written into the database, in the

form of ack and nack signals, respectively. In the case that the transmission is acknowledged, the

Server indicates to the Client that all is ok. Otherwise, if nack is received from the Database, the

Server attempts to retransmit, and if nack is received for a second time in succession, the Server

will signify to the Client that a failure has occurred. The model of the Database itself is irrelevant.

The contract for the Client in Figure 7.1 assumes that a transmission will only be confirmed

as ok between two and four time units of the send action being sent after the last ok. Based on

7.8. Case Study 159

RServer

• send?

x := 0

transmit! nack?

0.5 ≤ x ≤ 2

transmit!

ack?ok!

nack?fail!

ack?

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

transmit!
fail!

transmit!
ok!

GServer

•
inv : x ≤ 1

inv : x ≤ 2

send?

x := 0

transmit!

x ≤ 1

nack?

0.5 ≤ x ≤ 2
x := 0

transmit!

x ≤ 0.5

ack?

x := 0

ok!

x = 1

nack?

x := 0

fail!

1 ≤ x ≤ 2

ack?x := 0

Figure 7.2: Assumption and guarantee of Server

the guarantee, an implementation of Client is obliged not to send multiple times without receiving

confirmation that all is ok between successive attempts (since such behaviour is included in the as-

sumption by the timed output extensions, while it is not in the guarantee, thus it is in error(Client)).

Furthermore, note that an implementation is prohibited from sending an infinite number of times,

since this is an allowable behaviour in the assumption, but not in the guarantee, due to the lack

of a Büchi accepting state in the latter. Consequently, the most general implementation of Client

is a timed component whose pictorial representation is the same as GClient. Note that this is a

well-formed timed component in the sense of Definitions 6.3 and 6.33.

We now consider the contract for the Server, shown in Figure 7.2. The assumption assumes

that the temporal ordering of any sequence of interactions with the environment ending in one

of send, ack and nack must be an explicit trace in RServer, and any infinite trace through RServer

must also be accepting. Note that the assumption places no restrictions on the timing constraints

associated with these interactions, except that the first nack following a send must occur between

160 Chapter 7. Assume-Guarantee Reasoning for Timed Components

RClient‖Server

co : false

1 < x
transmit!

co : false

0.5 < x
transmit!

•

ok!

co : false

x < 1

send!

x, y := 0

transmit!
ok!
fail!

transmit!

x ≤ 1

send!
ok!
fail!

nack?

0.5 ≤ x ≤ 2
x := 0

send!
transmit!

ok!
fail!

transmit!

x ≤ 0.5

send!
ok!
fail!

ack?

x := 0
1 ≤ y ≤ 3

send!
transmit!

ok!
fail!

ok!

x = 1 ∧ 2 ≤ y ≤ 4

ack?1 ≤ y ≤ 3, x := 0

fail!
transmit!
send!

co : x ≤ 1

GClient‖Server

inv : x ≤ 1

send!

x, y := 0

transmit!

x ≤ 1

nack?

0.5 ≤ x ≤ 2
x := 0

transmit!

x ≤ 0.5

ack?

x := 0
1 ≤ y ≤ 3

ok!

x = 1 ∧ 2 ≤ y ≤ 4

ack?1 ≤ y ≤ 3, x := 0

Figure 7.3: Assumption and guarantee of Client || Server

half and 2 time units after the send. Naturally, the guarantee is more permissive on the allowable

behaviours. After receiving send, an implementation is permitted to transmit within 1 time unit,

although it is not obliged to do so, since the invariant is true on the state between the two interac-

tions, meaning that an implementation can sojourn there for an unbounded amount of time. After

transmission, an implementation can wait an unbounded amount of time for an ack, or can receive

a nack within half and 2 time units. If an ack is received, then an implementation is required to

confirm that all is ok precisely 1 time unit later (imposed by the invariant). The other behaviours

can be understood similarly. Note that a transmission is not permitted to fail successively an in-

finite number of times. As for the Client, the most general implementation of Server is a timed

component represented by GServer, since the behaviour of the guarantee is strictly contained within

the assumption.

The contract representing the combined effect of Client and Server, that is Client || Server,
is shown in Figure 7.3. After a nack following a transmit, the following transmit may not be

followed by nack, otherwise unpredictable behaviour could ensue, due to the fact that Client does

not specify the behaviour of fail. Similarly, Client does not specify the behaviour of ok when the

clock y does not satisfy 2 ≤ y ≤ 4. Consequently, these timing constraints must be propagated

7.8. Case Study 161

RLinkLayer1

transmit?

write!

ack!

nack!

nack!

ack!
nack!
write!

ack! write!

GLinkLayer1

inv : x ≤ 2

transmit?
x := 0 write!

x ≤ 0.5

ack!

nack!
x ≤ 2

nack!

x ≤ 2

Figure 7.4: Assumption and guarantee of LinkLayer1

backwards in the parallel composition. Any implementation that reaches the state containing •
must remain in that state for exactly 1 time unit, hence why the timing constraints in the preceding

transitions are appended with 1 ≤ y ≤ 3. Note that the states marked with co : false are chaotic,

so time may continue unbounded and any interaction may be performed. Any trace reaching such

a chaotic state is automatically contained within error(Client || Server), since such traces are not

in the guarantee. The invariant x ≤ 1 in the guarantee becomes a co-invariant in the assumption,

because no implementation of the contract can allow time to pass 1 time unit in the state labelled

by •, hence subsequent behaviours are unspecified and should be in the error set.

We now wish to consider the behaviour of the communication link between the Server and

Database. An abstract protocol is provided in Figure 7.4, which ensures that after each transmit,

a nack will be provided within 2 time units, or a data write response will be performed within half

a time unit (both imposed by the invariant x ≤ 2). After writing of the data, a nack can be sent at

any time, an ack can be provided within 2 time units of the transmit request, or the implementation

can hang. Such a contract is not compatible with the system composed of the Client and Server,

because the protocol allows multiple successive nack responses. To circumvent this problem,

we find the most general restrictions that need to be applied to the protocol, by first computing

ErrorFree/(Client || Server), which is the most general specification of a contract that can interact

with Client || Server without introducing safety or bounded-liveness errors. The conjunction of

this contract can then be taken with the link layer protocol.

The contract ErrorFree that ensures no safety or bounded-liveness errors occur remains as

depicted in Figure 5.13. Note that the invariant on the sole state is true, and the co-invariant is

false. Figure 7.5 shows the quotient ErrorFree/(Client || Server) when the input set for the quo-

tient operation is taken to be {send, transmit, ok}. Certainly, the guarantee is unchanged from the

guarantee of the parallel composition, excepting the addition of write self-loops since these cor-

respond with an independent action, and interchanging of some action types. The assumption for

the quotient is also similar to that for the parallel composition, after accounting for the inclusion of

162 Chapter 7. Assume-Guarantee Reasoning for Timed Components

RErrorFree/(Client‖Server)

ack!
nack!

co : false co : false

ack!, y < 1 ∨ 3 < y
nack!, x < 0.5 ∨ 2 < x

co : false

ack!
nack!

co : false

ack!, y < 1 ∨ 3 < y
nack!

ack!

co : false

nack!

send?

x, y := 0

write!

transmit?

x ≤ 1

write!

nack!

0.5 ≤ x ≤ 2
x := 0

write!

transmit?

x ≤ 0.5

write!

ack!

x := 0
1 ≤ y ≤ 3

write!

ok?

x = 1 ∧ 2 ≤ y ≤ 4

ack!1 ≤ y ≤ 3, x := 0

write!

inv : x ≤ 1

GErrorFree/(Client‖Server)

send?

x, y := 0

transmit?

x ≤ 1

nack!

0.5 ≤ x ≤ 2
x := 0

transmit?

x ≤ 0.5

ack!

x := 0
1 ≤ y ≤ 3

ok?

x = 1 ∧ 2 ≤ y ≤ 4

ack!1 ≤ y ≤ 3, x := 0

write! write! write! write! write!

write!

inv : x ≤ 1

Figure 7.5: Assumption and guarantee of ErrorFree/(Client || Server) with full interface

unspecified traces of Client || Server that are not in error(Client || Server). However, note that the

co-invariant in RClient||Server has become an invariant in RErrorFree/(Client||Server). Since the invari-

ant takes precedence over the co-invariant in the composition, this prevents the bounded-liveness

error in Client || Server manifesting itself in (ErrorFree/(Client || Server)) || (Client || Server).

The contract ErrorFree/(Client || Server), when the input set for the quotient operation is

taken to be {transmit} (referred to as LinkLayer2), is depicted in Figure 7.6, and is obtained from

Figure 7.5 by performing timed projections. Note how, in the assumption, non-determinism can

occur on the actions. For example, in the right-most state the upper ack transition overlaps with the

lower one for certain time values. This is a consequence of losing track of when the newly hidden

interactions occur. Such overlaps are eradicated in the guarantee, by restricting to transitions that

are guaranteed to be safe under all resolutions of non-determinism.

As a final step, we compute the conjunction of the abstract protocol LinkLayer1 along with

the most general restrictions needing to be applied (i.e., LinkLayer2) so that the Client and Server

can communicate with the Database in a safe and responsive manner. The assumption of the

7.8. Case Study 163

RErrorFree/(Client‖Server)

ack!
nack!

co : false co : false

ack!,w < 1 ∨ 2 < w
nack!, z < 0.5 ∨ 1 < z

co : false

ack!
nack!

co : false

ack!,w < 1 ∨ 2 < w
nack!

ack!

co : false

nack!

transmit?

w, z := 0

write!

nack!

z ≤ 2
z := 0

write!

transmit?

z ≤ 0.5

write!

ack!

z := 0
w ≤ 3

write!

z := 0
ack!

w ≤ 3
w, z := 0
transmit?

z ≥ 1

write!

GErrorFree/(Client‖Server)

transmit?

w, z := 0

write!

nack!

0.5 ≤ z ≤ 1
z := 0

write!

transmit?

z ≤ 0.5

write!

ack!

z := 0
1 ≤ w ≤ 2

write!

z := 0
ack!

1 ≤ w ≤ 2
w, z := 0
transmit?

z ≥ 1

write!

Figure 7.6: Assumption and guarantee of ErrorFree/(Client || Server) with restricted interface

GLinkLayer1∧LinkLayer2

inv : x ≤ 2 inv : x ≤ 2

transmit?

x,w, z := 0

nack!

0.5 ≤ z ≤ 1
z := 0

transmit?

z ≤ 0.5
x := 0

x ≤ 0.5
write!

0.5 ≤ z ≤ 1
nack!

x := 0

ack!

z := 0
x ≤ 2 ∧ 1 ≤ w ≤ 2

write!
x ≤ 0.5

ack!
z := 0
1 ≤ w ≤ 2 ∧ x ≤ 2

x,w, z := 0
transmit?

z ≥ 1

Figure 7.7: Guarantee of LinkLayer1 ∧ LinkLayer2

164 Chapter 7. Assume-Guarantee Reasoning for Timed Components

contract LinkLayer1 ∧ LinkLayer2 is defined as the union of RLinkLayer1 and RLinkLayer2, and so is

not depicted. The guarantee, on the other hand, is essentially the intersection of the behaviours

from the guarantees of LinkLayer1 and LinkLayer2 respectively, and is represented in Figure 7.7.

The structure of this guarantee closely matches that in Figure 5.16 for the untimed setting.

This contract-based reasoning methodology has allowed us to reason that any implementation

of LinkLayer1 ∧ LinkLayer2 can be placed in parallel with implementations of Client and Server

so that the system as a whole will not generate any safety or bounded liveness errors.

7.9 Summary

This chapter has introduced an assume-guarantee framework for reasoning compositionally about

the non-terminating timed components introduced in Section 6.3. The framework is a natural

extension of the untimed theory in Chapter 5, by combining unique features from both the safety

and progress frameworks, so as to capture real-time behaviours. As in the untimed setting, the

operations of parallel composition, conjunction, disjunction and quotient are defined directly on

contracts, and a range of compositionality results are provided for the operators with respect to the

linear-time refinement preorder corresponding to implementation containment.

Under the premise that assumptions and guarantees are represented by arbitrary timed au-

tomata, refinement checking is undecidable [AD94]. However, if SP is represented by a determin-

istic timed automaton, then checking of SQ vnt SP is PSPACE-complete. Additionally, Ouaknine

and Worrell [OW04] show that language inclusion is decidable when SP has one clock and only

finite-length words, but there is no primitive recursive bound on the complexity in this setting

[ADOW05]. However, tool support provided by ECDAR [DLL+10a] for the timed specification

theory in [DLL+10b] suggests that the high complexity associated with refinement checking is not

a limitation in practice.

CHAPTER

EIGHT

Conclusion

This thesis has presented formalisms for modelling and reasoning about the interactions arising in

component-based systems, when communication is asynchronous and non-blocking. An overarch-

ing aim has been to provide support for modelling protocols, distributed systems and asynchronous

hardware designs, where an environment supporting handshaking is either an unrealistic expecta-

tion, or must be achieved in a domain that is inherently asynchronous. The frameworks provide

modelling notations capable of capturing the essential behaviour of components (both the tempo-

ral ordering of interactions and, later, real-time constraints on the occurrence of interactions) in

order to determine and reason about the communication mismatches (along with run-time errors

and underspecification) that can arise through asynchrony.

In all cases, the frameworks take the form of specification theories, by providing modelling

formalisms along with refinement relations for identifying when a component can be used in place

of another without violating key properties, such as safety and progress, together with a rich

collection of compositional operators for building new complex components out of pre-existing

subsystems. The range of compositional operators allows for large-scale system development,

where components must be developed independently of one another, and incrementally adapted,

based on evolving system requirements.

It has been demonstrated that the operators enjoy strong algebraic properties with respect to

the refinement preorders, such as monotonicity, as well as conjunction and disjunction character-

ising the meet and join operations, and quotient being the adjoint of parallel. Where appropriate,

operators are shown to be associative, commutative and idempotent. In each framework, the linear-

time refinement relation is shown to be the weakest preorder characterising substitutivity, whilst

maintaining progress (when stipulated). Based on these results, the equivalence defined as mutual

refinement is shown to be fully abstract with respect to the operators of the specification theory.

The choice of which specification theory to use should be based on the properties needing to

be ascertained by the user. The original theory suffices for ensuring communication mismatches

cannot arise during system development, while the progress-sensitive framework ensures that a

component must always make progress whenever dictated to do so by the specification. For the

real-time frameworks, the choice between the terminating and non-terminating theory is depen-

dent on whether a system is supposed to run indefinitely, or whether it is safe for the system to

165

166 Chapter 8. Conclusion

halt at some point. The trace-based representations of components provide essential information

for reasoning about their behaviour and interactions, whereas users can use the operational repre-

sentation, which is closer to actual implementations.

The contract-based assume-guarantee frameworks can be used in one of two ways. First,

they can be thought of as frameworks for component specifications, where components are mod-

elled in one of the aforementioned specification theories. This allows for sound and complete

assume-guarantee rules to be used for checking the preservation of safety and progress properties

in component-based systems. The second approach is to treat the assume-guarantee framework

as an alternative representation of components, that decomposes the assumptions placed on the

environment from the guarantees made by the component. Under this arrangement, assumptions

can be manipulated separately from guarantees, which supports a different way of thinking about

the development cycle. Under both interpretations, component implementations can be obtained

by use of the inference definition (Definition 5.6, for safety).

Under the assumptions of determinacy and regularity, refinement checking and application of

the compositional operators, which are based on set containment and simple trace/set-theoretic

operations respectively, can be performed in polynomial time. When dropping determinacy, the

theory becomes PSPACE-complete, as in CSP [Ros10]. Given the set-theoretic nature of the con-

structions and refinement check, it is relatively straightforward to implement the theory as a tool.

Practical applicability of the substitutive specification theory has been demonstrated by In-

verardi and Tivoli [IT13] in modelling protocol mediation patterns, while the progress-sensitive

framework has been used for automatic mediator synthesis in [BCIJ13]. Small scale case studies

throughout the dissertation show how the theories may be used in practice.

8.1 Future Work

There are a number of natural extensions that can be considered for the frameworks presented

in this dissertation, ranging from automation, through to providing new frameworks capable of

capturing different types of component behaviour.

• Tool support. An obvious strand of work concerns the development of a prototype tool for

checking refinement and for automatically building components, given a machine-readable

syntax for describing components and their compositions. Advantages over existing tools,

such as FDR for CSP [Ros98], Ticc for interface automata [AdAS+06], and ECDAR for

timed I/O systems [DLL+10a], is the rich collection of operators defined with respect to

a refinement relation that is the weakest preorder preserving properties such as safety and

progress. Given that the operations of the theories are defined in terms of set-theoretic op-

erations along with projections and liftings, such an undertaking should be straightforward,

8.1. Future Work 167

as it is essentially a marginally more complex version of the trace semantics from CSP. A

timed theory would be slightly more involved, as a symbolic representation would be re-

quired for representing the timing behaviours. Techniques used for verification of timed

automata would be relevant here, such as those discussed in [CDF+05] that recourse to

the underlying zones of the automaton, rather than its regions, and are used as part of the

Uppaal-Tiga tool [BDL04].

• Liveness. The specification theories of Chapter 3, and the assume-guarantee frameworks

of Chapter 5, provide support for reasoning about the preservation of safety and progress

properties. However, the restriction to finite-length traces prevents a proper treatment of

liveness, such as in [LT89]. By including infinite-length traces, liveness can be considered

outright, although consideration must then be afforded to fairness [RV96, Seg97].

• Divergence. The progress-sensitive assume-guarantee framework represented a contract by

an assumption, a guarantee and a set of liveness traces on which an implementing com-

ponent must make progress. However, divergent traces were not considered, meaning that

any behaviour of a contract not required to make progress may diverge in an implemen-

tation. Such behaviour is generally undesirable (cf. [Jos92, Jon94] where divergence is

equated with inconsistency), so it should be possible to say when divergence may and may

not occur, which can be achieved by including a set of permitted divergence traces within

contracts. Furthermore, this is useful for defining the hiding operations, which were omitted

from the assume-guarantee frameworks because hiding of outputs can introduce divergence.

• Timed operational theory. To match the operational theory of components in the untimed

setting, an operational theory of timed components should be developed, matching the trace-

based framework. Given the inclusion of finite- and infinite-length traces, and the fact that

limit traces are not necessarily included, the operational representation would need to come

with liveness conditions (encoded by, say, Büchi states [Büc62]) and would thus closely

mirror the formulation of timed automata in [AD94], although the semantic interpretation

would differ.

• Probabilistic extension. A further direction for future work considers developing a frame-

work that captures the probabilistic behaviour of components. There are already a number

of probabilistic specification theories [CDL+10, XGG10, DCL11, DKL+11], so it would be

necessary to see what could be offered that is novel in this area. A theory based on traces,

following the style of this dissertation, would be difficult, because probabilistic traces tend

not to enjoy compositionality. Therefore, the model is likely to be operational, with refine-

ment defined in terms of probabilistic simulation [JL91]. There is also a choice between re-

active semantics, whereby interactions occur non-deterministically, with the successor state

168 Chapter 8. Conclusion

being determined probabilistically, or the generative semantics, where a probability distri-

bution exists over output actions that a component can offer (see [vGSS95] for a detailed

comparison). A further extension would add rates to components, so that different weight-

ings can be ascribed to the potence of the interactions offered by a component, so as to

consider the continuous-time behaviour of component-based systems [WSS97]. Combining

probability and time is a further possibility [KNSS02, KNPS06].

8.2 Concluding Remarks

This dissertation was written during a period of renewed interest in interface theories, both qual-

itative and quantitative in nature, as witnessed by the modernity of the citations. Far from being

the final word on the topic, the dissertation shares similarities with a number of other theories de-

veloped during this time, and there are invariably a number of theories that have been completely

overlooked. To our knowledge, the key novelty of our work has been to develop a linear-time sub-

stitutive theory of components based on the conceptually simple ideas of trace containment and

set-theoretic operations, while supporting a rich collection of operators for system development.

This has been demonstrated through the ease by which progress-sensitive and real-time extensions

have been developed, and in the natural formulation of assume-guarantee reasoning frameworks,

which can be automated.

Bibliography

[ACI+10] Marco Autili, Chris Chilton, Paola Inverardi, Marta Kwiatkowska, and Massimo

Tivoli. Towards a Connector Algebra. In Tiziana Margaria and Bernhard Steffen, ed-

itors, Leveraging Applications of Formal Methods, Verification and Validation, Proc.

4th International Symposium on Leveraging Applications (ISoLA’10), volume 6416

of Lecture Notes in Computer Science, pages 278–292. Springer, 2010.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, April 1994.

[AdAS+06] B. Thomas Adler, Luca de Alfaro, Leandro Dias Silva, Marco Faella, Axel Legay,

Vishwanath Raman, and Pritam Roy. TICC: A Tool for Interface Compatibility and

Composition. In Thomas Ball and Robert B. Jones, editors, Computer Aided Verifica-

tion, Proc. 18th International Conference (CAV’06), volume 4144 of Lecture Notes

in Computer Science, pages 59–62. Springer, 2006.

[ADOW05] Parosh Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. Decidability

and Complexity Results for Timed Automata via Channel Machines. In Luı́s Caires,

Giuseppe F. Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti Yung, edi-

tors, Automata, Languages and Programming, Proc. 32nd International Colloquium

(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages 1089–1101.

Springer, 2005.

[AENT03] Nina Amla, E. Allen Emerson, Kedar Namjoshi, and Richard Trefler. Abstract Pat-

terns of Compositional Reasoning. In Roberto Amadio and Denis Lugiez, editors,

Concurrency Theory, Proc. 14th International Conference (CONCUR’03), volume

2761 of Lecture Notes in Computer Science, pages 431–445. Springer, 2003.

[AG97] Robert Allen and David Garlan. A formal basis for architectural connection. ACM

Transactions on Software Engineering and Methodology, 6(3):213–249, July 1997.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternat-

ing Refinement Relations. In Davide Sangiorgi and Robert de Simone, editors, Con-

currency Theory, Proc. 9th International Conference (CONCUR’98), volume 1466

of Lecture Notes in Computer Science, pages 163–178. Springer, 1998.

169

170 Bibliography

[AL93] Martı́n Abadi and Leslie Lamport. Composing specifications. ACM Transactions on

Programming Languages and Systems, 15(1):73–132, January 1993.

[AL95] Martı́n Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on

Programming Languages and Systems, 17(3):507–534, May 1995.

[AP93] Martı́n Abadi and Gordon D. Plotkin. A logical view of composition. Theoretical

Computer Science, 114(1):3–30, June 1993.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component composi-

tion. Mathematical Structures in Computer Science, 14(3):329–366, June 2004.

[AV10] Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Paul Gastin and

François Laroussinie, editors, Concurrency Theory, Proc. 21st International Con-

ference (CONCUR’10), volume 6269 of Lecture Notes in Computer Science, pages

71–85. Springer, 2010.

[BCF+08] Albert Benveniste, Benoı̂t Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto

Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based Specifica-

tion and Design. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and

Willem P. de Roever, editors, Formal Methods for Components and Objects, Proc.

6th International Symposium (FMCO’08), volume 5382 of Lecture Notes in Com-

puter Science, pages 200–225. Springer, 2008.

[BCIJ13] Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson. Automated Me-

diator Synthesis: Combining Behavioural and Ontological Reasoning. In Robert M.

Hierons, Mercedes G. Merayo, and Mario Bravetti, editors, Software Engineering

and Formal Methods, Proc. 11th International Conference (SEFM’13), volume 8137

of Lecture Notes in Computer Science, pages 274–288. Springer, 2013.

[BCK11] Nikola Benes, Ivana Cerna, and Jan Kretinsky. Modal Transition Systems: Composi-

tion and LTL Model Checking. In Tevfik Bultan and Pao-Ann Hsiung, editors, Auto-

mated Technology for Verification and Analysis, Proc. 9th International Symposium

(ATVA’11), volume 6996 of Lecture Notes in Computer Science, pages 228–242.

Springer, 2011.

[BCN+12] Albert Benveniste, Benoı̂t Caillaud, Dejan Nickovic, Roberto Passerone, Jean-

Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner

Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for System Design.

Technical Report RR-8147, INRIA, November 2012.

Bibliography 171

[BDH+12] Sebastian Bauer, Alexandre David, Rolf Hennicker, Kim G. Larsen, Axel Legay,

Ulrik Nyman, and Andrzej Wasowski. Moving from Specifications to Contracts

in Component-Based Design. In Juan Lara and Andrea Zisman, editors, Fun-

damental Approaches to Software Engineering, Proc. 15th International Confer-

ence (FASE’12), volume 7212 of Lecture Notes in Computer Science, pages 43–58.

Springer, 2012.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal. In

Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of

Real-Time Systems, International School on Formal Methods for the Design of Com-

puter, Communication and Software Systems (SFM’04), volume 3185 of Lecture

Notes in Computer Science, pages 200–236. Springer, 2004.

[BHGQ10] Imene Ben-Hafaiedh, Susanne Graf, and Sophie Quinton. Reasoning about Safety

and Progress Using Contracts. In Jin Song Dong and Huibiao Zhu, editors, Formal

Methods and Software Engineering, Proc. 12th International Conference on Formal

Engineering Methods (ICFEM’10), volume 6447 of Lecture Notes in Computer Sci-

ence, pages 436–451. Springer, 2010.

[BHR84] Stephen D. Brookes, Charles A. R. Hoare, and A. William Roscoe. A Theory of

Communicating Sequential Processes. Journal of the ACM, 31(3):560–599, June

1984.

[BLPR09] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet. A Com-

positional Approach on Modal Specifications for Timed Systems. In Karin Breit-

man and Ana Cavalcanti, editors, Formal Methods and Software Engineering, Proc.

11th International Conference on Formal Engineering Methods (ICFEM’09), vol-

ume 5885 of Lecture Notes in Computer Science, pages 679–697. Springer, 2009.

[BR08] Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol conversion. For-

mal Aspects of Computing, 20(2):205–224, March 2008.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling compo-

nent connectors in Reo by constraint automata. Science of Computer Programming,

61(2):75–113, July 2006.

[Büc62] J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic. In

Proc. International Congress on Logic, Method, and Philosophy of Science, pages

1–12. Stanford University Press, 1962.

[BV12] Ferenc Bujtor and Walter Vogler. Interface automata with error states. Technical

Report 2012-09, Institut fur Informatik, Universitat Augsburg, 2012.

172 Bibliography

[CCJK12] Taolue Chen, Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. A Compo-

sitional Specification Theory for Component Behaviours. In Helmut Seidl, editor,

Programming Languages and Systems, Proc. 21st European Symposium on Pro-

gramming (ESOP’12), volume 7211 of Lecture Notes in Computer Science, pages

148–168. Springer, 2012.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier

Lime. Efficient on-the-fly algorithms for the analysis of timed games. In Martı́n

Abadi and Luca de Alfaro, editors, Concurrency Theory, Proc. 16th International

Conference (CONCUR’05), volume 3653 of Lecture Notes in Computer Science,

pages 66–80. Springer, 2005.

[CDL+10] Benoı̂t Caillaud, Benoı̂t Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Peder-

sen, and Andrzej Wasowski. Compositional Design Methodology with Constraint

Markov Chains. In Quantitative Evaluation of Systems, Proc. 7th International Con-

ference (QEST’10), pages 123–132. IEEE Computer Society, 2010.

[ČGL93] Kārlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen. Timed modal specification

— Theory and tools. In Costas Courcoubetis, editor, Computer Aided Verification,

Proc. 5th International Conference (CAV’93), volume 697 of Lecture Notes in Com-

puter Science, pages 253–267. Springer, 1993.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning

Assumptions for Compositional Verification. In Hubert Garavel and John Hatcliff,

editors, Tools and Algorithms for the Construction and Analysis of Systems, Proc. 9th

International Conference (TACAS’03), volume 2619 of Lecture Notes in Computer

Science, pages 331–346. Springer, 2003.

[CJK13a] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. An Algebraic Theory of

Interface Automata. Technical Report CS-RR-13-02, Department of Computer Sci-

ence, University of Oxford, 2013.

[CJK13b] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. Assume-Guarantee Rea-

soning for Safe Component Behaviours. In Corina Păsăreanu and Gwen Salaün,

editors, Formal Aspects of Component Software, Proc. 9th International Sympo-

sium (FACS’12), volume 7684 of Lecture Notes in Computer Science, pages 92–109.

Springer, 2013.

[CJK14] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. Compositional assume-

guarantee reasoning for input/output component theories. Science of Computer Pro-

gramming, 2014.

Bibliography 173

[CKW12] Chris Chilton, Marta Kwiatkowska, and Xu Wang. Revisiting Timed Specification

Theories: A Linear-Time Perspective. In Marcin Jurdzinski and Dejan Nickovic,

editors, Formal Modeling and Analysis of Timed Systems, Proc. 10th International

Conference (FORMATS’12), volume 7595 of Lecture Notes in Computer Science,

pages 75–90. Springer, 2012.

[CKW13] Chris Chilton, Marta Kwiatkowska, and Xu Wang. Revisiting Timed Specification

Theory II : Realisability. Computing Research Repository, abs/1304.7590, 2013.

[CLM89] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional model

checking. In Logic in Computer Science, Proc. 4th Annual Symposium (LICS’89),

pages 353–362. IEEE Computer Society, 1989.

[CLSV05] Ling Cheung, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Switched Proba-

bilistic I/O Automata. In Zhiming Liu and Keijiro Araki, editors, Theoretical Aspects

of Computing, Proc. 1st International Colloquium (ICTAC’04), volume 3407 of Lec-

ture Notes in Computer Science, pages 494–510. Springer, 2005.

[Col93] Pierre Collette. Application of the Composition Principle to Unity-like Specifica-

tions. In Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, Theory and Prac-

tice of Software Development, Proc. 4th International Joint Conference CAAP/FASE

(TAPSOFT’93), volume 668 of Lecture Notes in Computer Science, pages 230–242.

Springer, 1993.

[CT12] A. Cimatti and S. Tonetta. A property-based proof system for contract-based design.

In Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMI-

CRO Conference on, pages 21 –28, September 2012.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. ACM SIGSOFT

Software Engineering Notes, 26(5):109–120, September 2001.

[dAH05] Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Manfred

Broy, Johannes Grünbauer, David Harel, and Charles A. R. Hoare, editors, Engineer-

ing Theories of Software Intensive Systems, Proc. NATO Advanced Study Institute,

volume 195 of NATO Science Series II: Mathematics, Physics and Chemistry, pages

83–104. Springer, 2005.

[dAHS02] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed Interfaces.

In Alberto Sangiovanni-Vincentelli and Joseph Sifakis, editors, Embedded Software,

Proc. 2nd International Conference (EMSOFT’02), volume 2491 of Lecture Notes in

Computer Science, pages 108–122. Springer, 2002.

174 Bibliography

[DCL11] Benoı̂t Delahaye, Benoı̂t Caillaud, and Axel Legay. Probabilistic contracts: a com-

positional reasoning methodology for the design of systems with stochastic and/or

non-deterministic aspects. Formal Methods in System Design, 38(1):1–32, February

2011.

[DHJP08] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana Petrov. In-

terface theories with component reuse. In Luca de Alfaro and Jens Palsberg, editors,

Embedded Software, Proc. 8th ACM International Conference (EMSOFT’08), pages

79–88. ACM, 2008.

[Dil88] David L. Dill. Trace theory for automatic hierarchical verification of speed-

independent circuits. PhD thesis, Carnegie Mellon University, 1988.

[DKL+11] Benoı̂t Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Peder-

sen, Falak Sher, and Andrzej Wasowski. Abstract Probabilistic Automata. In Ranjit

Jhala and David Schmidt, editors, Verification, Model Checking, and Abstract Inter-

pretation, Proc. 12th International Conference (VMCAI’11), volume 6538 of Lecture

Notes in Computer Science, pages 324–339. Springer, 2011.

[DLL+10a] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.

ECDAR: An Environment for Compositional Design and Analysis of Real Time Sys-

tems. In Ahmed Bouajjani and Wei-Ngan Chin, editors, Automated Technology for

Verification and Analysis, Proc. 8th International Symposium (ATVA’10), volume

6252 of Lecture Notes in Computer Science, pages 365–370. Springer, 2010.

[DLL+10b] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wa-

sowski. Timed I/O automata: a complete specification theory for real-time sys-

tems. In Karl Henrik Johansson and Wang Yi, editors, Hybrid Systems: Computation

and Control, Proc. 13th ACM International Conference (HSCC’10), pages 91–100.

ACM, 2010.

[DLL+12] Alexandre David, Kim G. Larsen, Axel Legay, Mikael H. Moller, Ulrik Nyman,

Anders P. Ravn, Arne Skou, and Andrzej Wasowski. Compositional verification

of real-time systems using ECDAR. International Journal on Software Tools for

Technology Transfer, 14(6):703–720, November 2012.

[dNS95] Rocco de Nicola and Roberto Segala. A process algebraic view of input/output au-

tomata. Theoretical Computer Science, 138(2):391–423, 1995.

[DvB99] Jarad Drissi and Gregor v. Bochmann. Submodule construction for systems of I/O

automata. Technical Report 1133, DIRO, University of Montreal, 1999.

Bibliography 175

[EGP08] Michael Emmi, Dimitra Giannakopoulou, and Corina Păsăreanu. Assume-Guarantee

Verification for Interface Automata. In Jorge Cuellar, Tom Maibaum, and Kaisa

Sere, editors, Formal Methods, Proc. 15th International Symposium (FM’08), vol-

ume 5014 of Lecture Notes in Computer Science, pages 116–131. Springer, 2008.

[GL94] Orna Grumberg and David E. Long. Model checking and modular verification. ACM

Transactions on Programming Languages and Systems, 16(3):843–871, May 1994.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its implementa-

tion. Addison-Wesley Longman Publishing Co., Inc., 1983.

[HKKG13] Tingting Han, Christian Krause, Marta Kwiatkowska, and Holger Giese. Modal

Specifications for Probabilistic Timed Systems. In Luca Bortolussi and Herbert Wik-

licky, editors, Quantitative Aspects of Programming Languages and Systems, Proc.

11th International Workshop (QAPL’13), volume 117, pages 66–80. EPTCS, 2013.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576–580, October 1969.

[Hoa85] Charles A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[ISJ+09] Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon Blair, Paul Grace, Marta

Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia Bertolino,

and Antonino Sabetta. CONNECT Challenges: Towards Emergent Connectors for

Eternal Networked Systems. In Engineering of Complex Computer Systems, Proc.

14th IEEE International Conference (ICEECS’09), pages 154–161. IEEE Computer

Society, 2009.

[IT13] Paola Inverardi and Massimo Tivoli. Automatic Synthesis of Modular Connectors via

Composition of Protocol Mediation Patterns. In David Notkin, Betty H. C. Cheng,

and Klaus Pohl, editors, Software Engineering, Proc. 35th International Conference

(ICSE’13), pages 3–12. IEEE Computer Society, 2013.

[JHJ89] Mark B. Josephs, Charles A. R. Hoare, and He Jifeng. A Theory of Asynchronous

Processes. Technical Report PRG-TR-6-89, Oxford University Computing Labora-

tory, 1989.

[JK07] Mark B. Josephs and Hemangee K. Kapoor. Controllable delay-insensitive processes.

Fundamenta Informaticae, 78(1):101–130, January 2007.

[JL91] Bengt Jonsson and Kim G. Larsen. Specification and Refinement of Probabilis-

tic Processes. In Logic in Computer Science, Proc. 6th Annual IEEE Symposium

(LICS’91), pages 266–277. IEEE Computer Society, 1991.

176 Bibliography

[Jon87] Bengt Jonsson. Modular Verification of Asynchronous Networks. In Fred B. Schnei-

der, editor, Principles of Distributed Computing, Proc. 6th Annual ACM Symposium

(PODC’87), pages 152–166. ACM, 1987.

[Jon91] Bengt Jonsson. A Hierarchy of Compositional Models of I/O Automata. Technical

Report SICS:R91:04, Swedish Institute of Computer Science, 1991.

[Jon94] Bengt Jonsson. Compositional specification and verification of distributed systems.

ACM Transactions on Programming Languages and Systems, 16(2):259–303, 1994.

[Jos92] Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17–31, February

1992.

[JT96] Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifications in linear-

time temporal logic. Theoretical Computer Science, 167(1-2):47–72, 1996.

[KLSV11] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory

of Timed I/O Automata, Second Edition. Synthesis Lectures on Distributed Comput-

ing Theory. Morgan and Claypool Publishers, 2011.

[KNPS06] Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. Per-

formance Analysis of Probabilistic Timed Automata using Digital Clocks. Formal

Methods in System Design, 29(1):33–78, July 2006.

[KNSS02] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Auto-

matic verification of real-time systems with discrete probability distributions. Theo-

retical Computer Science, 282(1):101–150, June 2002.

[Lar90] Kim G. Larsen. Modal Specifications. In Joseph Sifakis, editor, Automatic Verifica-

tion Methods for Finite State Systems, Proc. International Workshop, volume 407 of

Lecture Notes in Computer Science, pages 232–246. Springer, 1990.

[LNW06] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface Input/Output Au-

tomata. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, Formal

Methods, Proc. 14th International Symposium (FM’06), volume 4085 of Lecture

Notes in Computer Science, pages 82–97. Springer, 2006.

[LNW07] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O Automata for

Interface and Product Line Theories. In Rocco De Nicola, editor, Programming Lan-

guages and Systems, Proc. 16th European Symposium on Programming (ESOP’07),

volume 4421 of Lecture Notes in Computer Science, pages 64–79. Springer, 2007.

[LT89] Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI

Quarterly, 2(3):219–246, September 1989.

Bibliography 177

[LV95] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations. Information

and Computation, 121(2):214–233, September 1995.

[LV96] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations: II. Timing-

Based Systems. Information and Computation, 128(1):1–25, July 1996.

[LV07] Gerald Lüttgen and Walter Vogler. Conjunction on processes: Full abstraction via

ready-tree semantics. Theoretical Computer Science, 373(1-2):19–40, March 2007.

[LV10] Gerald Lüttgen and Walter Vogler. Ready simulation for concurrency: It’s logical!

Information and Computation, 208(7):845–867, July 2010.

[LV13] Gerald Lüttgen and Walter Vogler. Modal Interface Automata. Logical Methods in

Computer Science, 9(3:4):1–28, August 2013.

[LX90] Kim G. Larsen and L. Xinxin. Equation Solving Using Modal Transition Systems.

In Logic in Computer Science, Proc. 5th Annual IEEE Symposium (LICS’90), pages

108–117. IEEE Computer Society, 1990.

[Mai01] Patrick Maier. A Set-Theoretic Framework for Assume-Guarantee Reasoning. In

Fernando Orejas, Paul G. Spirakis, and Jan Leeuwen, editors, Automata, Languages

and Programming, Proc. 28th International Colloquium (ICALP’01), volume 2076

of Lecture Notes in Computer Science, pages 821–834. Springer, 2001.

[Mai03] Patrick Maier. Compositional Circular Assume-Guarantee Rules Cannot Be Sound

and Complete. In Andrew D. Gordon, editor, Foundations of Software Science and

Computation Structures, Proc. 6th International Conference (FOSSACS’03), volume

2620 of Lecture Notes in Computer Science, pages 343–357. Springer, 2003.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans-

actions on Software Engineering, 7(4):417–426, July 1981.

[McI68] M. Douglas McIlroy. Mass Produced Software Components. In Software engineer-

ing: Report of a conference sponsored by the NATO Science Committee, pages 138–

150. NATO, 1968.

[Mey92] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, October

1992.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer, 1980.

178 Bibliography

[MTC+00] Simon Moore, George Taylor, Paul Cunningham, Robert Mullins, and Peter Robin-

son. Using stoppable clocks to safely interface asynchronous and synchronous sub-

systems. In AINT (Asynchronous INTerfaces) Workshop, Delft, Netherlands, 2000.

[NT10] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional rea-

soning methods. ACM Transactions on Computational Logic, 11(3:16):1–22, May

2010.

[OW04] Joël Ouaknine and James Worrell. On the language inclusion problem for timed

automata: Closing a decidability gap. In Harald Ganzinger, editor, Logic in Com-

puter Science, Proc. 19th Annual IEEE Symposium (LICS’04), pages 54–63. IEEE

Computer Society, 2004.

[OW07] Joël Ouaknine and James Worrell. On the decidability and complexity of Metric

Temporal Logic over finite words. Logical Methods in Computer Science, 3(1:8):1–

27, February 2007.

[Par72] David Lorge Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, December 1972.

[PGB+08] Corina Păsăreanu, Dimitra Giannakopoulou, Mihaela Bobaru, Jamieson Cobleigh,

and Howard Barringer. Learning to divide and conquer: applying the L* algo-

rithm to automate assume-guarantee reasoning. Formal Methods in System Design,

32(3):175–205, June 2008.

[Pnu85] Amir Pnueli. In Transition From Global to Modular Temporal Reasoning about

Programs. In Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems,

NATO ASI Series, pages 123–144. Springer, 1985.

[Rac08] Jean-Baptiste Raclet. Residual for component specifications. Electronic Notes in

Theoretical Computer Science, 215:93–110, June 2008.

[RBB+09a] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Caillaud, Axel Legay,

and Roberto Passerone. Modal Interfaces: Unifying Interface Automata and Modal

Specifications. In Samarjit Chakraborty and Nicolas Halbwachs, editors, Embed-

ded Software, Proc. 7th ACM International Conference (EMSOFT’09), pages 87–96.

ACM, 2009.

[RBB+09b] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Caillaud, and Roberto

Passerone. Why are modalities good for Interface Theories? In Stephen Edwards and

Walter Vogler, editors, Application of Concurrency to System Design, Proc. 9th In-

ternational Conference (ACSD’09), pages 119–127. IEEE Computer Society, 2009.

Bibliography 179

[RBB+11] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Caillaud, Axel Legay,

and Roberto Passerone. A modal interface theory for component-based design. Fun-

damenta Informaticae, 108(1-2):119–149, January 2011.

[Ros98] A. William Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[Ros10] A. William Roscoe. Understanding Concurrent Systems. Springer, 1st edition, 2010.

[RV96] Judi Romijn and Frits Vaandrager. A note on fairness in I/O automata. Information

Processing Letters, 59(5):245–250, September 1996.

[Seg97] Roberto Segala. Quiescence, fairness, testing, and the notion of implementation.

Information and Computation, 138(2):194–210, November 1997.

[Sha96] Mary Shaw. Procedure calls are the assembly language of software interconnection:

Connectors deserve first-class status. In David Alex Lamb, editor, Studies of Software

Design, ICSE’93 Workshop, volume 1078 of Lecture Notes in Computer Science,

pages 17–32. Springer, 1996.

[Sif05] Joseph Sifakis. A Framework for Component-based Construction (Extended Ab-

stract). In Bernhard Aichernig and Bernhard Beckert, editors, Software Engineering

and Formal Methods, Proc. 3rd IEEE International Conference (SEFM’05), pages

293–300. IEEE Computer Society, 2005.

[Tre11] Jan Tretmans. Model-Based Testing and Some Steps towards Test-Based Modelling.

In Marco Bernardo and Valérie Issarny, editors, Formal Methods for Eternal Net-

worked Software Systems, 11th International School on Formal Methods for the De-

sign of Computer, Communication and Software Systems (SFM’11), volume 6659 of

Lecture Notes in Computer Science, pages 297–326. Springer, 2011.

[TWS06] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time interfaces for

composing real-time systems. In Sang Lyul Min and Yi Wang, editors, Embedded

Software, Proc. 6th ACM & IEEE International Conference (EMSOFT’06), pages

34–43. ACM, 2006.

[Ver94] Tom Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math.

and C.S., Eindhoven Univ. of Technology, May 1994.

[vG94] Rob J. van Glabbeek. Full Abstraction in Structural Operational Semantics (Ex-

tended Abstract). In Maurice Nivat, Charles Rattray, Teodor Rus, and Giuseppe

Scollo, editors, Algebraic Methodology and Software Technology, Proc. 3rd Interna-

tional Conference (AMAST’93), Workshops in Computing, pages 75–82. Springer,

1994.

180 Bibliography

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, Genera-

tive, and Stratified Models of Probabilistic Processes. Information and Computation,

121(1):59–80, August 1995.

[Wan90] Yi Wang. Real-time behaviour of asynchronous agents. In Jos Baeten and Jan Willem

Klop, editors, Theories of Concurrency: Unification and Extension, Proc. 1st In-

ternational Conference (CONCUR’90), volume 458 of Lecture Notes in Computer

Science, pages 502–520. Springer, 1990.

[WSS97] Sue-Hwey Wu, Scott A. Smolka, and Eugene W. Stark. Composition and behaviors

of probabilistic I/O automata. Theoretical Computer Science, 176(1-2):1–38, April

1997.

[XGG10] Dana Xu, Gregor Gössler, and Alain Girault. Probabilistic Contracts for Component-

Based Design. In Ahmed Bouajjani and Wei-Ngan Chin, editors, Automated Tech-

nology for Verification and Analysis, Proc. 8th International Symposium (ATVA’10),

volume 6252 of Lecture Notes in Computer Science, pages 325–340. Springer, 2010.

[ZYM01] Bin Zhou, Tomohiro Yoneda, and Chris J. Myers. Framework of Timed Trace The-

oretic Verification Revisited. In Proc. 10th Asian Test Symposium, pages 437–442.

IEEE Computer Society, 2001.

