
Revisiting Timed Specification Theories:
A Linear-Time Perspective

Chris Chilton, Marta Kwiatkowska, and Xu Wang

Department of Computer Science, University of Oxford, UK

Abstract. We consider the setting of component-based design for real-
time systems with critical timing constraints. Based on our earlier work,
we propose a compositional specification theory for timed automata with
I/O distinction, which supports substitutive refinement. Our theory pro-
vides the operations of parallel composition for composing components at
run-time, logical conjunction/disjunction for independent development,
and quotient for incremental synthesis. The key novelty of our timed
theory lies in a weakest congruence preserving safety as well as bounded
liveness properties. We show that the congruence can be characterised by
two linear-time semantics, timed-traces and timed-strategies, the latter of
which is derived from a game-based interpretation of timed interaction.

1 Introduction

Component-based design methodologies can be encapsulated in the form of com-
positional specification theories, which allow the mixing of specifications and
implementations, admit substitutive refinement to facilitate reuse, and provide
a rich collection of operators. Several such theories have been introduced in the
literature, but none simultaneously address the following requirements: support
for asynchronous input/output (I/O) communication with non-blocking outputs
and non-input receptiveness; linear-time refinement preorder, so as to interface
with automata and learning techniques; substitutivity of refinement, to allow
for component reuse at runtime without introducing errors; and strong algebraic
and compositionality properties, to enable offline as well as runtime reasoning.

Previously [1], we developed a linear-time specification theory for reason-
ing about untimed components that interact by synchronisation of I/O actions.
Models can be specified operationally by means of transition systems augmented
by an inconsistency predicate on states, or declaratively using traces. The the-
ory admits non-determinism, a substitutive refinement preorder based on traces,
and the operations of parallel composition, conjunction and quotient. The refine-
ment is strictly weaker than alternating simulation and is actually the weakest
pre-congruence preserving freeness of inconsistent states.

In this paper we target component-based development for real-time systems
with critical timing constraints, such as embedded system components, the mid-
dleware layer and asynchronous hardware. Amongst notable works in the liter-
ature, we surveyed the theory of timed interfaces [2] and the theory of timed

2 Chris Chilton, Marta Kwiatkowska, and Xu Wang

specifications [3]. Though both support I/O distinctions, their refinement rela-
tions are not linear time: in [2], refinement (compatibility) is based on timed
games, and in [3] it is a timed version of the alternating simulation originally
defined for interface automata [4]. Consequently, it is too strong for determin-
ing when a component can be safely substituted for another. As an example,
consider the transition systems P and Q in Figure 3: these should be equivalent
in the sense of substitutivity under any environment, and are equivalent in our
formulation (Definition 5), but they are not so according to timed alternating
simulation.

Contributions. We formulate an elegant timed, asynchronous specification the-
ory based on finite traces which supports substitutive refinement, as a timed
extension of the linear-time specification theory of [1]. We allow for both op-
erational descriptions of components, as well as declarative specifications based
on traces. Our operational models are a variant of timed automata with I/O
distinction (although we do not insist on input-enabledness, cf [5]), augmented
by two special states: the inconsistent state ⊥ represents safety and bounded-
liveness errors, while the timestop state > is a novel addition representing either
unrealisable output (if the component is not willing to produce that output) or
unrealisable time-delay (if the delay would violate the invariant on that state).

Timestop models the ability to stop the clock and has been used before
in embedded system and circuit design [6, 7]. It is notationally convenient, ac-
counting for simpler definitions and a cleaner formalism. By enhancing the au-
tomata with the notion of co-invariant, we can, for the first time, distinguish
the roles of input/output guards and invariant/co-invariants as specifying safety
and bounded-liveness timed assumptions/guarantees. We emphasise that this is
achieved with finite traces only; note that in the untimed case it would be nec-
essary to extend to infinite traces to model liveness. In addition to timed-trace
semantics, we present timed-strategy semantics, which coincides with the former
but relates our work closer to the timed-game frameworks used by [3] and [2],
and could in future serve as a guide to implementation of the theory. Finally,
the substitutive refinement of our framework gives rise to the weakest congruence
preserving ⊥-freeness, which is not the case in the formalism of [3].

Related work. Our work can be seen as an alternative to the timed theories of [2,
3]. Being linear-time in spirit, it is also a generalisation of [8], an untimed theory
inspired by asynchronous circuits, and Dill’s trace theory [9]. The specification
theory in [3] also introduces parallel, conjunction and quotient, but uses timed
alternating simulation as refinement, which does not admit the weakest pre-
congruence. An advantage of [3] is the algorithmic efficiency of branching-time
simulation checking as well as the implementation reported in [10]. We briefly
mention other related works, which include timed modal transition systems [11,
12], the timed I/O model [5, 13] and asynchronous circuits and embedded sys-
tems [14, 15]. A more detailed comparison based on the technical details of our
work is included in Section 5. A full version of this paper including an even
greater comparison with related work, in addition to proofs, is available as [16].

Revisiting Timed Specification Theories: A Linear-Time Perspective 3

2 Formal Framework

In this section we introduce timed I/O automata, timed I/O transition systems
and a semantic mapping from the former to the latter. Timed I/O automata are
compact representations of timed I/O transition systems. We also present an
operational specification theory based on timed I/O transition systems, which
are endowed with a richer repertoire of semantic machinery than the automata.

2.1 Timed I/O Automata

Clock constraints. Given a set X of real-valued clock variables, a clock constraint
over X , cc : CC (X), is a boolean combination of atomic constraints of the form
x ./ d and x − y ./ d where x , y ∈ X , ./∈ {≤, <,=, >,≥}, and d ∈ N.

A clock valuation over X is a map t that assigns to each clock variable x in
X a real value from R≥0. We say t satisfies cc, written t ∈ cc, if cc evaluates to
true under valuation t . t + d denotes the valuation derived from t by increasing
the assigned value on each clock variable by d ∈ R≥0 time units. t [rs 7→ 0]
denotes the valuation obtained from t by resetting the clock variables in rs to
0. Sometimes we use 0 for the clock valuation that maps all clock variables to 0.

Definition 1. A timed I/O automaton (TIOA) is a tuple (C , I ,O ,L, l0,AT ,
Inv , coInv), where:

– C ⊆ X is a finite set of clock variables
– A (= I]O) is a finite alphabet, consisting of inputs I and outputs O
– L is a finite set of locations and l0 ∈ L is the initial location
– AT ⊆ L × CC (C) × A × 2C × L is a set of action transitions
– Inv : L → CC (C) and coInv : L → CC (C) assign invariants and co-

invariants to states, each of which is a downward-closed clock constraint.

We use l , l ′, li to range over L and use l
g,a,rs−−−−→ l ′ as a shorthand for (l , g , a, rs,

l ′) ∈ AT . g : CC (C) is the enabling guard of the transition, a ∈ A the action,
and rs the subset of clock variables to be reset.

Our TIOAs are timed automata that distinguish input from output and in-
variant from co-invariant. They are similar to existing variants of timed automata
with input/output distinction, except for the introduction of co-invariants and
non-insistence on input-enabledness. While invariants specify the bounds be-
yond which time may not progress, co-invariants specify the bounds beyond
which the system will time-out and enter error states. It is designed for the as-
sume/guarantee specification of timed components, in order to specify both the
assumptions made by the component on the inputs and the guarantees provided
by the component on the outputs, with respect to timing constraints.

Guards on output transitions express safety timing guarantees, while guards
on input transitions express safety timing assumptions. On the other hand, in-
variants (urgency) express liveness timing guarantees on the outputs at the
locations they decorate, while co-invariants (time-out) express liveness timing
assumptions on the inputs at those locations.

4 Chris Chilton, Marta Kwiatkowska, and Xu Wang

Inv: x <= 100
Co: true

Inv: y<=1
Co: true

finish?

x:=0

5 <= x <= 8

start! x:=0

y==1
print!
y:=0

finish!
y<=5

Inv: y<=5
Co: true

Inv: true
Co: y<=10

A B

1 2

34

start? y:=0

printed? y:=0

Scheduler Printer_controller

Fig. 1. Job scheduler and printer controller.

When two components are composed, the parallel composition automatically
checks whether the guarantees provided by one component meet the assumptions
required by the other. For instance, the unexpected arrival of an input at a
particular location and time (indicated by a non-enabled transition) leads to a
safety error in the parallel composition. The non-arrival of an expected input at
a location before its time-out (specified by the co-invariant) leads to a bounded-
liveness error in the parallel composition.

Example. Figure 1 depicts TIOAs representing a job scheduler together with a
printer controller. The invariant at location A of the scheduler forces a bounded-
liveness guarantee on outputs in that location. As time must be allowed to
progress beyond t = 100, the start action must be fired within the range 0 ≤ t ≤
100. After start has been fired, the clock x is reset to 0 and the scheduler waits
(possibly indefinitely) for the job to finish. If the job does finish, the scheduler is
only willing for this to take place between 5 ≤ t ≤ 8 after the job started (safety
assumption), otherwise an unexpected input error will be thrown.

The controller waits for the job to start , after which it will wait exactly 1
time unit before issuing print (forced by the invariant y ≤ 1 on state 2 and
the guard y = 1). The controller now requires the printer to indicate the job is
printed within 10 time units of being sent to the printer, otherwise a time-out
error on inputs will occur (co-invariant y ≤ 10 in state 3 as liveness assumption).
After the job has finished printing, the controller must indicate to the scheduler
that the job has finished within 5 time units.

Notation. For a set of input actions I and a set of output actions O , define
tA = I] O] R>0 to be the set of timed actions, tI = I] R>0 to be the set of
timed inputs, and tO = O]R>0 to be the set of timed outputs. We use symbols
like α, β, etc. to range over tA.

A timed word (ranged over by w ,w ′,wi etc.) is a finite mixed sequence of
positive real numbers (R>0) and visible actions such that no two numbers are
adjacent to one another. For instance, 〈0.33, a, 1.41, b, c, 3.1415〉 is a timed word
denoting the observation that action a occurs at 0.33 time units, then another
1.41 time units lapse before the simultaneous occurrence of b and c, which is
followed by 3.1415 time units of no event occurrence. ε denotes the empty word.

Concatenation of timed words w and w ′ is obtained by appending w ′ onto
the end of w and coalescing adjacent reals (summing them). Prefix/extension

Revisiting Timed Specification Theories: A Linear-Time Perspective 5

are defined as usual by concatenation. We write w � tA0 for the projection of w
onto timed alphabet tA0, which is defined by removing from w all actions not
inside tA0 and coalescing adjacent reals.

2.2 Semantics as Timed I/O Transition Systems

The semantics of TIOAs are given as timed I/O transition systems, which are a
special class of infinite labelled transition systems.

Definition 2. A timed I/O transition system (TIOTS) is a tuple P = 〈I ,O ,S ,
s0,→〉, where I and O are the input and output actions respectively, S = (L ×
RC)] {⊥,>} is a set of states, s0 ∈ S is the designated initial state, and
→⊆ S × (I]O] R>0) × S is the action and time-labelled transition relation.

The states of the TIOTS for a TIOA capture the configuration of the automa-
ton, i.e. its location and clock valuation. Therefore, each state of the TIOTS is a
pair drawn from L×RC , which we refer to as the set of plain states. In addition,
we introduce two special states ⊥ and >, which are required for the semantic
mapping of disabled inputs/outputs, invariants and co-invariants. In the rest of
the paper, we use p, p′, pi to range over P = L×RC while s, s ′, si range over S .
⊥ is the so-called inconsistent state, arising through assumption/guarantee

mismatches, i.e. safety and bounded-liveness errors. > is the so-called timestop
state, representing the magic moment from which time stops elapsing and no
error can occur. We assume that > refines plain states, which in turn refine
⊥. For technical convenience (e.g. ease of defining time additivity and trace
semantics), we require that > and ⊥ are a chaotic states, i.e. states having
self-loops for each α ∈ tA.

On TIOTSs, a disabled input in a state p is equated to an input transition
from p to ⊥, while a disabled output/delay in p is equated to an output/delay
from p to >. The intuition here comes from the I/O game perspective. The
component controls output and delay, while the environment controls input. ⊥
is the losing state for the environment, so an input transition from p to ⊥ is
a transition that the environment tries to avoid at all cost (unless there is no
choice). > is the losing state for the component, so an output/delay transition
from p to > is a transition that the component tries to avoid at any cost. Thus
we can have two semantic-preserving transformations on TIOTSs.

The ⊥-completion of a TIOTS P, denoted P⊥, adds an a-labelled transition
from p to ⊥ for every p ∈ P (= L× RC) and a ∈ I s.t. a is not enabled at p.1

The >-completion, denoted P>, adds an α-labelled transition from p to > for
every p ∈ P and α ∈ tO s.t. α is not enabled at p.

Now, the transition relation → of the TIOTS is derived from the execution
semantics of the TIOA.

Definition 3. Let P be a TIOA. The execution semantics of P is a TIOTS
〈I ,O ,S , s0,→〉, where:

1 ⊥-completion will make a TIOTS input-receptive, i.e. input-enabled in all states.

6 Chris Chilton, Marta Kwiatkowska, and Xu Wang

– S = (L× RC)] {⊥,>}
– s0 = > providing 0 /∈ Inv(l0), s0 = ⊥ providing 0 ∈ Inv(l0) ∧ ¬coInv(l0)

and s0 = (l0, 0) providing 0 ∈ Inv(l0) ∧ coInv(l0),
– → is the smallest relation satisfying:

1. If l
g,a,rs−−−−→ l ′, t ′ = t [rs 7→ 0], t ∈ Inv(l) ∧ coInv(l) ∧ g, then:

(a) plain action: (l , t)
a−→ (l ′, t ′) providing t ′ ∈ Inv(l ′) ∧ coInv(l ′)

(b) error action: (l , t)
a−→ ⊥ providing t ′ ∈ Inv(l ′) ∧ ¬coInv(l ′)

(c) magic action: (l , t)
a−→ > providing t ′ ∈ ¬Inv(l ′) and a ∈ I .

2. plain delay: (l , t)
d−→ (l , t + d) if t , t + d ∈ Inv(l) ∧ coInv(l)

3. time-out delay: (l , t)
d−→ ⊥ if t ∈ Inv(l) ∧ coInv(l), t + d /∈ coInv(l) and

∃ 0 < δ ≤ d : t + δ ∈ Inv(l) ∧ ¬coInv(l).

Note that our semantics tries to minimise the use of transitions leading to
>/⊥ states. Thus there are no delay or output transitions leading to >. However,
there are implicit timestops, which we capture using the concept of semi-timestop
(i.e. semi->). We say a plain state p is a semi-> iff 1) all output transitions
enabled in p and all of its time-passing successors lead to the > state, and 2)

there exists d ∈ R>0 s.t. p
d−→ > or d is not enabled in p. Thus a semi-> is a

state in which it is impossible for the component to avoid the timestop without
suitable inputs from the environment.

The introduction of timestop (>), which can model the operation of stopping
the system clock, is an unconventional aspect of our semantics. Certain real-world
systems have an inherent ability to stop the clock, e.g. [6, 7], which are related
to embedded systems and circuit design. When the suspension of clocks is not
meaningful, it is necessary to remove timestop in order to leave the so-called
realisable behaviour. Timestop is useful even for timestop free systems, as it can
significantly simplify operations, such as quotient and conjunction.

TIOTS terminology. We say a TIOTS is deterministic iff s
α−→ s ′ ∧ s

α−→ s ′′

implies s ′ = s ′′, and is time additive providing p
d1+d2−−−−→ s ′ iff p

d1−→ s and

s
d2−→ s ′ for some s. In the sequel, we only consider time-additive TIOTSs.
Given a TIOTS P, a timed word can be derived from a finite execution of

P by extracting the labels in each transition and coalescing adjacent reals. The
timed words derived from such executions are called traces of P. We use tt , tt ′, tti
to range over traces and write s0 tt

=⇒ s to denote a finite execution producing tt
and leading to s.

2.3 Operational Specification Theory

In this section we develop a compositional specification theory for TIOTSs based
on the operations of parallel composition ‖, conjunction ∧, disjunction ∨ and
quotient %. The operators are defined via transition rules that are a variant on
synchronised product.

Parallel composition yields a TIOTS that represents the combined effect
of its operands interacting with one another. The remaining operations must

Revisiting Timed Specification Theories: A Linear-Time Perspective 7

Table 1. State representations under composition operators.

‖ > p0 ⊥
> > > >
p1 > p0×p1 ⊥
⊥ > ⊥ ⊥

∧ > p0 ⊥
> > > >
p1 > p0×p1 p1
⊥ > p0 ⊥

∨ > p0 ⊥
> > p0 ⊥
p1 p1 p0×p1 ⊥
⊥ ⊥ ⊥ ⊥

% > p0 ⊥
> ⊥ ⊥ ⊥
p1 > p0×p1 ⊥
⊥ > > ⊥

be explained with respect to a refinement relation, which corresponds to safe-
substitutivity in our theory. A TIOTS is a refinement of another if it will work
in any environment that the original worked in without introducing safety or
bounded-liveness errors. Conjunction yields the coarsest TIOTS that is a refine-
ment of its operands, while disjunction yields the finest TIOTS that is refined
by both of its operands. The operators are thus equivalent to the join and meet
operations on TIOTSs2. Quotient is the adjoint of parallel composition, meaning
that P0%P1 is the coarsest TIOTS such that (P0%P1)‖P1 is a refinement of P0.

Let Pi = 〈Ii ,Oi ,Si , s
0
i ,→i〉 for i ∈ {0, 1} be two TIOTSs that are both ⊥

and >-completed, satisfying (wlog) S0 ∩ S1 = {⊥,>}. The composition of P0

and P1 under the operation ⊗ ∈ {‖,∧,∨,%}, written P0 ⊗ P1, is only defined
when certain composability restrictions are imposed on the alphabets of the
TIOTSs. P0 ‖ P1 is only defined when the output sets of P0 and P1 are disjoint,
because an output should be controlled by at most one component. Conjunction
and disjunction are only defined when the TIOTSs have identical alphabets (i.e.
O0 = O1 and I0 = I1). This restriction can be relaxed at the expense of more
cumbersome notation, which is why we focus on the simpler case in this paper.
For the quotient, we require that the alphabet of P0 dominates that of P1 (i.e.
A1 ⊆ A0 and O1 ⊆ O0), in addition to P1 being a deterministic TIOTS. As
quotient is a synthesis operator, it is difficult to give a definition using just
state-local transition rules, since quotient needs global information about the
transition systems. This is why we insist on P1 being deterministic3.

Definition 4. Let P0 and P1 be TIOTSs composable under ⊗ ∈ {‖,∧,∨,%}.
Then P0 ⊗ P1 = 〈I ,O ,S , s0,→〉 is the TIOTS where:

– If ⊗ =‖, then I = (I0 ∪ I1) \O and O = O0 ∪O1

– If ⊗ ∈ {∧,∨}, then I = I0 = I1 and O = O0 = O1

– If ⊗ = %, then I = I0 ∪O1 and O = O0 \O1

– S = (P0 × P1)] P0] P1] {>,⊥}
– s0 = s0

0 ⊗ s0
1

– → is the smallest relation containing →0 ∪ →1, and satisfying the rules:

p0

α−→0s ′0 p1

α−→1s ′1

p0⊗p1

α−→s ′0⊗s ′1

p0

a−→0s ′0 a /∈A1

p0⊗p1

a−→s ′0⊗p1

p1

a−→0s ′1 a /∈A0

p0⊗p1

a−→p0⊗s ′1

2 As we write A v B to mean A is refined by B , our operators ∧ and ∨ are reversed
in comparison to the standard symbols for meet and join.

3 Technically speaking, the problem is a consequence of state quotient being right-
distributive but not left-distributive over state disjunction (cf Table 1).

8 Chris Chilton, Marta Kwiatkowska, and Xu Wang

We adopt the notation of s0 ⊗ s1 for states, where the associated interpretation
is supplied in Table 1. Furthermore, given two plain states pi = (li , ti) for i ∈
{0, 1}, we define p0 × p1 = ((l0, l1), t0] t1).

Table 1 tells us how states should be combined under the composition oper-
ators. For parallel, a state is magic if one component state is magic, and a state
is error if one component is error while the other is not magic. For conjunction,
encountering error in one component implies the component can be discarded
and the rest of the composition behaves like the other component. The conjunc-
tion table follows the intuition of the join operation on the refinement preorder.
Similarly for disjunction. Quotient is the adjoint of parallel composition. If the
second component state does not refine the first, the quotient will try to rescue
the refinement by producing > (so that its composition with the second will
refine the first). If the second component state does refine the first, the quotient
will produce the least refined value so that its composition with the second will
not break the refinement.

An environment for a TIOTS P is any TIOTS Q such that the alphabet of Q
is complementary to that of P, meaning IP = OQ and OP = IQ. Refinement in
our framework corresponds to contextual substitutability, in which the context
is an arbitrary environment.

Definition 5. Let Pimp and Pspec be TIOTSs with identical alphabets. Pimp

refines Pspec, denoted Pspec v Pimp, iff for all environments Q, Pspec ‖ Q is
⊥-free implies Pimp ‖ Q is ⊥-free. We say Pimp and Pspec are substitutively
equivalent, i.e. Pspec ' Pimp, iff Pimp v Pspec and Pspec v Pimp.

It is obvious that ' induces the weakest equivalence on TIOTSs that pre-
serves ⊥-freeness. In the sequel, we give two concrete characterisations of ' and
show it to be a congruence w.r.t. the operators of the specification theory.

The operational definition of quotient requires P1 to be deterministic. For any
TIOTS P, a semantically-equivalent deterministic component can be obtained,
denoted PD , by means of a modified subset construction acting on (P⊥)>. For
any subset S0 of states reachable by a given trace, we only keep those which are
minimal w.r.t. the state refinement relation. So if the current state subset S0

contains ⊥, the procedure reduces S0 to ⊥; if ⊥ /∈ S0 6= {>}, it reduces S0 by
removing any potential > in S0.4

Proposition 1. For any TIOTS P, it holds that P ' PD .

Equipped with determinisation, quotient is a fully defined operator on any
pair of TIOTSs. Furthermore, we can give an alternative (although substitutively
equivalent) formulation of quotient as the derived operator (P¬0 ‖ P1)¬, where ¬
is a mirroring operation that first determinises its argument, then interchanges
the input and output sets, as well as the > and ⊥ states.

4 A detailed definition of transforming untimed non-deterministic systems into
substitutively-equivalent deterministic ones is contained in Definition 4.2 of [8].

Revisiting Timed Specification Theories: A Linear-Time Perspective 9

Inv: y<=1
Co: true

y==1
print!
y:=0

finish!
5 <= x <= 8
and y<=5

Inv: y<=5
Co: true

Inv: true
Co: y<=10

A1 B2

B3B4

start! x,y:=0

printed? y:=0

Inv: x <= 100
Co: true

Scheduler || Printer_controller

not (5 <= x <= 8)
and y<=5

finish!

Fig. 2. Parallel composition of the job scheduler and printer controller.

Example. Figure 2 shows the parallel composition of the job scheduler with the
printer controller. In the transition from B4 to A1, the guard combines the effects
of the constraints on the clocks x and y . As finish is an output of the controller,
it can be fired at a time when the scheduler is not expecting it, meaning that a
safety error will occur. This is indicated by the transition to ⊥ when the guard
constraint 5 ≤ x ≤ 8 is not satisfied.

3 Timed I/O Game

Our specification theory can be seen as an I/O game between a component and
an environment that uses a coin to break ties. The specification of a component
(in the form of a TIOA or TIOTS) is built to encode the set of strategies possible
for the component in the game (just like an NFA encodes a set of words).

– Given two TIOTSs P and Q with identical alphabets, we say P is a partial
unfolding [17] of Q if there exists a function f from SP to SQ s.t. 1) f maps
> to >, ⊥ to ⊥, and plain states to plain states, 2) f (s0

P) = s0
Q, and 3)

p
α−→P s ⇒ f (p)

α−→Q f (s).
– We say an acyclic TIOTS is a tree if 1) there does not exist a pair of tran-

sitions in the form of p
a−→ p′′ and p′

d−→ p′′, 2) p
a−→ p′′ ∧ p′

b−→ p′′ implies

p = p′ and a = b and 3) p
d−→ p′′ ∧ p′

d−→ p′′ implies p = p′.

– We say an acyclic TIOTS is a simple path if 1) p
a−→ s ′ ∧ p

α−→ s ′′ implies

s ′ = s ′′ and a = α and 2) p
d−→ s ′ ∧ p

d−→ s ′′ implies s ′ = s ′′.
– We say a simple path L is a run of P if L is a partial unfolding of P.

Strategies. A strategy G is a deterministic tree TIOTS s.t. each plain state in G is
ready to accept all possible inputs by the environment, but allows a single move
(delay or output) by the component, i.e. ebG(p) = I]mvG(p) s.t. mvG(p) = {a}
for some a ∈ O or mvG(p) ⊆ R>0, where ebG(p) denotes the set of enabled timed
actions in state p of LTS G, and mvG(p) denotes the unique component move
allowed by G at p.

A TIOTS P contains a strategy G if G is a partial unfolding of (P⊥)>. The
set of strategies contained in P is denoted stg(P). Since it makes little sense to

10 Chris Chilton, Marta Kwiatkowska, and Xu Wang

a! a!

b!
f?e?

c!

a!

b! c!

b!
f? f?

c!
e? e?

f?
a!

f?
a!

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?e?e?

P (1) (2) (3) (4)

Q (A) (B)

Fig. 3. Strategy example.

distinguish strategies that are isomorphic, we will freely use strategies to refer
to their isomorphism classes and write G = G′ to mean G and G′ are isomorphic.

Figure 3 illustrates the idea of strategies. For simplicity, we use two un-
timed transition systems P and Q with identical alphabets I = {e, f } and
O = {a, b, c}. The transition systems use solid lines, while strategies use dotted
lines. Plain states are unmarked, while the > and ⊥ states are labelled as such5.
A subset of the strategies for P and Q are shown on the right hand side of the
respective components. Note that strategies 3 and 4 arise through >-completion.

Comparing strategies. When the game is played, the component tries to avoid
reaching >, while the environment tries to avoid reaching ⊥. Strategies in stg(P)
vary in their effectiveness to achieve this objective, which induces a hierarchy
on strategies that closely resemble one another. We say G and G′ are affine if

s0
G

tt
=⇒ p and s0

G′
tt
=⇒ p′ implies mvG(p) = mvG′(p′). Intuitively, it means G and

G′ propose the same move at the ‘same’ states. For instance, the strategies 1, 3
and A in Figure 3 are pairwise affine and so are the strategies 2, 4 and B .

Given two affine strategies G and G′, we say G is more aggressive than G′,
denoted G � G′, if 1) s0

G′
tt
=⇒ ⊥ implies there is a prefix tt0 of tt s.t. s0

G
tt0=⇒ ⊥ and

2) s0
G

tt
=⇒ > implies there is a prefix tt0 of tt s.t. s0

G′
tt0=⇒ >. Intuitively, it means G

can reach ⊥ faster but > slower than G′. � forms a partial order over stg(P), or
more generally, over any set of strategies with identical alphabets. For instance,
strategy A is more aggressive than 1 and 3, while strategy B is more aggressive
than 2 and 4.

When the game is played, the component P prefers to use the maximally
aggressive strategies in stg(P)6. Thus two components that differ only in non-
maximally aggressive strategies should be equated. We define the strategy se-
mantics of component P to be [P]s = {G′ | ∃ G ∈ stg(P) : G � G′}, i.e. the
upward-closure of stg(P) w.r.t. �.
5 For simplicity, we allow multiple copies of > and ⊥, which are assumed to be chaotic.
6 This is because our semantics is designed to preserve ⊥ rather than >.

Revisiting Timed Specification Theories: A Linear-Time Perspective 11

Game rules. When a component strategy G is played against an environment
strategy G′, at each game state (i.e. a product state pG × pG′) G and G′ each
propose a move (i.e. mvG(pG) and mvG′(pG′)). If one of them is a delay and
the other is an action, the action will prevail. If both propose delay moves (i.e.
mvG(pG),mvG′(pG′) ⊆ R>0), the smaller one (w.r.t. set containment) will pre-
vail.7

Since a delay move proposed at a strategy state is the maximal set of possible
delays enabled at that state, the next move proposed at the new state after firing
the set must be an action move (due to time additivity). Thus a play cannot
have two consecutive delay moves.

If, however, both propose action moves, there will be a tie, which will be
resolved by tossing the coin. For uniformity’s sake, the coin can be treated as a
special component. A strategy of the coin is a function h from tA∗ to {0, 1}. We
denote the set of all possible coin strategies as H .

A play of the game can be formalised as a composition of three strategies,
one each from the component, environment and coin, denoted GP ‖h GQ. At a

current game state pP × pQ, if the prevailing action is α and we have pP
α−→ s ′P

and pQ
α−→ s ′Q, then the next game state is sP ‖ sQ. The play will stop when it

reaches either > or ⊥. The composition will produce a simple path L that is a
run of P ‖ Q. Since P ‖ Q gives rise to a closed system (i.e. the input alphabet
is empty), a run of P ‖ Q is a strategy of P ‖ Q.

Thus, strategy composition of P and Q is closely related to their parallel
composition: stg(P ‖ Q) = {GP ‖h GQ | GP ∈ stg(P),GQ ∈ stg(Q) and h ∈ H }.

Parallel composition. Strategy composition, like component parallel composi-
tion, can be generalised to any pair of components P and Q with composable
alphabets. That is, OP∩OQ = {}. For such P andQ, GP ‖h GQ gives rise to a tree
rather than a simple path TIOTS. That is, at each game state pP × pQ, besides
firing the prevailing α ∈ tOP∪tOQ, we need also to fire 1) all the synchronised in-

puts, i.e. e ∈ IP ∩ IQ, and reach the new game state sP ‖ sQ (assuming pP
e−→ sP

and pQ
e−→ sQ) and 2) all the independent inputs, i.e. e ∈ (IP ∪ IQ) \ (AP ∩AQ),

and reach the new game state sP × pQ or pP × sQ. It is easy to verify that
GP ‖h GQ is a strategy of P ‖ Q.

Conjunction/disjunction. Strategy conjunction (&) and strategy disjunction (+)
are binary operators defined only on pairs of affine strategies, by G&G′ = G ∧G′
and G+G′ = G∨G′. If G and G′ are not affine, G∧G′ and G∨G′ may not produce
a strategy. From Figure 3, the disjunction of strategies 1 and 2 will produce a
transition system that stops to output after the a transition.

Refinement. Equality of strategies induces an equivalence on TIOTSs: P and
Q are strategy equivalent iff [P]s = [Q]s . However, strategy equivalence is too
fine for the purpose of substitutive refinement (cf Definition 5). For instance,

7 Note that all invariants and co-invariants are downward-closed. Thus a delay move
can be respresented as a time interval from 0 to some d ∈ R≥0.

12 Chris Chilton, Marta Kwiatkowska, and Xu Wang

transition systems P and Q in Figure 3 are substitutively equivalent, but are
not strategy equivalent, because 1, 2, 3 and 4 are strategies of Q (due to upward-
closure w.r.t. �), while A and B are not strategies of P.

However, we demonstrate that substitutive equivalence is reducible to strategy
equivalence providing we perform disjunction closure on strategies.

Lemma 1. Given a pair of affine component strategies G0 and G1, G0 ‖h G and
G1 ‖h G are ⊥-free for a pair of environment and coin strategies G and h iff
G0 + G1 ‖h G is ⊥-free.

We say Π+ is a disjunction closure of set of strategies Π iff it is the least
superset of Π s.t. G + G′ ∈ Π+ for all pairs of affine strategies G,G′ ∈ Π+. It is
easy to see disjunction closure preserves upward-closedness of strategy sets.

Proposition 2. Disjunction closure is determinisation: [PD]s = [PD]+s = [P]+s .

Lemma 2. For any TIOTS P, [P¬]+s = {GP¬ | ∀ GP ∈ [P]+s , h ∈ H : GP¬ ‖h
GP is ⊥-free}.

Theorem 1. Given TIOTSs P and Q, P v Q iff [Q]+s ⊆ [P]+s .

Looking at Figure 3, the disjunction of strategies 1 and 3 produces A, while
the disjunction of strategies 2 and 4 produces B . Thus [P]+s = [Q]+s .

Relating operational composition to strategies. The operations of parallel compo-
sition, conjunction, disjunction and quotient defined on the operational models
of TIOTSs (Section 2.3) can be characterised by simple operations on strategies
in the game-based setting.

Lemma 3. For ‖-composable TIOTSs P and Q, [P ‖ Q]+s = {GP‖Q | ∃ GP ∈
[P]+s ,GQ ∈ [Q]+s , h ∈ H : GP ‖h GQ � GP‖Q}.

Lemma 4. For ∨-composable TIOTSs P and Q, [P ∨Q]+s = ([P]+s ∪ [Q]+s)+.

Lemma 5. For ∧-composable TIOTSs P and Q, [P ∧Q]+s = [P]+s ∩ [Q]+s .

Lemma 6. For %-composable TIOTSs P and Q, [P%Q]+s = {GP%Q | ∀ GQ ∈
[Q]+s , h ∈ H : GP%Q ‖h GQ ∈ [P]+s }.

Thus, conjunction and disjunction are the join and meet operations, and
quotient produces the coarsest TIOTS s.t. (P0%P1)‖P1 is a refinement of P0.

Theorem 2. ' is a congruence w.r.t. ‖, ∨, ∧ and % subject to composability.

Summary. Strategy semantics has given us a weakest ⊥-preserving congruence
(i.e. [P]+s) for timed specification theories based on operators for (parallel) com-
position, conjunction, disjunction and quotient. Strategy semantics captures
nicely the game-theoretical nature as well as the operational intuition of the
specification theory. In the next section, we give a more declarative characteri-
sation of the equivalence by means of timed traces.

Revisiting Timed Specification Theories: A Linear-Time Perspective 13

4 Declarative Specification Theory

In this section, we develop a compositional specification theory based on timed
traces. We introduce the concept of a timed-trace structure, which is an abstract
representation for a timed component. The timed-trace structure contains essen-
tial information about the component, for checking whether it can be substituted
with another in a safety and liveness preserving manner.

Given any TIOTS P = 〈I ,O ,S , s0,→〉, we can extract three sets of traces
from (P⊥)>: TP a set of timed traces leading to plain states; TE a set of timed
traces leading to the error state ⊥; and TM a set of timed traces leading to the
magic state >. TE and TM are extension-closed as > and ⊥ are chaotic, while
TP is prefix-closed. Due to >/⊥-completion, it is easy to verify TE ∪TP ∪TM
gives rise to the full set of timed traces tA∗; thus TP and TE are sufficient.

However, TP and TE contain more information than necessary for our substi-
tutive refinement, which is designed to preserve ⊥-freeness. For instance, adding
any trace tt ∈ TE to TP should not change the semantics of the component.
Based on a slight abstraction of the two sets, we can thus define a trace structure
T T (P) as the semantics of P.

Definition 6 (Trace structure). T T (P) := (I ,O ,TR,TE), where TR :=
TE ∪ TP the set of realisable traces. Obviously, TR is prefix-closed.

From hereon let P0 and P1 be two TIOTSs with trace structures T T (Pi) :=
(Ii ,Oi ,TRi ,TEi) for i ∈ {0, 1}. Define ī = 1− i .

The substitutive refinement relation v in Section 2.3 can equally be charac-
terised by means of trace containment. Consequently, T T (P0) can be regarded
as providing an alternative encoding of the set [P0]+s of strategies.

Theorem 3. P0 v P1 iff TR1 ⊆ TR0 and TE1 ⊆ TE0.

We are now ready to define the timed-trace semantics for the operators of
our specification theory. Intuitively, the timed-trace semantics mimic the syn-
chronised product of the operational definitions in Section 2.3.

Parallel composition. The idea behind parallel composition is that the projection
of any trace in the composition onto the alphabet of one of the components
should be a trace of that component.

Proposition 3. If P0 and P1 are ‖-composable, then T T (P0 ‖ P1) = (I ,O ,TR,
TE) where I = (I0 ∪ I1) \O, O = O0 ∪O1 and the trace sets are given by:

– TE = {tt | tt � tAi ∈ TEi ∧ tt � tAī ∈ TRī} · tA∗
– TR = TE] {tt | tt � tAi ∈ (TRi \ TEi) ∧ tt � tAī ∈ (TRī \ TEī)}

The above says tt is an error trace if the projection of tt on one component is
an error trace, while the projection of tt on the other component is a realisable
trace. tt is a realisable trace if tt is either an error trace or a (strictly) plain
trace. tt is a (strictly) plain trace if the projections of tt on to P0 and P1 are
(strictly) plain traces.

14 Chris Chilton, Marta Kwiatkowska, and Xu Wang

Disjunction. From any composite state in the disjunction of two components,
the composition should only be willing to accept inputs that are accepted by
both components, but should accept the union of outputs. After witnessing an
output enabled by only one of the components, the disjunction should behave like
that component. Because of the way that ⊥ and > work in Table 1, this loosely
corresponds to taking the union of the traces from the respective components.

Proposition 4. If P0 and P1 are ∨-composable, then T T (P0 ∨ P1) = (I ,O ,
TR0 ∪ TR1,TE0 ∪ TE1), where I = I0 = I1 and O = O0 = O1.

Conjunction. Similarly to disjunction, from any composite state in the con-
junction of two components, the composition should only be willing to accept
outputs that are accepted by both components, and should accept the union of
inputs, until a stage when one of the component’s input assumptions has been
violated, after which it should behave like the other component. Because of the
way that both ⊥ and > work in Table 1, this essentially corresponds to taking
the intersection of the traces from the respective components.

Proposition 5. If P0 and P1 are ∧-composable, then T T (P0 ∧ P1) = (I ,O ,
TR0 ∩ TR1,TE0 ∩ TE1), where I = I0 = I1 and O = O0 = O1.

Quotient. Quotient ensures its composition with the second component is a
refinement of the first. Given the synchronised running of P0 and P1, if P0 is in
a more refined state than P1, the quotient will try to rescue the refinement by
taking > as its state (so that its composition with P1’s state will refine P0’s). If
P0 is in a less or equally refined state than P1, the quotient will take the worst
possible state without breaking the refinement.

Proposition 6. If P0 dominates P1, then T T (P0%P1) = (I ,O ,TR,TE), where
I = I0 ∪O1, O = O0 \O1, and the trace sets satisfy:

– TE = TE0 ∪ {tt | tt � tA1 6∈ TR1} · tA∗
– TR = TE] {tt | tt ∈ (TR0 \ TE0) ∧ tt � tA1 ∈ (TR1 \ TE1)}.

The above says tt is an error trace if either tt is an error trace in P0 or the
projection of tt on P1 is not a realisable trace. A strictly plain trace must have
strictly plain projections onto P0 and P1.

Mirroring of trace structures is equally straightforward: T T (P0)
¬

= (O0, I0,
tA∗ \TE0, tA

∗ \TR0). Consequently, quotient can also be defined as the derived
operator (T T (P0)

¬ ‖ T T (P1))¬.

5 Comparison with Related Works

Our framework can be seen as a linear-time alternative to the timed specification
theories of [2] and [3], albeit with significant differences. The specification theory
in [3] also introduces parallel, conjunction and quotient, but uses timed alternat-
ing simulation as refinement, which does not admit the weakest precongruence.

Revisiting Timed Specification Theories: A Linear-Time Perspective 15

An advantage of [3] is the algorithmic efficiency of branching-time simulation
checking and the implementation reported in [10].

The work of [2] on timed games also bears conceptual similarities, although
they do not define conjunction and quotient. We adopt most of the game rules
in [2], except that, due to our requirement that proposed delay moves are
maximal delays allowed by a strategy, a play cannot have consecutive delay
moves. This enables us to avoid the complexity of time-blocking strategies and
blame assignment, but does not ensure non-Zenoness8. Secondly, we do not
use timestop/semi-timestop to model time errors (i.e. bounded-liveness errors).
Rather, we introduce the explicit inconsistent state ⊥ to model both time and
immediate (i.e. safety) errors. This enables us to avoid the complexity of having
two transition relations and well-formedness of timed interfaces.

Based on linear time, our timed theory owes much to the pioneering work of
trace theories in asynchronous circuit verification, such as Dill’s trace theory [9].
Our mirror operator is essentially a timed extension of the mirror operator from
asynchronous circuit verification [15]. The definition of quotient based on mir-
roring (for the untimed case) was first presented by Verhoeff as his Factorisation
Theorem [14].

In comparison with our untimed theory [1], our timed extension requires new
techniques (e.g. those related to timestop) to handle delay transitions since time
can be modelled neither as input nor as output. In the timed theory, the set of
realisable traces (TR) is not required to be input-enabled, which is necessary
for the set of untimed traces in [1]. Thus, the domain of trace structures is
significantly enlarged. Furthermore, the timed theory supports the modelling of
liveness assumptions/guarantees, with the checking of such violations reducing
to ⊥-reachability. Therefore, finite traces suffice to model and verify liveness
properties, whereas in contrast, the untimed theory must employ infinite traces
to treat liveness in a proper way.

We briefly mention other related works, which include timed modal transition
systems [11, 12], the timed I/O model [5, 13] and embedded systems [18, 19].

6 Conclusions

We have formulated a rich compositional specification theory for components
with real-time constraints, based on a linear-time notion of substitutive refine-
ment. The operators of hiding and renaming can also be defined, based on our
previous work [8]. We believe that our theory can be reformulated as a timed
extension of Dill’s trace theory [9]. Future work will include an investigation of
realisability and assume-guarantee reasoning.

Acknowledgments. The authors are supported by EU FP7 project CONNECT,
ERC Advanced Grant VERIWARE and EPSRC project EP/F001096.

8 Zeno behaviours (infinite action moves within finite time) in a play are not regarded
as abnormal behaviours in our semantics.

16 Chris Chilton, Marta Kwiatkowska, and Xu Wang

References

1. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specification
theory for component behaviours. In: ESOP’12. Volume 7211 of LNCS., Springer-
Verlag (2012) 148–168

2. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: EMSOFT’02.
Volume 2491 of LNCS. Springer-Verlag (2002) 108–122

3. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC ’10, ACM
(2010) 91–100

4. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26 (2001) 109–120

5. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: Timed I/O Automata:
A mathematical framework for modeling and analyzing real-time systems. In:
RTSS. (2003)

6. Lim, W.: Design methodology for stoppable clock systems. Computers and Digital
Techniques, IEE Proceedings E 133 (1986) 65 –72

7. Moore, S., Taylor, G., Cunningham, P., Mullins, R., Robinson, P.: Using stoppable
clocks to safely interface asynchronous and synchronous subsystems. In: AINT
(Asynchronous INTerfaces) Workshop, Delft, Netherlands (2000)

8. Wang, X., Kwiatkowska, M.Z.: On process-algebraic verification of asynchronous
circuits. Fundam. Inform. 80 (2007) 283–310

9. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-
independent circuits. ACM distinguished dissertations. MIT Press (1989)

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Ecdar: An envi-
ronment for compositional design and analysis of real time systems. In: ATVA.
Volume 6252 of LNCS., Springer (2010) 365–370

11. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.B.: A compositional approach
on modal specifications for timed systems. In: ICFEM. Volume 5885 of LNCS.,
Springer (2009) 679–697

12. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory
and tools. In: CAV. (1993) 253–267

13. Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model
checking. In: FORMATS. Volume 5215 of LNCS., Springer (2008) 233–249

14. Verhoeff, T.: A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math.
and C.S., Eindhoven Univ. of Technology (1994)

15. Zhou, B., Yoneda, T., Myers, C.: Framework of timed trace theoretic verification
revisited. IEICE Trans. on Information and Systems 85 (2002) 1595–1604

16. Chilton, C., Kwiatkowska, M., Wang, X.: Revisiting timed specification theories:
A linear-time perspective. Technical Report RR-12-04, Department of Computer
Science, University of Oxford (2012)

17. Wang, X.: Maximal Confluent Processes. In: Petri Nets’12. Volume 7347 of LNCS.,
Springer-Verlag (2012)

18. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT. (2006)

19. Lee, I., Leung, J., Song, S.: Handbook of Real-Time and Embedded Systems.
Chapman (2007)

