
Compositional Assume-Guarantee Reasoning for

Input/Output Component Theories

Chris Chiltona, Bengt Jonssonb, Marta Kwiatkowskaa

aDepartment of Computer Science, University of Oxford, UK
bDepartment of Information Technology, Uppsala University, Sweden

Abstract

We formulate a sound and complete assume-guarantee framework for rea-
soning compositionally about components modelled as a variant of interface
automata. The specification of a component, which expresses both safety and
progress properties of input and output interactions with the environment,
is characterised by finite traces. The framework supports dynamic reasoning
about components and specifications, and includes rules for parallel com-
position, logical conjunction and disjunction corresponding to independent
development, and quotient for incremental synthesis. Practical applicability
of the framework is demonstrated through a link layer protocol case study.

Keywords: interfaces, assume-guarantee, contracts, safety, liveness,
quiescence, compositionality, components, interface automata, refinement,
substitutivity, conjunction, disjunction, quotient

1. Introduction

Component-based methodologies enable both design- and runtime assem-
bly of software systems from heterogeneous components, facilitating com-
ponent reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, specification
theories have been proposed that permit the mixing of specifications and
implementations, and allow for the construction of new components from
existing ones by means of compositional operators (Benveniste et al., 2008;
Larsen et al., 2007; Doyen et al., 2008; Raclet et al., 2011). A specification
should make explicit the assumptions that a component can make about the
environment, and the corresponding guarantees that it will provide about its

Preprint submitted to Science of Computer Programming January 4, 2014



behaviour. This allows for the use of compositional assume-guarantee (AG)
reasoning, which enables the decomposition of the system into smaller com-
ponents, each of which may be reasoned about in isolation during system
development and verification.

In earlier work (Chen et al., 2012), we introduced a component-based
specification theory, in which components communicate by synchronisation
of input/output (I/O) actions, where inputs are controlled by the environ-
ment, while outputs (which are non-blocking) are controlled by the compo-
nent. The component model is conceptually similar to the interface automata
of de Alfaro and Henzinger (2001), except that we use a different underlying
semantic model, which is based on classical sets of traces, rather than alter-
nating simulation. This approach allows us to define the weakest refinement
preorder that preserves substitutivity of components, which implies a full ab-
straction result. Distinguishing features of our theory, an extension of which
is contained in (Chilton, 2013; Chilton et al., 2013a), are the inclusion of con-
junction and quotient operators (which are more general than those of Doyen
et al. (2008); Bhaduri and Ramesh (2008)), as well as logical disjunction and
hiding, in addition to a progress-sensitive variant of refinement based on qui-
escence, whereby a refining component must make progress whenever the
original can. The theory enjoys strong algebraic properties, with all the
operators being compositional under refinement.

In (Chilton, 2013; de Alfaro and Henzinger, 2001), the assumptions and
guarantees of components are merged into one behavioural representation. In
many cases, this avoids duplication of common information, although it can
be desirable to manipulate the assumptions and guarantees separately. For
instance, we may want to express a simple guarantee (such as “no failure will
occur”) without having to weave it into a complex assumption. Separation
of assumptions from guarantees also supports specification reuse, in that the
same guarantees (or assumptions) can be used for several related interfaces,
each representing different versions of a component.

Contributions. In this article, we present a specification theory for reasoning
about AG specifications (or contracts) of components as modelled in (Chilton,
2013; Chilton et al., 2013a). The formalism is well suited to modelling com-
ponents of distributed systems, such as communication protocols and media-
tors, to name but a few. A contract consists of an assumption, guarantee and
liveness property, all of which are represented by sets of finite traces. This
facilitates reasoning about safety and progress properties, and differs from

2



(arguably) more complex approaches based on modal specifications and al-
ternating simulation. Treating contracts as first-class citizens, we define the
operators of parallel, conjunction, disjunction and quotient on contracts, and
prove compositionality. This is the first work to present such an extensive
collection of operators directly on contracts (to our knowledge, quotient has
not previously been defined), which supports flexible development and veri-
fication of component-based systems using AG principles. In relating imple-
mentations (components) with contracts by means of satisfaction, a notion of
refinement corresponding to implementation containment is defined on con-
tracts. Based on this, we formulate a collection of sound and complete AG
reasoning rules for the preservation of safety and progress properties under
the operations and refinement preorder of the specification theory. The AG
rule for parallel is inspired by the Compositionality Principle of Abadi and
Lamport (1993); Abadi and Plotkin (1993), while the others admit novel
treatment. The rules allow us to infer properties of compositions for both
contracts and components, thus enabling designers to deduce whether it is
safe to substitute a component, for example one synthesised at runtime by
means of the quotient operator, with another. A preliminary version of this
paper appeared as (Chilton et al., 2013b).

Related work. Compositional AG reasoning has been extensively studied in
the literature. Traditionally, the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal
logics (Pnueli, 1985; Clarke et al., 1989; Grumberg and Long, 1991). A vari-
ety of rule formats have been proposed, although Maier (2003) demonstrates
through a set-theoretic setting that compositional circular AG rules (where
compositionality is defined in a precise way) for parallel composition (corre-
sponding to intersection) cannot both be sound and complete. In Namjoshi
and Trefler (2010), a sound and complete circular rule is presented, which
is non-compositional. We obtain soundness and completeness of our com-
positional rule by relying on the fact that the outputs of components to be
composed are disjoint, which breaks circularity.

Abadi and Lamport (1993) consider compositional reasoning for contracts
in the generic setting of state-based processes. They formulate a Composi-
tionality Principle for parallel, which is sound for safety properties. A logical
formulation of specifications is discussed by Abadi and Plotkin (1993), where
intuitionistic and linear logic approaches are adopted. In contrast, our work
considers an action-based component model and has a richer set of compo-

3



sition operators, including conjunction and quotient. Furthermore, we prove
completeness, as remarked in the previous paragraph.

More recent proposals focus on compositional verification for component
theories such as interface and I/O automata. Emmi et al. (2008) extend a
learning-based compositional AG method to interface automata. Sound and
complete rules are presented for the original operators defined by de Alfaro
and Henzinger (2001), namely compatibility, parallel and refinement based
on alternating simulation, but conjunction, disjunction and quotient are ab-
sent. Moreover, the rules are limited to being asymmetric in nature. Larsen
et al. (2006) define an AG framework for I/O automata, where assumptions
and guarantees are themselves specified as I/O automata. A parallel op-
erator is defined on contracts, yielding the weakest specification respecting
independent implementability, for which a sound and complete rule is pre-
sented. Our work differs by not requiring input-enabledness of components
or guarantees, and allowing for specifications to have non-identical interfaces
to their implementations. We also define conjunction, disjunction and quo-
tient, and support progress properties, thus providing a significantly richer
reasoning framework.

Raclet et al. (2011) have developed a compositional theory based on
modal specifications, which includes the operations we consider in this arti-
cle, but for systems without I/O distinction. Larsen et al. (2007) consider
a cross between modal specifications and interface automata, where refine-
ment is given in terms of alternating simulation/modal refinement (stronger
than our trace containment), but conjunction and quotient are not defined.
Both of these works use single models to encode assumptions and guarantees,
whereas we adopt a contract-based approach.

Benveniste et al. (2008) present an abstract mathematical framework
for contract-based design, based on set-theoretic operations on sets of be-
haviours. The framework does not give consideration to the specifics of the
execution model, hence it is unclear whether the rules can be instantiated
for any particular communication model.

Bauer et al. (2012) provide a generic construction for obtaining a contract
framework from a component-based specification theory. The abstract ideas
share similarity with our framework, and it is interesting to note how parallel
composition of contracts is defined in terms of the conjunction and quotient
operators of the specification theory. Our work differs in that we define
both of these operators directly on contracts. Delahaye et al. (2011) define
conjunction on contracts, but this is for a simplified contract framework, as

4



witnessed by the definition of parallel composition on contracts.

Outline. A summary of the compositional specification theory on which our
AG reasoning framework is based is provided in Section 2. Section 3 intro-
duces the AG framework for both safety and progress properties, and presents
a number of sound and complete rules for the operators of the specification
theory. An application of our framework to a case study involving a link
layer protocol is demonstrated in Section 4, while Section 5 concludes and
suggests future work.

2. Compositional Specification Theory

In this section, we briefly review the essential features of our composi-
tional specification theory presented in (Chilton, 2013; Chilton et al., 2013a),
an extended version of (Chen et al., 2012). The framework comprises two
notations for modelling components: a trace-based formalism and an oper-
ational representation. Here we focus on the trace-based models, since the
semantics of operational models can be defined in terms of sets of traces.
For simplicity, it is assumed that components cannot diverge. A trace-based
component comes equipped with an interface, together with a collection of
behaviours characterised by three sets of traces.

Definition 1 (Component). A component P is a tuple 〈AI
P ,AO

P , TP , FP , KP〉
in which AI

P and AO
P are disjoint sets referred to as inputs and outputs respec-

tively (the union of which is denoted by AP), and TP , FP , KP ⊆ A∗P are sets
of observable, inconsistent and quiescent traces, satisfying the constraints:

1. FP ∪ {t ∈ TP : @o ∈ AO
P · to ∈ TP} ⊆ KP ⊆ TP

2. TP is prefix closed

3. If t ∈ TP and t′ ∈ (AI
P)∗, then tt′ ∈ TP

4. If t ∈ FP and t′ ∈ A∗P , then tt′ ∈ FP .

If ε ∈ TP , we say that P is realisable, and is unrealisable otherwise.

TP consists of all observable interactions between the component and its
environment. As inputs are controlled by the environment, TP should be
receptive to inputs (even if the component does not wish to see them). FP

5



encodes inconsistent behaviours (e.g., runtime errors, communication mis-
matches, undesirable inputs). On becoming inconsistent, the component ex-
hibits chaotic behaviour, hence the extension closure of FP . KP captures the
quiescent and inconsistent behaviours of the component. A trace is quiescent
if it is observable and results in a behaviour of the component that cannot
immediately be extended by an output without additional stimulation from
the environment. Since components can be nondeterministic, a quiescent
trace may be extendable by an output on some executions; the point is that
there must be at least one execution where this is not the case. Hence, KP
is not determined solely by TP and FP .

From hereon let P and Q be components with signatures 〈AI
P , AO

P , TP ,
FP , KP〉 and 〈AI

Q,AO
Q, TQ, FQ, KQ〉 respectively.

Notation. Let A and B be sets of actions. For a trace t, write t � A for the
projection of t onto A. Now for T ⊆ A∗, write T � B for {t � B : t ∈ T},
T ⇑ B for {t ∈ B∗ : t � A ∈ T}, T ↑ B for T (B \ A)(A ∪ B)∗, and T for
A∗ \ T .

Refinement. The specification theory comes equipped with a refinement pre-
order that corresponds to progress-sensitive substitutivity. Q is a substitu-
tive refinement of P if the presence of a communication mismatch between
Q and an arbitrary environment implies there is a communication mismatch
between P and the environment. The progress-sensitive refinement addition-
ally requires that Q must make observational progress whenever P can do so,
meaning that, if Q is quiescent, then P must be quiescent (or inconsistent).

Since outputs are controlled locally by a component, a trace t, from which
there is a sequence of output actions leading to an inconsistent trace, should
be deemed as inconsistent, since the environment cannot prevent an incon-
sistency from arising if it allows the behaviour t. We therefore define the safe
representation of a component, which is a component that becomes incon-
sistent immediately when the environment issues an input from which the
original component can become inconsistent under its own control.

Definition 2 (Safe component). The safe representation for P is a com-
ponent E(P) = 〈AI

P ,AO
P , TE(P), FE(P), KE(P)〉, where TE(P) = TP ∪ FE(P),

FE(P) = {t ∈ TP : ∃t′ ∈ (AO
P)∗ · tt′ ∈ FP} · A∗P and KE(P) = KP ∪ FE(P).

We now give the formal definition of refinement that respects the intuition
mentioned previously.

6



Definition 3 (Refinement). Q is a progress-sensitive substitutive refine-
ment of P, written Q vl

imp P, if:

• AI
P ⊆ AI

Q

• AO
Q ⊆ AO

P

• AI
Q ∩ AO

P = ∅

• TE(Q) ⊆ TE(P) ∪ (TE(P) ↑ AI
Q)

• FE(Q) ⊆ FE(P) ∪ (TE(P) ↑ AI
Q)

• KE(Q) ⊆ KE(P) ∪ (TE(P) ↑ AI
Q).

The set TE(P) ↑ AI
Q represents the extension of P ’s input interface to

include all inputs in AI
Q \ AI

P . As these inputs are not accepted by P , they
are treated as bad inputs, hence the suffix closure with arbitrary behaviour.

In situations when progress-sensitivity is irrelevant, the refinement rela-
tion can be relaxed so that it is merely substitutive. This can be achieved
by taking the quiescent traces of each component to be its set of observable
traces. Under this assumption, the final condition of Definition 3 correspond-
ing to the quiescent trace containment becomes redundant. In (Chilton,
2013), substitutive and progress-sensitive treatments of components are pro-
vided, where the refinement relations are denoted by vimp and vl

imp respec-
tively. It is shown that, subject to compatibility of interfaces, the refinement
relations are preorders (P and Q are said to be compatible if they agree
on the I/O type of actions, i.e., AI

P ∩ AO
Q = ∅ = AO

P ∩ AI
Q). This article

presents a reasoning framework for the progress-sensitive refinement, which
is a generalisation of the substitutive variety.

Parallel composition. The parallel composition of two components is ob-
tained by synchronising on common actions and interleaving on independent
actions. To support broadcasting, we make the assumption that inputs and
outputs synchronise to produce outputs. Communication mismatches arising
through non-input enabledness automatically appear as inconsistent traces in
the product, on account of receptiveness of observable traces. As the outputs
of a component are controlled locally, we assume that the output actions of
the components to be composed are disjoint.

7



Definition 4 (Parallel composition). Let P and Q be composable for par-
allel composition (i.e., AO

P ∩AO
Q = ∅). Then P || Q is the component 〈AI

P||Q,

AO
P||Q, TP||Q, FP||Q, KP||Q〉, where:

• AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

• AO
P||Q = AO

P ∪ AO
Q

• TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q

• FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)] · A∗P||Q ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] · A∗P||Q

• KP||Q = [(KP ⇑ AP||Q) ∩ (KQ ⇑ AP||Q)] ∪ FP||Q.

Informally, a trace is inconsistent if its projection is inconsistent in one
component and observable in the other, while a trace can only be quiescent
if its projection is quiescent in both components (or is inconsistent). A trace
is observable, if it has observable projections on both components (or again
is inconsistent).

As the aim of this article is to reason about component-based systems,
we do not present the design-time operations of conjunction, disjunction or
quotient on components. Instead, we consider a development process that
generates contracts rather than component models. Therefore, we define the
compositional operators directly on contracts, which yields contracts char-
acterising sets of component implementations. Parallel composition is an
exception, since it is a runtime operator that shows how different compo-
nents of the specification theory interact with one another.

3. Assume-Guarantee Reasoning Framework

To support component-based reasoning, we introduce the concept of a
contract, which consists of two prefix-closed sets of traces referred to as the
assumption and guarantee, along with a set of liveness traces. The assump-
tion specifies the environment’s allowable interaction sequences, while the
guarantee is a constraint on the component’s behaviour. As assumptions
and guarantees are prefix-closed, our theory ensures that components pre-
serve (not necessarily regular) safety properties. Progress must be made from
any trace designated as live, meaning that a component may not be quiescent

8



RServer

ack!

job? ack!

process! process! process!
ack!
error?

GServer

job? process!

ack!

Figure 1: Assumption and guarantee for Server

on a live trace. Recall that a trace is said to be quiescent in a component if
it is observable and results in at least one execution that cannot immediately
be extended by an output action. Quiescence has similarities with, although
is not equivalent to, deadlock. In the case of the latter, a trace is said to be
deadlocked just if there is some execution of the component over that trace,
which cannot immediately be extended by an output or a non-inconsistent
input. Therefore, deadlock implies quiescence.

Definition 5 (Contract). A contract S is a tuple 〈AI
S ,AO

S ,RS ,GS ,LS〉, in
which AI

S and AO
S are disjoint sets (whose union is AS), referred to as the

inputs and outputs respectively, RS and GS are prefix closed subsets of A∗S ,
referred to as the assumption and guarantee respectively, such that t ∈ RS
and t′ ∈ (AO

S )∗ implies tt′ ∈ RS , and LS ⊆ RS ∩ GS is a (not necessarily
prefix-closed) set of liveness traces.

Since outputs are controlled by the component, we insist that assumptions
are closed under output-extensions. On the other hand, we need not insist
that the guarantee is closed under input-extensions, since the assumption
can select inputs under which the guarantee is given. This contrasts with the
work of Larsen et al. (2006), in which guarantees must be closed under input-
extensions; one of our contributions is to show that this is not necessary,
thus allowing significantly more flexibility when formulating contracts. Note
that, by taking the set of liveness traces to be the empty set, the framework
supports reasoning about safety properties, rather than safety and progress.

Example 1. Figure 1 presents a contract for a Server, which can receive
jobs, process jobs, acknowledge the processing of a job, and be placed in error
mode. The interface is given by all the actions appearing in the diagram, with
the convention that actions followed by ? (resp. !) are inputs (resp. outputs).

9



We adopt the convention that a square node in a figure indicates that the
contract must make progress, while a circular node has no such requirement.
The assumption leaves process unconstrained, but ensures that error will never
be sent providing job and ack alternate in that order. The guarantee requires
that any job received can only be acknowledged after having been processed,
a new job can only arrive after the previous one has been acknowledged, and
whenever a job is received it must be processed (the progress condition).

Given a contract S, we want to be able to say whether a component P
satisfies S. Informally, P satisfies S if, for any interaction between P and
the environment characterised by a trace t, if t ∈ RS , then t ∈ GS , t cannot
become inconsistent in P without further stimulation from the environment,
and if t ∈ LS then the component is not permitted to be quiescent. Compo-
nents can thus be thought of as implementations of contracts.

Definition 6 (Satisfaction). A component P satisfies the contract S, writ-
ten P |= S, iff:

S1. AI
S ⊆ AI

P

S2. AO
P ⊆ AO

S

S3. AI
P ∩ AO

S = ∅

S4. RS ∩ TP ⊆ GS ∩ FP

S5. LS ∩ TP ⊆ KP .

By output-extension closure of assumptions, condition S4 is equivalent to
checking RS ∩ TP ⊆ GS ∩ FE(P), which involves the safe representation E(P)
of P (see Definition 2). The following lemma shows that this definition of
satisfaction is preserved under the component-based refinement, subject to
compatibility.

Lemma 1. Let P and Q be components, and let S be a contract. If P |= S,
Q vl

imp P and AI
Q ∩ AO

S = ∅, then Q |= S.

Therefore, any implementation P of S must not be allowed to become
inconsistent under its own control when offered inputs in the assumption, and
any trace of P that is contained in LS must make observational progress.

10



Based on this result, a contract can be characterised by its most general
satisfying component, which is the minimal satisfying component under the
progress-sensitive substitutive refinement preorder. Note that every contract
has at least one satisfying component, although it may not be realisable. In
the case that a contract has a realisable satisfying component, the contract is
said to be implementable, and such a component is said to be an implemen-
tation. In order to construct such a component, it is necessary to determine
the set of erroneous traces of the contract. These are traces that cannot
be in any satisfying component, because they will violate the guarantee or
progress condition.

Definition 7. Let S be a contract. Then:

• violations(S) is defined as {t ∈ A∗S : ∃t′ ∈ (AI
S)∗ · tt′ ∈ RS ∩ GS} · A∗S

• error(S) is defined as the smallest set containing both violations(S) and
{t ∈ A∗S : ∃t′ ∈ (AI

S)∗ · tt′ ∈ LS and ∀o ∈ AO
S · tt′o ∈ error(S)} · A∗S .

Clearly, if t ∈ RS ∩ GS , then t cannot be a trace of any implementation
of S. Moreover, if there is a trace that can be extended by a sequence of
inputs to become t, then this also cannot be in a satisfying component, due
to input-receptiveness of components. Therefore violations(S) consists of all
traces from which the environment can, under its own control, violate the
guarantee. On the other hand, error(S) consists of all traces that are not
in any satisfying component of S. Therefore, error(S) consists of all traces
in violations(S), along with any trace that is required to be live, but cannot
be so due to all output successors violating a safety or progress error. By
reducing the allowed behaviours of satisfying components, further progress
errors can be introduced, which is why error(S) is defined recursively. Note
that, in the safety setting when LS = ∅, it holds that error(S) = violations(S).

Naturally, error(S) can be defined as the least fixed point of the defining
equation above. Therefore, error(S) = ∪i∈NXi, where X0 = ∅ and Xi+1 ,
violations(S) ∪ {t ∈ A∗S : ∃t′ ∈ (AI

S)∗ · tt′ ∈ LS and ∀o ∈ AO
S · tt′o ∈ Xi} · A∗S .

The least refined component satisfying a contract can now be defined in
a straightforward manner.

Definition 8. Let S be a contract. Then the least refined component satis-
fying S is the component I(S) = 〈AI

S ,AO
S , TI(S), FI(S), KI(S)〉, where:

• TI(S) = error(S)

11



ServerImpl

job? process!

ack!

ServerImpl2

job?

process!

NonImpl

job?

ack!

Figure 2: Implementations and non-implementation of Server

• FI(S) = error(S) ∩RS

• KI(S) = error(S) ∩ LS .

The traces of I(S) are simply the behaviours that will never violate the
contract. This means that, if a trace of I(S) is in the assumption, then it
must also be in the guarantee, which ensures that I(S) satisfies the safety
constraints of S. In addition, if t is a trace of I(S), then no extension of
t can be allowed to violate the progress conditions. Therefore, KI(S) allows
the component to be quiescent whenever it is not required to be live.

We now state the properties of the least refined satisfying component.

Lemma 2. Let S be a contract and P be a component. Then:

• I(S) is non-realisable implies S is non-implementable;

• I(S) |= S; and

• P |= S iff P vl
imp I(S).

Example 2. ServerImpl in Figure 2 is the least refined component satisfy-
ing the contract Server of Figure 1, where circular nodes represent quiescent,
and square nodes represent non-quiescent, behaviours. As a convention, we
omit input transitions to inconsistent states when drawing components (con-
sequently, there are implicit inconsistent job transitions from the middle and
last states and implicit inconsistent error transitions from all states). As
ServerImpl2 vl

imp ServerImpl, ServerImpl2 is also an implementation of Server,
even though no acknowledgement is performed (since the Server contract does
not require progress after processing). NonImpl is not an implementation
for two reasons. First, progress is not made after receiving a job, and sec-
ond 〈ack〉 ∈ violations(Server), since 〈ack, error〉 ∈ RServer ∩ TNonImpl, while

12



〈ack, error〉 6∈ GServer ∩ FNonImpl. Note that, if the square node in ServerImpl2
was circular, this component would also not be an implementation of Server,
since by non-determinism there could be a behaviour of the component that
does not perform process after receiving a job.

3.1. Refinement

Satisfaction of a contract by a component allows us to define a natural
hierarchy on contracts corresponding to implementation containment. A
constructive definition for this refinement relation follows.

Definition 9 (Refinement). Let S and T be contracts. S is said to be a
refinement of T , written S v T , iff:

R1. AI
T ⊆ AI

S

R2. AO
S ⊆ AO

T

R3. AI
S ∩ AO

T = ∅

R4. error(T ) ∩ A∗S ⊆ error(S)

R5. RT ∩ A∗S ⊆ RS ∪ error(S)

R6. LT ∩ A∗S ⊆ LS ∪ error(S).

It is our intention that S v T iff the implementations of S are contained
within the implementations of T (subject to compatibility). Conditions R1-
R3 impose necessary conditions on the alphabets to uphold this principle.
For condition R4, any component having a trace t ∈ error(T )∩A∗S cannot be
an implementation of T , so it should not be an implementation of S. For this
to be the case, the component must violate the guarantee or progress con-
dition on S, i.e., t ∈ error(S). Condition R5 deals with inconsistent traces.
If a component has an inconsistent trace t ∈ RT ∩ A∗S , then this cannot
be an implementation of T . Consequently, the component must not be an
implementation of S, so either t ∈ error(S) or t must be in RS , so that the
component cannot satisfy S. Condition R6 forces implementations of S to
be live on a trace t whenever t is required to be live on T , unless a safety
or progress violation is inevitable, in which case the implementation would
have suppressed an output in the assumption at an earlier stage. This re-
quirement guarantees implementation containment, and also that refinement
is a preorder (subject to compatibility).

13



Definition 9 gives a sound and complete characterisation of refinement,
as proven in Lemma 3. In related work, one often sees sound and incomplete
characterisations, which may be more intuitive. One possibility is to replace
conditions R4 and R5 by RT ⊆ RS and (GS ∩RT ) ⊆ GT (assuming identical
interfaces of S and T ). This defines an equivalence on contracts with the
same assumptions, where the guarantees differ only outside the assumptions.
More formally, S and T are equivalent if RS = RT and (GS ∩ RS) = (GT ∩
RT ).

Lemma 3. Refinement captures implementation containment:

S v T ⇐⇒ {P : P |= S and AI
P ∩ AO

T = ∅} ⊆ {P : P |= T }.

Larsen et al. (2006) give a sound and complete characterisation of their
refinement relation (which corresponds to implementation containment, as in
this article) by means of conformance tests. The definition assumes equality
of interfaces, so does not need to deal with issues of compatibility or the com-
plexities of both covariant and contravariant inclusion of inputs and outputs
respectively (i.e., conditions R1-R3). Thus, their definition largely corre-
sponds to condition R4. Condition R5 is not necessary in that setting, as
implementation models are required to be input-enabled, and Condition R6
is not necessary, since they only consider safety properties, rather than safety
and progress.

Refinement can be shown to be a preorder, provided that we add the
minor technical condition that compatibility of components is maintained.

Lemma 4 (Weak transitivity). Let S, T and U be contracts such that
AI
S ∩ AO

U = ∅. If S v T and T v U , then S v U .

Example 3. A new contract Server2 (with assumption RServer and guarantee
obtained from GServer by removing the ack transition) is a refinement of Server,
since it has fewer implementations. In particular, I(Server2) = ServerImpl2.
ServerImpl is not an implementation of Server2 because 〈job, process, ack〉 ∈
violations(Server2).

As we can represent a contract by its most general satisfying component,
we can also do the reverse and represent a component by its most general
contract. This can be found by examining the component’s safe traces.

14



Definition 10. The characteristic contract for component P is a contract
AG(P) = 〈AI

P ,AO
P ,RAG(P),GAG(P),LAG(P)〉, where RAG(P) = A∗P \ FE(P),

GAG(P) = TP \ FE(P) and LAG(P) = TP \KE(P).

The largest assumption safe for component P is the set of all traces that
cannot become inconsistent under P ’s own control, while the guarantee is
this same set of traces constrained to the behaviour of P . The set of liveness
traces LAG(P) contains the non-inconsistent traces of P that are not quiescent.

The following lemma shows the properties of the characteristic contract.

Lemma 5. Let P be a component and S be a contract. Then:

• P |= AG(P); and

• P |= S iff AG(P) v S.

The final point in the previous lemma shows that satisfaction of a con-
tract by a component is equivalent to checking whether the characteristic
contract of the component is a refinement of the contract. This means that
implementability of contracts, built up compositionally, follows immediately
from compositionality results on contracts.

In the subsequent sections, we define the compositional operators of the
specification theory directly on contracts. The operators are only defined
when the contracts to be composed are composable (the conditions being
specified as part of the definitions). We also present a number of sound and
complete AG rules for inferring properties of composite systems from the
properties of their subcomponents.

3.2. Parallel Composition

The parallel composition of contracts is defined as the least-refined con-
tract satisfying independent implementability. Therefore, SP || SQ is the
smallest contract having P || Q as an implementation whenever P |= SP
and Q |= SQ. A constructive definition of contract composition is based on
the well-established theorem of Abadi and Lamport (1993), which has ap-
peared in several forms (Collette, 1993; Abadi and Lamport, 1995; Jonsson
and Yih-Kuen, 1996). The composed contract has the largest assumption
that prevents any implementation (say P) of one contract (SP) producing
behaviour observable by the other contract (SQ) that is outside of its as-
sumption (RSQ). The guarantee of the composition, on the other hand, is

15



constrained to what can be guaranteed by both contracts to be composed.
The liveness condition requires that a trace in the composition must make
progress if at least one of the contracts requires this, since the parallel com-
position cannot suppress the output behaviour of implementing components.

Definition 11. Let SP and SQ be contracts composable for parallel compo-
sition (i.e., AO

SP ∩ A
O
SQ = ∅). Then SP || SQ is a contract 〈AI

SP ||SQ ,A
O
SP ||SQ ,

RSP ||SQ ,GSP ||SQ ,LSP ||SQ〉, where:

• AI
SP ||SQ = (AI

SP ∪ A
I
SQ) \ (AO

SP ∪ A
O
SQ)

• AO
SP ||SQ = AO

SP ∪ A
O
SQ

• RSP ||SQ is the largest prefix closed set such that RSP ||SQ(AO
SP ||SQ)∗ is

contained within the union of:

– (RSP ⇑ ASP ||SQ) ∩ (RSQ ⇑ ASP ||SQ)

– error(SP) ⇑ ASP ||SQ
– error(SQ) ⇑ ASP ||SQ

• GSP ||SQ = RSP ||SQ ∩ (error(SP) ⇑ ASP ||SQ) ∩ (error(SQ) ⇑ ASP ||SQ)

• LSP ||SQ = GSP ||SQ ∩ [(LSP ⇑ ASP ||SQ) ∪ (LSQ ⇑ ASP ||SQ)].

The assumption RSP ||SQ captures all behaviours whose projections onto
ASP and ASQ are either contained within the assumptions RSP and RSQ , or
have violated at least one of the contracts. This rules out a trace t that has
not violated either of the contracts, but is no longer within both assumptions
(say t � ASP 6∈ RSP ). For such a trace, no guarantee can be given, since SP
can have an implementation with the inconsistent trace t � ASP , while SQ
can have an implementation with the trace t � ASQ . The parallel composition
of these two components would thus be inconsistent on t, and so would not
satisfy SP || SQ if t ∈ RSP ||SQ .

The guarantee GSP ||SQ is constrained to the traces in RSP ||SQ that do not
violate either SP or SQ. Any trace in an implementation of a contract must
not be allowed to violate the contract, meaning that it must suppress an
output before a violation can occur. Consequently, the parallel composition
of such an implementation with an implementation of the other contract
cannot proceed beyond this suppressed output, so GSP ||SQ need not guarantee

16



RHastyClient

job!

process?

job!

ack? ack? job!

GHastyClient
job!

process?
ack? ack?

Figure 3: Assumption and guarantee for HastyClient

anything beyond that output. Thus, GSP ||SQ contains only traces reachable
by the composition of any two implementations of the respective contracts
that are in the assumption RSP ||SQ .

By the definition of LSP ||SQ , we know that LSP ||SQ ⊆ RSP ||SQ ∩GSP ||SQ as
required, and any trace in LSP ||SQ requires that at least one of SP or SQ is
live. Therefore, the parallel composition of any pair of implementations of
SP and SQ must be live on this trace.

Example 4. Figure 3 presents a contract HastyClient that can send a job to
a server whenever the last job has been processed, regardless of whether it has
been acknowledged or not. The composition of HastyClient with Server is a
contract for which nothing can be assumed or guaranteed, since the output
sequence 〈job!, process!, job!〉 is not in error(HastyClient), but is also not in
RServer or error(Server). This is problematic because 〈job!, process?, job!〉 can
be a trace in an implementation of HastyClient, while 〈job?, process!, job?〉 can
be an inconsistent trace in an implementation of Server (providing 〈job?, process!〉
is consistent, since 〈job?, process!, job?〉 6∈ RServer). Note that 〈job!, process!, job!〉
is an inconsistent trace in the parallel composition of the two implementa-
tions, which explains why the assumption must be empty.

Example 5. In contrast to HastyClient, the composition of RestrainedClient
(Figure 4) and Server is a contract with a completely open assumption (any-
thing may be assumed), since the allowed behaviours of each contract cannot
violate, or fall outside the assumption of, the other contract. The guarantee
is equivalent to GServer, having converted all actions to outputs.

Subject to suitable constraints on the interfaces of contracts, it can be
shown that parallel composition is monotonic under refinement.

17



RRestrainedClient

job! process?

ack?

job! job!

job!

GRestrainedClient

job! process?

ack?

Figure 4: Assumption and guarantee for RestrainedClient

Theorem 1. Let SP and SQ, and S ′P and S ′Q, be contracts composable for
parallel composition, such that AS′P ∩ AS′Q ∩ ASP ||SQ ⊆ ASP ∩ ASQ and

AI
S′P ||S

′
Q
∩ AO

SP ||SQ = ∅. If S ′P v SP and S ′Q v SQ, then S ′P || S ′Q v SP || SQ.

In this theorem, the condition AI
S′P ||S

′
Q
∩AO

SP ||SQ = ∅ ensures compatibility

of S ′P || S ′Q and SP || SQ, which does not necessarily follow from SP and S ′P ,
along with SQ and S ′Q, agreeing. The remaining condition is standard for
compositionality of parallel composition (cf. de Alfaro and Henzinger (2001)),
and ensures that, for any trace t ∈ (ASP ||SQ ∩ AS′P ||S′Q)∗, t � ASP = t � AS′P
and t � ASQ = t � AS′Q (that is, the projections onto ASP and AS′P , and
ASQ and AS′Q , must match). Based on the monotonicity result, a sound and
complete AG rule can be formulated for parallel composition.

Theorem 2. Let P and Q be components, and let SP , SQ and S be contracts
such that AP ∩ AQ ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AI

P||Q ∩ AO
S = ∅. Then the

following AG rule is both sound and complete:

Parallel
P |= SP Q |= SQ SP || SQ v S

P || Q |= S
.

Abadi and Lamport (1993) prove soundness of their parallel composition
rule. Maier (2003) demonstrate that compositional circular AG rules are
not both sound and complete. This seems at odds with our rule, but in our
setting circularity is broken, since a safety property cannot be simultaneously
violated by two or more components. This is due to an output being under
the control of at most one component.

18



3.3. Conjunction

In this section, we define a conjunctive operator on contracts for com-
bining independently developed requirements. From this, we show that the
operator is compositional and corresponds to the meet operation on the re-
finement relation. This allows us to conclude that implementations of a con-
junctive contract must be implementations of both contracts to be conjoined.
Based on this, we formulate a sound and complete AG rule for conjunction.

Definition 12. Let SP and SQ be contracts composable for conjunction (i.e.,
AI
SP ∪ A

I
SQ and AO

SP ∪ A
O
SQ are disjoint). Then SP ∧ SQ is a contract

〈AI
SP∧SQ ,A

O
SP∧SQ ,RSP∧SQ ,GSP∧SQ ,LSP∧SQ〉 defined by:

• AI
SP∧SQ = AI

SP ∪ A
I
SQ

• AO
SP∧SQ = AO

SP ∩ A
O
SQ

• RSP∧SQ =
(
RSP ∪RSQ

)
∩ A∗SP∧SQ

• GSP∧SQ is the intersection of the following sets:

– RSP∧SQ
– error(SP) ∪ (error(SP) ↑ AI

SQ)

– error(SQ) ∪ (error(SQ) ↑ AI
SP )

• LSP∧SQ = GSP∧SQ ∩ (LSP ∪ LSQ).

The assumption RSP∧SQ encompasses all of the assumptions made by
either SP or SQ, while the guarantee GSP∧SQ is the largest subset of RSP∧SQ
that cannot violate the guarantees of SP or SQ. Progress, on the other hand,
must be made when at least one of the contracts can make progress, and the
other contract has not violated its guarantee.

The next theorem shows that our definition of conjunction corresponds
to the meet operator on the refinement relation, and is compositional under
refinement. Consequently, the set of implementations for SP ∧ SQ is the
intersection of the implementation sets for SP and SQ, which means that
SP ∧SQ is only implementable providing SP and SQ share a common imple-
mentation. The fact that SP ∧ SQ may not have an implementation when
both SP and SQ do is a consequence of the conflicting nature of safety and
progress.

19



Theorem 3. Let SP and SQ, and S ′P and S ′Q be contracts composable for
conjunction. Then:

• SP ∧ SQ v SP and SP ∧ SQ v SQ

• SR v SP and SR v SQ implies SR v SP ∧ SQ

• S ′P v SP and S ′Q v SQ implies S ′P ∧ S ′Q v SP ∧ SQ.

From these strong algebraic properties, we can formulate an AG rule for
conjunction that is both sound and complete.

Theorem 4. Let P be a component, and let S1, S2 and S be contracts such
that AI

P ∩ AO
S = ∅. Then the following AG rule is both sound and complete:

Conjunction
P |= S1 P |= S2 S1 ∧ S2 v S

P |= S
.

Example 6. A Client is assumed to have an interface that can send jobs
to, and await acknowledgements from, a server, can login once instructed by
a user, and can logout when it pleases. Thus, job and logout are outputs,
whereas login and ack are inputs. The combined effect of Client and Server
should satisfy the properties:

• Spec1: If the observed behaviour over login and logout is always a prefix
of (login, logout)∗, then login and process should alternate.

• Spec2: If the observed behaviour over login and logout is always a prefix
of (login, logout)∗, then process and logout should alternate, and progress
must be made whenever a job has been processed and before a logout
request is seen.

Spec1 and Spec2 are represented by the contracts 〈RSpec,GSpec1〉 and 〈RSpec,
GSpec2〉 respectively, as depicted in Figure 5. The combined effect of these
properties is given by the conjunctive contract Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉,
the guarantee of which is presented in Figure 6. As Spec1 and Spec2 have the
same interface, the guarantee of the conjunction is obtained as the intersec-
tion of GSpec1 and GSpec2. The liveness requirement of Spec2 manifests itself
as a liveness requirement in the conjunction after process and before logout,
indicated by the square node in Figure 6.

20



RSpec

login?

logout!

logout!

job! job! job!
process!
ack!

process!
ack!

process!
ack!

logout!

GSpec1
login?

process!
job!
ack!

logout!

job!
ack!

logout!

GSpec2
process!

logout!
job!
ack!
login?

job!
ack!
login?

Figure 5: Assumption and guarantees for Spec1 and Spec2

GSpec1∧Spec2

login? process!

logout!

job!
ack!

job!
ack!

job!
ack!

Figure 6: Guarantee for the conjunction of Spec1 and Spec2

3.4. Disjunction

In this section, we formulate a disjunctive operator on contracts. Whereas
conjunction combines requirements in the sense that it strengthens guaran-
tees, disjunction strengthens the assumptions on the environment to the ex-
tent that the implementations of the disjunction contains the union of the
implementations of the contracts to be composed. Being the dual of con-
junction, we show that disjunction is the join operator on the refinement
preorder, and provide a sound and complete assume-guarantee rule.

Definition 13. Let SP and SQ be contracts composable for disjunction (i.e.,
the same conditions as for conjunction). Then SP∨SQ is a contract 〈AI

SP∨SQ ,

AO
SP∨SQ ,RSP∨SQ ,GSP∨SQ ,LSP∨SQ〉, where:

• RSP∨SQ is the intersection of the following sets:

– RSP ∪ error(SP) ∪ ((RSP ∪ error(SP)) ↑ AO
SQ)

– RSQ ∪ error(SQ) ∪ ((RSQ ∪ error(SQ)) ↑ AO
SP )

• GSP∨SQ = RSP∨SQ ∩ (error(SP) ∪ error(SQ))

21



• LSP∨SQ is the intersection of the following sets:

– GSP∨SQ
– LSP ∪ error(SP) ∪ ((RSP ∪ error(SP)) ↑ AO

SQ)

– LSQ ∪ error(SQ) ∪ ((RSQ ∪ error(SQ)) ↑ AO
SP ).

This definition of disjunction satisfies properties similar to those for con-
junction, and hence is the join operator on the refinement preorder.

Theorem 5. Let SP and SQ, and S ′P and S ′Q be contracts composable for
disjunction. Then:

• SP v SP ∨ SQ and SQ v SP ∨ SQ

• SP v SR and SQ v SR implies SP ∨ SQ v SR

• S ′P v SP and S ′Q v SQ implies S ′P ∨ S ′Q v SP ∨ SQ.

Based on the algebraic properties of disjunction, we can formulate a sound
and complete AG rule. This demonstrates that a disjunctive contract con-
tains the union of the implementations of the contracts to be composed,
although there may be additional implementations that are not implementa-
tions of either contract.

Theorem 6. Let P be a component, and let S1, S2 and S be contracts such
that S1 and S2 are composable for disjunction, and AI

P ∩ AO
S = ∅. Then the

following AG rule is both sound and complete:

Disjunction
P |= S1 or P |= S2 S1 ∨ S2 v S

P |= S
.

The disjunction S1 ∨ S2 is the strongest contract containing the union
of the implementations for S1 and S2. In contrast to conjunction, which
precisely characterises the intersection of the implementation sets, there may
be implementations of the disjunction that are not implementations of either
S1 or S2. The Hasse diagram of Figure 7 makes this relationship clear by
depicting the least refined implementations of the contracts S1 and S2, along
with their conjunction and disjunction. The implementations of a contract
S are simply those implementations that appear above (i.e., can be reached
from) I(S).

22



I(S1 ∧ S2)

I(S1) I(S2)

I(S1 ∨ S2)

Figure 7: Implementations of contracts S1, S2, S1 ∧ S2 and S1 ∨ S2

3.5. Quotient

The AG rule for parallel composition in Theorem 2 makes use of the
composition SP || SQ. To support incremental development, we need a way
of decomposing the composition to find SQ given SP . We can do this using
a quotient operator.

Definition 14. Let SP and SW be contracts. Then the quotient SW/SP
is a contract 〈AI

SW/SP ,A
O
SW/SP ,RSW/SP ,GSW/SP ,LSW/SP 〉, defined only when

AO
SP ⊆ A

O
SW , where:

• AI
SW/SP = AI

SW \ A
I
SP

• AO
SW/SP = AO

SW \ A
O
SP

• RSW/SP = [RSW ∩ (error(SP) ⇑ ASW )] � ASW/SP

• GSW/SP is the largest subset of RSW/SP disjoint from

[RSW ∩ (error(SP) ⇑ ASW ) ∩ (error(SW) ∪ (RSP ⇑ ASW ))] � ASW/SP

• LSW/SP = GSW/SP∩[LSW∩(error(SP) ⇑ ASW )∩(LSP ⇑ ASW )] � ASW/SP .

Although not immediately obvious from the formulation of the previous
definition, the assumption is closed under output-extensions, the assumption
and guarantee are both prefix-closed, and the liveness set is contained within
both the assumption and guarantee. Therefore, the quotient is a well-formed
contract. Before explaining the intuition behind the definition, we introduce
the following theorem, which shows that the quotient operator on contracts
yields the weakest decomposition of the parallel composition.

23



Theorem 7. Let SP and SW be contracts. Then there exists a contract SQ
such that SP || SQ v SW iff the following properties hold:

• The quotient SW/SP is defined

• SP || (SW/SP) v SW

• AI
SQ = AI

SW/SP implies SQ v SW/SP .

In explaining the intuition behind the definition of quotient, it is nec-
essary to consider the properties of Theorem 7 along with the formulation
of refinement and parallel composition (Definitions 9 and 11). To obtain
the least refined solution SW/SP for SP || X v SW , it is essential that the
quotient roughly1 satisfies the following properties for t ∈ A∗SW :

• If t ∈ error(SW) and:

– t � ASP ∈ error(SP), then t ∈ error(SP || (SW/SP)), so there is no
need for t � ASW/SP ∈ RSW/SP

– t � ASP 6∈ error(SP), then it must hold that t � ASW/SP ∈
error(SW/SP) (i.e., take t � ASW/SP ∈ RSW/SP ∩ GSW/SP so that
t ∈ error(SP || (SW/SP)).

• If t ∈ RSW\error(SW), then first attempt to ensure that t ∈ RSP ||(SW/SP )\
error(SP || (SW/SP)) holds, and failing that ensure t ∈ error(SP ||
(SW/SP)):

– If t � ASP ∈ error(SP), then t ∈ RSP ||(SW/SP ), so there is no need
for t � ASW/SP ∈ RSW/SP .

– If t � ASP 6∈ error(SP) and t � ASP ∈ RSP , simply take t �
ASW/SP ∈ RSW/SP , so that t ∈ RSP ||(SW/SP )\error(SP || (SW/SP)).

– If t � ASP 6∈ error(SP) and t � ASP 6∈ RSP , then we require t �
ASW/SP ∈ error(SW/SP), so take t � ASW/SP ∈ RSW/SP ∩ GSW/SP .

• If t ∈ LSW \ error(SW) and t 6∈ error(SP || (SW/SP)), then we require
t ∈ LSP ||(SW/SP ). If t � ASP ∈ LSP , then it need not hold that t �
ASW/SP ∈ LSW/SP . If instead t � ASP 6∈ LSP , then it must hold that
t � ASW/SP ∈ LSW/SP .

1Exceptions need to be made since the conditions are not mutually exclusive, and
properties like prefix closure and output-extendability must be maintained.

24



Note that, in the definition of GSW/SP , the set required to be disjoint
from RSW/SP essentially characterises a subset of traces that must be in
error(SW/SP). Furthermore, in the definition of quotient, the set of inputs
AI
SW/SP is taken to be the smallest set such that AI

SW ⊆ A
I
SP ||(SW/SP ), the

latter being a necessary condition for SP || (SW/SP) v SW . Yet, in fact, the
set of inputs for quotient can be parameterised without affecting the results
of Theorem 7. This is useful, since enlarging the set of inputs allows for the
possibility of the quotient to observe the behaviour of SP , which yields a
contract with more specific behaviour. Such a contract cannot be obtained
through refinement alone, as SQ v SW/SP does not imply SP || SQ v SP ||
(SW/SP) in general, since monotonicity only holds on a restricted set of
interfaces (cf. Theorem 1).

Remark 1 (Parameterised quotient). As justified above, the set of in-
puts AI

SW/SP in Definition 14 can be replaced by any set X such that AI
SW \

AI
SP ⊆ X ⊆ AO

SW .

We now present a sound and complete AG rule for quotient on contracts.

Theorem 8. Let SP and SW be contracts such that SW/SP is defined, let
P range over components having the same interface as SP , and let Q be
a component having the same interface as SW/SP (where the quotient is
parameterised on the set AI

Q). Then the following AG rule is both sound and
complete:

Quotient
∀P · P |= SP implies P || Q |= SW

Q |= SW/SP
.

We insist that the components P and Q must have the same interfaces as
their respective contracts, since parallel composition is only monotonic when
restrictions are placed on the interfaces of the contracts to be composed (cf.
Theorem 1). The proof of the rule hints that the universal quantification over
all components P can be replaced by the single component I(SP), meaning
that it is not necessary to quantify over an infinite number of components in
order to satisfy the premise.

Corollary 1. Let SP and SW be contracts such that SW/SP is defined, and
let Q be a component having the same interface as SW/SP (where the quotient

25



is parameterised on the set AI
Q). Then the following AG rule is both sound

and complete:

Quotient-Revised
I(SP) || Q |= SW
Q |= SW/SP

.

Example 7. We now derive a Client contract (having an interface as de-
scribed in Example 6) that can interact with Server (Figure 1), whilst satis-
fying the requirements of Spec1 ∧ Spec2 (Figures 5 and 6). This is obtained
as (Spec1 ∧ Spec2)/Server, where the quotient operator is parameterised on
the set of inputs {login, ack}. The resulting contract is shown in Figure 8.
The guarantee is obtained from the assumption by pruning any trace whose
corresponding projections are in error(Spec1 ∧ Spec2) or not in RServer. Note
that the bottom right node of GClient is required to be live in Figure 8, since
Spec1∧ Spec2 requires liveness after the trace 〈login, job, process〉, while the
projection of this trace onto Server does not guarantee liveness. As all output
extensions of the trace 〈login, job〉 in Client are contained within error(Client),
it follows that 〈login, job〉 ∈ error(Client). Consequently, every implementa-
tion of the Client contract is unable to issue a job after a successful login,
because, if it were to do so, there would be no guarantee that the Server will
acknowledge the processing, meaning that a liveness violation can arise. If,
however, the liveness requirement was dropped from Spec2, then no state of
GClient would need to be live, and so an implementation of the Client contract
could send a job after having received a login request.

3.6. Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel
composition so that it makes use of quotient on contracts. This is useful
for system development, as we will often have the specification of a whole
system, rather than the specifications of the subsystems to be composed.

Corollary 2. Let P and Q be components, and let SP , SQ and S be contracts
such that AP ∩ AQ ∩ ASP ||SQ ⊆ ASP ∩ ASQ and AI

P||Q ∩ AO
S = ∅. When

the quotient is parameterised on AI
SQ, the following rule is both sound and

complete:

Parallel-Decompose
P |= SP Q |= SQ SQ v S/SP

P || Q |= S
.

26



RClient

login?

logout!

logout!

login?

logout!

logout!

login?

logout!

logout!

job!

job!

ack?job!

job!

ack? job!

job!

ack?

logout!

logout!

job!
ack?
logout!

job!
ack?

job!
ack?

GClient

login?

job!

ack?

logout!

Figure 8: Assumption and guarantee for Client

RClient GClient

fail?

send!

ok?

send!

send!

ok?

Figure 9: Assumption and guarantee of a Client that additionally has fail? in its interface

This rule, based on Theorem 2, differs in having the premise SQ v S/SP
in place of SP || SQ v S. Note that this substitution requires no change
to the constraints on the contracts and components. The rule is useful for
scenarios when the contract S is supplied along with a subcontract SP (or
for when a subcontract SP can easily be inferred). In such circumstances,
the missing contract SQ can be taken as any refinement of S/SP .

4. Case Study

To demonstrate our assume-guarantee framework with its range of op-
erators, and to relate it to previously proposed frameworks, we consider a
case study that is a variant of the running example used by Larsen et al.
(2006). The case study considers a client needing to send data over a poten-
tially unreliable communication link. Between the client and the link sits a

27



RServer

send? transmit! nack? transmit!

ack?ok!

nack?fail!

ack?

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

ok!
fail!

transmit!
ok!
fail!

transmit!
fail!

transmit!
ok!

GServer

send? transmit! nack? transmit!

ack?ok!

nack?fail!

ack?

Figure 10: Assumption and guarantee of a Server

28



server which, to a limited extent, recovers from failures in the communication
link and acknowledges successful transmissions to the client. Larsen et al.
(2006) used this example to illustrate parallel composition and to show how
different assumptions about the reliability of the communication link can be
exchanged in the specification of the server. In this section, we not only
illustrate parallel composition, but also show:

• how our quotient operation can be used to derive the weakest contract
for the communication link, given a specification of the server; and

• how the conjunction operation can be used to combine several specifi-
cations of the communication link.

More precisely, we first form the composition of the client and the server,
from which we derive the weakest contract for the communication link that
guarantees the entire system will not encounter runtime errors (including
communication mismatches). Thereafter, we refine this contract by conjoin-
ing it with a contract representing a protocol for the communication link.

Describing the operation of the participating components, a Client (see
Figure 9) can communicate with a Server (Figure 10) by sending data, and can
observe whether the transmission was ok or whether it failed. The Server, on
the other hand, is an intermediary between the Client and a communication
link. It receives data from the Client via the send interaction, and then
transmits it to the communication link, after which it waits for positive or
negative confirmation that the data was successfully delivered, in the form
of ack and nack signals, respectively. In the case that the transmission is
acknowledged, the Server indicates to the Client that all is ok. Otherwise, if
nack is received from the link, the Server attempts to retransmit, and if nack
is received for a second time in succession, the Server will signify to the Client
that a failure has occurred. The models of the Client and Server are taken
from Larsen et al. (2006) (where they are referred to as Client and TryTwice
respectively), so we may highlight the differentiating features of our work.

The combined behaviour of the Client and Server (i.e., Client || Server) is
shown in Figure 11. To understand intuitively how the composition is de-
rived, note that fail appears in the static interface of Client (Figure 9), yet
Client assumes that fail will never be issued by the environment. It follows
that Client || Server can never guarantee that there is a safe behaviour con-
taining fail. Therefore, to prevent such a behaviour arising, the environment

29



RClient‖Server

send! transmit! nack? transmit!

ack?ok!

ack?

transmit!
ok!
fail!

ok!
fail!
send!

transmit!
ok!
fail!
send!

ok!
fail!
send!

transmit!
ok!
fail!
send!

transmit!
fail!
send!

GClient‖Server

send! transmit! nack? transmit!

ack?ok!

ack?

Figure 11: Assumption and guarantee of Client||Server

must never issue the preceding nack, which will in turn prevent an imple-
mentation of Server from issuing fail to an implementation of the Client.

When contrasting Figure 11 with the parallel composition of Client and
Server in Larsen et al. (2006) (where our Server corresponds to TryTwice),
after accounting for the difference in parallel composition (whereby we do
not automatically hide the actions that are shared between components, i.e,
send, ok, and fail), one observes that our guarantee can be expressed in a
simpler manner, given that it need not be input-enabled.

We now wish to construct a contract representing the behaviour of the
communication link that transmits information from the Server. As a point
of departure, we assume that the operation of the communication link is
governed by a protocol, which is represented by the contract LinkLayer1
in Figure 12. The protocol awaits a transmission request (transmit), af-
ter which it attempts to deliver the data to the intended recipient. Suc-

30



RLinkLayer1

transmit?
deliver!

ack!

nack!

nack!

ack!
nack!
deliver!

ack! deliver!

GLinkLayer1

transmit?
deliver!

ack!

nack!

nack!

Figure 12: Contract for LinkLayer1

RErrorFree
GErrorFree
RErrorFreeLive

GErrorFreeLive
send!
ok!
fail!

transmit!
ack!
nack!
deliver!

send!
ok!
fail!

transmit!
ack!
nack!
deliver!

Figure 13: Assumption and guarantee for contracts ErrorFree and ErrorFreeLive

cessful delivery of the data results in a positive acknowledgment, while a
nack occurs if deliver does not complete successfully, or if deliver cannot
be performed for some reason. Unfortunately, the parallel composition of
LinkLayer1 with Client || Server is a contract for which nothing can be as-
sumed, meaning that no safety or progress properties can be inferred. To see
why, note that the assumption of the composition must be empty because
〈send, transmit, nack, transmit, nack〉 is a trace over outputs whose projec-
tions onto Server||Client and LinkLayer1, respectively, are not contained in
both assumptions, while they are also not in the respective error sets (cf.
Definition 11 for parallel).

In order to formulate a stronger contract for the communication link,
we use our theory to derive the weakest restrictions on the communication
medium that allows all three of the Client, Server and link to communicate.
This can be formulated as the quotient ErrorFree/(Client || Server), where Er-
rorFree is the component having a single chaotic state labelled by all actions,
which should be treated as outputs (Figure 13, left-hand side). The only

31



RLinkLayer2

send? transmit? nack! transmit?

ack!ok?

ack!

ack!
nack!
deliver!

ack!
nack!
deliver!

deliver! ack!
nack!
deliver!

nack!
deliver!

ack!
nack!
deliver!

GLinkLayer2

• •send? transmit? nack! transmit?

ack!ok?

ack!

deliver! deliver! deliver! deliver! deliver!

deliver!

Figure 14: Assumption and guarantee of LinkLayer2 with full interface

significant constraint imposed by ErrorFree is that no unspecified receptions
will occur. Note that the state is not required to be live, and hence the
assumption is the same as the guarantee.

The resulting contract, referred to as LinkLayer2, is depicted in Figure 14
when the set of input actions is taken to be {send, transmit, ok}, whereas
Figure 15 is the corresponding contract synthesised by the quotient operation
when the set of inputs is taken to be {transmit}. Recall from Remark 1 that
the set of input actions to the quotient operator can be parameterised.

LinkLayer2 (parameterised on {transmit}) is thus a contract that will allow
Server and Client to interact with one another, but it may not respect the
protocol of LinkLayer1, meaning that it may not meaningfully interact with
the communication link. Therefore, we define LinkLayer1 ∧ LinkLayer2 as the

32



RLinkLayer2

transmit?
nack! transmit?

ack!

ack!ack!
nack!
deliver!

deliver! ack!
nack!
deliver!

nack!
deliver!

GLinkLayer2

• •

transmit?
nack! transmit?

ack!

ack!deliver! deliver! deliver! deliver!

Figure 15: Assumption and guarantee of LinkLayer2 with restricted interface

contract for implementations that should communicate with the link (shown
in Figure 16). Any implementation of this contract must never nack two
transmissions in succession.

We now consider the impact of liveness, in addition to safety. Let Er-
rorFreeLive be the ErrorFree contract, but with the requirement that the
sole state must be live (also shown in Figure 13, right-hand side). Then
ErrorFreeLive/(Client || Server) is the contract in Figures 14 and 15, but with
states containing • treated as though they are live (i.e., they should be
squares). Similarly, LinkLayer1 ∧ LinkLayer2 is as depicted in Figure 16, but
with the • filled nodes converted to squares. In the liveness setting, note
that if, for some reason, the state following nack in Figure 10 is not live, then
the specification in Figure 16 would not allow any nack at all, since it would
lead to a state from which progress would not be guaranteed, thus conflicting
with the requirements imposed by ErrorFreeLive.

33



RLinkLayer1∧LinkLayer2

transmit?

ack!
nack!

ack!
nack!
deliver!

deliver!

GLinkLayer1∧LinkLayer2

•

•

transmit? deliver!

nack!
nack!

transmit?deliver!

ack!

ack!

Figure 16: Assumption and guarantee of LinkLayer1∧LinkLayer2

To summarise, this case study demonstrates how our framework adds sig-
nificant flexibility over previous frameworks, such as the one by Larsen et al.
(2006). Specifically, we provide a simpler formalism that does not require
input-enabledness of guarantees, while supporting compositional reasoning
not only for safety, but also liveness properties. A rich collection of opera-
tors are defined beyond those in Larsen et al. (2006). Our quotient operator
facilitates the automated incremental construction of contracts for missing
components, while conjunction combines independently developed require-
ments represented by multiple contracts. These features provide a range of
additional checks for the validity of derived contracts, and support a truly
contract-based design methodology.

5. Conclusion

We have presented a compositional specification theory for reasoning
about safety and progress properties of component behaviours, where we ex-
plicitly separate the assumptions made on the environment’s behaviour from
the guarantees provided by the component. Our theory supports refinement
based on traces, which relates specifications by implementation containment.
We define the compositional operations of parallel composition, as well as –
for the first time in this setting – conjunction, disjunction and quotient, di-
rectly on contracts. Sound and complete AG reasoning rules are provided
for the four operators, preserving both safety and progress properties, which
facilitates reasoning about, e.g., substitutivity of components synthesised at

34



runtime. The theory can be extended with hiding, providing a proper treat-
ment of divergence is given for components, as reported in (Chilton, 2013).
Allowing divergence necessitates the extension of the contract framework to
include sets of traces that must not diverge, in addition to the traces that
must make progress. This is in contrast to works such as (Jonsson, 1994),
which assume that a diverging process makes progress. We take a more
pragmatic view in requiring that progress is observable. The AG rules can
be fully automated, when restricting to regular properties (which can be rep-
resented by finite-state automata), as they are based on simple set-theoretic
operations and do not require the learning of assumptions. The composi-
tion operations are polynomial-time constructions on finite automata, and
the refinement relation can also be checked in polynomial-time, when the
participating specifications are deterministic finite-state automata.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT, the ERC Advanced Grant VERIWARE, and the UPMARC centre
of excellence.

References

Abadi, M., Lamport, L., 1993. Composing specifications. ACM Trans. on
Programming Languages and Systems 15, 73–132.

Abadi, M., Lamport, L., 1995. Conjoining specifications. ACM Trans. on
Programming Languages and Systems 17, 507–534.

Abadi, M., Plotkin, G., 1993. A logical view of composition. Theoretical
Computer Science 114, 3–30.

de Alfaro, L., Henzinger, T.A., 2001. Interface automata. SIGSOFT Softw.
Eng. Notes 26, 109–120.

Bauer, S., David, A., Hennicker, R., Larsen, K., Legay, A., Nyman, U.,
Wasowski, A., 2012. Moving from specifications to contracts in component-
based design, in: Lara, J., Zisman, A. (Eds.), FASE’12. Springer. volume
7212 of Lecture Notes in Computer Science, pp. 43–58.

Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofro-
nis, C., 2008. Multiple viewpoint contract-based specification and design,
in: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (Eds.),

35



Proc. FMCO 2007, 6th Int. Symp. Formal Methods for Components and
Objects, Amsterdam, The Netherlands, Springer. pp. 200–225.

Bhaduri, P., Ramesh, S., 2008. Interface synthesis and protocol conversion.
Form. Asp. Comput. 20, 205–224.

Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M., 2012. A Compositional
Specification Theory for Component Behaviours, in: Seidl, H. (Ed.), Pro-
gramming Languages and Systems, Proc. 21st European Symposium on
Programming (ESOP’12), Springer-Verlag. pp. 148–168.

Chilton, C., 2013. An Algebraic Theory of Componentised Interaction. Ph.D.
thesis. Department of Computer Science, University of Oxford.

Chilton, C., Jonsson, B., Kwiatkowska, M., 2013a. An Algebraic Theory
of Interface Automata. Technical Report CS-RR-13-02. Department of
Computer Science, University of Oxford.

Chilton, C., Jonsson, B., Kwiatkowska, M., 2013b. Assume-guarantee reason-
ing for safe component behaviours, in: Pasareanu, C., Salaün, G. (Eds.),
Proc. 9th International Symposium on Formal Aspects of Component Soft-
ware (FACS’12), Springer. pp. 92–109.

Clarke, E., Long, D., McMillan, K., 1989. Compositional model checking, in:
Proc. 4th Annual Symposium on Logic in computer science, IEEE Press.
pp. 353–362.

Collette, P., 1993. Application of the composition principle to Unity-like
specifications, in: TAPSOFT’93, LNCS 668, Springer-Verlag. pp. 230–242.

Delahaye, B., Caillaud, B., Legay, A., 2011. Probabilistic contracts: a com-
positional reasoning methodology for the design of systems with stochastic
and/or non-deterministic aspects. FMSD 38, 1–32.

Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T., 2008. Interface
theories with component reuse, in: Proc. 8th ACM international conference
on Embedded software, ACM. pp. 79–88.

Emmi, M., Giannakopoulou, D., Păsăreanu, C., 2008. Assume-Guarantee
Verification for Interface Automata, in: Cuellar, J., Maibaum, T., Sere,
K. (Eds.), FM 2008: Formal Methods. Springer. volume 5014 of Lecture
Notes in Computer Science, pp. 116–131.

36



Grumberg, O., Long, D.E., 1991. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems 16.

Jonsson, B., 1994. Compositional specification and verification of distributed
systems. ACM Trans. on Programming Languages and Systems 16, 259–
303.

Jonsson, B., Yih-Kuen, T., 1996. Assumption/guarantee specifications in
linear-time temporal logic. Theoretical Computer Science 167, 47–72.

Larsen, K.G., Nyman, U., Wasowski, A., 2006. Interface input/output au-
tomata, in: FM 2006, Springer. pp. 82–97.

Larsen, K.G., Nyman, U., Wasowski, A., 2007. Modal I/O automata for
interface and product line theories, in: Nicola, R.D. (Ed.), ESOP, Springer.
pp. 64–79.

Maier, P., 2003. Compositional circular assume-guarantee rules cannot be
sound and complete, in: Proc. 6th International conference on Founda-
tions of Software Science and Computation Structures and joint European
conference on Theory and practice of software, Springer. pp. 343–357.

Namjoshi, K.S., Trefler, R.J., 2010. On the completeness of compositional
reasoning methods. ACM Trans. Comput. Logic 11, 16:1–16:22.

Pnueli, A., 1985. In transition from global to modular temporal reasoning
about programs, in: Apt, K.R. (Ed.), Logics and models of concurrent
systems. Springer, pp. 123–144.

Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone,
R., 2011. A modal interface theory for component-based design. Fundam.
Inform. 108, 119–149.

Appendix A. Proofs

Proof of Lemma 1

We show that RS ∩ TQ ⊆ GS ∩ FQ. Let t ∈ RS ∩ TQ. From Q vl
imp P it

follows that t ∈ TE(P) ∪ (TE(P) ↑ AI
Q). But, in fact, t ∈ TE(P) as AI

S ⊆ AI
P ⊆

AI
Q, t ∈ A∗S and AI

Q ∩ AO
S = ∅. Therefore, either t ∈ TP or t ∈ FE(P). For

the former, t ∈ RS ∩ TP implies t ∈ GS ∩ FE(P). As t 6∈ FE(P) (and moreover

37



t 6∈ TE(P) ↑ AI
Q) it follows that t 6∈ FE(Q) since Q vl

imp P . Hence t ∈ GS ∩ FQ
as required. If instead t ∈ FE(P), then either t ≡ ε, or there is some prefix
t′i of t with i ∈ AI

P such that t′ 6∈ FE(P) while t′i ∈ FE(P). For both cases
P 6|= S, which is contradictory (the latter because t′i ∈ TP).

Now suppose that t ∈ LS ∩ TQ. Then t ∈ A∗P , so, from Q vl
imp P , we

have t ∈ TE(P). If t ∈ TP \ FE(P), then from P |= S we derive t ∈ KP , thus
t ∈ KQ from Q vl

imp P . If instead t ∈ FE(P), then, by the same reasoning as
previously, we see that P 6|= S.

Proof of Lemma 2

For the first claim, we show that t ∈ Xi implies t is not a trace in any
implementation of S for each i ∈ N, where Xi is the i-th iteration of defining
error(S) as a least fixed point. For i = 0, the result holds trivially as X0 = ∅.
So suppose that the result holds for i = k. Now t ∈ Xk+1 implies that t ∈
violations(S) or there is t′ ∈ (AI

S)∗ such that tt′ ∈ LS and ∀o ∈ AO
S ·tt′o ∈ Xk.

If t ∈ violations(S), then clearly t cannot be a trace of any implementation
of S, since condition S4 will not be satisfied. If instead t satisfies the second
property, then it follows by the induction hypothesis that tt′ is a quiescent
trace, which contradicts tt′ ∈ LS . Therefore, tt′ cannot be a trace of any
implementation of S, and so t also cannot be a trace, by input receptiveness
of components. Taking t ≡ ε, it follows that S is non-implementable.

For the second claim, suppose t ∈ RS ∩ TI(S). Then t ∈ RS ∩ error(S),
which implies t ∈ GS . Moreover, as t ∈ RS , it follows that t ∈ FI(S). Hence
S4 is satisfied. Now suppose that t ∈ LS ∩ TI(S). Then clearly t 6∈ KI(S) by
definition, so S5 is satisfied.

For the third claim, the if direction follows by the previous claim and
Lemma 1. For the only if direction, we need to show that TE(P) ⊆ TI(S) ∪
(TI(S) ↑ AI

P), FE(P) ⊆ FI(S)∪ (TI(S) ↑ AI
P) and KE(P) ⊆ KI(S)∪ (TI(S) ↑ AI

P).
If t ∈ TE(P) and t 6∈ A∗S , then there is a prefix t′a of t such that t′ ∈ A∗S and
a ∈ AI

P \ AS , which by an inductive argument that assumes the result holds
for all strict prefixes allows us to derive t ∈ TI(S) ↑ AI

P . So suppose that
t ∈ TP ∩ A∗S . Then by the first claim, since P |= S, it follows t 6∈ error(S).
Hence t ∈ TI(S). Now suppose that t ∈ FE(P)∩A∗S . Then as P |= S, it follows
that t 6∈ error(S) and t 6∈ RS . Consequently, t ∈ FI(S). Finally, suppose that
t ∈ KP ∩ A∗S . Then as t ∈ TP it follows that t 6∈ LS , since P |= S. Hence,
t ∈ KI(S).

38



Proof of Lemma 3

For the only if direction, suppose P |= S and AI
P∩AO

T = ∅. We first show
that P |= T , so suppose t ∈ RT ∩TP . Then, by the definition of v, it follows
that t ∈ RS ∪ error(S). If t ∈ error(S), then t 6∈ TP , since P |= S, which is
contradictory. Therefore, t ∈ RS , which from P |= S implies t ∈ GS ∩ FP .
But as t 6∈ error(S), it follows that t 6∈ error(T ) and so t ∈ GT . Hence
t ∈ GT ∩ FP as required. Now suppose that t ∈ LT ∩ TP . Then from S v T
it follows that t ∈ LS ∪ error(S). If t ∈ LS , then t ∈ KP , since P |= S. If
instead t ∈ error(S), then P 6|= S, which is contradictory. Hence, P |= T as
required.

For the if direction, Lemmas 1 and 2 allow us to conclude that I(S) vl
imp

I(T ). Suppose that t ∈ error(T ) ∩ A∗S . Then t 6∈ TI(T ), hence t 6∈ TI(S),
meaning t ∈ error(S). Now suppose that t ∈ RT ∩ A∗S . Then t 6∈ FI(T ),

which implies t 6∈ FI(S), hence t 6∈ RS ∩ error(S) i.e., t ∈ RS ∪ error(S).
Finally, suppose that t ∈ LT ∩ A∗S . Then t 6∈ KI(T ), hence t 6∈ KI(S). Thus

t 6∈ LS ∩ error(S), and so t ∈ LS ∪ error(S) as required.

Proof of Lemma 4

Essentially follows from transitivity of ⊆.

Proof of Lemma 5

For the first claim, let t ∈ RAG(P) ∩ TP . Then, as t ∈ RAG(P), it follows
t ∈ FE(P). Given t ∈ TP , it thus follows t ∈ GAG(P) ∩ FE(P) as required.
Furthermore, if t ∈ LAG(P) ∩ TP , then t 6∈ KE(P), hence t 6∈ KP .

For the second claim, the if direction follows by the previous claim and
Lemma 3. For the only if direction, suppose that t ∈ error(S) ∩ A∗P . Hence
t 6∈ TP ∪ FE(P) as P |= S, which implies t ∈ RAG(P) ∩ GAG(P). Hence,
t ∈ error(AG(P)). Now suppose that t ∈ RS ∩ A∗P . Then P |= S implies
t 6∈ TP or t 6∈ FE(P). Note that t 6∈ TP implies t 6∈ FE(P) (consider a prefix in
TP∩FE(P)). Hence t ∈ RAG(P). Finally, suppose that t ∈ LS∩A∗P . Then from
P |= S, it follows that t 6∈ TP or t 6∈ KP . In the case of the former, t 6∈ FE(P)
as P |= S, so t ∈ violations(AG(P)), which implies t ∈ error(AG(P)). For
the latter, if t 6∈ LAG(P), then t 6∈ TP or t ∈ TP ∩ FE(P), both of which imply
t ∈ violations(AG(P)), and so t ∈ error(AG(P)).

39



Appendix B. Parallel Composition

The following lemma is useful to the proof of parallel compositionality
and for establishing the properties satisfied by the quotient operator (which
is the adjoint of parallel). It essentially states that an error in the parallel
composition of two contracts must manifest itself as an error in at least one
of the contracts to be composed.

Lemma 6. t ∈ error(SP || SQ) implies t � ASP ∈ error(SP) or t � ASQ ∈
error(SQ).

Proof. Show that t ∈ Xi implies t � ASP ∈ error(SP) or t � ASQ ∈ error(SQ),
where Xi is the i-th iteration of error(SP || SQ) defined as a least fixed
point. When i = 0, the result hold trivially, since X0 = ∅. So suppose that
t ∈ Xk+1. Then t ∈ violations(SP || SQ), or there exists t′ ∈ (AI

SP ||SQ)∗ such

that tt′ ∈ LSP ||SQ and ∀o ∈ AO
SP ||SQ · tt

′o ∈ Xk. If t ∈ violations(SP || SQ),

then there exists a prefix and input extension t′ ∈ RSP ||SQ ∩ GSP ||SQ . So,
without loss of generality, t′ � ASP ∈ error(SP) by the definition of ||, from
which it follows t � ASP ∈ error(SP). For the latter case, without loss of
generality suppose that tt′ � ASP ∈ LSP . If tt′ � ASP 6∈ error(SP), then it
follows that there exists o′ ∈ AO

SP · tt
′o′ � ASP 6∈ error(SP). As tt′o′ ∈ Xk, it

follows that tt′o′ � ASQ ∈ error(SQ). Moreover, as o′ 6∈ AO
SQ , it follows that

t � ASQ ∈ error(SQ) as required. �

Proof of Theorem 1

Note that the alphabet constraints are satisfied, so first show RSP ||SQ ∩
A∗S′P ||S′Q ⊆ RS′P ||S′Q ∪ error(S ′P || S ′Q). Suppose t ∈ RSP ||SQ ∩ A∗S′P ||S′Q , and

all strict prefixes of t are in RS′P ||S′Q ∩ error(S ′P || S ′Q). If t 6∈ RS′P ||S′Q , then

there exists t′ ∈ (AO
S′P ||S

′
Q

)∗ such that, wlog, tt′ � AS′P 6∈ RS′P ∪ error(S ′P) and

tt′ � AS′Q 6∈ error(S ′Q). As tt′ � ASP = tt′ � AS′P and tt′ � ASQ = tt′ � AS′Q ,
it follows that tt′ � ASP 6∈ RSP ∪ error(SP) since S ′P v SP , and tt′ � ASQ 6∈
error(SQ) since S ′Q v SQ. Hence, tt′ 6∈ RSP ||SQ , which implies t 6∈ RSP ||SQ as
t′ ∈ (AO

SP ||SQ)∗, but this is contradictory.

Now suppose that t ∈ error(SP || SQ) ∩ A∗S′P ||S′Q . Then by Lemma 6 it

follows that, without loss of generality, t � ASP ∈ error(SP). Since t � ASP =
t � AS′P , it follows from S ′P v SP that t � AS′P ∈ error(S ′P). Now from

40



the first part, we derive t ∈ RS′P ||S′Q ∪ error(S ′P || S ′Q), so it follows that
t ∈ error(S ′P || S ′Q), since certainly t 6∈ GS′P ||S′Q .

Finally, show t ∈ LSP ||SQ ∩ A∗S′P ||S′Q implies t ∈ LS′P ||S′Q ∪ error(S ′P ||
S ′Q). Suppose that t 6∈ error(S ′P || S ′Q). Then by the first part, as t ∈
RSP ||SQ ∩ A∗S′P ||S′Q , it follows that t ∈ RS′P ||S′Q , and so t ∈ GS′P ||S′Q . Hence

t � AS′P 6∈ error(S ′P) and t � AS′Q 6∈ error(S ′Q). Now, without loss of generality,
t � ASP ∈ LSP , so from S ′P v SP , it follows that t � AS′P ∈ LS′P . Hence
t ∈ LS′P ||S′Q as required.

Proof of Theorem 2

For soundness, we know AG(P) v SP and AG(Q) v SQ. By the theorem
conditions, the conditions for Theorem 1 are satisfied, so AG(P) || AG(Q)
v SP || SQ. From compatibility of P || Q and S, we obtain AG(P) ||
AG(Q) v S by weak transitivity. Now by Lemma 7 (an ancillary result,
following) we derive AG(P || Q) v S by transitivity, given that the alphabets
of AG(P || Q) coincide with those of AG(P) || AG(Q).

For completeness, take SP = AG(P) and SQ = AG(Q). Then by transi-
tivity, the result follows from Lemma 7.

Lemma 7. AG(P || Q) v AG(P) || AG(Q) v AG(P || Q).

Proof. First suppose that t ∈ RAG(P)||AG(Q) and t 6∈ error(AG(P) || AG(Q)).
Then t � AP ∈ RAG(P) and t � AQ ∈ RAG(Q), which implies that t �
AP 6∈ FE(P) and t � AQ 6∈ FE(Q). Hence, t 6∈ FE(P||Q), from which it fol-
lows that t ∈ RAG(P||Q). For the other direction, suppose t ∈ RAG(P||Q) and
t 6∈ error(AG(P || Q)). Then, t ∈ GAG(P||Q), which implies t ∈ TP||Q \FE(P||Q),
which means that t � AP 6∈ FE(P) and t � AQ 6∈ FE(Q) i.e., t � AP ∈ RAG(P)
and t � AQ ∈ RAG(Q). From this it follows that t ∈ RAG(P)||AG(Q), having
noticed that no output extension of t can violate this constraint.

For the error set containments, suppose that t ∈ error(AG(P) || AG(Q))
and t ∈ RAG(P)||AG(Q)∩RAG(P||Q). We demonstrate thatXi ⊆ error(AG(P || Q))
for each i ∈ N, where Xi is the i-th iteration of defining the least fixed
point characterising error(AG(P) || AG(Q)). The result holds trivially when
i = 0, since Xi = ∅. For the inductive case, suppose t ∈ Xk+1. Then
t ∈ violations(AG(P) || AG(Q)), or there exists t′ ∈ (AI

P||Q)∗ such that

tt′ ∈ LAG(P)||AG(Q) and for each o ∈ AO
P||Q it holds that tt′o ∈ Xk. For the for-

mer, it follows that there exists t′ ∈ (AI
P||Q)∗ such that tt′ ∈ RAG(P)||AG(Q) ∩

41



GAG(P)||AG(Q). Consequently, wlog, tt′ � AP ∈ error(AG(P)), which implies
t � AP ∈ error(AG(P)). Suppose for a contradiction that t ∈ GAG(P||Q).
Then t ∈ TP||Q \ FE(P||Q), which implies t � AP ∈ TP . But, as t � AP ∈
error(AG(P)), it follows that P 6|= AG(P), which is contradictory. Therefore,
t 6∈ GAG(P||Q) and so t ∈ error(AG(P || Q)). For the latter case, by the in-
duction hypothesis we have that tt′o ∈ error(AG(P || Q)), which implies that
tt′ ∈ error(AG(P || Q)), given that tt′ ∈ LAG(P)||AG(Q) implies tt′ ∈ LAG(P||Q).
To see this last implication, from tt′ ∈ LAG(P)||AG(Q) it holds wlog that tt′ �
AP ∈ LAG(P) and tt′ � AQ ∈ RAG(Q), since tt′ � AQ 6∈ error(AG(Q)). Hence,
tt′ � AP ∈ TP \KE(P) and tt′ � AQ ∈ TQ ∩ FE(Q). Thus, tt′ ∈ TP||Q \KE(P||Q),
implying tt′ ∈ LAG(P||Q). Consequently, t ∈ error(AG(P || Q)) as required.

For the other direction of the containment, suppose t ∈ error(AG(P || Q))
and t ∈ RAG(P)||AG(Q) ∩ RAG(P||Q). Using a similar Xi argument it fol-
lows that t ∈ violations(AG(P || Q)), or there exists t′ ∈ (AI

P||Q)∗ such that

tt′ ∈ LAG(P||Q) and for each o ∈ AO
P||Q, it holds that tt′o ∈ error(AG(P) ||

AG(Q)). For the former, suppose that there exists t′ ∈ (AI
P||Q)∗ such that

tt′ ∈ RAG(P||Q) ∩ GAG(P||Q). Then tt′ 6∈ TP||Q ∪ FE(P||Q), which implies wlog
that tt′ � AP 6∈ TP ∪ FE(P). Hence, tt′ ∈ RAG(P) ∩ GAG(P), which implies
tt′ � AP ∈ error(AG(P)). Therefore, t � AP ∈ error(AG(P)), which implies
t 6∈ GAG(P)||AG(Q). Consequently, t ∈ error(AG(P) || AG(Q)) as we are assum-
ing that t ∈ RAG(P)||AG(Q). For the latter, from tt′ ∈ LAG(P||Q), it follows that
tt′ ∈ TP||Q \ KE(P||Q). Consequently, without loss of generality, tt′ � AP ∈
TP \KE(P) and tt′ � AQ ∈ TQ \FE(Q). This means that tt′ � AP ∈ LAG(P) and
tt′ � AQ ∈ RAG(Q). Thus tt′ ∈ LAG(P)||AG(Q) ∪ error(AG(P) || AG(Q)). Either
way, we derive t ∈ error(AG(P) || AG(Q)).

The reasoning for the liveness set containments can be extracted from the
error set containments mentioned previously. �

Appendix C. Conjunction

Proof of Theorem 3

First show that SP ∧ SQ v SP . Suppose t ∈ error(SP) ∩ A∗SP∧SQ . Then
there is a prefix t′ of t such that t′ ∈ RSP ∩ A∗SP∧SQ and t′ ∈ error(SP).

Therefore, t′ ∈ RSP∧SQ ∩ GSP∧SQ , implying t ∈ error(SP ∧ SQ). If t ∈ RSP ∩
A∗SP∧SQ , then t ∈ RSP∧SQ as required. Finally, suppose t ∈ LSP∩A∗SP∧SQ . As
t ∈ RSP∩A∗SP∧SQ , it follows that t ∈ RSP∧SQ . Moreover, if t 6∈ error(SP∧SQ),

42



then t ∈ GSP∧SQ . So from t ∈ LSP , it is easy to see that t ∈ LSP∧SQ as
required. By similar reasoning SP ∧ SQ v SQ.

For the second claim, we show error(SP ∧ SQ) ∩ A∗SR ⊆ error(SR) by
demonstrating that t ∈ Xi ∩ A∗SR implies t ∈ error(SR) by induction on
i, where Xi is the i-th iteration of defining error(SP ∧ SQ) as a least fixed
point. When i = 0 the result holds trivially as Xi = ∅. Now suppose
i = k for k > 0. If t ∈ violations(SP ∧ SQ), then there is a prefix t′ of t
and input extension t′′ ∈ (AI

SP∧SQ)∗ such that t′t′′ ∈ RSP∧SQ ∩ GSP∧SQ . So

without loss of generality, t′t′′ 6∈ error(SP) ∪ (error(SP) ↑ AI
SQ). This means

that there is a prefix of t′t′′ contained in error(SP), which must also be in
error(SR) since SR v SP . If instead there exists t′ ∈ (AI

SP∧SQ)∗ such that

tt′ ∈ LSP∧SQ and ∀o ∈ AO
SP∧SQ · tt

′o ∈ Xi−1, then ∀o′ ∈ AO
SR it follows that

tt′o′ ∈ error(SR) by the induction hypothesis. Moreover, from tt′ ∈ LSP∧SQ ,
it follows that without loss of generality, tt′ ∈ LSP . So from SR v SP we
derive tt′ ∈ LSR ∪ error(SR). But tt′ ∈ LSR also implies tt′ ∈ error(SR),
hence t ∈ error(SR) as required. Now suppose that t ∈ RSP∧SQ ∩A∗SR . Then
without loss of generality, t ∈ RSP ∩ A∗SR , so from SR v SP , we derive
t ∈ RSR ∪ error(SR). Finally, suppose t ∈ LSP∧SQ ∩ A∗SR . If t 6∈ error(SR),
then we have t ∈ RSR ∩ GSR , since t ∈ LSP∧SQ implies t ∈ RSP∧SQ , which
implies t ∈ RSR . Without loss of generality, t ∈ LSP , so from SR v SP it
follows that t ∈ LSR as required.

For the third claim, by the first claim we have S ′P∧S ′Q v S ′P and S ′P∧S ′Q v
S ′Q. Now by transitivity, we see that S ′P ∧ S ′Q v SP and S ′P ∧ S ′Q v SQ
providingAO

SP∩A
I
S′Q

= ∅ andAO
SQ∩A

I
S′P

= ∅, so by the second claim, it follows

that S ′P ∧S ′Q v SP ∧SQ as required. If either of the compatibility conditions
are not satisfied, we can obtain new contracts S ′′P for SP and S ′′Q for SQ that
have output set AO

SP ∩A
O
SQ and contain all of the traces from the respective

contracts, except for those with an output in (AO
SP \ A

O
SQ) ∪ (AO

SQ \ A
O
SP )

that has been removed from the interface. It is straightforward to show that
S ′′P ∧ S ′′Q = SP ∧ SQ.

Proof of Theorem 4

For soundness, note by the second claim of Theorem 3 that AG(P) v S1∧
S2. HenceAG(P) v S, as the compatibility constraint for weak transitivity is
satisfied. For completeness, the result follows by idempotence of conjunction,
having taken S1 = S2 = S.

43



Appendix D. Disjunction

Proof of Theorem 5

For the first claim of SP v SP ∨ SQ, we first show that error(SP ∨ SQ) ∩
A∗SP ⊆ error(SP). So let Xi be the i-th approximation of error(SP ∨ SQ)
defined as a fixed point. Then by induction on i, we show that Xi ∩ A∗SP ⊆
error(SP). Suppose that t ∈ Xk+1∩A∗SP . If t ∈ violations(SP∨SQ), then there

is a prefix t′ of t such that t′ ∈ RSP∨SQ ∩GSP∨SQ . Hence t′ ∈ error(SP) and so
t ∈ error(SP) as required. Otherwise, there is a trace t′ ∈ (AI

SP∨SQ)∗ such that

tt′ ∈ LSP∨SQ and for all o ∈ AO
SP∨SQ it holds that tt′o ∈ Xk. Consequently,

as t′ ∈ (ASP ∩ ASQ)∗, it follows that tt′ ∈ A∗SP , and so tt′ ∈ LSP . As
a result, tt′ ∈ error(SP) since tt′o′ ∈ error(SP) for each o′ ∈ AO

SP by the
induction hypothesis. From this we derive t ∈ error(SP). Now suppose that
t ∈ RSP∨SQ ∩ A∗SP . Then t ∈ RSP ∪ error(SP) by definition. Similarly, if t ∈
LSP∨SQ ∩A∗SP , then t ∈ LSP ∪ error(SP) as required. Showing SQ v SP ∨SQ
is similar.

For the second claim, suppose that t ∈ RSR ∩ A∗SP∨SQ . If t ≡ ε, then

ε ∈ RSP∨SQ trivially, while if t ≡ t′o for o ∈ AO
SP∨SQ , then t′o ∈ RSP∨SQ

by the induction hypothesis and output extendability of assumptions or ex-
tendability of violations/error. Instead, if t ≡ t′i for i ∈ AI

SP∨SQ , then by

the induction hypothesis in the difficult case we have t′ ∈ RSP ∩ error(SP)

and t′ ∈ RSQ ∩ error(SQ). As i ∈ AI
SP ∩ A

I
SQ , it follows from SP v SR and

SQ v SR that t′i ∈ RSP ∩RSQ . Hence, t′i ∈ RSP∨SQ .
Now suppose that t ∈ error(SR) ∩ A∗SP∨SQ . Then there exists a smallest

prefix t′ of t such that t′ ∈ RSR ∩ error(SR)∩A∗SP∨SQ . Suppose all strict pre-
fixes of t′ are not in error(SP∨SQ). Then by the previous part, it follows that
t′ ∈ RSP∨SQ . If t′ ∈ A∗SP , then from SP v SR it follows that t′ ∈ error(SP),
and if t′ ∈ A∗SQ , then from SQ v SR it follows that t′ ∈ error(SQ). Hence
t′ 6∈ GSP∨SQ (noting GSP∨SQ ⊆ A∗SP ∪A

∗
SQ), which implies t′ ∈ error(SP ∨SQ).

By extension closure of error, we have t ∈ error(SP ∨ SQ).
For the progress condition, suppose t ∈ LSR ∩ A∗SP∨SQ . Assuming t 6∈

error(SP ∨ SQ), we can infer that t ∈ RSP∨SQ ∩ GSP∨SQ . Suppose for a
contradiction that t 6∈ LSP∨SQ . Then since t ∈ RSP∨SQ , it follows that
t ∈ A∗SP and t 6∈ LSP , or t ∈ A∗SQ and t 6∈ LSQ . However, both of these
contradict SP v SR and SQ v SP . Hence t ∈ LSP∨SQ as required.

For the third claim, by the first claim we have that SP v SP ∨ SQ and
SQ v SP ∨ SQ. Since the contracts under consideration are composable for

44



disjunction, it follows from S ′P v SP and S ′Q v SQ, along with transitivity
(compatibility holds), that S ′P v SP ∨ SQ and S ′Q v SP ∨ SQ. Now by the
second claim it is straightforward to derive S ′P ∨ S ′Q v SP ∨ SQ.

Proof of Theorem 6

For soundness, assume P |= S1. Then AG(P) v S1 and S1 v S1 ∨ S2 by
Theorem 5. Since AI

P ∩ AO
S = ∅, it follows that transitivity holds, and so

AG(P) v S, implying P |= S. For completeness, take S1 = S2 = S. The
result then holds by idempotence of ∨.

Appendix E. Quotient

Proof of Theorem 7

For the first claim, if SP || SQ v SW , then AO
SP ||SQ = AO

SP ∪A
O
SQ ⊆ A

O
SW ,

which implies AO
SP ⊆ A

O
SW . Now suppose that AO

SP ⊆ A
O
SW . Then we con-

struct a contract SQ = 〈AI
SW ,A

O
SW \A

O
SP ,A

∗
SQ , ∅, ∅〉, which, having no imple-

mentations, implies SP || SQ has no implementations. The constraints R1
to R3 are satisfied, so SP || SQ v SW as required.

For the second claim, suppose t ∈ RSW∩A∗SP ||(SW/SP ). If t 6∈ RSP ||(SW/SP ),

then there exists a prefix t′ of t and t′′ ∈ (AO
SP ||(SW/SP ))

∗ such that t′t′′ �
ASP 6∈ RSP or t′t′′ � ASW/SP 6∈ RSW/SP , and t′t′′ � ASP 6∈ error(SP) and
t′t′′ � ASW/SP 6∈ error(SW/SP). It follows that t′t′′ ∈ RSW , so t′t′′ � ASW/SP ∈
RSW/SP , which means t′t′′ � ASP 6∈ RSP . Therefore, t′t′′ � ASW/SP 6∈ GSW/SP ,
which implies t′t′′ � ASW/SP ∈ violations(SW/SP). But this contradicts t′t′′ �
ASW/SP 6∈ error(SW/SP). Hence t ∈ RSP ||(SW/SP ).

Now suppose that t ∈ error(SW)∩A∗SP ||(SW/SP ). Then, there exists a prefix

t′ of t such that t′ ∈ RSW ∩ error(SW). By the previous part, it follows that
t′ ∈ RSP ||(SW/SP ). Now suppose for a contradiction that t′ ∈ GSP ||(SW/SP ).
Then t′ � ASP 6∈ error(SP) and t′ � ASW/SP 6∈ error(SW/SP). But it follows
that t′ � ASW/SP ∈ violations(SW/SP), since t′ � ASW/SP ∈ RSW/SP ∩GSW/SP .
This contradicts t′ ∈ GSP ||(SW/SP ). Hence t′ ∈ error(SP || (SW/SP)) and so
t ∈ error(SP || (SW/SP)).

Finally, suppose that t ∈ LSW∩A∗SP ||(SW/SP ), and t 6∈ error(SP || (SW/SP)).

Then by the previous part, t 6∈ error(SW), so t ∈ RSP ||(SW/SP ) ∩ GSP ||(SW/SP ).

Hence t � ASP ∈ RSP ∩ error(SP) and t � ASW/SP ∈ RSW/SP ∩ GSW/SP . If
t � ASP ∈ LSP , then t ∈ LSP ||(SW/SP ) as required, since t � ASP 6∈ error(SP)

45



implies t � ASP ∈ GSP . If instead t � ASP 6∈ LSP , then t � ASW/SP ∈ LSW/SP ,
which implies t ∈ LSP ||(SW/SP ) as required.

For the third claim, suppose that t ∈ RSW/SP ∩ A∗SQ . Then there exists
t′ ∈ A∗SW such that t′ � ASW/SP = t with t′ ∈ RSW and t′ � ASP 6∈ error(SP).
From t′ ∈ RSW we derive t′ ∈ RSP ||SQ ∪ error(SP || SQ), given that SP ||
SQ v SW . If t′ ∈ RSP ||SQ , then it follows that t′ � ASQ ∈ RSQ ∪ error(SQ).
If instead t′ ∈ error(SP || SQ), then it follows that t′ � ASQ ∈ error(SQ) by
Lemma 6. Note that t′ � ASQ = t.

Now suppose that t ∈ error(SW/SP) ∩ A∗SQ . Then there exists a prefix t′

of t such that t′ ∈ RSW/SP ∩ error(SW/SP). We show that Xi ∩ RSW/SP ∩
A∗SQ ⊆ error(SQ) by induction on i, where Xi is the i-th approximation of
error(SW/SP). The case of i = 0 is trivial, since X0 = ∅. For the difficult
case of t′ ∈ Xk+1, either: (i) t′ ∈ violations(SW/SP); or (ii) there exists
t′′ ∈ (AI

SW/SP )∗ such that t′t′′ ∈ LSW/SP and ∀o ∈ AO
SW/SP · t

′t′′o ∈ Xk.

For (i), there is a prefix and input extension t′′ of t′ such that there exists
tw ∈ RSW with tw � ASW/SP = t′′, tw � ASP 6∈ error(SP), and either tw ∈
error(SW) or tw � ASP 6∈ RSP . If tw ∈ error(SW), then tw ∈ error(SP || SQ),
since SP || SQ v SW . By Lemma 6, it follows that tw � ASQ ∈ error(SQ).
Alternatively, if tw � ASP 6∈ RSP , then if tw � ASQ 6∈ error(SQ) it follows
that tw 6∈ RSP ||SQ . Since SP || SQ v SW , it must hold that tw ∈ error(SP ||
SQ), which again by Lemma 6 implies tw � ASQ ∈ error(SQ). Note that
tw � ASQ = t′′, so t ∈ error(SQ). For (ii), by the induction hypothesis we
know that ∀o′ ∈ AO

SQ · t
′t′′o′ ∈ error(SQ). To show that t′t′′ ∈ LSQ , note

from t′t′′ ∈ LSW/SP that there exists tw ∈ LSW with tw � ASW/SP = t′t′′ such
that tw � ASP 6∈ LSP and tw � ASP 6∈ error(SP). Since SP || SQ v SW , it
follows that tw ∈ LSP ||SQ or tw ∈ error(SP || SQ). For the former, it follows
that tw � ASQ ∈ LSQ , while for the latter tw � ASQ ∈ error(SQ) (Lemma 6).
Either way, since tw � ASQ = t′t′′, it follows that t′t′′ ∈ error(SQ), which in
turn yields t′ ∈ error(SQ).

Finally, suppose that t ∈ LSW/SP ∩A∗SQ . Then there exists t′ ∈ A∗SW with
t′ � ASW/SP = t such that t′ ∈ LSW , t′ � ASP 6∈ LSP and t′ � ASP 6∈ error(SP).
From t′ ∈ LSW we derive t′ ∈ LSP ||SQ ∪ error(SP || SQ). If t′ ∈ LSP ||SQ , then
certainly t′ � ASQ ∈ LSQ . If instead t′ ∈ error(SP || SQ), then by Lemma 6
t′ � ASQ ∈ error(SQ). It is easy to see that t′ � ASQ = t.

46



Proof of Theorem 8

For soundness, first note that I(SP) |= SP , and so I(SP) || Q |= SW .
Consequently, AG(I(SP) || Q) v SW , and from the proof of Theorem 2 we
know that AG(I(SP)) || AG(Q) v SW . Moreover, SP v AG(I(SP)) v SP ,
so by Theorem 7 it follows that AG(Q) v SW/SP as required.

For completeness, by the interfaces of P and SP , as well as Q and SW/SP ,
matching, it follows that if AG(P) v SP , then AG(P) || AG(Q) v SP ||
(SW/SP), since the conditions for monotonicity in Theorem 1 are satisfied.
Now by transitivity (the conditions being trivially satisfied) and Theorem 7,
we obtain AG(P) || AG(Q) v SW . Hence AG(P || Q) v SW by Lemma 7.

Proof of Corollary 1

For soundness, note thatAG(I(SP) || Q) v SW , which by Lemma 7 yields
AG(I(SP)) || AG(Q) v SW . As AG(I(SP)) v SP v AG(I(SP)), it follows
by Theorem 7 that AG(Q) v SW/SP given AG(Q) and SW/SP have identical
interfaces. Completeness follows by Theorem 8.

Appendix F. Decomposing Parallel Composition

Proof of Corollary 2

Follows immediately from Theorems 2 and 7.

47


	Introduction
	Compositional Specification Theory
	Assume-Guarantee Reasoning Framework
	Refinement
	Parallel Composition
	Conjunction
	Disjunction
	Quotient
	Decomposing Parallel Composition

	Case Study
	Conclusion
	Proofs
	Parallel Composition
	Conjunction
	Disjunction
	Quotient
	Decomposing Parallel Composition

