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Reachability problem on hybrid automata

subclasses derivatives conditions bounded unbounded

reachability reachability

timed automata ẋ = 1 x ∼ c decidable decidable

initialized

rectangular

automata

ẋ ∈ [c1, c2]

x ∈ [c1, c2]

necessary when

ẋ changes

decidable decidable

rectangular

automata
ẋ ∈ [c1, c2] x ∈ [c1, c2] decidable undecidable

linear hybrid

automata I
ẋ = c x ∼ glinear decidable undecidable

linear hybrid

automata II
ẋ = flinear x ∼ glinear undecidable undecidable

hybrid automata ẋ = f x ∼ g undecidable undecidable
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hybrid automata ẋ = f x ∼ g undecidable undecidable
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Impressive tool development for hybrid systems reachability analysis
(incomplete list)HSolver [Ratschan et al., HSCC 2005]

iSAT-ODE [Eggers et al., ATVA 2008]

KeYmaera (X) [Platzer et al., IJCAR 2008]

PowerDEVS [Bergero et al., Simulation 2011]

SpaceEx [Frehse et al., CAV 2011]

S-TaLiRo [Annapureddy et al., TACAS 2011]

Ariadne [Collins et al., ADHS 2012]

HySon [Bouissou et al., RSP 2012]

Flow* [Chen et al., CAV 2013]

HyCreate [Bak et al., HSCC 2013]

HyEQ [Sanfelice et al., HSCC 2013]

NLTOOLBOX [Testylier et al., ATVA 2013]

SoapBox [Hagemann et al., ARCH 2014]

Acumen [Taha et al., IoT 2015]

C2E2 [Duggirala et al., TACAS 2015]

Cora [Althoff et al., ARCH 2015]

dReach [Kong et al, TACAS 2015]

Isabelle/HOL [Immler, TACAS 2015]

HyLAA [Bak et al., HSCC 2017]

HyPro/HyDRA [Schupp et al., NFM 2017]
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Verification techniques/tools for hybrid systems

(Rigorous/verified) simulation: Besides simulation for testing, rigorous/verified
simulation can be used for (bounded) reachability analysis.
Some tools: Acumen, C2E2, HyEQ, HyLAA, HySon, S-TaLiRo, PowerDEVS

Source: http://www.acumen-language.org/
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Verification techniques/tools for hybrid systems

Deduction: Finding and showing invariants using theorem proving.
Some tools: Ariadne, Isabelle/HOL, KeYmaera

Source: http://symbolaris.com/info/keymaera.html
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Verification techniques/tools for hybrid systems

Bounded model checking / interval arithmetic: System executions and
requirements are encoded by logical formulas; satisfiability checking tools (SMT
solvers) are used for (bounded) reachability analysis.
Some tools: dReach, HSolver, iSAT-ODE

Source: http://dreal.github.io/dReach/
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Verification techniques/tools for hybrid systems

Over-approximating flowpipe construction: Iterative (bounded) forward
reachability analysis based on some over-approximative symbolic state set
representations.
Some tools: Cora, Flow*, HyCreate, HyPro/HyDRA, NLTOOLBOX, SoapBox,
SpaceEx
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State set representations

Most well-known state set representations

boxes (hyper-rectangles) [Moore et al., 2009]
oriented rectangular hulls [Stursberg et al., 2003]
convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
template polyhedra [Sankaranarayanan et al., 2008]
orthogonal polyhedra [Bournez et al., 1999]
zonotopes [Girard, 2005]
ellipsoids [Kurzhanski et al., 2000]
support functions [Le Guernic et al., 2009]
Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]

Some needed set operations:

intersection union projection
linear transformation Minkowski sum
test for membership test for emptiness
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Example state set representation: Polytopes

Halfspace: set of points x satisfying l · x ≤ z

Polyhedron: an intersection of finitely many halfspaces

Polytope: a bounded polyhedron

l1

l2

l3

l4

representation union intersection Minkowski sum

V-representation by vertices easy hard easy
H-representation by facets hard easy hard
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Reachability computation for LHA: Time evolution

Assume: initial set X0, flow ẋ = Ax+Bu

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

X0

eAδX0

conv(X0, e
AδX0)

conv(X0, e
AδX0 ⊕ B1)

over-approximates flowpipe
for time [0, δ]

under dynamics ẋ = Ax
disturbance!

P0 = conv(X0, e
AδX0 ⊕ B1⊕B2)

over-approximates flowpipe
for time [0, δ]

under dynamics ẋ = Ax+Bu

P0

eAδP0

over-approximates flowpipe
for time [δ, 2δ]

under dynamics ẋ = Ax
disturbance!

P1 = eAδP0⊕B2

over-approximates flowpipe
for time [δ, 2δ]

under dynamics ẋ = Ax+Bu
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P0

eAδP0

over-approximates flowpipe
for time [δ, 2δ]

under dynamics ẋ = Ax
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P0

eAδP0

over-approximates flowpipe
for time [δ, 2δ]

under dynamics ẋ = Ax
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Erika Ábrahám - Reachability analysis with HyPro 10 / 49



Reachability computation for LHA: Time evolution

Assume: initial set X0, flow ẋ = Ax+Bu
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P0

eAδP0

over-approximates flowpipe
for time [δ, 2δ]

under dynamics ẋ = Ax
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disturbance!

P0 = conv(X0, e
AδX0 ⊕ B1⊕B2)

over-approximates flowpipe
for time [0, δ]

under dynamics ẋ = Ax+Bu
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Reachability computation for LHA: Jump successors

P0

P1

P2

P3
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Reachability computation for LHA: Example

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0

ẋ = x + 4y
ẏ = −4x + y

x ≥ 0

x ≥ 0.25∧ x ≤ 0.3
y := 0.9y + 0.3

x := x− 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62
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Erika Ábrahám - Reachability analysis with HyPro 12 / 49



Reachability computation for LHA: Example

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
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ẏ = −4x + y
x ≥ 0

x ≥ 0.25∧ x ≤ 0.3
y := 0.9y + 0.3

x := x− 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation
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Erika Ábrahám - Reachability analysis with HyPro 12 / 49



Reachability analysis search tree
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Flow* [Chen et al., CAV 2013]

Taylor model-based approach

non-linear dynamic

adaptive refinement methods

Available at https://flowstar.org/

Image: Xin Chen

Has been used in a variety of verification tasks, e.g.

biological/medical systems (glucose control, spiking neurons, Lotka
Volterra equations),

circuits (oscillators, van der Pol circuit),

mechanical systems (jet engine model)

Erika Ábrahám - Reachability analysis with HyPro 14 / 49
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HyPro [Schupp et al., NFM 2017]

A free and open-source C++ library for
state set representations for the reachability
analysis of hybrid systems.

Available at https://github.com/hypro/hypro.

Allows the fast implementation of specialized reachability analysis
methods.
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HyPro/HyDRA: Structure
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HyPro: State set representations

x

y

Ix

Iy

Boxes

x

y

x

y

Convex polyhedra (H, V, PPL)

x

y

c

g0

g1

Zonotopes

x

y

Support functions

x

y

Orthogonal polyhedra

Taylor models

Source: Xin Chen
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Main functionalities of GeometricObject

Set operations:

X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y )

Set utility functions:

dimension()

empty()

vertices()

project(vector<dimensions> d)

contains(point p)

conversion operations
reduction functions
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HyPro: Linear optimization

HyPro offers different number representations:
cln::cl RA, mpq class, double

Obstacles:

inexact linear optimization not suitable

exact linear optimization expensive

 combined application

Compute
optimal
solution
glpk

Compute optimal solution s∗ ≥ s
SMT-RAT/SoPlex/Z3

Compute optimal solution
SMT-RAT/SoPlex/Z3

Solution

No
solution

solution s

no solution

no
solution

solution s∗

no solution

solution s∗
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Utility

Further utility functions:

datastructures for e.g. hybrid automata, point, halfspace

parser for Flow*-based syntax

gnuplot plotting interface (pdf, eps and tex)

logging

Erika Ábrahám - Reachability analysis with HyPro 25 / 49



HyPro/HyDRA: Structure

d
at

as
tr

u
ct

u
re

s

u
ti

l

algorithms

re
pr

es
en

ta
ti

on
sBox

HPolytope

VPolytope

PPL-Polytope

Zonotope

SupportFunction

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface>

H
yb

ri
d

au
to

m
at

on
P

oi
n

t
H

al
fs

p
ac

e

Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

glpk SMT-RAT Z3 SoPlex
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HyDRA techniques

1 Counterexample-guided abstraction refinement

2 Parallelization

3 Sub-space computations
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Choice of state set representation

I
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Time step length

Discretize time horizon T into N time segments:

P ′0

P ′1

P ′2

P ′3

P0

P1

N = 2

N = 4
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Discrete successors: Aggregation & clustering

No aggregation/clustering

guard
n0 τ0

n1

τ1

n2

τ2

n3

τ3

n4

τ4

n5

τ5

n6

τ6

e e e e e e

Clustering

guard
n0 τ0

n1

τ1

n2

τ2

e e

Aggregation

guard
n0 τ0

n1

τ1

e
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Analysis parameters

Parameters such as

state set representation,

time step size δ,

aggregation/clustering,

. . .

influence precision as well as computational effort.

Too precise → might not terminate within acceptable time
Too coarse → might fail to show safety

Idea of dynamic configurations:
Use ”coarse” configurations for fast analysis.
Use more ”precise” configurations to falsify spurious counterexamples.

Some tools use adaptive methods, but they are hard-wired and restricted
to certain parameters.

Erika Ábrahám - Reachability analysis with HyPro 33 / 49



Analysis parameters

Parameters such as

state set representation,

time step size δ,

aggregation/clustering,

. . .

influence precision as well as computational effort.

Too precise → might not terminate within acceptable time
Too coarse → might fail to show safety

Idea of dynamic configurations:
Use ”coarse” configurations for fast analysis.
Use more ”precise” configurations to falsify spurious counterexamples.

Some tools use adaptive methods, but they are hard-wired and restricted
to certain parameters.
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HyDRA’s CEGAR approach

Strategy: Finite sequence of parameter configurations

conf0conf0

box
δ = 0.1

aggregation

conf1conf1

support function
δ = 0.1

aggregation

conf2conf2

support function
δ = 0.001

aggregation
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Dynamic search tree structure

No aggregation/clustering

A0

B0

e, [t1, t2]

A0 A1

B0 B1 C1

e, [t1, t2]

e, [t′1, t
′
2] e, [t′2, t

′
3]

refine A

Time interval: Flowpipe:

[
t1

]
t2

t

[
t1

[
t′1

[]
t′2

]
t′3

]
t2

t

guard
B0

B1

C1

Reuse and refine transition timing information.
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Erika Ábrahám - Reachability analysis with HyPro 35 / 49



Dynamic search tree structure

No aggregation/clustering – reduce time step length

A0

B0

e, [t1, t2]

A0 A1

B0 B1 C1

e, [t1, t2]

e, [t′1, t
′
2] e, [t′2, t

′
3]

refine A

Time interval: Flowpipe:

[
t1

]
t2

t

[
t1

[
t′1

[]
t′2

]
t′3

]
t2

t
guard

B0

B1

C1

Reuse and refine transition timing information.
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Example computation

stay in l0

jump to l1

guard: jump to l1

unsafe states

success l0

fail l1

fail l1

initial states l0

success l1
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HyDRA techniques

1 Counterexample-guided abstraction refinement

2 Parallelization

3 Sub-space computations

Erika Ábrahám - Reachability analysis with HyPro 37 / 49



Parallel CEGAR

�
master worker

init

create initial tasks

dispatch workers

all idle? join workers

exit

try: get task

got task?

report idle

join? terminate

report working

compute
reachability

queue bal.queue bal.

global queues

global queues

enqueue

local queueslocal queues

dequeue enq.

deq.

enqueue

enqueue

dequeue

Ï

±

Ï

Ï

±

start workers

±

Queues: (1) non-refinement (2) refinement

Tasks: node, refinement level, symbolic path

Synchronization on global queues.Synchronization on nodes for refinements.Use balanced local and global queues.
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Erika Ábrahám - Reachability analysis with HyPro 38 / 49



Parallel CEGAR

�
master worker

init

create initial tasks

dispatch workers

all idle? join workers

exit

try: get task

got task?

report idle

join? terminate

report working

compute
reachability

queue bal.

queue bal.

global queues

global queues

enqueue

local queues

local queues

dequeue enq.

deq.

enqueue

enqueue

dequeue

Ï

±

Ï

Ï

±

start workers

±

Queues: (1) non-refinement (2) refinement

Tasks: node, refinement level, symbolic path

Synchronization on global queues.Synchronization on nodes for refinements.

Use balanced local and global queues.
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HyDRA techniques

1 Counterexample-guided abstraction refinement

2 Parallelization

3 Sub-space computations
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HyPro application: Sub-space computations

Motivation: PLC-controlled plants
High-dimensional models

Relevant number of discrete variables
Clocks for cycle synchronisation

Idea:

Partition variable set  sub-spaces
Compute reachability in sub-spaces
Synchronise on time

Usual:

time [0, 0]

time [0, δ]

time [δ, 2δ]

time [2δ, 3δ]

Wanted:
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3. Sub-space computations

Usual:

time [0, 0]

time [0, δ]

time [δ, 2δ]

time [2δ, 3δ]

Wanted:

Partition the variable set into syntactically independent subsets.

(ẋ , ẏ) = A · (x , y)T + B · u

ẋ = Ax · xT + Bx · u ẏ = Ay · yT + By · u∧

Inv

Inv x Inv y∧

guard

guardx guardy∧

reset

resetx resety∧
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Discrete variables

x

y

ẋ = 0
ẏ = 1

2.5 ≤ y ≤ 2.8
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ẋ = 0
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Erika Ábrahám - Reachability analysis with HyPro 42 / 49



Discrete variables

x

y
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ẋ = 0
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Representation: Boxes

x

y

ẋ = 1
ẏ = 1

2.5 ≤ y ≤ 2.8
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ẋ = 1
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Representation: Polytopes

x
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Pros and cons

+ Reduced computational effort

+ Subspace-local configurations are possible

+ Even subspace-local reachability analysis algorithms are possible

- Additional over-approximation
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Leaking tank example
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Conclusion

HyPro: open-source programming library

Available at https://github.com/hypro/hypro

State set representations for the implementation of hybrid systems
reachability analysis algorithms

Exact as well as inexact number representations

Flexibility to deviate from standard methods

HyDRA: HyPro-based reachability analysis
Counterexample-guided abstraction refinement
Parallelization
Sub-space computations
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HyPro benchmark collection [NFM’15]

http://ths.rwth-aachen.de/research/projects/hypro/

benchmarks-of-continuous-and-hybrid-systems/
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Further challenges

State set representation: context-sensitive approaches, non-convex
representations, under-approximation

Precision: automated dynamic error reduction

Large uncertainties / initial sets

Zeno behaviour

Unbounded verification: efficient fixed-point recognition

More expressive models: non-convex invariants, urgent
transitions/locations, communication, random behaviour, hierarchical
models

Counterexamples

Compositionality

Standard input language, more benchmarks, competitions
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