
Sound Numeric Computations
in Abstract Acceleration

Dario Cattaruzza Alessandro Abate Peter Schrammel
Daniel Kroening

Department of Computer Science, University of Oxford

School of Engineering and Informatics, University of Sussex, UK

July 22, 2017

Linear Time Invariant (LTI) Systems.

We verify safety for Linear Loops in Real Domains in the form:

while (k ≤ k) x = Ax

I x ∈ Rn are state variables
I A ∈ Rn×n are the dynamics of the system.
I verification is performed using floating point computations.

I This work applies to General Linear loops with Linear Guards
and Inputs. For simplicity we will refer to the case above only.

Linear Time Invariant (LTI) Systems.

We verify safety for Linear Loops in Real Domains in the form:

while (k ≤ k) x = Ax

I x ∈ Rn are state variables
I A ∈ Rn×n are the dynamics of the system.
I verification is performed using floating point computations.
I This work applies to General Linear loops with Linear Guards

and Inputs. For simplicity we will refer to the case above only.

Using floating points to evaluate reachability

x̃0 = x0

while (k ≤ k) x̃ = Ax̃ + e

‖e‖ ≤ n‖δ‖ : δ = [δ1 · · · δn]
T

δi = sup
j

(|δ(Aij x̃ j : x̃ ∈ X)|)

Using eigenvalues to reduce the number of operations

Using the Eigendecomposition A = SJS−1, where J is a bidiagonal
matrix, we may replace the algorithm for:

Algorithm 1 Reals

1 : x ′0 = S−1x0

2 : while (k ≤ k)
3 : x ′k = Jx ′k−1
4 : xk = Sx ′

k

Algorithm 2 Floating Point

1 : x̃ ′0 = S−1x0 + es1

2 : while (k ≤ k)
3 : x̃ ′k = Jx̃ ′k−1 + δ′

4 : x̃k = Sx̃ ′k + es2

This algorithm is approximately n times faster and has an error of 1
n

if the eigendecomposition is precise.

Symbolic vs Numerical Eigendecomposition

I Symbolic Eigendecomposition (n < 10). es ∝ nδ
I Numeric Eigendecomposition (n < 10000).

I Narrow Bounds - Slower(1x). es ∝ n2δ
I Wide Bounds - Faster (100x). es ∝ nnδ
I Using higher precision makes for a better trade-off.

Method Dimension Precision Speed Error Scale
Narrow n = 20 128 bit 2x 10−37

Wide n = 20 128 bit 1.01x 10−15

Narrow n = 20 256 bit 4x 10−77

Wide n = 20 256 bit 2.02x 10−55

Using Abstract Acceleration
to reduce the number of operations

The set of points evaluated at each iteration is:

X ′k = JXk−1 = Jk X ′0

X ′ =
⋃
k≤k

X ′k

Which can be overapproximated by a single multiplication using an
Abstract Matrix

X ′ ⊆ X] = JX ′0, such that
⋃
k≤k

Jk ⊆ J ,

J X ′
0

Abstract Matrices for positive real eigenvalues

0 5 10 15 20 25 30 35

0

50

100

150

200

250

k = 2

k = 3

k = 4

λn
1

λ
n 2

Abstract Matrices for positive real eigenvalues

0 5 10 15 20 25 30 35

0

50

100

150

200

250

k = 2

k = 3

k = 4

λn
1

λ
n 2

Abstract Matrices for Complex Eigenvalues

−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

k = 1

k = 2
k = 3

λn
1

λ
n 2

Polyhedral faces from an R2 complex conjugate subspace .

Abstract Matrices for Jordan blocks

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

k = 1

k = 2

k = 3
apex

λn
1

λ
n 2

Polyhedral faces from an R2 Jordan block subspace .

Calculation of Abstract Reach Tube
Using Numeric Abstract Acceleration

1. CALCULATE

EIGENSPACE

2. RESTORE

SOUNDNESS

3. FIND

INVERSE

4. GET ABSTRACT

DYNAMICS

5. GET INITIAL

EIGENSTATES

8. GET

REACH TUBE

7. FIND EIGEN

REACH TUBE

6. FIND

VERTICES

A Ŝ, Ĵ S

J S−1

J

X0

S

X]

Pivot operations

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

12

3

Three interval half-planes with negative (dashed red), zero (thick green)
and positive (thin blue) angular error representations. The yellow and

orange areas (hypercubes) over-approximate all possible vertices of the
resulting polyhedron at the given location. If these hypercubes partially
intersect, the abstract vertex pk must necessarily contain all intersecting

hypercubes.

Performance results

Benchmark Dimension Unsound Sound
long double mp mpi exact

Building 48 18.10s 185.03s 558.15s t.o.
issr10 10 2.02s 23.46s 41.23s t.o.
Convoy Car 3 6 0.30s 1.31s 3.60s 24.60s
Convoy Car 2 3 0.013s 0.033s 0.07s 5.46s
Parabola 4 0.012s 0.012s 0.05s 2.50s

Table: Axelerator1 time performance on various benchmarks.
mp is the required precision for the algorithm using non-interval arithmetic

mpi is the sound algorithm

1www.cprover.org/LTI

Conclusions

I We have shown a numerical method for performing abstract
acceleration using interval analysis

I It significantly improves the speed of the algorithm, allowing for
user defined compromises that ensure scalability and
soundness.

I The use of eigendecomposition and interval simplex can be
applied to a number of approaches in order to achieve fast
sound results.

The tool can be found at www.cprover.org/LTI

