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Introduction

• ProbReach – tool for probabilistic reachability analysis in uncertain
hybrid systems.

• Uncertain hybrid systems: random and nondeterministic parameters.

• Reachability = deciding whether a goal state is reachable.
• Systems with random parameters: computing probability of reachability.
• Nondeterministic parameters introduce a probability reachability function.

• ProbReach implements two approaches: formal and statistical.
• Formal approach: stronger guarantees (absolute vs. statistical).
• Statistical approach: lower complexity with respect to the number of

parameters (constant vs. exponential).

• ProbReach can be applied to realistic models.
• Artificial pancreas model.
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Hybrid Systems
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• init and reset – computable functions,
• flow – Lipschitz-continuous ODEs,

• invt and jump – Boolean logic formula
m∧
i=1

( ki∨
j=1

(
fi ,j(x) ◦ 0

))
,

• ◦ ∈ {>,≥},
• fi,j – computable function.
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Bounded Reachability

• Reachability is undecidable even for linear hybrid systems
(Alur, Courcoubetis, Henzinger, Ho. 1993).

• Bounded reachability:
• computable goal predicate, and
• finite reachability depth, and
• bounded time domain in each mode.

Does the hybrid system reach a goal state within a finite
number of (discrete) steps?

• Nonlinear arithmetics (with trigonometric functions) over the
reals is undecidable (Tarski, 1951).

• Bounded reachability is δ-decidable.
• δ-complete decision procedure (Gao, Avigad, Clarke. LICS

2012).
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Uncertain Hybrid Systems
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Parametric Hybrid System (PHS):

• p ∈ P – parameter,

• P 6= ∅ – parameter space,

• dp
dt = 0.

Stochastic PHS (SPHS):

• PHS with random parameters.

• init and reset – computable functions,
• flow – Lipschitz-continuous ODEs,

• invt and jump – Boolean logic formula
m∧
i=1

( ki∨
j=1

(
fi ,j(x,p) ◦ 0

))
,

• ◦ ∈ {>,≥},
• fi,j – computable function.
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SPHS: Running Example

S
x
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Parameters:
• Random:

• υ0 ∼ N (25, 3) – initial speed,
• α = {0.7854 : 0.9, 1.0472 : 0.09, 0.5236 : 0.01} – angle to horizon,

• Nondeterministic:
• K ∈ [0.5, 0.9] – speed loss coefficient.
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Bounded Reachability Probability

What is the probability that the system reaches a goal state
in a finite number of steps?

Let P = PN × PR

• PR is the domain of random parameters,

• PN is the domain of nondeterministic parameters

The bounded reachability probability function is:

Pr : PN → [0, 1].

If PN = ∅ then Pr is constant.
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Computing Bounded Reachability Probability

Approach Formal Statistical

Principle Formal Reasoning Monte Carlo Sampling

Probability
∫
G

dP E[X ] ≈ 1
N

∑N
i=1 Xi

G = {p ∈ P : goal(p)}, Xi = 1 if goal(p),
GC = P \ G . Xi = 0 otherwise.

Guarantees Absolute Statistical

Complexity Exponential Constant
(number of parameters)

Both approaches need a procedure which given a non-empty
B ⊆ P identifies whether B ⊆ G or B ⊆ GC .
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Evaluation Procedure (I)

Given a non-empty B ⊆ P we define two formulae
Reach(H, l ,B), and Reach∀(H, l ,B).

• Reach(H, l ,B) – true if H satisfies goal in l steps for some p ∈ B,

• Reach∀(H, l ,B) := ∀Bp : Reach(H, l , {p}).

• Reach∀(H, l ,B)⇒ Reach(H, l , {p}).

• Reach and Reach∀ are bounded LR-sentences

• Can be verified by the δ-complete decision procedure

Remember!!! Only unsat answer can be trusted and δ-sat is
subject to over-approximation δ.
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Evaluation Procedure (II)

• Based on the unsat (trusted) answer of δ-decision procedures

Algorithm 1: evaluate(H, l ,B, δ)

1 if δ-decision
(

Reach(H, l ,B)
)

== δ-sat then

2 if δ-decision
(
¬Reach∀(H, l ,B)

)
== δ-sat then

3 return undet;

4 return sat;

5 return unsat;

• sat – goal is reached for all parameter values in B,

• unsat – goal is reached for no parameter values in B,

• undet – goal is reached for some parameter values in B,

OR

• undet – one of the formulae is not robust for the given δ.
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Formal Approach: “In a nutshell”

The bounded reachability probability is a function of
nondeterministic parameters obtained as:

Pr(pN) =

∫
G(pN)

dP

• P - probability measure of random parameters,

• G (pN) - system’s goal set for the given pN .

How to compute Pr(pN)???

• Identify G (pN) – already solved!
• Partition PR with boxes B,
• Evaluate each {pN} × B using procedure evaluate.

• Compute
∫
B

dP for each box with desired precision ε̂ > 0.

• Find an estimate which is at most ε̂ far from
∫
B

dP.
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Formal Approach: Algorithm

We reason about parameter boxes BN ⊆ PN for which we
compute enclosures

[
Pover [BN ],Punder [BN ]

]
such that:

∀pN ∈ BN : Pr(pN) ∈
[
Pover [BN ],Punder [BN ]

]
.

1 BN = PN ;BR = PR ;
2 Pover [BN ] = 1; Punder [BN ] = 0;
3 while for each BN : (Pover [BN ]− Punder [BN ] > ε) or (BN > ρ) do
4 switch evaluate(H, l ,BR × BN , |BR |) do
5 case unsat do Pover [BN ] = Pover [BN ]−

∫
BR

dP ;

6 case sat do Punder [BN ] = Punder [BN ] +
∫
BR

dP ;

7 case undet do bisect BR ,BN ;

Fedor Shmarov and Paolo Zuliani, PlanHS 2016
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Formal Approach: Running Example

S
x

0 10 20 30 40 50 60 70 80

S
y

0

5

10

υ0

α

Parameters:
• Random:

• υ0 ∼ N (25, 3) – initial speed,
• α = {0.7854 : 0.9, 1.0472 : 0.09, 0.5236 : 0.01} – angle to horizon,

• Nondeterministic:
• K ∈ [0.5, 0.9] – speed loss coefficient.

Compute the probability (Pr : [0.5, 0.9]→ [0, 1]) of landing
further than 100 metres (Sx ≥ 100) after bouncing once

(l = 1).
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Formal Approach: Running Example (II)

• The probability reachability function Pr(K ) can be obtained as:

Pr(K ) =
∑3

i=1

[
fα(αi ) ·

∞∫√
980

sin(2αi )(K
2+1)

fυ0(x)dx

]

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Formal Approach: Running Example (III)

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0
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• Probability enclosure precision ε = 10−3.

• Red boxes – computed for ρ = 5 · 10−2.

• Blue boxes – computed for ρ = 10−2.
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Formal Approach: ε-guarantee

• Size of probability enclosures depends on
• nondeterministic parameter precision ρ,
• solver precision δ.

• Probability enclosures can be arbitrarily tight (up to the
required ε > 0) if

• formulae Reach and Reach∀ are robust for all p ∈ P,
• reachability probability function is continuous,
• at least one continuous random parameter.

1 BN = PN ;BR = PR ;
2 Pover [BN ] = 1; Punder [BN ] = 0;
3 while for each BN : (Pover [BN ]− Punder [BN ] > ε) or (BN > ρ) do
4 switch evaluate(H, l ,BR × BN , |BR |) do
5 case unsat do Pover [BN ] = Pover [BN ]−

∫
BR

dP ;

6 case sat do Punder [BN ] = Punder [BN ] +
∫
BR

dP ;

7 case undet do bisect BR ,BN ;
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Formal Approach: Running Example (IV)

K
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• Probability enclosure precision ε = 10−2.

• Nondeterministic parameter precision ρ is ignored.
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Computing Probabilistic Bounded Reachability

Approach Formal Statistical

Principle Formal Reasoning Monte Carlo Sampling

Probability
∫
G

dP E[X ] = 1
N

∑N
i=1 Xi

G = {p ∈ P : goal(p)}, Xi = 1 if goal(p),
GC = P \ G . Xi = 0 otherwise.

Guarantees Absolute Statistical

Complexity Exponential Constant
(number of parameters)
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Statistical Approach: “In a nutshell”

For each pN ∈ PN and pR ∈ PR let:

X (pN ,pR) =

{
1 if goal is reached for (pN ,pR),

0 otherwise.

Then Pr(pN) = E[X (pN)] =
∫

G(pN)

dP.

How to compute Pr(pN)???
• Sample pR using the parameters’ distribution.
• Evaluate X (pN ,pR).

We CANNOT evaluate X (pN ,pR) (undecidability !!!)
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Statistical Approach: Confidence Intervals

• We define two random variables:

Xsat(pN ,pR) =

{
1 if evaluate(H, l , {pN ,pR}, δ) = sat,

0 otherwise.

Xusat(pN ,pR) =

{
0 if evaluate(H, l , {pN ,pR}, δ) = unsat,

1 otherwise.

• Xsat(pN ,pR) and Xusat(pN ,pR) can be sampled,

• Xsat(pN ,pR) ≤ X (pN ,pR) ≤ Xusat(pN ,pR).

E[Xsat(pN)] ≤ E[X (pN)] = Pr(pN) ≤ E[Xusat(pN)]
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Statistical Approach: Confidence Intervals (II)

• Given accuracy ξ > 0 and confidence c ∈ (0, 1) compute
intervals [psat − ξ, psat + ξ] and [pusat − ξ, pusat + ξ].

• Probability
(
E[Xsat(pN ,pR)] ∈ [psat − ξ, psat + ξ]

)
≥ c ,

• Probability
(
E[Xusat(pN ,pR)] ∈ [pusat − ξ, pusat + ξ]

)
≥ c .

Probability
(

Pr(pN) ∈ [psat − ξ, pusat + ξ]
)
≥ c .

• The size of [psat − ξ, pusat + ξ] can be greater than 2ξ
• non-robustness for the given δ, or
• undecidability in general.

Shmarov and Zuliani. HVC 2016
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Statistical Approach: Cross-Entropy Algorithm

• We compute maximum/minimum reachability probability.
• approximate value pN where the minimum/maximum

probability is achieved,
• Probability

(
Pr(pN) ∈ [psat − ξ, pusat + ξ]

)
≥ c .

• CE aims at obtaining the optimal parameter distribution
[Rubinstein and Kroese, 2008].

• Step 0 start with nondeterministic parameters distributed
with PDF f (·; v).

• Step 1 generate samples pN using f (·; v).
• Step 2 update v using the fittest (probability-wise) samples.
• Step 3 go to Step 1 if f (·; v) variance is greater than the

desired σ̂2.

• There must be v such that f (·; v) approximates single-point
distributions arbitrarily well.

Cross-Entropy can fall into a local extremum.

Shmarov and Zuliani. HVC 2016
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Statistical Approach: Cross-Entropy Algorithm (II)

• CE terminates when the user-defined variance σ̂2 is reached.
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Statistical Approach: Running Example

• Pr(K ) can be obtained analytically.

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K Kmin max

K Confidence Interval Pr(K )

min 0.50425 [0.14464, 0.15464] 0.15093

max 0.89301 [0.68238, 0.69238] 0.68677
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Statistical Approach: CE Result Quality

• Number of samples per iteration of CE algorithm,
• the more the better.

• Terminal variance value,
• the smaller the better.

• Initial distribution parameters,
• need to provide sufficient initial coverage to avoid local

extrema.

• Accuracy for estimating the confidence intervals,
• the higher the better.
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ProbReach

• Implemented in C++.

• Uses OpenMP for parallelisation.

• Uses several libraries
• CAPD, IBEX, GSL.

• Any SAT ODE solver supporting δ-decisions can be used.
• dReal1 [Sicun Gao, Soonho Kong]
• iSAT32 [Martin Fränzle et al.]

• Available at https://github.com/dreal/probreach

Shmarov and Zuliani. HSCC 2015

1http://dreal.github.io/
2https://projects.avacs.org/projects/isat3
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Demonstration

28 / 41



Discussion

• We presented ProbReach – tool for probabilistic bounded
reachability in uncertain hybrid system.

• It features formal and statistical approaches.

• Formal approach: computes probability enclosures containing
the range of the probability reachability function.

• Complexity grows exponentially with the number of system
parameters.

• Statistical approach: computes confidence intervals containing
the approximate maximum/minimum probability value.

• Complexity remains constant with respect to the number of
system parameters.

• ProbReach is publicly available at
https://github.com/dreal/probreach.
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Artificial Pancreas

Closed-loop (with feedback) control of insulin
treatment for Type 1 diabetes.

• Continuous glucose monitor

• Control algorithm

• Insulin pump
• basal – constant dose (automatic)
• bolus – single high dose (manual)

MINIMED 670G by
Medtronic3

Objective

Design automatic closed-loop control of bolus insulin for
keeping blood glucose level between 4-12 mmol/L.

• Temporary hyperglycemia is allowed while hypoglycemia
should be avoided.

3
https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system
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Automatic Control

Control Objective

Given an external disturbance reduce the difference be-
tween the measured system output and the desired value
by adjusting the control variable.

Time

S
y
st

e
m

 o
u
tp

u
t

• disturbance:
amount of carbohydrates (DG )

• system output:
blood glucose level (G(t))

• desired level (set-point):
Gsp = 6.11 [mmol/L]

• control variable:
insulin admission (u(t) + ub)

• difference (error):
e(t) = Gsp − G(t)

32 / 41



PID Controller

P

I

D

PLANT
 PHS 

• P roportional - present value of the error,

• I ntegral - past errors,

• D erivative - predicted future errors.

Synthesis Objective

Find values of Kp, Ki and Kd (gains) “minimising” e(t).
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Stochastic Parametric Hybrid Systems

Meal

Flow
(
G (t)︸︷︷︸

glucose

, u(t) + ub︸ ︷︷ ︸
insulin

, Gsp︸︷︷︸
desired value

, DG︸︷︷︸
meal size

)
a.

⇑ ⇓
PID(Kp,Ki ,Kd ,G (t), u(t) + ub,Gsp)

a
Hovorka, R.: Closed-loop insulin delivery: from bench to clinical practice.

Nature Reviews Endocrinology 7(7), 385395 (2011)
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Stochastic Parametric Hybrid Systems (II)

Meal 1 Meal 2 Meal 3
DG := DG1

t = T1

(DG := DG2
) ∧ (t := 0)

t = T2

(DG := DG3
) ∧ (t := 0)

Parameters:
Size of each meal:

DG1 ∼ N (40, 10),

DG2 ∼ N (90, 10),

DG3 ∼ N (60, 10).

Time between the meals:

T1 ∼ N (300, 10),

T2 ∼ N (300, 10).

35 / 41



Safety and Robustness

Safety

An unsafe state should be reached with very small probability.

Unsafe: G (t) 6∈ [4, 16].

Robustness (not in the sense of δ-robustness)

Difference between the system output and the desired value
should be small.

• Fundamental Index: FI (t) =
∫ t

0
(e(τ))2 dτ

System output should converge to the steady-state.

• Weighted Fundamental Index: FIw (t) =
∫ t

0
τ 2 · (e(τ))2 dτ

Non-robust: (FI (t) > 3.5 · 106) ∨ (FIw (t) > 70 · 109).
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Automated Synthesis

Safety and robustness analysis is performed through bounded
reachability.

Bounded Reachability

Can the unsafe state be reached within:

• finite number of discrete steps, and

• bounded time interval.

Bounds:

• 3 meals,

• 24 hours.

Automated Synthesis Objective

Synthesise a PID controller minimizing the probability of
reaching an unsafe state or violating the robustness constraint
during 3 meals within 24 hour period.
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Results

Insulin Administration

u(t)︸︷︷︸
PID(Kp ,Ki ,Kd , e(t))

+ ub︸︷︷︸
basal rate

Basal rate synthesis (formal): with G(0) = Gsp and no external disturbances G(t)
reaches [Gsp − 0.05,Gsp + 0.05] in 2000 minutes and remains there for another 1000
minutes.

Domain Result Chosen Value
ub [0,1] [0.0553359375, 0.055640625] 0.0555

PID controller synthesis (statistical):
# Kd Ki Kp CI

C1
0 0 0 0 [0.86956, 0.88956]

C2
0 0 0 0 [0.98861, 1]

C1 −6.06855× 10−2 −5.61901× 10−7 −5.979× 10−4 [0.09946, 0.10946]
C2 −6.02376× 10−2 −3.53308× 10−7 −6.166× 10−4 [0.20711, 0.21711]
C3
§ −5.7284× 10−2 −3.00283× 10−7 −6.39023× 10−4 [0.3324, 0.3524]

§Both safety and robustness were taken into account
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One-day Scenario

50 grams, 100 grams, 70 grams in 5 hour intervals.

Time (min)
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C
0

C
1

C
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C
3 # Safety FI × 10−6 FIw × 10−9

C1
0 , C

2
0 Unsafe 26.2335 847.5063

C1 Safe 3.89437 114.49821
C2 Unsafe 3.95773 81.61823
C3 Safe 3.96117 74.90655
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Discussion

Conclusions:

• We presented a technique for the automated synthesis of safe
and robust PID controllers using ProbReach.

• The presented approach was applied to an artificial pancreas
model.

Future work:

• PID controllers with nonlinear gains.

• Discrete-time PID controllers.
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Thank you

Questions?
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