ProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems

Fedor Shmarov, Paolo Zuliani

School of Computing Science, Newcastle University, UK

- ProbReach tool for probabilistic reachability analysis in uncertain hybrid systems.
 - Uncertain hybrid systems: *random* and *nondeterministic* parameters.

- ProbReach tool for probabilistic reachability analysis in uncertain hybrid systems.
 - Uncertain hybrid systems: *random* and *nondeterministic* parameters.
- Reachability = deciding whether a goal state is reachable.
 - Systems with random parameters: computing *probability of reachability*.
 - Nondeterministic parameters introduce a *probability reachability function*.

- ProbReach tool for probabilistic reachability analysis in uncertain hybrid systems.
 - Uncertain hybrid systems: *random* and *nondeterministic* parameters.
- Reachability = deciding whether a goal state is reachable.
 - Systems with random parameters: computing *probability of reachability*.
 - Nondeterministic parameters introduce a *probability reachability function*.
- ProbReach implements two approaches: *formal* and *statistical*.
 - Formal approach: stronger guarantees (absolute vs. statistical).
 - Statistical approach: lower complexity with respect to the number of parameters (*constant* vs. *exponential*).

- ProbReach tool for probabilistic reachability analysis in uncertain hybrid systems.
 - Uncertain hybrid systems: *random* and *nondeterministic* parameters.
- Reachability = deciding whether a goal state is reachable.
 - Systems with random parameters: computing *probability of reachability*.
 - Nondeterministic parameters introduce a *probability reachability function*.
- ProbReach implements two approaches: *formal* and *statistical*.
 - Formal approach: stronger guarantees (absolute vs. statistical).
 - Statistical approach: lower complexity with respect to the number of parameters (*constant* vs. *exponential*).
- ProbReach can be applied to realistic models.
 - Artificial pancreas model.

Hybrid Systems

Hybrid Systems

- init and reset computable functions,
- flow Lipschitz-continuous ODEs,
- invt and jump Boolean logic formula

•
$$\circ \in \{>, \geq\}$$
,

• $f_{i,j}$ – computable function.

$$\bigwedge_{i=1}^{m} \Big(\bigvee_{j=1}^{k_{i}} \big(f_{i,j}(\mathbf{x}) \circ 0\big)\Big),$$

• Reachability is **undecidable** even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).

- Reachability is **undecidable** even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).
- Bounded reachability:
 - computable goal predicate, and
 - finite reachability depth, and
 - bounded time domain in each mode.

Does the hybrid system reach a **goal** state within a finite number of (discrete) steps?

- Reachability is **undecidable** even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).
- Bounded reachability:
 - computable goal predicate, and
 - finite reachability depth, and
 - bounded time domain in each mode.

Does the hybrid system reach a **goal** state within a finite number of (discrete) steps?

• Nonlinear arithmetics (with trigonometric functions) over the reals is **undecidable** (Tarski, 1951).

- Reachability is **undecidable** even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993).
- Bounded reachability:
 - computable goal predicate, and
 - finite reachability depth, and
 - bounded time domain in each mode.

Does the hybrid system reach a **goal** state within a finite number of (discrete) steps?

- Nonlinear arithmetics (with trigonometric functions) over the reals is **undecidable** (Tarski, 1951).
- Bounded reachability is δ -decidable.
 - δ -complete decision procedure (Gao, Avigad, Clarke. LICS 2012).

- init and reset computable functions,
- flow Lipschitz-continuous ODEs,
- invt and jump Boolean logic formula $\bigwedge_{i=1}^{m} \left(\bigvee_{i=1}^{k_i} \left(f_{i,j}(\mathbf{x}, \mathbf{p}) \circ \mathbf{0} \right) \right)$,
 - $\bullet \ \circ \in \{>,\geq\},$
 - $f_{i,j}$ computable function.

SPHS: Running Example

Parameters:

- Random:
 - $v_0 \sim \mathcal{N}(25,3)$ initial speed,
 - $\alpha = \{0.7854 : 0.9, 1.0472 : 0.09, 0.5236 : 0.01\}$ angle to horizon,

• Nondeterministic:

• $K \in [0.5, 0.9]$ – speed loss coefficient.

What is the probability that the system reaches a **goal** state in a finite number of steps?

What is the probability that the system reaches a **goal** state in a finite number of steps?

Let $P = P_N \times P_R$

- P_R is the domain of random parameters,
- P_N is the domain of nondeterministic parameters

What is the probability that the system reaches a **goal** state in a finite number of steps?

Let $P = P_N \times P_R$

- P_R is the domain of random parameters,
- P_N is the domain of nondeterministic parameters

The bounded reachability probability function is:

$$\mathbf{Pr}: P_N \rightarrow [0,1].$$

If $P_N = \emptyset$ then **Pr** is constant.

Computing Bounded Reachability Probability

Approach	Formal	Statistical
Principle	Formal Reasoning	Monte Carlo Sampling
Probability	$\int\limits_{G} d\mathbb{P}$	$\mathbb{E}[X] \approx \frac{1}{N} \sum_{i=1}^{N} X_i$
	$G = \{\mathbf{p} \in P : \mathbf{goal}(\mathbf{p})\},\$	$X_i = 1$ if $goal(p)$,
	$G^{C} = P \setminus G.$	$X_i = 0$ otherwise.
Guarantees	Absolute	Statistical
Complexity	Exponential	Constant
(number of parameters)		

Computing Bounded Reachability Probability

Approach	Formal	Statistical
Principle	Formal Reasoning	Monte Carlo Sampling
Probability	$\int\limits_{G} d\mathbb{P}$	$\mathbb{E}[X] \approx \frac{1}{N} \sum_{i=1}^{N} X_i$
	$G = \{\mathbf{p} \in P : \mathbf{goal}(\mathbf{p})\},\$	$X_i = 1$ if goal(p) ,
	$G^{C} = P \setminus G.$	$X_i = 0$ otherwise.
Guarantees	Absolute	Statistical
Complexity	Exponential	Constant
(number of parameters)		

Both approaches need a procedure which given a non-empty $B \subseteq P$ identifies whether $B \subseteq G$ or $B \subseteq G^C$.

Given a non-empty $B \subseteq P$ we define two formulae **Reach**(H, I, B), and **Reach**^{\forall}(H, I, B).

Given a non-empty $B \subseteq P$ we define two formulae **Reach**(H, I, B), and **Reach**^{\forall}(H, I, B).

- Reach(H, I, B) true if H satisfies goal in I steps for some $\mathbf{p} \in B$,
- Reach^{\forall}(*H*, *I*, *B*) := \forall^{B} **p** : Reach(*H*, *I*, {**p**}).
 - Reach^{\forall}(H, I, B) \Rightarrow Reach(H, I, {p}).

Given a non-empty $B \subseteq P$ we define two formulae **Reach**(H, I, B), and **Reach**^{\forall}(H, I, B).

- Reach(H, I, B) true if H satisfies goal in I steps for some $\mathbf{p} \in B$,
- Reach^{\forall}(*H*,*I*,*B*) := $\forall^{B}\mathbf{p}$: Reach(*H*,*I*, {**p**}).
 - Reach^{\forall}(*H*, *I*, *B*) \Rightarrow Reach(*H*, *I*, {**p**}).
- Reach and Reach $^\forall$ are bounded $\mathcal{L}_\mathbb{R}\text{-sentences}$
- Can be verified by the $\delta\text{-complete}$ decision procedure

Given a non-empty $B \subseteq P$ we define two formulae **Reach**(H, I, B), and **Reach**^{\forall}(H, I, B).

- Reach(H, I, B) true if H satisfies goal in I steps for some $\mathbf{p} \in B$,
- Reach^{\forall}(*H*, *I*, *B*) := \forall^{B} **p** : Reach(*H*, *I*, {**p**}).
 - Reach^{\forall}(*H*, *I*, *B*) \Rightarrow Reach(*H*, *I*, {**p**}).
- Reach and Reach $^\forall$ are bounded $\mathcal{L}_\mathbb{R}\text{-sentences}$
- Can be verified by the $\delta\text{-complete}$ decision procedure

Remember!!! Only *unsat* answer can be trusted and δ -sat is subject to over-approximation δ .

• Based on the *unsat* (trusted) answer of δ -decision procedures

Algorithm 1: evaluate(H, I, B, δ) if δ -decision(Reach(H, I, B)) == δ -sat then if δ -decision(\neg Reach \forall (H, I, B)) == δ -sat then if δ -decision(\neg Reach \forall (H, I, B)) == δ -sat then return undet; return sat;

5 return unsat;

- sat goal is reached for all parameter values in B,
- **unsat goal** is reached for **no** parameter values in *B*,
- undet goal is reached for some parameter values in B,

Algorithm 2: avaluato(H + P s)

• Based on the *unsat* (trusted) answer of δ -decision procedures

5 return unsat;

- sat goal is reached for all parameter values in B,
- **unsat goal** is reached for **no** parameter values in *B*,
- undet goal is reached for some parameter values in B,

OR

• **undet** – one of the formulae is not robust for the given δ .

Approach	Formal	Statistical
Principle	Formal Reasoning	Monte Carlo Sampling
Probability	$\int\limits_{G} d\mathbb{P}$	$\mathbb{E}[X] = \frac{1}{N} \sum_{i=1}^{N} X_i$
	$G = \{\mathbf{p} \in P : \mathbf{goal}(\mathbf{p})\},\$	$X_i = 1$ if goal(p) ,
	$G^{C} = P \setminus G.$	$X_i = 0$ otherwise.
Guarantees	Absolute	Statistical
Complexity	Exponential	Constant
(number of parameters)		

The bounded reachability probability is a function of **nondeterministic** parameters obtained as:

$$\mathsf{Pr}(\mathsf{p}_N) = \int\limits_{G(\mathsf{p}_N)} d\mathbb{P}$$

- $\ensuremath{\mathbb{P}}$ probability measure of random parameters,
- $G(\mathbf{p}_N)$ system's goal set for the given \mathbf{p}_N .

The bounded reachability probability is a function of **nondeterministic** parameters obtained as:

$$\mathsf{Pr}(\mathsf{p}_N) = \int\limits_{G(\mathsf{p}_N)} d\mathbb{P}$$

- $\ensuremath{\mathbb{P}}$ probability measure of random parameters,
- $G(\mathbf{p}_N)$ system's goal set for the given \mathbf{p}_N .

How to compute $Pr(p_N)$???

The bounded reachability probability is a function of **nondeterministic** parameters obtained as:

$$\mathsf{Pr}(\mathsf{p}_N) = \int\limits_{G(\mathsf{p}_N)} d\mathbb{P}$$

- $\ensuremath{\mathbb{P}}$ probability measure of random parameters,
- $G(\mathbf{p}_N)$ system's goal set for the given \mathbf{p}_N .

How to compute $Pr(p_N)$???

- Identify $G(\mathbf{p}_N)$ already solved!
 - Partition P_R with boxes B,
 - Evaluate each $\{\mathbf{p}_N\} \times B$ using procedure evaluate.

The bounded reachability probability is a function of **nondeterministic** parameters obtained as:

$$\mathsf{Pr}(\mathsf{p}_N) = \int\limits_{G(\mathsf{p}_N)} d\mathbb{P}$$

- $\ensuremath{\mathbb{P}}$ probability measure of random parameters,
- $G(\mathbf{p}_N)$ system's goal set for the given \mathbf{p}_N .

How to compute $Pr(p_N)$???

- Identify $G(\mathbf{p}_N)$ already solved!
 - Partition P_R with boxes B,
 - Evaluate each $\{\mathbf{p}_N\} \times B$ using procedure evaluate.
- Compute $\int_{B} d\mathbb{P}$ for each box with desired precision $\hat{\epsilon} > 0$.
 - Find an estimate which is at most $\hat{\epsilon}$ far from $\int d\mathbb{P}$.

We reason about parameter boxes $B_N \subseteq P_N$ for which we compute enclosures $[\mathbf{P}_{over}[B_N], \mathbf{P}_{under}[B_N]]$ such that:

 $\forall \mathbf{p}_N \in B_N : \mathbf{Pr}(\mathbf{p}_N) \in [\mathbf{P}_{over}[B_N], \mathbf{P}_{under}[B_N]].$

We reason about parameter boxes $B_N \subseteq P_N$ for which we compute enclosures $[\mathbf{P}_{over}[B_N], \mathbf{P}_{under}[B_N]]$ such that:

 $\forall \mathbf{p}_N \in B_N : \mathbf{Pr}(\mathbf{p}_N) \in [\mathbf{P}_{over}[B_N], \mathbf{P}_{under}[B_N]].$

$$\begin{array}{c|c} 1 & B_{N} = P_{N}; B_{R} = P_{R}; \\ 2 & \mathbf{P}_{over}[B_{N}] = 1; \mathbf{P}_{under}[B_{N}] = 0; \\ 3 & \text{while for each } B_{N}: (\mathbf{P}_{over}[B_{N}] - \mathbf{P}_{under}[B_{N}] > \epsilon) \text{ or } (B_{N} > \rho) \text{ do} \\ 4 & \text{switch evaluate}(H, I, B_{R} \times B_{N}, |B_{R}|) \text{ do} \\ 5 & \text{case unsat do } \mathbf{P}_{over}[B_{N}] = \mathbf{P}_{over}[B_{N}] - \int_{B_{R}} d\mathbb{P} ; \\ 6 & \text{case sat do } \mathbf{P}_{under}[B_{N}] = \mathbf{P}_{under}[B_{N}] + \int_{B_{R}} d\mathbb{P} ; \\ 7 & \text{case undet do bisect } B_{R}, B_{N} ; \end{array}$$

Fedor Shmarov and Paolo Zuliani, PlanHS 2016

Formal Approach: Running Example

- Random:
 - $v_0 \sim \mathcal{N}(25,3)$ initial speed,
 - $\alpha = \{0.7854 : 0.9, 1.0472 : 0.09, 0.5236 : 0.01\}$ angle to horizon,
- Nondeterministic:
 - $K \in [0.5, 0.9]$ speed loss coefficient.
Formal Approach: Running Example

- Random:
 - $v_0 \sim \mathcal{N}(25,3)$ initial speed,
 - $\alpha = \{0.7854 : 0.9, 1.0472 : 0.09, 0.5236 : 0.01\}$ angle to horizon,
- Nondeterministic:
 - $K \in [0.5, 0.9]$ speed loss coefficient.

Compute the probability (**Pr** : $[0.5, 0.9] \rightarrow [0, 1]$) of landing further than 100 metres ($S_x \ge 100$) after bouncing once (l = 1).

Formal Approach: Running Example (II)

• The probability reachability function Pr(K) can be obtained as:

$$\mathbf{Pr}(\mathbf{K}) = \sum_{i=1}^{3} \left[f_{\alpha}(\alpha_i) \cdot \int_{\sqrt{\frac{980}{\sin(2\alpha_i)(\mathbf{K}^2+1)}}}^{\infty} f_{\upsilon_0}(x) dx \right]$$

Formal Approach: Running Example (III)

- Probability enclosure precision $\epsilon = 10^{-3}$.
- **Red** boxes computed for $\rho = 5 \cdot 10^{-2}$.
- Blue boxes computed for $\rho = 10^{-2}$.

Formal Approach: ϵ -guarantee

- Size of probability enclosures depends on
 - nondeterministic parameter precision ρ ,
 - solver precision δ .

Formal Approach: *e*-guarantee

- Size of probability enclosures depends on
 - nondeterministic parameter precision ρ ,
 - solver precision δ .
- Probability enclosures can be arbitrarily tight (up to the required $\epsilon > 0$) if
 - formulae **Reach** and **Reach**^{\forall} are robust for all $\mathbf{p} \in P$,
 - reachability probability function is continuous,
 - at least one continuous random parameter.

Formal Approach: *e*-guarantee

- Size of probability enclosures depends on
 - nondeterministic parameter precision ρ ,
 - solver precision δ .
- Probability enclosures can be arbitrarily tight (up to the required $\epsilon > 0$) if
 - formulae **Reach** and **Reach**^{\forall} are robust for all $\mathbf{p} \in P$,
 - reachability probability function is continuous,
 - at least one continuous random parameter.

Formal Approach: Running Example (IV)

- Probability enclosure precision $\epsilon = 10^{-2}$.
- Nondeterministic parameter precision ρ is ignored.

Computing Probabilistic Bounded Reachability

Approach	Formal	Statistical
Principle	Formal Reasoning	Monte Carlo Sampling
Probability	$\int\limits_{G} d\mathbb{P}$	$\mathbb{E}[X] = \frac{1}{N} \sum_{i=1}^{N} X_i$
	$G = \{\mathbf{p} \in P : \mathbf{goal}(\mathbf{p})\},\$	$X_i = 1$ if goal(p) ,
	$G^{C} = P \setminus G.$	$X_i = 0$ otherwise.
Guarantees	Absolute	Statistical
Complexity	Exponential	Constant
(number of parameters)		

For each
$$\mathbf{p}_N \in P_N$$
 and $\mathbf{p}_R \in P_R$ let:

$$X(\mathbf{p}_N, \mathbf{p}_R) = \begin{cases} 1 & \text{if goal is reached for } (\mathbf{p}_N, \mathbf{p}_R), \\ 0 & \text{otherwise.} \end{cases}$$

Then
$$\mathbf{Pr}(\mathbf{p}_N) = \mathbb{E}[X(\mathbf{p}_N)] = \int_{G(\mathbf{p}_N)} d\mathbb{P}.$$

For each
$$\mathbf{p}_N \in P_N$$
 and $\mathbf{p}_R \in P_R$ let:

$$X(\mathbf{p}_N,\mathbf{p}_R) = egin{cases} 1 & ext{if goal is reached for } (\mathbf{p}_N,\mathbf{p}_R), \ 0 & ext{otherwise}. \end{cases}$$

Then
$$\mathbf{Pr}(\mathbf{p}_N) = \mathbb{E}[X(\mathbf{p}_N)] = \int_{G(\mathbf{p}_N)} d\mathbb{P}.$$

How to compute $Pr(p_N)$???

For each
$$\mathbf{p}_N \in P_N$$
 and $\mathbf{p}_R \in P_R$ let:

$$X(\mathbf{p}_N, \mathbf{p}_R) = \begin{cases} 1 & \text{if goal is reached for } (\mathbf{p}_N, \mathbf{p}_R), \\ 0 & \text{otherwise.} \end{cases}$$
Then $\mathbf{Pr}(\mathbf{p}_N) = \mathbb{E}[X(\mathbf{p}_N)] = \int_{-\infty}^{\infty} d\mathbb{P}$

Then
$$\mathbf{Pr}(\mathbf{p}_N) = \mathbb{E}[X(\mathbf{p}_N)] = \int_{G(\mathbf{p}_N)} d\mathbb{P}.$$

How to compute $Pr(p_N)$???

- Sample \mathbf{p}_R using the parameters' distribution.
- Evaluate $X(\mathbf{p}_N, \mathbf{p}_R)$.

For each
$$\mathbf{p}_N \in P_N$$
 and $\mathbf{p}_R \in P_R$ let:
 $X(\mathbf{p}_N, \mathbf{p}_R) = \begin{cases} 1 & \text{if goal is reached for } (\mathbf{p}_N, \mathbf{p}_R), \\ 0 & \text{otherwise.} \end{cases}$

Then
$$\mathbf{Pr}(\mathbf{p}_N) = \mathbb{E}[X(\mathbf{p}_N)] = \int_{G(\mathbf{p}_N)} d\mathbb{P}.$$

How to compute $Pr(p_N)$???

- Sample \mathbf{p}_R using the parameters' distribution.
- Evaluate $X(\mathbf{p}_N, \mathbf{p}_R)$.

We CANNOT evaluate $X(\mathbf{p}_N, \mathbf{p}_R)$ (undecidability !!!)

Statistical Approach: Confidence Intervals

• We define two random variables:

$$X_{sat}(\mathbf{p}_N, \mathbf{p}_R) = \begin{cases} 1 & \text{if evaluate}(H, I, \{\mathbf{p}_N, \mathbf{p}_R\}, \delta) = \text{sat}, \\ 0 & \text{otherwise.} \end{cases}$$
$$X_{usat}(\mathbf{p}_N, \mathbf{p}_R) = \begin{cases} 0 & \text{if evaluate}(H, I, \{\mathbf{p}_N, \mathbf{p}_R\}, \delta) = \text{unsat}, \\ 1 & \text{otherwise.} \end{cases}$$

Statistical Approach: Confidence Intervals

• We define two random variables:

$$\begin{split} X_{sat}(\mathbf{p}_N,\mathbf{p}_R) &= \begin{cases} 1 & \text{if } \mathbf{evaluate}(H,I,\{\mathbf{p}_N,\mathbf{p}_R\},\delta) = \mathbf{sat}, \\ 0 & \text{otherwise.} \end{cases} \\ X_{usat}(\mathbf{p}_N,\mathbf{p}_R) &= \begin{cases} 0 & \text{if } \mathbf{evaluate}(H,I,\{\mathbf{p}_N,\mathbf{p}_R\},\delta) = \mathbf{unsat}, \\ 1 & \text{otherwise.} \end{cases} \end{split}$$

- $X_{sat}(\mathbf{p}_N, \mathbf{p}_R)$ and $X_{usat}(\mathbf{p}_N, \mathbf{p}_R)$ can be sampled,
- $X_{sat}(\mathbf{p}_N,\mathbf{p}_R) \leq X(\mathbf{p}_N,\mathbf{p}_R) \leq X_{usat}(\mathbf{p}_N,\mathbf{p}_R).$

 $\mathbb{E}[X_{sat}(\mathbf{p}_N)] \leq \mathbb{E}[X(\mathbf{p}_N)] = \mathsf{Pr}(\mathbf{p}_N) \leq \mathbb{E}[X_{usat}(\mathbf{p}_N)]$

Statistical Approach: Confidence Intervals (II)

- Given accuracy $\xi > 0$ and confidence $c \in (0, 1)$ compute intervals $[p_{sat} - \xi, p_{sat} + \xi]$ and $[p_{usat} - \xi, p_{usat} + \xi]$.
 - Probability (E[X_{sat}(**p**_N, **p**_R)] ∈ [p_{sat} ξ, p_{sat} + ξ]) ≥ c,
 Probability (E[X_{usat}(**p**_N, **p**_R)] ∈ [p_{usat} ξ, p_{usat} + ξ]) ≥ c.

Statistical Approach: Confidence Intervals (II)

- Given accuracy $\xi > 0$ and confidence $c \in (0, 1)$ compute intervals $[p_{sat} - \xi, p_{sat} + \xi]$ and $[p_{usat} - \xi, p_{usat} + \xi]$.
 - Probability (E[X_{sat}(**p**_N, **p**_R)] ∈ [p_{sat} ξ, p_{sat} + ξ]) ≥ c,
 Probability (E[X_{usat}(**p**_N, **p**_R)] ∈ [p_{usat} ξ, p_{usat} + ξ]) ≥ c.

Probability
$$\left(\mathsf{Pr}(\mathbf{p}_N) \in [p_{sat} - \xi, p_{usat} + \xi] \right) \geq c.$$

- The size of $[p_{sat} \xi, p_{usat} + \xi]$ can be greater than 2ξ
 - non-robustness for the given δ , or
 - undecidability in general.

Shmarov and Zuliani, HVC 2016

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\mathbf{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).
 - Step 1 generate samples \mathbf{p}_N using $f(\cdot; \mathbf{v})$.

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).
 - Step 1 generate samples \mathbf{p}_N using $f(\cdot; \mathbf{v})$.
 - Step 2 update v using the *fittest* (probability-wise) samples.

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).
 - Step 1 generate samples \mathbf{p}_N using $f(\cdot; \mathbf{v})$.
 - Step 2 update v using the *fittest* (probability-wise) samples.
 - Step 3 go to Step 1 if f(·; ν) variance is greater than the desired ô².

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\operatorname{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).
 - Step 1 generate samples \mathbf{p}_N using $f(\cdot; \mathbf{v})$.
 - Step 2 update v using the *fittest* (probability-wise) samples.
 - Step 3 go to Step 1 if f(·; ν) variance is greater than the desired
 ².
- There must be **v** such that $f(\cdot; \mathbf{v})$ approximates single-point distributions arbitrarily well.

- We compute maximum/minimum reachability probability.
 - **approximate** value **p**_N where the minimum/maximum probability is achieved,
 - Probability $(\mathbf{Pr}(\mathbf{p}_N) \in [p_{sat} \xi, p_{usat} + \xi]) \ge c.$
- CE aims at obtaining the optimal parameter distribution [Rubinstein and Kroese, 2008].
 - Step 0 start with nondeterministic parameters distributed with PDF f(·; v).
 - Step 1 generate samples \mathbf{p}_N using $f(\cdot; \mathbf{v})$.
 - Step 2 update v using the *fittest* (probability-wise) samples.
 - Step 3 go to Step 1 if f(·; ν) variance is greater than the desired
 ².
- There must be **v** such that $f(\cdot; \mathbf{v})$ approximates single-point distributions arbitrarily well.

Cross-Entropy can fall into a local extremum.

• CE terminates when the user-defined variance $\hat{\sigma}^2$ is reached.

• CE terminates when the user-defined variance $\hat{\sigma}^2$ is reached.

• CE terminates when the user-defined variance $\hat{\sigma}^2$ is reached.

Statistical Approach: Running Example

• **Pr**(*K*) can be obtained analytically.

- Number of samples per iteration of CE algorithm,
 - the more the better.

- Number of samples per iteration of CE algorithm,
 - the more the better.
- Terminal variance value,
 - the smaller the better.

- Number of samples per iteration of CE algorithm,
 - the more the better.
- Terminal variance value,
 - the smaller the better.
- Initial distribution parameters,
 - need to provide sufficient initial coverage to avoid local extrema.

- Number of samples per iteration of CE algorithm,
 - the more the better.
- Terminal variance value,
 - the smaller the better.
- Initial distribution parameters,
 - need to provide sufficient initial coverage to avoid local extrema.
- Accuracy for estimating the confidence intervals,
 - the higher the better.

- \bullet Implemented in C++.
- Uses OpenMP for parallelisation.
- Uses several libraries
 - CAPD, IBEX, GSL.

²https://projects.avacs.org/projects/isat3

¹http://dreal.github.io/

- Implemented in C++.
- Uses OpenMP for parallelisation.
- Uses several libraries
 - CAPD, IBEX, GSL.
- Any SAT ODE solver supporting $\delta\text{-decisions}$ can be used.
 - dReal¹ [Sicun Gao, Soonho Kong]
 - iSAT3² [Martin Fränzle *et al.*]
- Available at https://github.com/dreal/probreach

Shmarov and Zuliani. HSCC 2015

²https://projects.avacs.org/projects/isat3

¹http://dreal.github.io/

Demonstration

- We presented ProbReach tool for probabilistic bounded reachability in uncertain hybrid system.
- It features formal and statistical approaches.
- Formal approach: computes probability enclosures containing the range of the probability reachability function.
 - Complexity grows exponentially with the number of system parameters.
- Statistical approach: computes confidence intervals containing the approximate maximum/minimum probability value.
 - Complexity remains constant with respect to the number of system parameters.
- ProbReach is publicly available at https://github.com/dreal/probreach.
Automated Synthesis of Safe and Robust PID Controllers for Stochastic Hybrid Systems

Fedor Shmarov¹, Nicola Paoletti², Ezio Bartocci³, Shan Lin², Scott A. Smolka², Paolo Zuliani¹

> ¹Newcastle University, UK, ²Stony Brook University, NY, USA, ³TU Wien, Austria

Artificial Pancreas

Closed-loop (with feedback) control of insulin treatment for Type 1 diabetes.

- Continuous glucose monitor
- Control algorithm
- Insulin pump
 - basal constant dose (automatic)
 - bolus single high dose (manual)

MINIMED 670G by Medtronic³

³https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system

Artificial Pancreas

Closed-loop (with feedback) control of insulin treatment for Type 1 diabetes.

- Continuous glucose monitor
- Control algorithm
- Insulin pump
 - basal constant dose (automatic)
 - bolus single high dose (manual)

MINIMED 670G by Medtronic³

Objective

Design automatic closed-loop control of bolus insulin for keeping blood glucose level between 4-12 mmol/L.

• Temporary **hyperglycemia** is allowed while **hypoglycemia** should be avoided.

³https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system

Automatic Control

Control Objective

Given an external **disturbance** reduce the **difference** between the measured **system output** and the **desired value** by adjusting the **control variable**.

- disturbance: amount of carbohydrates (D_G)
- system output: blood glucose level (G(t))
- **desired level** (set-point): $G_{sp} = 6.11 \text{ [mmol/L]}$
- **control variable**: insulin admission (u(t) + u_b)
- difference (error): $e(t) = G_{sp} - G(t)$

PID Controller

- P roportional present value of the error,
- / ntegral past errors,
- *D* erivative predicted future errors.

PID Controller

- P roportional present value of the error,
- I ntegral past errors,
- D erivative predicted future errors.

Synthesis Objective

Find values of K_p , K_i and K_d (gains) "minimising" e(t).

Stochastic Parametric Hybrid Systems

^aHovorka, R.: Closed-loop insulin delivery: from bench to clinical practice. Nature Reviews Endocrinology 7(7), 385395 (2011)

Stochastic Parametric Hybrid Systems (II)

$$\underbrace{D_G := D_{G_1}}_{t = T_1} (D_G := D_{G_2}) \land (t := 0) (D_G := D_{G_3}) \land (t := 0) (D_G := D_{G_3}) \land (t := 0) (Meal 3) (T_1 = T_2) (Meal 3)$$

Parameters:

Size of each meal:

$$egin{aligned} D_{G_1} &\sim \mathcal{N}(40, 10), \ D_{G_2} &\sim \mathcal{N}(90, 10), \ D_{G_3} &\sim \mathcal{N}(60, 10). \end{aligned}$$

Time between the meals:

$$\begin{split} T_1 &\sim \mathcal{N}(300, 10), \\ T_2 &\sim \mathcal{N}(300, 10). \end{split}$$

Safety and Robustness

Safety

An unsafe state should be reached with very small probability.

Unsafe: $G(t) \notin [4, 16]$.

Safety and Robustness

Safety

An unsafe state should be reached with very small probability.

Unsafe: $G(t) \notin [4, 16]$.

Robustness (**not** in the sense of δ -robustness)

Difference between the system output and the desired value should be small.

• Fundamental Index: $FI(t) = \int_0^t (e(\tau))^2 d\tau$

System output should converge to the steady-state.

• Weighted Fundamental Index: $FI_w(t) = \int_0^t \tau^2 \cdot (e(\tau))^2 d\tau$

Non-robust: $(FI(t) > 3.5 \cdot 10^6) \vee (FI_w(t) > 70 \cdot 10^9)$.

Safety and robustness analysis is performed through **bounded reachability**.

Bounded Reachability

Can the unsafe state be reached within:

- finite number of discrete steps, and
- bounded time interval.

Bounds:

- 3 meals,
- 24 hours.

Safety and robustness analysis is performed through **bounded reachability**.

Bounded	Reach	nabi	lity
---------	-------	------	------

Can the unsafe state be reached within:

- finite number of discrete steps, and
- bounded time interval.

Bounds:

- 3 meals,
- 24 hours.

Automated Synthesis Objective

Synthesise a PID controller minimizing the probability of reaching an unsafe state or violating the robustness constraint during 3 meals within 24 hour period.

Results

 $^{^{\}S}\mathsf{Both}$ safety and robustness were taken into account

Basal rate synthesis (formal): with $G(0) = G_{sp}$ and no external disturbances G(t) reaches $[G_{sp} - 0.05, G_{sp} + 0.05]$ in 2000 minutes and remains there for another 1000 minutes.

	Domain	Result	Chosen Value
u _b	[0,1]	[0.0553359375, 0.055640625]	0.0555

[§]Both safety and robustness were taken into account

$$\underbrace{u(t)}_{\text{PID}(K_p, K_i, K_d, e(t))} + \underbrace{u_b}_{\text{basal rate}}$$

Basal rate synthesis (formal): with $G(0) = G_{sp}$ and no external disturbances G(t) reaches [$G_{sp} - 0.05$, $G_{sp} + 0.05$] in 2000 minutes and remains there for another 1000 minutes.

	Domain	Result	Chosen Value
u _b	[0,1]	[0.0553359375, 0.055640625]	0.0555

PID controller synthesis (statistical):

#	K _d	K _i	K _p	CI
C_0^1	0	0	0	[0.86956, 0.88956]
C_0^2	0	0	0	[0.98861, 1]
C_1	$-6.06855 imes 10^{-2}$	$-5.61901 imes 10^{-7}$	$-5.979 imes10^{-4}$	[0.09946, 0.10946]
<i>C</i> ₂	$-6.02376 imes 10^{-2}$	$-3.53308 imes 10^{-7}$	$-6.166 imes10^{-4}$	[0.20711, 0.21711]
<i>C</i> 3 [§]	$-5.7284 imes 10^{-2}$	$-3.00283 imes 10^{-7}$	$-6.39023 imes 10^{-4}$	[0.3324, 0.3524]

[§]Both safety and robustness were taken into account

One-day Scenario

50 grams, 100 grams, 70 grams in 5 hour intervals.

39 / 41

Conclusions:

- We presented a technique for the automated synthesis of safe and robust PID controllers using ProbReach.
- The presented approach was applied to an artificial pancreas model.

Future work:

- PID controllers with nonlinear gains.
- Discrete-time PID controllers.

Questions?