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Formal verification

System

Hybrid system

Formal model

Hybrid automata

Requirements

Safety

Formal specification

Reachability property

Formal verification engine

Flowpipe construction

Satisfied Violated Unknown
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A hybrid automaton model of a steering controller

Source: Möhlmann et al.: Verifying a PI Controller using SoapBox and Stabhyli. ARCH 2016
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Some example requirements for the steering controller

The distance of the current state (distcur, βori) to the optimal state
(0,0) is always bounded:

G(distcur ∈ [−10,10] ∧ βori ∈ [−5◦,5◦])

The car’s orientation changes smoothly:

G(β̇ori ∈ [−0.3,0.3])

Source: Möhlmann et al.: Verifying a PI Controller using SoapBox and Stabhyli. ARCH 2016
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The reachability problem for hybrid systems

The reachability problem for hybrid systems poses the question, whether
a given hybrid system can reach a certain set of target states from its
initial states.

Target
states

Initial
states

The reachability problem for hybrid systems is in general undecidable.
Despite this fact, there are different (incomplete but practically useful)
algorithms and tools for hybrid systems reachability analysis.
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Impressive tool development in the last decade (incomplete list)

HSolver [Ratschan et al., HSCC 2005]

iSAT-ODE [Eggers et al., ATVA 2008]

KeYmaera (X) [Platzer et al., IJCAR 2008]

PowerDEVS [Bergero et al., Simulation 2011]

SpaceEx [Frehse et al., CAV 2011]

S-TaLiRo [Annapureddy et al., TACAS 2011]

Ariadne [Collins et al., ADHS 2012]

HySon [Bouissou et al., RSP 2012]

Flow* [Chen et al., CAV 2013]

HyCreate [Bak et al., HSCC 2013]

HyEQ [Sanfelice et al., HSCC 2013]

NLTOOLBOX [Testylier et al., ATVA 2013]

SoapBox [Hagemann et al., ARCH 2014]

Acumen [Taha et al., IoT 2015]

C2E2 [Duggirala et al., TACAS 2015]

Cora [Althoff et al., ARCH 2015]

dReach [Kong et al, TACAS 2015]

Isabelle/HOL [Immler, TACAS 2015]

HyLAA [Bak et al., HSCC 2017]

HyPro/HyDRA [Schupp et al., NFM 2017]

Erika Ábrahám: Hybrid Systems Reachability Analysis 6/45



Verification techniques/tools for hybrid systems

(Rigorous/verified) simulation: Besides simulation for testing, rigorous/verified
simulation can be used for (bounded) reachability analysis.
Some tools: Acumen, C2E2, HyEQ, HyLAA, HySon, S-TaLiRo, PowerDEVS

Source: http://www.acumen-language.org/

Erika Ábrahám: Hybrid Systems Reachability Analysis 7/45

http://www.acumen-language.org/


Verification techniques/tools for hybrid systems

Deduction: Finding and showing invariants using theorem proving.
Some tools: Ariadne, Isabelle/HOL, KeYmaera

Source: http://symbolaris.com/info/keymaera.html
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Verification techniques/tools for hybrid systems

Bounded model checking / interval arithmetic: System executions and
requirements are encoded by logical formulas; satisfiability checking tools (SMT
solvers) are used for (bounded) reachability analysis.
Some tools: dReach, HSolver, iSAT-ODE

Source: http://dreal.github.io/dReach/
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Verification techniques/tools for hybrid systems

Over-approximating flowpipe construction: Iterative (bounded) forward
reachability analysis based on some over-approximative symbolic state set
representations.
Some tools: Cora, Flow*, HyCreate, HyPro/HyDRA, NLTOOLBOX, SoapBox,
SpaceEx

P P

Exact behavior Over-approximation

Source: [Bournez et al., HSCC 1999] [Stursberg et al., HSCC 2003]
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Forward reachability analysis

Input: Hybrid automaton H, initial states X0, target states T.
Output: (Bounded) reachability of T from X0 in H.
Algorithm:

Queue := {X0};
R := {X0};
while (Queue 6= ∅ and not break cond){

Take a set P from Queue;
Compute successor sets Reach(P);
Add successor sets to Queue and R;

};
if (∪P∈RP) ∩ T = ∅) return ”no” else return ”yes”;

Problems:

How to represent state sets?

How to compute set operations on them?

How to compute Reach(·)?
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Most well-known state set representations

Geometric objects:

boxes (hyper-rectangles) [Moore et al., 2009]

oriented rectangular hulls [Stursberg et al., 2003]

convex polyhedra [Ziegler, 1995] [Chen at el, 2011]

template polyhedra [Sankaranarayanan et al., 2008]

orthogonal polyhedra [Bournez et al., 1999]

zonotopes [Girard, 2005])

ellipsoids [Kurzhanski et al., 2000]

Other symbolic representations:

support functions [Le Guernic et al., 2009]

Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]
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Set operations

Some needed set operations:

intersection projection
union test for membership
linear transformation test for emptiness
Minkowski sum

Reminder: Minkowski sum

x1

x2

1 2 3

1

2

3

0

P
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x2

1 2 3

1

2
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Q =

x1

x2

1 2 3

1

2

3

0

P⊕Q

P⊕Q = {p + q | p ∈ P and q ∈ Q}
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Example state set representation: Polytopes

Halfspace: set of points x satisfying l · x ≤ z
Polyhedron: an intersection of finitely many halfspaces

Polytope: a bounded polyhedron

l1

l2

l3

l4

representation union intersection Minkowski sum

V-representation by vertices easy hard easy
H-representation by facets hard easy hard
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Erika Ábrahám: Hybrid Systems Reachability Analysis 14/45



Example state set representation: Polytopes

Halfspace: set of points x satisfying l · x ≤ z
Polyhedron: an intersection of finitely many halfspaces

Polytope: a bounded polyhedron

l1

l2

l3

l4

representation union intersection Minkowski sum

V-representation by vertices easy hard easy
H-representation by facets hard easy hard
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Linear hybrid automata I and II

Linear hybrid automata I:

derivatives: boxes

conditions: convex linear sets

resets: linear functions

Linear hybrid automata II:

derivatives: linear differential equations

conditions: convex linear sets

resets: linear functions
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Linear hybrid automata I: Time evolution
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x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)
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ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)
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ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)
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ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Erika Ábrahám: Hybrid Systems Reachability Analysis 16/45



Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1
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Linear hybrid automata I: Discrete steps (jumps)

Example jump: ( l, 4≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2,4]︸ ︷︷ ︸
R≡R×[2,4]

, l′ ) ∈ Edge

`

x1

x2

0

P

5
4

`′

x1

x2

0

P ∩ G(P ∩ G) ↓x1((P ∩ G) ↓x1)×R

2

4
(((P ∩ G) ↓x1)×R) ∩ R

Additionally: intersect the result with the invariant of l′.
Computed via projection, Minkowski sum and intersection.
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Linear hybrid automata II: Time evolution

Assume initial set X0 and flow ẋ = Ax+Bu
Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

X0

eAδX0

conv(X0, eAδX0)

conv(X0, eAδX0 ⊕ B1)

over-approximates flowpipe
for time [0,δ]

under dynamics ẋ = Ax
disturbance!

P0 = conv(X0, eAδX0 ⊕ B1⊕B2)

over-approximates flowpipe
for time [0,δ]

under dynamics ẋ = Ax+Bu

P0

eAδP0

over-approximates flowpipe
for time [δ,2δ]

under dynamics ẋ = Ax
disturbance!

P1 = eAδP0⊕B2

over-approximates flowpipe
for time [δ,2δ]

under dynamics ẋ = Ax+Bu
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P0

eAδP0

over-approximates flowpipe
for time [δ,2δ]

under dynamics ẋ = Ax
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P0

eAδP0

over-approximates flowpipe
for time [δ,2δ]

under dynamics ẋ = Ax
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Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi
The first flowpipe segment:

Reminder matrix exponential: eX = ∑∞
k=0

Xk

k!
The remaining ones:

t0 δ 2δ

X0

eAδX0

conv(X0, eAδX0)

conv(X0, eAδX0 ⊕ B1)

over-approximates flowpipe
for time [0,δ]

under dynamics ẋ = Ax
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Linear hybrid automata II: Discrete steps (jumps)
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Linear hybrid automata II: The global picture
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Erika Ábrahám: Hybrid Systems Reachability Analysis 20/45



Reachability analysis search tree
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Flow* [Chen et al., CAV 2013]

A verification tool for cyber-physical systems

Available at https://flowstar.org/

Taylor model-based approach

non-linear dynamic

adaptive refinement methods

Image: Xin Chen

Has been used in a variety of verification tasks, e.g.

biological/medical systems (glucose control, spiking neurons, Lotka
Volterra equations),

circuits (oscillators, van der Pol circuit),

mechanical systems (jet engine model)
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HyPro/HyDRA [Schupp et al., NFM 2017]

A free and open-source C++ library for
state set representations for the reachability
analysis of hybrid systems

Available at https://github.com/hypro/hypro

state set representations

conversion between different representations

further datastructures and utility functions
(hybrid automata, parser, logging, plotting)

templated number type

Fast implementation of specialized reachability analysis methods

Dimension reduction via sub-space computations
[Schupp et al., QAPL 2017]

CEGAR-like refinement loops and parallelisation (work in progress)
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HyPro/HyDRA: Structure
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HyPro: State set representations
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Source: Xin Chen

Erika Ábrahám: Hybrid Systems Reachability Analysis 25/45



HyPro/HyDRA: Structure

d
at

as
tr

u
ct

u
re

s

u
ti

l

algorithms

re
pr

es
en

ta
ti

on
sBox

HPolytope

VPolytope

PPL-Polytope

Zonotope

SupportFunction

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface>

H
yb

ri
d

au
to

m
at

on
P

oi
n

t
H

al
fs

p
ac

e

Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

glpk SMT-RAT Z3 SoPlex
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HyPro: Linear optimization

HyPro offers different number representations:
cln::cl RA, mpq class, double

Obstacles:

inexact linear optimization not suitable

exact linear optimization expensive

 combined application

Compute
optimal
solution
glpk

Compute optimal solution s∗ ≥ s
SMT-RAT/SoPlex/Z3

Compute optimal solution
SMT-RAT/SoPlex/Z3

Solution

No
solution

solution s

no solution

no
solution

solution s∗

no solution

solution s∗

Erika Ábrahám: Hybrid Systems Reachability Analysis 27/45



HyPro/HyDRA: Structure
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HyDRA: Example

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0

ẋ = x + 4y
ẏ = −4x + y

x ≥ 0

x ≥ 0.25∧ x ≤ 0.3
y := 0.9y + 0.3

x := x− 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62
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Other HyPro applications

Two examples for HyPro applications:

Sub-space computations

CEGAR-based reachability analysis and parallelisation
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HyPro application: Sub-space computations

Motivation: PLC-controlled plants
High-dimensional models

Relevant number of discrete variables
Clocks for cycle synchronisation

Idea:

Partition variable set  sub-spaces
Compute reachability in sub-spaces
Synchronise on time

time [0,0]

time [0,δ]

time [δ,2δ]

time [2δ,3δ]
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Variable set partitioning

time [0,0]

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

What assures that we can
compute locally in sub-spaces?

All variables x, y in different partitions should be syntactically
independent.

(ẋ, ẏ) = A · (x,y)T + B · u

ẋ = Ax · xT + Bx · u ẏ = Ay · yT + By · u∧

Inv

Invx Invy∧

guard

guardx guardy∧

reset

resetx resety∧
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Variable set partitioning

Global space: X0

P1 = conv(X0 ∪ eAδX0 ⊕ VA ⊕ VB)

P2 = eAδP1 ⊕ VB,U

P3 = eAδP2 ⊕ VB,U

time [0,0]

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

Sub-space: X0

X0,x = X0 ↓ x X0,y = X0 ↓ y

P1,x = conv(X0,x ∪ eAxδX0,x ⊕ VA,x ⊕ VB,x) . . .

P2,x = eAxδP1,x ⊕ VBx ,u . . .

P3,x = eAxδP2,x ⊕ VBx ,u . . .

time [0,0]

time [0,δ]

time [δ,2δ]

time [2δ,3δ]
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Discrete variables

x

y

ẋ = 0
ẏ = 1

2.5≤ y ≤ 2.8
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Representation: Boxes

x

y
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ẏ = 1

2.5≤ y ≤ 2.8
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Erika Ábrahám: Hybrid Systems Reachability Analysis 35/45



Representation: Boxes

x

y
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ẏ = 1

2.5≤ y ≤ 2.8
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Erika Ábrahám: Hybrid Systems Reachability Analysis 35/45



Representation: Boxes

x

y
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Representation: Polytopes
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ẋ = 1
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ẋ = 1
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ẏ = 1

2.5≤ y ≤ 2.8
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Reachability computation

1 Partition variable set
2 Decompose initial state sets
3 Compute successors in sub-spaces
4 Discrete variables: no flowpipe, neglect disabled jumps for whole

flowpipe

global state set

disc clock rest

∩Inv sub-space flowpipe segment sub-space flowpipe segment

sub-space flowpipe segment sub-space flowpipe segment

∅

time [0,0]

time [0,δ]

time [δ,2δ]

time [2δ,3δ]
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Some more aspects

We can use different state set representations for different
sub-spaces.

We could even use different reachability analysis methods for
different sub-spaces.

In our implementation: 3 variable partitions

semantically independent discrete variables
semantically independent clocks
rest

For discrete variables we use boxes, for the rest support functions.
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Results: Leaking tank
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Results: Leaking tank
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Results: Two tanks
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Running times

Bench- HyPro SpaceEx

mark Rep. Agg orig clock disc disc & clock orig

box agg 2.70 2.08 1.06 1.13 3.67

Leaking box none 2.62 2.09 1.06 1.13 3.82

tank sf agg TO TO 161.12 37.03 448.3

sf none TO 1044.97 19.49 5.84 444.82

box agg 4.39 2.60 0.97 1.15 5.49

Two box none 4.46 2.68 1.02 1.16 5.53

tanks sf agg TO TO 900.11 329.80 TO

sf none TO TO 35.04 14.64 TO

box agg 0.07 0.09 0.06 0.06 0.57

Ther- box none 0.11 0.09 0.06 0.06 0.57

mostat sf agg 35.87 22.69 1.17 0.29 9.89

sf none 30.41 20.19 1.18 0.30 9.91
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Other HyPro applications

Two examples for HyPro applications:

Sub-space computations

CEGAR-based reachability analysis and parallelisation
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Other HyPro applications

Strategy:

S1: box,

δ = 0.1

S2: support f.,

δ = 0.01

S3: polytope,

δ = 0.01

Search tree:

A

Extension: Parallelized search in different branches.
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Erika Ábrahám: Hybrid Systems Reachability Analysis 44/45



Conclusion

HyPro: open-source programming library

State set representations for the implementation of hybrid systems
reachability analysis algorithms

Exact as well as inexact number representations

Flexibility to deviate from standard methods

Examples:
sub-space computations
CEGAR
parallelisation

Available at https://github.com/hypro/hypro
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