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Plan
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Given C*-algebra A, make topos T (A).

Inside T (A), define commutative C*-algebra A.
Inside T (A), consider its spectrum Σ.

Internalize observable a and state ρ of A,
to get truth value for “a ∈ (p, q) in state ρ”.

Have to take care when reasoning inside T (A) ...



Categorical logic: monoidal
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Can formulate notions definable by monoidal logic
finite conjunction

in any monoidal category
monoidal structure

e.g. monoid objects (I e
//M M ⊗ M

m
oo ), semiring objects

Such notions are preserved by monoidal functors



Categorical logic: cartesian
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Can formulate notions definable by cartesian logic
finite conjunction, and
unique existential quantification

in any cartesian category
finite products, and
equalizers

e.g. group objects, ring objects

Such notions are preserved by cartesian functors



Categorical logic: regular
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Can formulate notions definable by regular logic
finite conjunction, and
existential quantification

in any regular category
finite products,
equalizers, and
images

e.g. divisible group objects, division ring objects

Such notions are preserved by regular functors



Categorical logic: geometric
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Can formulate notions definable by geometric logic
finite conjunction,
existential quantification, and
infinite disjunction

in any geometric category
finite products,
equalizers,
images
well-powered, with unions of subobjects

Such notions are preserved by geometric functors



Categorical logic: full higher-order
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Can formulate notions definable by full higher-order logic
finite conjunction,
finite disjunction,
existential quantification,
universal quantification,
negation, and
implication

in any topos
finite products,
equalizers,
exponents, and
subobject classifier

Topos logic is the summum of categorical logic.



Categorical logic: intuitionistic
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Fix interpretation of types, function symbols, relation symbols.
Then interpretation JϕK ∈ Sub(JFV(ϕ)K) of formula ϕ fixed.
For closed ϕ:

JϕK ∈ Sub(1) ∼= Ω

So Ω is ‘truth value object’
It is a Heyting algebra, more general than {false,true}.

T topos, then T |= ϕ means JϕK = 1 (‘T validates ϕ’)

Topos logic is intuitionistic logic



C*-algebras
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A C*-algebra is a set A with
addition + : A × A → A,
complex scalar multiplication · : C × A → A,
multiplication · : A × A → A,
involution (−)∗ : A → A, and
norm ‖ · ‖ : A → R

such that
a∗∗ = a,
‖ab‖ ≤ ‖a‖ · ‖b‖,
‖a∗a‖ = ‖a‖2,
complete, ...
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A C*-algebra is a set A with
addition + : A × A → A,
complex scalar multiplication · : C × A → A,
multiplication · : A × A → A,
involution (−)∗ : A → A, and
norm ‖ · ‖ : A → R

such that
a∗∗ = a,
‖ab‖ ≤ ‖a‖ · ‖b‖,
‖a∗a‖ = ‖a‖2,
complete, ...

Need to be careful about R ...



C*-algebras in a topos
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A C*-algebra is an object A with
addition + : A × A → A,
complex scalar multiplication · : CQ × A → A,
multiplication · : A × A → A,
involution (−)∗ : A → A, and
norm N ⊆ A × Q

such that
a∗∗ = a,
if (a, p) ∈ N and (b, q) ∈ N , then (ab, pq) ∈ N ,
(a∗a, q2) ∈ N iff (a, q) ∈ N ,
complete, ...

Intuitionistic: relation N ⊆ A × Q instead of function ‖ · ‖ : A → R.
(idea: (a, q) ∈ N iff ‖a‖ < q)

So can formulate this notion in any topos.



Bohr’s doctrine of classical concepts
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C*-algebras are time-honored way to organise quantum theory.
But Bohr says: only access to quantum physics via classical physics.
(Mathematically: via commutative C*-algebras).

Given C*-algebra A, define

C(A) = {C ⊆ A | C ∈ cCStar}

It is a posetal category

Then T (A) = SetC(A) is a topos



Internal C*-algebra
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Define object A in topos T (A) by

A(C) = C

A(C →֒ D) = inclusion

Then T (A) |= “A is a commutative C*-algebra”!

ambient topos Set

C*-algebra

topos T (A) induced by A

internal C*-algebra

mathematician
using meta-logic

x

internal observerx

bA

b
A



Gelfand duality
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Gelfand duality characterizes commutative algebras.

cCStar

σ
//

KHausop

Top(−,C)
oo

∼



Gelfand duality
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Gelfand duality characterizes commutative algebras.

cCStar

σ
//

KHausop

Top(−,C)
oo

∼

Need to be careful about KHaus ...



Gelfand duality in a topos
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Gelfand duality characterizes commutative algebras.

cCStar

σ
//

KRegFrm
Frm(OCQ,−)
oo

∼

Use frame OX (lattice of open sets) instead of topological space X.
(“pointless topology”)

Intuitionistic formulation and proof
(Banaschewski-Mulvey / Coquand-Spitters)

so valid in any topos.



Internal spectrum
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There is an object Σ in topos T (A) such that
T (A) |= “Σ is a frame”.
T (A) |= Σ = σ(A)!

So have ‘phase space’



Internal spectrum
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There is an object Σ in topos T (A) such that
T (A) |= “Σ is a frame”.
T (A) |= Σ = σ(A)!

So have ‘phase space’

Theorem: (when A is non-commutative and has no summand M2)
the frame Σ has no points.

(idea: Kochen-Specker-Isham-Butterfield)



So far
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Given C*-algebra A, make topos T (A).

Inside T (A), define commutative C*-algebra A.
Inside T (A), consider its spectrum Σ.

Internalize observable a and state ρ of A,
to get truth value for “a ∈ (p, q) in state ρ”.



States
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A (quasi)state of A is a positive functional
ρ : A → C that is linear (on commutative parts)

An integral on A is a positive functional
I : A → C that is linear

Theorem: there is a bijective correspondence between
quasistates of A and integrals on A

So can speak of states internally as integrals/measures
Hence as valuations on internal spectrum (Coquand-Spitters)

External state gives internal map Σ → [0, 1]←



Observables
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Asa
δ1

//A↔sa

δ1(a)(C) = ({f ∈ C | f < a}, {g ∈ C | a < g})
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Asa
δ1

//A↔sa

δ1(a)(C) = ({f ∈ C | f < a}, {g ∈ C | a < g})

Q↔ = {(L, U) ∈ PQ ×PQ | L lower open, U upper open}

) ( Q
L U
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Asa
δ1

//A↔sa

δ1(a)(C) = ({f ∈ C | f < a}, {g ∈ C | a < g})

Q↔ = {(L, U) ∈ PQ ×PQ | L lower open, U upper open}

) ( Q
L U

IR = Q↔ (with Scott topology) is frame



Observables
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Asa
δ1

//A↔sa
δ2

//JFrm(IR, Σ) KT (A)



Observables
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Asa
δ1

//A↔sa
δ2

//JFrm(IR, Σ) KT (A)

J Frm(IR, Σ) KT (A) = J J IR KSh(Σ) KT (A)

external observable gives internal map IR → Σ



Propositions
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Physics considers propositions a ∈ (p, q) in state ρ

Interval (p, q) gives map 1 → IR.
Observable a gives map IR → Σ.
State ρ gives map Σ → [0, 1]←.

Composition gives
probability r : 1 → [0, 1]←

truth value Jr = 1K : 1 → Ω!



Conclusion
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Given C*-algebra A, made topos T (A).

Inside T (A), defined commutative C*-algebra A.
Inside T (A), considered its spectrum Σ.

Internalized observable a and state ρ of A,
got truth value for “a ∈ (p, q) in state ρ”.
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