A topos for algebraic quantum theory

Chris Heunen, Klaas Landsman, Bas Spitters

January 9, 2008

Radboud University Nijmegen

Given C*-algebra A, make topos $\mathcal{T}(A)$.

```
Inside T(A), define commutative C*-algebra <u>A</u>.
Inside T(A), consider its spectrum <u>\Sigma</u>.
```

Internalize observable a and state ρ of A, to get truth value for " $a \in (p,q)$ in state ρ ".

Have to take care when reasoning inside $\mathcal{T}(A)$...

Categorical logic: monoidal

Can formulate notions definable by *monoidal logic* finite conjunction in any *monoidal category* monoidal structure

e.g. monoid objects ($I \xrightarrow{e} M \xleftarrow{m} M \otimes M$), semiring objects

Such notions are preserved by monoidal functors

Categorical logic: cartesian

Can formulate notions definable by *cartesian logic* finite conjunction, and unique existential quantification in any *cartesian category* finite products, and equalizers

e.g. group objects, ring objects

Such notions are preserved by cartesian functors

Categorical logic: regular

Can formulate notions definable by regular logic

finite conjunction, and existential quantification

in any regular category

finite products, equalizers, and images

e.g. divisible group objects, division ring objects

Such notions are preserved by regular functors

Categorical logic: geometric

Can formulate notions definable by geometric logic

finite conjunction, existential quantification, and infinite disjunction

in any geometric category

finite products, equalizers, images well-powered, with unions of subobjects

Such notions are preserved by geometric functors

Categorical logic: full higher-order

Can formulate notions definable by full higher-order logic

finite conjunction, finite disjunction, existential quantification, universal quantification, negation, and implication

in any topos

finite products, equalizers, exponents, and subobject classifier

Topos logic is the summum of categorical logic.

Categorical logic: intuitionistic

Fix interpretation of types, function symbols, relation symbols. Then interpretation $\llbracket \varphi \rrbracket \in \operatorname{Sub}(\llbracket \operatorname{FV}(\varphi) \rrbracket)$ of formula φ fixed. For closed φ :

 $\llbracket \varphi \rrbracket \in \mathrm{Sub}(1) \cong \Omega$

So Ω is 'truth value object' It is a Heyting algebra, more general than {false, true}.

T topos, then $T \models \varphi$ means $\llbracket \varphi \rrbracket = 1$ ('T validates φ ')

Topos logic is intuitionistic logic

C*-algebras

A C*-algebra is a set A with

addition $+ : A \times A \rightarrow A$, complex scalar multiplication $\cdot : \mathbb{C} \times A \rightarrow A$, multiplication $\cdot : A \times A \rightarrow A$, involution $(-)^* : A \rightarrow A$, and norm $\| \cdot \| : A \rightarrow \mathbb{R}$ such that

$$a^{**} = a,$$

 $||ab|| \le ||a|| \cdot ||b||,$
 $||a^*a|| = ||a||^2,$
complete, ...

C*-algebras

A C*-algebra is a set A with

addition $+ : A \times A \rightarrow A$, complex scalar multiplication $\cdot : \mathbb{C} \times A \rightarrow A$, multiplication $\cdot : A \times A \rightarrow A$, involution $(-)^* : A \rightarrow A$, and norm $\| \cdot \| : A \rightarrow \mathbb{R}$ such that

 $a^{**} = a,$ $||ab|| \le ||a|| \cdot ||b||,$ $||a^*a|| = ||a||^2,$ complete, ...

Need to be careful about \mathbb{R} ...

C*-algebras in a topos

A C*-algebra is an object A with

addition $+ : A \times A \rightarrow A$, complex scalar multiplication $\cdot : \mathbb{C}_{\mathbb{Q}} \times A \rightarrow A$, multiplication $\cdot : A \times A \rightarrow A$, involution $(-)^* : A \rightarrow A$, and norm $N \subseteq A \times \mathbb{Q}$ such that

```
a^{**} = a,
if (a, p) \in N and (b, q) \in N, then (ab, pq) \in N,
(a^*a, q^2) \in N iff (a, q) \in N,
complete, ...
```

Intuitionistic: relation $N \subseteq A \times \mathbb{Q}$ instead of function $\|\cdot\| : A \to \mathbb{R}$. (idea: $(a,q) \in N$ iff $\|a\| < q$) So can formulate this notion in any topos.

Bohr's doctrine of classical concepts

C*-algebras are time-honored way to organise quantum theory. But Bohr says: only access to quantum physics via classical physics. (Mathematically: via commutative C*-algebras).

Given C*-algebra A, define

 $\mathcal{C}(A) = \{ C \subseteq A \mid C \in \mathbf{cCStar} \}$

It is a posetal category

Then $T(A) = \mathbf{Set}^{\mathcal{C}(A)}$ is a topos

Internal C*-algebra

Define object \underline{A} in topos $\mathcal{T}(A)$ by

 $\underline{A}(C) = C$ $\underline{A}(C \hookrightarrow D) = \text{inclusion}$

Then $T(A) \models "\underline{A}$ is a *commutative* C*-algebra"!

Gelfand duality characterizes commutative algebras.

$$\operatorname{\mathbf{cCStar}}_{\overbrace{\mathbf{Top}(-,\mathbb{C})}^{\sigma}}^{\sigma}\operatorname{\mathbf{KHaus}^{\operatorname{op}}}$$

Gelfand duality characterizes commutative algebras.

Need to be careful about KHaus ...

Gelfand duality in a topos

Gelfand duality characterizes commutative algebras.

Use frame $\mathcal{O}X$ (lattice of open sets) instead of topological space X. ("pointless topology")

Intuitionistic formulation and proof (Banaschewski-Mulvey / Coquand-Spitters) so valid in any topos.

Internal spectrum

There is an object $\underline{\Sigma}$ in topos $\mathcal{T}(A)$ such that $\mathcal{T}(A) \models \underline{\Sigma}$ is a frame". $\mathcal{T}(A) \models \underline{\Sigma} = \sigma(\underline{A})!$

So have 'phase space'

Internal spectrum

There is an object $\underline{\Sigma}$ in topos $\mathcal{T}(A)$ such that $\mathcal{T}(A) \models \underline{\Sigma}$ is a frame". $\mathcal{T}(A) \models \underline{\Sigma} = \sigma(\underline{A})!$

So have 'phase space'

Theorem: (when A is non-commutative and has no summand M_2) the frame $\underline{\Sigma}$ has no points. (idea: Kochen-Specker-Isham-Butterfield)

Given C*-algebra A, make topos $\mathcal{T}(A)$.

Inside T(A), define *commutative* C*-algebra <u>A</u>. Inside T(A), consider its spectrum <u> Σ </u>.

Internalize observable a and state ρ of A, to get truth value for " $a \in (p,q)$ in state ρ ".

States

A (quasi)state of A is a positive functional $\rho: A \to \mathbb{C}$ that is linear (on commutative parts)

An integral on <u>A</u> is a positive functional $I: \underline{A} \to \mathbb{C}$ that is linear

Theorem: there is a bijective correspondence between quasistates of A and integrals on <u>A</u>

So can speak of states internally as integrals/measures Hence as valuations on internal spectrum (Coquand-Spitters)

External state gives internal map $\underline{\Sigma} \rightarrow [0, 1]^{\leftarrow}$

 $\xrightarrow{\delta_1} \underline{A}_{\mathrm{sa}}^{\leftrightarrow}$ $A_{\rm sa}$ - $\delta_1(a)(C) = (\{f \in C \mid f < a\}, \{g \in C \mid a < g\})$

L

U

Radboud University Nijmegen

 $\mathbb{IR}=\mathbb{Q}^{\leftrightarrow}$ (with Scott topology) is frame

Radboud University Nijmegen

$\llbracket \operatorname{\mathbf{Frm}}(\mathbb{IR},\underline{\Sigma}) \rrbracket_{\mathcal{T}(A)} = \llbracket \llbracket \mathbb{IR} \rrbracket_{\operatorname{Sh}(\underline{\Sigma})} \rrbracket_{\mathcal{T}(A)}$

external observable gives internal map $\underline{\mathbb{IR}} \to \underline{\Sigma}$

Propositions

Physics considers propositions $a \in (p,q)$ in state ρ

Interval (p,q) gives map $\underline{1} \to \underline{\mathbb{IR}}$. Observable *a* gives map $\underline{\mathbb{IR}} \to \underline{\Sigma}$. State ρ gives map $\underline{\Sigma} \to [0,1]^{\leftarrow}$.

Composition gives probability $r : \underline{1} \rightarrow [0, 1]^{\leftarrow}$ truth value $[r = 1] : \underline{1} \rightarrow \underline{\Omega}!$

Conclusion

Given C*-algebra A, made topos $\mathcal{T}(A)$.

```
Inside T(A), defined commutative C*-algebra <u>A</u>.
Inside T(A), considered its spectrum <u>\Sigma</u>.
```

```
Internalized observable a and state \rho of A, got truth value for "a \in (p,q) in state \rho".
```

