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Unified Structure.

1. Quantum theory through PROCESS.

Not process in space-time but process from which space-time is abstracted.

Whitehead’s notion of FUNCTION.

Category notion of MORPHISM.
2.  Process

3. Mathematically start with groupoids  Clifford algebras.

Schrödinger, Pauli,   Dirac
C (0,1)  C (3,0)  C (1,3)



4.  Clifford bundle  Induces light cone structure on abstracted vector space.

6.  Construct a ‘shadow’ phase spaces.

5.  Add in symplectic structure  Non-commutative phase space.  Moyal

Deformed Poisson


Shadow manifolds

Non-commutative 
algebra

Bohm lives here  



Process and Categories.

Lawvere’s “Continuously Variable Sets” (1973).

“…. the concept of motion as the presence of a body one place at one time
and another place at a later time, describes only the result of motion and does not contain

an explanation of motion itself.”

He puts the emphasis on mappings or morphisms.

From these he abstracts the notion of a set.

This was just what I was looking for.



T1 T2 T1

T2 [T1,T2]

Thought  becoming process.

New thought contains a trace of the old thought.

Old thought contains the potential of the new thought.

Grassmann:-

Mathematics is about THOUGHT, not MATERIAL REALITY.
It's about RELATIONSHIPS of FORM, not relationships of CONTENT.

Mathematics is to do with ORDERING FORMS created in THOUGHT.

Hamilton:- Algebra relates successive states of some changing thing or thought.

Categories or Algebra?

T1
T2

Put together via [T1, T2]•[T2, T3] = [T1, T3]  Groupoid



Closer look at Groupoids.

We have a set X of arrows, sources and targets, s and t

P1

P2

P1 is the source s P2 is the target t

P1P2  P2P3  P1P3 

= [P1, P2]

Combine arrows via

Note
1.  [P1, P1] is a left unity.  

3.  Inverse [P1, P2]1 = [P2, P1] 

P1P2  P1P2 1  P1P2  P2P1  P1P1 1

P1

[P1, P2] is P1 BECOMING P2

[P1, P1] is our BEING.

Our interpretation

Since [P1, P1] •[P1, P1] = [P1, P1],  being is IDEMPOTENT.

P1

P2

P1

2. [P2, P2] is a right unity.



The Algebra of Process.
Rules of composition.

(i)  [kA, kB] = k[A, B] Strength of process.

(ii)  [A, B] =  [B, A] Process directed.

(iii)  [A, B]•[B, C] = ± [A, C] Order of succession.

(iv)  [A, B] + [C, D] = [A+C, B+D] Order of coexistence.

(v)   [A, [B, C]] = [A, B, C] = [[A, B], C]

Notice [A, B]• [C, D] is NOT defined (yet!) [Multiplication gives a Brandt groupoid]

Lou Kauffman’s iterant algebra

[A, B]*[C, D] = [AC, BD] [Kauffman, Physics of Knots (1993)]

Raptis and Zaptrin’s causal sets.

A B * C D BC A D
[Raptis & Zaptrin, gr-qc/9904079 ]

Bob Coecke’s approach through categories.

  If f : A B and g : BC, f og : AC [Abramsky& Coecke q-ph/0402130]

[Hiley, Ann. de la Fond. Louis de Broglie, 5, 75-103 (1980). Proc. ANPA 23, 104-133 (2001)]



Space-time an Abstraction?

Hamilton: [Motion & Time, Space & Matter, Machambers&Turnbull, 1976]

“In algebra relationships are between successive states of some

changing thing or thought”. [Metaphysics of Maths--Algebra of Pure Time]

Einstein: [Physics and Reality, J, Franklin Inst. 221 (1936) 378]

“perhaps the success of the Heisenberg method points to a purely algebraic description

of nature, that is, to the elimination of the continuous functions from physics.  

Then, however, we must give up, in principle, the space-time continuum….”

Wheeler: [Quantum Theory and Gravitation,  1980]

Not Day 1 Geometry Day 2 Physics.

But Day 1  The quantum principle Day 2  Geometry



Gel’fand construction.

Fx  f f (x)  0 :f C  

Maximal ideal

Commutative algebras.

Traditional way

Start with a topological space or a metric space and construct 
the commutative algebra of functions on that space.

Alternative way.

Take a given commutative algebra and abstract the topological
and metric properties from the algebra.

The points of that space are the two-sided maximal ideals.

Can we do the same thing for a non-commutative structure?

[Demaret et al Fond. Sci. 2, (1997) 137-176]



The Directional Calculus.

Consider an arrow, [P0P1], in some direction with P0P1   P1P0 

Consider an arrow, [P0P2], in another direction

How do we get from [P0P1] to [P0P2] ?

Introduce [P1P2] so that [P0P1]•[P1P2] = [P0P2]

Do it again so that [P0P2]•[P1P2] =  [P0P2]•[P2P1] =  [P0P1]
P0

P1

P2

[Hiley, Quantum Interactions, 1-10 OXFORD 2008]

i2  1[P1P2]•[P1P2], =  1







The Quaternions.

Identify P0P1  e1; P0P2  e2; P1P2  e12.

Isomorphic to the

QUATERNIONS, {i, j, k}

The three idempotents become points of V.

cf :  ,   2g

P0
P1

P2
Introduce mapping:  : Cliff  Vect.

: [P0P0]  P0,   [P1P1]  P1, and [P2P2]   P2

Allow addition and exploit the Clifford group A  gAg1 with g  a be12

If (a)  cos 
2  and (b)  sin 

2  Directional
calculus.

C (0,2)SO(2)

Elements anti-commute PiPj , Pn Pm    2 jnim



Introduce polar processes [P0 P ] and temporal process [P0 T ]

[P0 P] • [P0 P] =  [P0 P] • [P P0] =  [P0 P0] =  1

[P0 T] • [P0 T] =  [P0 T] • [T P0] =  [P0 P0] =  1

This gives

We then get the multiplication table

Clifford group R1,1.

SO(1,1)

with  [P0T] •[TP] = [P0P]

Write [P0 T] = e0, [P0P] = e1 and [PT] = e01.

C(1,1)  SO(1,1)2-dim Lorentz Group.



t 2  x2  const.   t  x

  t  x

Allow addition  light cone coordinates  e0  e1  t  x

Velocity?

 e01  v

P0P  P0T 1   PT  P0T 1  P0P  PT  e01 orConsider

Again exploit the Clifford group A  gAg1 with g  a be01

Here (a)  cosh 
2 , (b)  sinh 

2  tanh 
2  v

 : e 0  e 1  
 e0  e1   t  x  k  t  x  k 

1 v
1- v

The Lorentz Group

This is the k-calculus  Lorentz transformations of SR.

[Kauffman, Physics of Knots (1993)]

Dirac’s 



 t2 = t + x, t1 = t  x.

(x, t)

t1

t2

(x, t)

t1

t2

t1´

t2´

t´

t 1  kt1 and t2  k t 2

TL  k 1 ,k  k 1 1,k 2  1

1 v2
1 v,1 v   1,v   1 v 

Primary connections.
t2  t1 = 2x,

t2 + t1 = 2t.

[t2,  t1] = [t + x,  t x] = t*[1, 1] + x* [1, 1] = t 1 + x  where  * = 

The k-calculus gives

t = k t1  and  t2 = kt so that k 
1 v
1 v

t2

t1

 t  x
t  x

 k 2 

Lorentz transform TL is 

[t2',  t1'] = [k1t2,  kt1] = TL*[t2,  t1] = [k1, k]* [t2,  t1]

Write

TL*(t + x) = (1  v)*(t + x) = [(1 v),  (1+ v)]*[t + x, t  x]
Then

= (t  vx) + (x  vt)t' +x')

Lorentz boost: t' = (t  vx); x' = (x  vt)

Kaufman and the k-calculus.
[Kauffman, Physics of Knots (1993)]



Higher Dimensional Clifford Algebras.

By adding more degrees of freedom,  ie more generators we obtain

The Pauli Clifford

The Dirac Clifford

The conformal Clifford.

Non-relativistic with spin

Relativistic with spin

Twistor

The one generator Clifford I will call

The Schrödinger Clifford.

So far NOTHING is QUANTUM.



Hierarchy of Clifford Algebras

C (0,1)

C (3,0)

C (1,3)

C (2,4) Conformal

Dirac

Pauli

Schrödinger 

{1, e1, e2, e3}

{1, e1}

{1, e0, e1, e2, e3}

{1, e0, e1, e2, e3, e4, e5}

Generating
elements.

Nothing quantum here.



[P1P2]  P1P2 g1 [P1P2] g2  P1P2g1 g2

g1P1 P2g2  A B

Where are the Spinors?

i j

Operator

i i

Complex number

LR  AB  A B    ˆ 

 2  Idempotent

A B

 left ideal  right ideal
L  A R  B

 

[Dirac, Quantum Mechanics 3rd Edition p. 79 (1947)]
[Dirac, Spinors in Hilbert Space (1974)]

Standard ket 

CUT

These are our SPINORS

i i

Trace
 



Meaning of Symbolism?

A B

[A, B]  AB  A B  L  R   

Feynman suggested we put this in time.

(R1) was information coming from the past.

(R0) was information coming from the ‘future’.

(r1, t1)

(r2, t2)
(r2, t2) (r1, t1)

(r2 ,t2 )  G(r1 ,r2 ,t1 ,t2 )(r1 ,t1 )d 4r1  ´L = ML
´R = RM*

[Feynman Rev. Mod Phys. 20 (1948) 367]

Taking apart

LR   M LR M  Putting back together

Huygens

The choice of idempotent determines the distinction.



Light Rays and Light Cones.
Take the Pauli algebra.  Choose 

Then

Now form

We find

Null Ray

V3

V1

V2

N Fix origin in V(1,3) then form 

Generates the light cone in V(1,3)

L



The Matrix Method.

Start with

Then form



Then we find the null ray:

Looks like quantum mechanics but has little to do with QM!

It works because we can identify



FUTURE

vA ( L) transforms like the future light cone

PAST

FUTURE

uA ( R) transforms like the past light cone

PAST

.

2  i x 0  .x 1

Algebraic light cone

Algebraic Spinors and Twistors


L 

R

[Bohm & Hiley, Rev. Briz Fis, 1-26 (1984)]


L1



Algebraic twistor
 x


L1 2

Algebraic L-spinor basis

[Frescura & Hiley, Found. Phys. 10, 7-31 (1980)]



Quantum Kinematics.

Need to go back to Heisenberg and introduce a symplectic structure. 

We need to distinguish between two types of process  X[P1P2] and P[P1P2]

nth root of unity

As n  Weyl algebra  Heisenberg algebra.

i.e. we have a discrete phase space structure but it is non-commutative.

We do this through the discrete Weyl algebra, C2
n. 

Write as UV VU; U n 1; V n 1. The quantum doughnut.

Let us see how it works in toy space.

Heisenberg

where  n = 1

  Put h1

[Morris, Quart. J. Math. 18 (1967) 7-12]



Points in the Finite Phase Space.

   

T

X  x j jj
j
 so that X jj  xj jj

Again the algebra contains within itself a set of points.

[xj jj  IL .]

[Hiley & Monk, , Mod. Phys. Lett., A8, 3225-33.1993]

In C2
n  a set of IDEMPOTENTS {jjThey are the points of our space.

 jj  1
n  jk

k
 R(0,k) R( j,k)  jk

2U jV k , j,k  0,1,...n1.where

How do we relate the idempotents?

Position points

where T U  exp
2ix

n
P





 j1 j1  T jjT

1
Use



The Momentum Space.

ii  1
n ij R( j,0)

j


' ' ' '''

T'

T V  exp
2ip

n
X







P  p j jj
j

 which gives P jj  pj jj [pj jj  I L ]

We form idempotents

This generates a new set of points.

Then

Furthermore

[Hiley, CASYS 2000 4th Int. Conf.,77-88, 2001.]

Momentum space

jj  Z 1 jj Z with Z 
1

n3
 j (i)

ijk
 R( j  i,k)

Finite Fourier transform.



Important Lesson.

Note there are many sets of idempotents in C2
n.   Zi

1Zi

What does   Z 1Z mean?

x

p

Each x point ‘explodes’ into all p points

and vice-versa.

The p-space is ‘hologrammed’ in the x-space and vice-versa 

Equivalent to fractional Fourier transformations.

In the continuum limit idempotents are delta functions.

[Hiley & Monk, Found. Phys. Lett. 11, 371-377 (1998)]

The p-points are not ‘hidden’, they are not ‘manifest’ but ‘enfolded’.

[M. Brown, PhD Thesis 2004]



R j,k 


jk

2 U jV k; U j  exp ijP  V k  exp ikQ 
  2ix

n

  2iP
n

{
  exp i 

U s : x j  x js V t : x j 
jt x j [x are elements of a left ideal]

U V

Heisenberg group

exp i . ˆ P  (x) (x  ) exp iq. ˆ Q  (x) exp iqx (x)

H q, ,  exp iqQ iP iZ 

[Weyl, Theory of Groups and quantum mechanics]

The Continuum Limit.
Recall

where

s t   kt  exp ik  exp iq ; k  q 
k integer,but 1 n for n large k runs from  to

k is mod n; k is mod n, but n  2  as 0 

Consider the limit n  ∞

U s :(q) exp iP (q)(q ) V t :(q) exp iq (q)

xk  (q)x becomes the wave function (q) 



General Algebraic Structure.

Non-commutative algebraic structure.

Shadow
manifold

Shadow
manifold

Shadow
manifold

Implicate order

Shadow manifolds are the explicate orders

ji

i j

k

k

Process space



The Clifford Group and Spinors.

Double cover
algebraic  spinors

Clifford bundle with connection.

V

Cliff



A  gAg1

V  RV

  
r 
D  ei

r 
e

i

  
s 
D  ei

s 
e

i

x x + dx
d  ˆ x j x

j





The Relation to the Quantum Formalism.

More general

Let’s do quantum mechanics in the Clifford algebra.

Therefore we need to use two Schrödinger equations,

  
i
dL

dt

r 
H L   

i
dR

dt
 R

s 
H and

 L

Hilbert space

QM Cliff.



Time Evolutions: Differences and Sums.

Differences:-

i t L R L tR   HL R L HR 

We can rewrite this as it  H ,  Liouville equation.

Sums:-

i t L R L tR   HL R L HR  H ,  Anonymous.

 is the density operator for a pure state.

[Brown and Hiley quant-ph/0005026]

What is this equation?

Could 
E  i  t L R L tR  

P  i  L R L R   ?

?



The Schrödinger Particle.

Clifford algebra C (0,1) generated by {1, e} where  e2 =  1

General element L  g0  g1e

˜ L R  g0  g1e

Write L  
1
2U with   g0

2  g1
2

and U ˜ U  ˜ U U 1

Then

ˆ  LR LR  U ˜ U 
and

RL  RL  
1
2U ˜ U  1

2   RL  R L

LR L R

g0 , g1 with

Clifford  conjugation

Real



The Details.
Energy.

2E(t) i tL R L tR  

or
2E(t) 

i
2
t t  it  

 U ˜ U 

t  2  tU  ˜ U  2U  t
˜ U  

If we write U  eiS
and  = 1 then  1  2E(t)  it  2tS

E  tS The Bohm energy

Momentum.

2Pj (t)  i  jL R L  jR   i j  

Pj   jS The Bohm momentum.

Also known as the ‘guidance’ condition but nothing is being ‘guided’ here.



The Quantum Hamilton-Jacobi Equation.

The LHS is 2E(t)  2tS

 tS  1
2 H , ˆ    0 Quantum Hamilton-Jacobi

Since we have written L  
1
2U  ReiS with   = 1, 

S
t


1

2m
S 2 

1
2mR

2R V (x)  0

using ˆ H 
ˆ p 2

2m
V (x)

Quantum Potential

Conservation of
energy.

i t L R L tR   HL R L HR  H , 



The Shadow Phase Space

ˆ (r,t) L (r,t)R (r,t)Since

We construct P and E 

Pj (r,t)  jS r,t 

r

P

The dynamics is defined by

S
t


1

2m
S 2 QV (x)  0

E  tS

Probability conserved via Liouville equation 

P
t

. P
S
m







 0



X   pSp

ˆ (p,t)  L (p,t)R (p,t)

E  tSp

Another Shadow Phase Space.
Consider a Clifford algebra of MOMENTUM space.

Now construct X and E

Sp

t


p 2

2m
Q(p)V  pSp  0

The dynamics is defined by

t Pp  p j p  0

Probability conserved via Liouville equation.

jp   p
( ˆ V( ˆ x ))

x
p

where

p

X



General Algebraic Structure.

Non-commutative algebraic structure.

Shadow
manifold

Shadow
manifold

Shadow
manifold

Implicate order

Shadow manifolds are the explicate orders

ji

i j

k

k

Process space



Conclusions.

1.  Process  orthogonal and symplectic groupoids  Generalized Clifford 

3. Non-commutative structure containing shadow manifolds.

4.  Quantum and relativistic processes ‘live’ in the covering space.

5.  The Bohm construction is the first example of these shadow manifolds in QM.

6. The Bohm construction works for Pauli AND DIRAC.
 consistent with relativity.

Prospects

1.  Extension to many particle systems.   Quantum non-locality.

2.  Curved shadow manifolds.

3.  Different algebras.

4.  A more careful mathematical analysis using category theory.

2.  Larger Clifford algebras contain the Pauli, Dirac and Conformal structures.


