Towards a Quantum Geometry: Groupoids, Clifford algebras and Shadow Manifolds.

B. J. Hiley.

b.hiley@bbk.ac.uk

Unified Structure.

1. Quantum theory through PROCESS.

Not process in space-time but process from which space-time is abstracted.

Process
 Whitehead's notion of FUNCTION.
 Category notion of MORPHISM.

3. Mathematically start with groupoids \Rightarrow Clifford algebras.

Schrödinger, Pauli, Dirac $C(0,1) \subset C(3,0) \subset C(1,3)$

- 4. Clifford bundle \rightarrow Induces light cone structure on abstracted vector space.
- 5. Add in symplectic structure \rightarrow Non-commutative phase space. \Rightarrow Moyal

Process and Categories.

Lawvere's "Continuously Variable Sets" (1973).

".... the concept of motion as the presence of a body one place at one time and another place at a later time, **describes only the result of motion and does not contain an explanation of motion itself**."

He puts the emphasis on mappings or morphisms.

From these he abstracts the notion of a set.

This was just what I was looking for.

Categories or Algebra?

Hamilton:- Algebra relates successive states of some changing thing or thought. Grassmann:-

Mathematics is about THOUGHT, not MATERIAL REALITY. It's about RELATIONSHIPS of FORM, not relationships of CONTENT. Mathematics is to do with ORDERING FORMS created in THOUGHT.

Thought \Rightarrow becoming \Rightarrow process.

New thought contains a trace of the old thought. Old thought contains the potential of the new thought.

$$T_1 \xrightarrow{T_2} T_2 \xrightarrow{T_1} T_2 \xrightarrow{T_1} [T_1, T_2]$$

Put together via $[T_1, T_2] \bullet [T_2, T_3] = [T_1, T_3] \implies$ Groupoid

Since $[P_1, P_1] \bullet [P_1, P_1] = [P_1, P_1]$, being is **IDEMPOTENT.**

The Algebra of Process.

Rules of composition.

 (i) [kA, kB] = k[A, B] Strength of

 (ii) [A, B] = -[B, A] Process dial

 (iii) $[A, B] \bullet [B, C] = \pm [A, C]$ Order of s

 (iv) [A, B] + [C, D] = [A+C, B+D] Order of c

 (v) [A, [B, C]] = [A, B, C] = [[A, B], C] Order of c

Strength of process. Process directed. Order of succession. Order of coexistence.

Notice [*A*, *B*]• [*C*, *D*] is NOT defined (yet!) [Multiplication gives a Brandt groupoid] [Hiley, Ann. de la Fond. Louis de Broglie, **5**, 75-103 (1980). Proc. ANPA 23, 104-133 (2001)]

Lou Kauffman's iterant algebra

 $[A, B]^*[C, D] = [AC, BD]$

[Kauffman, Physics of Knots (1993)]

Raptis and Zaptrin's causal sets.

 $|A
angle\!\langle B|*|C
angle\!\langle D|\!
ightarrow\!\delta_{_{BC}}|A
angle\!\langle D|$

Bob Coecke's approach through categories.

If $f : A \to B$ and $g : B \to C$, $f \circ g : A \to C$

[Raptis & Zaptrin, gr-qc/9904079]

[Abramsky& Coecke q-ph/0402130]

Space-time an Abstraction?

Hamilton: [Motion & Time, Space & Matter, Machambers&Turnbull, 1976]

"In algebra relationships are between successive states of some changing thing or thought". [Metaphysics of Maths--Algebra of Pure Time]

Einstein: [Physics and Reality, J, Franklin Inst. 221 (1936) 378]

"perhaps the success of the *Heisenberg method points to a purely algebraic description of nature*, that is, to the elimination of the continuous functions from physics. Then, however, we must give up, in principle, the space-time continuum...."

Wheeler:	[Quantum Theory and Gravitation, 1980]	
Not	Day 1 Geometry	Day 2 Physics.
But	Day 1 The quantum principle	Day 2 Geometry

Gel'fand construction.

Commutative algebras.

Traditional way

Start with a topological space or a metric space and construct the commutative algebra of functions on that space.

Alternative way.

Take a given commutative algebra and abstract the topological and metric properties from the algebra.

The points of that space are the two-sided maximal ideals.

$$F_{x} = \left\{ f \middle| f(x) = 0 : \forall f \in C^{\infty} \right\}$$

Maximal ideal

Can we do the same thing for a non-commutative structure?

[Demaret et al Fond. Sci. 2, (1997) 137-176]

The Directional Calculus.

Consider an arrow, $[P_0P_1]$, in *some* direction with $[P_0P_1] = -[P_1P_0]$

Consider an arrow, $[P_0P_2]$, in *another* direction

How do we get from $[P_0P_1]$ to $[P_0P_2]$?

Introduce $[P_1P_2]$ so that $[P_0P_1] \cdot [P_1P_2] = [P_0P_2]$

Do it again so that $[P_0P_2] \bullet [P_1P_2] = -[P_0P_2] \bullet [P_2P_1] = -[P_0P_1]$

$$[P_0P_1] \cdot \left([P_1P_2] \cdot [P_1P_2] \right) = -[P_0P_1]$$

$$\downarrow$$

$$[P_1P_2] \cdot [P_1P_2], = -1 \qquad \Rightarrow \qquad i^2 = -i^2$$

[Hiley, Quantum Interactions, 1-10 OXFORD 2008]

The Quaternions.

 $[P_0P_1] = e_1; [P_0P_2] = e_2; [P_1P_2] = e_{12}.$

1	P1	Po	P1P0
e_1	-1	e_1e_2	$-e_2$
e_2	$-e_{1}e_{2}$	-1	e_1
e_1e_2	e_2	$-e_1$	-1

Isomorphic to the QUATERNIONS, $\{i, j, k\}$

 $C(0,2) \Leftrightarrow SO(2)$

Elements anti-commute $[P_i P_j], [P_n P_m]]_+ = 2\delta_{jn}\delta_{im}$

Identify

$$cf: \left[\gamma_{\mu}, \gamma_{\nu}\right]_{\!\!\!+} = 2g_{\mu\nu}$$

Introduce mapping: $\eta : \text{Cliff} \rightarrow \text{Vect.}$ P_2 The three idempotents become points of V. $\eta: [P_0P_0] \to P_0, \quad [P_1P_1] \to P_1, \text{ and } [P_2P_2] \to P_2$

Allow addition and exploit the Clifford group $A' = gAg^{-1}$ with $g = a + be_{12}$

Directional calculus.

2-dim Lorentz Group. $C(1,1) \Leftrightarrow SO(1,1)$

Introduce **polar** processes $[P_0 P]$ and **temporal** process $[P_0 T]$ with $[P_0 T] \cdot [TP] = -[P_0 P]$ This gives

$$[P_0 P] \bullet [P_0 P] = -[P_0 P] \bullet [P P_0] = -[P_0 P_0] = -1$$
$$[P_0 T] \bullet [P_0 T] = -[P_0 T] \bullet [T P_0] = +[P_0 P_0] = +1$$
Write $[P_0 T] = e_0, [P_0 P] = e_1$ and $[PT] = e_{01}$.

We then get the multiplication table

1	e_0	e_1	e_{01}
e_0	1	e_{01}	e_0
e_1	$-e_{01}$	-1	e_0
e_{01}	$-e_1$	$-e_0$	1

Clifford group R_{1,1}. SO(1,1)

The Lorentz Group

Allow addition \rightarrow light cone coordinates $\eta(e_0 \pm e_1) = t \pm x$ Velocity?

Consider
$$[P_0P] \bullet [P_0T]^{-1} = -[PT]$$
 or $[P_0T]^{-1} \bullet [P_0P] = [PT] = e_{01} = \alpha$
 $\eta(e_{01}) \rightarrow \mathbf{v}$ Dirac's α

Again exploit the Clifford group $A' = gAg^{-1}$ with $g = a + be_{01}$

Here
$$\eta(a) = \cosh(\frac{\lambda}{2}), \quad \eta(b) = \sinh(\frac{\lambda}{2}) \qquad \tanh(\frac{\lambda}{2}) = v$$

$$\eta : e'_0 \pm e'_1 = \kappa^{\pm} (e_0 \pm e_1) \to t' \pm x' = k^{\pm} (t \pm x) \qquad k = \sqrt{\frac{1+v}{1-v}}$$

This is the *k*-calculus \Rightarrow Lorentz transformations of SR.

[Kauffman, Physics of Knots (1993)]

Kaufman and the k-calculus.

*t*₂

 t_2

(x, t)

(x, t)

Primary connections.

[Kauffman, Physics of Knots (1993)]

 $t_{2} - t_{1} = 2x,$ $t_{2} + t_{1} = 2t. \implies t_{2} = t + x, \quad t_{1} = t - x.$ $[t_{2}, t_{1}] = [t + x, t - x] = t^{*}[1, 1] + x^{*}[1, -1] = t + x \sigma \text{ where } \sigma^{*}\sigma = \sigma$

The *k*-calculus gives

$$t = k t_1$$
 and $t_2 = kt$ so that $\frac{t_2}{t_1} = \frac{t+x}{t-x} = k^2 \implies k = \sqrt{\frac{1+v}{1-v}}$

Lorentz transform T_L is $t'_1 = kt_1$ and $t_2 = kt'_2$

$$[t_2', t_1'] = [k^{-1}t_2, kt_1] = T_L^*[t_2, t_1] = [k^{-1}, k]^*[t_2, t_1]$$

Write

$$T_{L} = \begin{bmatrix} k^{-1}, k \end{bmatrix} = k^{-1} \begin{bmatrix} 1, k^{2} \end{bmatrix} = \frac{1}{\sqrt{1 - v^{2}}} \begin{bmatrix} 1 - v, 1 + v \end{bmatrix} = \gamma \begin{bmatrix} 1, -v \end{bmatrix} = \gamma (1 - v\sigma) \quad t_{1} \downarrow f_{1}$$
Then
$$T_{L}^{*}(t + x\sigma) = \gamma (1 - v\sigma)^{*}(t + x\sigma) = [\gamma (1 - v), \gamma (1 + v)]^{*}[t + x, t - x]$$

$$= \gamma (t - vx) + \gamma (x - vt)\sigma = \gamma (t' + x'\sigma)$$
Lorentz boost:
$$t' = \gamma (t - vx); \quad x' = \gamma (x - vt)$$

Higher Dimensional Clifford Algebras.

By adding more degrees of freedom, ie more generators we obtain

The Pauli Clifford

Non-relativistic with spin

The Dirac Clifford

Relativistic with spin

The conformal Clifford.

Twistor

The one generator Clifford I will call

The Schrödinger Clifford.

So far NOTHING is QUANTUM.

Hierarchy of Clifford Algebras

Where are the Spinors?

[Dirac, Spinors in Hilbert Space (1974)]

Meaning of Symbolism?

$$\bigcirc \rightarrow \bigcirc \rightarrow \textcircled{AB}$$

 $[A, B] \to A \varepsilon B \to A \varepsilon \varepsilon B \to \Psi_L \Psi_R \to \psi \rangle \langle \phi \qquad \text{Taking apart}$

The choice of idempotent determines the distinction.

Feynman suggested we put this in time.

 $\psi(R_1)$ was information coming from the past.

 $\psi^*(R_0)$ was information coming from the 'future'.

Huygens

 $\Psi'_{\rm R} = \Psi_{\rm R} M^*$

 $\psi(r_2,t_2) = \int G(r_1,r_2,t_1,t_2) \psi(r_1,t_1) d^4 r_1 \rightarrow \Psi'_{\rm L} = M \Psi_{\rm L}$

$$(\Psi_L \Psi_R)' = M(\Psi_L \Psi_R)M^*$$

Putting back together

[Feynman Rev. Mod Phys. 20 (1948) 367]

Light Rays and Light Cones.

Take the Pauli algebra. Choose $\epsilon = (1 + e_3)/2$ Then

 $\Psi_L(\mathbf{r},t) = \psi_L(\mathbf{r},t)(1+e_3)/2 = g_0(\mathbf{r},t) + g_1(\mathbf{r},t)e_{23} + g_2(\mathbf{r},t)e_{31} + g_3(\mathbf{r},t)e_{12}$

Now form
$$\mathcal{V} = \psi_L (1 + e_3) \psi_R = v_0 1 + v_1 e_1 + v_2 e_2 + v_3 e_3$$

We find $v_0 = g_0^2 + g_1^2 + g_2^2 + g_3^2$ $v_1 = 2(g_1g_3 - g_0g_2)$ $v_2 = 2(g_0g_1 + g_2g_3)$ $v_3 = g_0^2 - g_1^2 - g_2^2 + g_3^2.$

 $\eta: \mathcal{C}_{1,3} \to V_{1,3}$

$$\eta(\mathcal{V}) = v_0 \hat{t} + v_1 \hat{x} + v_2 \hat{y} + v_3 \hat{z}$$
Fix origin in V(1,3) then form $\mathcal{V}' = g \mathcal{V} g^{-1}$ $g \in SU(2)$

Generates the light cone in V(1,3)

The Matrix Method.

Start with

$$|\Psi
angle
ightarrow \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Then form

$$|\Psi\rangle\langle\Psi| = \begin{pmatrix} |\psi_1|^2 & \psi_1\psi_2^*\\ \psi_2\psi_1^* & |\psi_2|^2 \end{pmatrix} \longrightarrow \qquad X = \begin{pmatrix} t+z & x-iy\\ x+iy & t-z \end{pmatrix}$$

Then we find the null ray:

 $t = |\psi_1|^2 + |\psi_2^*|^2 \qquad x = \psi_1\psi_2^* + \psi_1^*\psi_2 \qquad y = i(\psi_1\psi_2^* - \psi_1^*\psi_2) \qquad z = |\psi_1|^2 - |\psi_2^*|^2$

Looks like quantum mechanics but has little to do with QM!

It works because we can identify

$$egin{aligned} g_0 &= (\psi_1^* + \psi_1)/2 & g_1 &= i(\psi_2^* - \psi_2)/2 \ g_2 &= (\psi_2^* + \psi_2)/2 & g_3 &= i(\psi_1^* - \psi_1)/2 \end{aligned}$$

Quantum Kinematics.

Need to go back to Heisenberg and introduce a symplectic structure. We need to distinguish between two types of process $X[P_1P_2]$ and $P[P_1P_2]$

Heisenberg $X[P_nP_k] \cdot P[P_kP_n] - P[P_nP_k] \cdot X[P_kP_n] = i\hbar$ Put h=1

We do this through the discrete Weyl algebra, C_n^2 .

 $X[P_nP_k] \cdot P[P_kP_n] = \omega P[P_nP_k] \cdot X[P_kP_n]. \quad \text{where } \omega^n = 1$

nth root of unity

Write as $UV = \omega VU; \quad U^n = 1; \quad V^n = 1.$

The quantum doughnut.

As $n \rightarrow \infty$ Weyl algebra \rightarrow Heisenberg algebra.

i.e. we have a discrete phase space structure but it is **non-commutative**.

Let us see how it works in toy space.

[Morris, Quart. J. Math. 18 (1967) 7-12]

Points in the Finite Phase Space.

In $C_n^2 \exists$ a set of IDEMPOTENTS $\{\varepsilon_{jj}\}$. They are the points of our space. $\varepsilon_{jj} = \frac{1}{n} \sum_k \omega^{-jk} R(0,k)$ where $R(j,k) = \omega^{-k/2} U^j V^k$, j,k = 0,1,...n-1.

How do we relate the idempotents?

 $X = \delta x \sum_{j} j \varepsilon_{jj} \qquad \text{so that} \qquad X \varepsilon_{jj} = \delta x j \varepsilon_{jj} \qquad \qquad [\delta x j \varepsilon_{jj} \in I_L.]$

Again the algebra contains within itself a set of points.

[Hiley & Monk, , Mod. Phys. Lett., A8, 3225-33.1993]

The Momentum Space.

$$\varepsilon'_{jj} = Z^{-1} \varepsilon_{jj} Z$$
 with $Z = \frac{1}{\sqrt{n^3}} \sum_{ijk} \omega^{j(i-)} R(j-i,k)$

Finite Fourier transform.

[Hiley, CASYS 2000 4th Int. Conf.,77-88, 2001.]

Important Lesson.

What does $\varepsilon' = Z^{-1} \varepsilon Z$ mean?

Each x point 'explodes' into all p points

and vice-versa.

The *p*-points are not 'hidden', they are not 'manifest' but 'enfolded'.

The *p*-space is 'hologrammed' in the *x*-space and vice-versa

In the continuum limit idempotents are delta functions.

Note there are many sets of idempotents in C_n^2 . $\varepsilon' = Z_i^{-1} \varepsilon Z_i$

Equivalent to fractional Fourier transformations.

[Hiley & Monk, Found. Phys. Lett. 11, 371-377 (1998)]

[M. Brown, PhD Thesis 2004]

Recall

where
$$\omega = \exp[i\xi\eta]$$
 $U^{j}V^{k};$ $U^{j} = \exp[ij\xi P]$ $V^{k} = \exp[ik\eta Q]$ $\begin{cases} \xi = \frac{n}{n} \\ \eta = \frac{2\pi i\delta P}{n} \end{cases}$

 $U^{s}: x'_{j} = x_{j-s}$ $V^{t}: x'_{j} = \omega^{jt} x_{j}$ [x are elements of a left ideal]

Consider the limit $n \to \infty$

 $s\xi \to \sigma \qquad t\eta \to \tau \qquad \omega^{k} = \exp[i\xi k\tau\eta] = \exp[iq\tau]; \quad (k\xi = q)$ k integer, but $\xi \propto 1/n \qquad \therefore$ for n large k runs from $-\infty$ to ∞ [k is mod n; k\xi is mod n\xi, but $n\xi = 2\pi/\eta \to \infty$ as $\eta \to 0$]

x becomes the wave function $\psi(q) \rightarrow x_k = \sqrt{\xi} \psi(q)$

$$U^{s}: \psi(q) \to \exp[i\sigma P] \psi(q) \to \psi(q-\sigma) \qquad V^{t}: \psi(q) \to \exp[iq\tau] \psi(q)$$

Heisenberg group $H(q,\sigma,\varsigma) = \exp[iqQ + i\sigma P + i\varsigma Z]$

$$\exp[i\sigma.\hat{P}]\psi(x) = \psi(x+\sigma) \qquad \exp[iq.\hat{Q}]\psi(x) = \exp[iqx]\psi(x)$$

$$U \qquad V$$
[Weyl Theory of Groups and quantum mech

[Weyl, Theory of Groups and quantum mechanics]

 $2\pi i\delta x$

General Algebraic Structure.

Shadow manifolds are the explicate orders

The Clifford Group and Spinors.

Clifford bundle with connection.

N.B. We need TWO derivatives in the bundle space \overrightarrow{D} and \overleftarrow{D} .

The Relation to the Quantum Formalism.

Hilbert space

Let's do quantum mechanics in the Clifford algebra.

We have TWO derivatives \overrightarrow{D} and \overleftarrow{D} .

Therefore we need to use two Schrödinger equations,

$$i\frac{d\Psi_L}{dt} = \overset{\mathsf{f}}{H}\Psi_L$$
 and $-i\frac{d\Psi_R}{dt} = \Psi_R \overset{\mathsf{S}}{H}$

Time Evolutions: Differences and Sums.

Differences:-

 $i\left[\left(\partial_t \Psi_L\right)\Psi_R + \Psi_L\left(\partial_t \Psi_R\right)\right] = \left(H\Psi_L\right)\Psi_R - \Psi_L\left(H\Psi_R\right)$

We can rewrite this as $i\partial_t \rho = [H, \rho]_{-}$ Liouville equation.

 ρ is the density operator for a pure state.

Sums:-

$$i\left[\left(\partial_{t}\Psi_{L}\right)\Psi_{R}-\Psi_{L}\left(\partial_{t}\Psi_{R}\right)\right]=\left(H\Psi_{L}\right)\Psi_{R}+\Psi_{L}\left(H\Psi_{R}\right)=\left[H,\rho\right]_{+}$$
 Anonymous

What is this equation?

Could

 $E \to i \left[(\partial_t \Psi_L) \Psi_R - \Psi_L (\partial_t \Psi_R) \right] ?$

$$P \to i \left[(\nabla \Psi_L) \Psi_R - \Psi_L (\nabla \Psi_R) \right] ?$$

[Brown and Hiley quant-ph/0005026]

RealThe Schrödinger Particle.

Clifford algebra C(0,1) generated by $\{1, e\}$ where $e^2 = -1$

General element $\psi_L = g_0 + g_1 e$ with $g_0, g_1 \in \Re$

Clifford conjugation $\tilde{\psi}_L = \psi_R = g_0 - g_1 e$

Write $\psi_L = \rho^{\frac{1}{2}}U$ with $\rho = g_0^2 + g_1^2$ and $U\tilde{U} = \tilde{U}U = 1$

Then

 $\Psi_{R}\Psi_{L} = \varepsilon \psi_{R}\psi_{L}\varepsilon = \varepsilon \rho^{\frac{1}{2}}U\tilde{U}\rho^{\frac{1}{2}}\varepsilon = \rho\varepsilon$

and

$$\hat{\rho} = \Psi_L \Psi_R = \psi_L \varepsilon \psi_R = \rho U \varepsilon \tilde{U}$$

$\Psi_{R}\Psi_{L} \Rightarrow \langle \psi_{R} \psi_{L} \rangle$
$\Psi_L \Psi_R \Rightarrow \psi_L \rangle \langle \psi_R $

The Details.

Energy.

or

$$2\rho E(t) = i \left[\left(\partial_t \Psi_L \right) \Psi_R - \Psi_L \left(\partial_t \Psi_R \right) \right]$$

 $2E(t) = \frac{i}{2} \left[\Omega_t \Sigma + \Sigma \Omega_t \right] = i \Omega_t \cdot \Sigma$

$$\Sigma = U\varepsilon \tilde{U}$$
$$\Omega_t = 2(\partial_t U)\tilde{U} = -2U(\partial_t \tilde{U})$$

If we write $U = e^{iS}$ and $\varepsilon = 1$ then $\Sigma = 1 \implies 2E(t) = i \Omega_t = -2\partial_t S$

$$E = -\partial_t S$$

The Bohm energy

Momentum.

$$2\rho P_{j}(t) = -i \left[\left(\partial_{j} \Psi_{L} \right) \Psi_{R} - \Psi_{L} \left(\partial_{j} \Psi_{R} \right) \right] = -i\rho \Omega_{j} \cdot \Sigma$$
$$P_{j} = \partial_{j} S$$
The Bohm momentum.

Also known as the 'guidance' condition but nothing is being 'guided' here.

The Quantum Hamilton-Jacobi Equation.

 $i\left[\left(\partial_t \Psi_L\right)\Psi_R - \Psi_L\left(\partial_t \Psi_R\right)\right] = \left(H\Psi_L\right)\Psi_R + \Psi_L\left(H\Psi_R\right) = \left[H,\rho\right]_+$

The LHS is $2\rho E(t) = -2\rho \partial_t S$

$$\rho \partial_t S + \frac{1}{2} [H, \hat{\rho}]_+ = 0$$

Quantum Hamilton-Jacobi

Since we have written
$$\psi_L = \rho^{\frac{1}{2}} U = Re^{iS}$$
 with $\varepsilon = 1$,

using $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 - \frac{1}{2mR} (\nabla^2 R) + V(x) = 0$$
Conservation of energy.
Ouantum Potential

The Shadow Phase Space

Since

 $\hat{\rho}(\boldsymbol{r},t) = \psi_L(\boldsymbol{r},t) \varepsilon \psi_R(\boldsymbol{r},t)$

We construct \boldsymbol{P} and E

$$P_{j}(\boldsymbol{r},t) = \partial_{j}S(\boldsymbol{r},t)$$
$$E = -\partial_{t}S$$

The dynamics is defined by

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 - Q + V(x) = 0$$

Probability conserved via Liouville equation

$$\frac{\partial P}{\partial t} + \nabla \cdot \left(P \frac{\nabla S}{m} \right) = 0$$

Another Shadow Phase Space.

Consider a Clifford algebra of MOMENTUM space.

 $\hat{\rho}(\boldsymbol{p},t) = \phi_L(\boldsymbol{p},t)\varepsilon\phi_R(\boldsymbol{p},t)$

Now construct X and E

$$X = -\nabla_p S_p$$
$$E = -\partial_t S_p$$

p

The dynamics is defined by

$$\frac{\partial S_p}{\partial t} + \frac{p^2}{2m} + Q(p) + V(\nabla_p S_p) = 0$$

Probability conserved via Liouville equation.

$$\partial_t P_p + \nabla_p j_p = 0$$

where

$$j_p = -\langle p | \frac{\partial(\hat{\rho}V(\hat{x}))}{\partial x} | p \rangle$$

General Algebraic Structure.

Shadow manifolds are the explicate orders

Conclusions.

- 1. Process \Rightarrow orthogonal and symplectic groupoids \Rightarrow Generalized Clifford
- 2. Larger Clifford algebras contain the Pauli, Dirac and Conformal structures.
- 3. Non-commutative structure containing shadow manifolds.
- 4. Quantum and relativistic processes 'live' in the covering space.
- 5. The Bohm construction is the first example of these shadow manifolds in QM.
- 6. The Bohm construction works for Pauli AND DIRAC. ∴ consistent with relativity.

Prospects

- 1. Extension to many particle systems. Quantum non-locality.
- 2. Curved shadow manifolds.
- 3. Different algebras.
- 4. A more careful mathematical analysis using category theory.