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“When one man speaks to another man who doesn’t understand him, and when
the man who’s speaking no longer understands, it’s metaphysics.”

(Voltaire, Candide, 1759)

“The issue remains, when will we ever stop burdening the taxpayer with
conferences devoted to the quantum foundations?”

(Chris Fuchs)
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Introduction

A few general remarks

We will be concerned with conceptual aspects of quantum theory. These
include metaphysical questions as well as interpretational issues on the
relation between the mathematical formalism and the physical theory as
‘referring to the world’.

Even after more than 80 years, there is no concensus on these issues.

We will present a number of mathematical results (well-known in physics).
Some of the mathematical results are interesting as mathematics, others
are quite straightforward. Our main interest lies in the physical meaning
and consequences of the mathematical results.

We will typically choose the simplest mathematical setting in which a
result can be obtained.
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Introduction

Some sources and references

The Stanford Encyclopedia of Philosophy (plato.stanford.edu)

C.J. Isham, Lectures on Quantum Theory: Mathematical and
Structural Foundations, Imperial College Press (1995)

J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement,
Princeton (1983)

R. Penrose, The Road to Reality, Jonathan Cape (2004)
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The Copenhagen interpretation

The Copenhagen Interpretation

The Copenhagen interpretation of quantum mechanics goes back to Bohr,
Heisenberg, Born and others. It is the orthodox interpretation and still
prevalent among working physicists.

Bohr was the leading intellectual figure in the development of the CI, but
he is hard to read.

“Never express yourself more clearly than you are able to think.”
(Niels Bohr)

What we call the CI today mostly goes back to Heisenberg.
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The Copenhagen interpretation

The mathematical skeleton of QM

Let a physical system S be given. Its quantum-theoretical description is
given at least by:

A separable complex Hilbert space H,

a unit vector ψ ∈ H, representing the state of the system. ψ
traditionally is called the wave function,

a set A(S) of self-adjoint operators on H representing the physical
quantities of the system (like position, momentum, energy, spin, ...),

the eigenvector-eigenvalue link: if, for some Â ∈ A(S), we have
Â(ψ) = aψ, i.e., if ψ is an eigenvector (also called an eigenstate) of
Â, then the physical quantity A represented by Â has the value a.

upon measurement of A, the state collapses into an eigenstate of Â
corresponding to the measured (eigen)value a ∈ sp(Â). The Born rule
allows to calculate probabilities of outcomes of measurements and
expectation values.
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allows to calculate probabilities of outcomes of measurements and
expectation values.
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Â(ψ) = aψ, i.e., if ψ is an eigenvector (also called an eigenstate) of
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corresponding to the measured (eigen)value a ∈ sp(Â). The Born rule
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The Copenhagen interpretation

The physical interpretation

The state ψ of a quantum system has quite a different role from the state
s of a classical system. ψ can be seen as a pure calculational device,
encoding the observer’s knowledge about the quantum system
(Heisenberg’s positivist approach), or as a symbolic representation of the
quantum world (Bohr), in contrast to classical physics, where the state
gives a pictorial or literal representation.

In particular, the quantum state does not assign values to all physical
quantities at once. The formalism of QM fundamentally restricts the
possibility of such value assignments, as we will see from the uncertainty
principle.

Measurements hence do not simply reveal preexisting values.
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The Copenhagen interpretation

The physical interpretation - Bohr, 1

The following is taken from the article “Copenhagen Interpretation of
Quantum Mechanics” from the SEP (plato.stanford.edu). It summarises
Bohr’s mature view on quantum theory after EPR. A few comments are
added.

1. The interpretation of a physical theory has to rely on an experimental practice.

2. The experimental practice presupposes a certain pre-scientific practice of description,
which establishes the norm for experimental measurement apparatus, and consequently
what counts as scientific experience.

3. Our pre-scientific practice of understanding our environment is an adaptation to the sense
experience of separation, orientation, identification and reidentification over time of
physical objects.

4. This pre-scientific experience is grasped in terms of common categories like [a] thing’s
position and change of position, duration and change of duration, and the relation of
cause and effect, terms and principles that are now parts of our common language.

5. These common categories yield the preconditions for objective knowledge, and any
description of nature has to use these concepts to be objective.

These points express a neo-Kantian point of view.
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The Copenhagen interpretation

The physical interpretation - Bohr, 2

6. The concepts of classical physics are merely exact specifications of the above categories.

7. The classical concepts—and not classical physics itself—are therefore necessary in any
description of physical experience in order to understand what we are doing and to be able
to communicate our results to others, in particular in the description of quantum
phenomena as they present themselves in experiments;

8. Planck’s empirical discovery of the quantization of action [i.e., the quantum of action ~]
requires a revision of the foundation for the use of classical concepts, because they are not
all applicable at the same time. Their use is well defined only if they apply to experimental
interactions in which the quantization of action can be regarded as negligible.

9. In experimental cases where the quantization of action plays a significant role, the
application of a classical concept does not refer to independent properties of the object;
rather the ascription of either kinematic or dynamic properties to the object as it exists
independently of a specific experimental interaction is ill-defined.

10. The quantization of action demands a limitation of the use of classical concepts so that
these concepts apply only to a phenomenon, which Bohr understood as the macroscopic
manifestation of a measurement on the object, i.e. the uncontrollable interaction between
the object and the apparatus.

This can be summarised as environmental contextuality.
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The Copenhagen interpretation

The physical interpretation - Bohr, 3
11. The quantum mechanical description of the object differs from the classical description of

the measuring apparatus, and this requires that the object and the measuring device
should be separated in the description, but the line of separation is not the one between
macroscopic instruments and microscopic objects. It has been argued in detail (Howard
1994) that Bohr pointed out that parts of the measuring device may sometimes be treated
as parts of the object in the quantum mechanical description.

12. The quantum mechanical formalism does not provide physicists with a pictorial
representation: the ψ-function does not, as Schrödinger had hoped, represent a new kind
of reality. Instead, as Born suggested, the square of the absolute value of the ψ-function
expresses a probability amplitude for the outcome of a measurement. Due to the fact that
the wave equation involves an imaginary quantity this equation can have only a symbolic
character, but the formalism may be used to predict the outcome of a measurement that
establishes the conditions under which concepts like position, momentum, time and
energy apply to the phenomena.

13. The ascription of these classical concepts to the phenomena of measurements rely on the
experimental context of the phenomena, so that the entire setup provides us with the
defining conditions for the application of kinematic and dynamic concepts in the domain
of quantum physics.

14. Such phenomena are complementary in the sense that their manifestations depend on
mutually exclusive measurements, but that the information gained through these various
experiments exhausts all possible objective knowledge of the object.

Keywords: complementarity and doctrine of classical concepts.
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The Copenhagen interpretation

Heisenberg’s uncertainty principle

Let ψ be a state. The standard deviation of p̂ in the state ψ is

∆ψ(p̂) =
√

(〈p̂2〉ψ)− (〈p̂〉ψ)2.

∆ψ(q̂) is defined analogously.

The uncertainty principle states that for all
states ψ,

∆ψ(p̂)∆ψ(q̂) ≥ ~
2
.

This form is due to Kennard (1927). A more general form (Schrödinger
1930) is

∆ψ(Â)2∆ψ(B̂)2 ≥ 1

4
|〈[Â, B̂]〉ψ|2 +

1

4
|〈{Â− 〈Â〉ψ, B̂ − 〈B̂〉ψ}〉ψ|2.

An important question is if the UP gives an epistemological constraint
only, due to unavoidable disturbances during measurement, or if it is an
ontological principle, constraining the nature of reality itself, independent
of measurements.

Andreas Döring (Imperial College) Tutorial 11 / 40



The Copenhagen interpretation

Heisenberg’s uncertainty principle

Let ψ be a state. The standard deviation of p̂ in the state ψ is

∆ψ(p̂) =
√

(〈p̂2〉ψ)− (〈p̂〉ψ)2.

∆ψ(q̂) is defined analogously. The uncertainty principle states that for all
states ψ,

∆ψ(p̂)∆ψ(q̂) ≥ ~
2
.

This form is due to Kennard (1927).

A more general form (Schrödinger
1930) is
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|〈[Â, B̂]〉ψ|2 +

1

4
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The Copenhagen interpretation

Bohr and Heisenberg - degrees of instrumentalism

Bohr:

An entity realist (possibly), but not a theory realist. QM gives a
symbolic, but not a pictorial or literal description of the quantum
world. In particular, the use of imaginary numbers (states are vectors
in complex Hilbert spaces) points to this.

Complementarity similar in spirit to relativity. Both create a kind of
contextuality for observations: relativity due to the existence of a
maximal speed, QT due to the existence of a minimal action.

Heisenberg:

Positivist and instrumentalist, QM as giving calculational devices.

It is meaningless to speak of the value of a physical quantity before a
measurement is made.

Heisenberg’s view was and still is very influential. He coined the expression
“Copenhagen interpretation” in 1955.
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The Copenhagen interpretation

The measurement problem, 1

“The dynamics and the postulate of collapse are flatly in contradiction
with one another ... the postulate of collapse seems to be right about
what happens when we make measurements, and the dynamics seems to
be bizarrely wrong about what happens when we make measurements, and
yet the dynamics seems to be right about what happens whenever we
aren’t making measurements.”

D. Albert, Quantum Mechanics and Experience, Harvard University Press,
Cambridge (1992)
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The Copenhagen interpretation

The measurement problem, 2

The dynamics of QM is linear, given by the Schrödinger equation:

∂ψ(r, t)

∂t
= − i

~
Ĥ(ψ(r, t)).

Here, Ĥ is the Hamiltonian, which is the operator representing the physical
quantity energy.

Assume that we have some physical quantity A such that the eigenstates

of Â form a basis (φÂ
i )i∈I of Hilbert space. Moreover, assume that for

t = 0, the state ψ(r, 0) is an eigenstate of Â. After some time t, the state
will have evolved to

ψ(r, t) =
∑
i∈I

ciφ
Â
i ,

which is not an eigenstate of Â anymore in general. Rather, ψ(r, t) is a
superposition of eigenstates of Â.
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The Copenhagen interpretation

The measurement problem, 3

This kind of linear evolution very successfully describes microphysics when
no measurement is made. Yet, measurement itself is not described by this
linear evolution, but by the so-called projection postulate, which goes back
to von Neumann: if the physical quantity A is measured and the result
ai ∈ sp(Â) is obtained (which happens with probability c2

i according to the
Born rule), then the state of the quantum system changes to

ψ(r, t) = φÂ
i ,

the eigenstate of Â corresponding to the eigenvalue ai . (For simplicity, we
assume here that Â is non-degenerate and has discrete spectrum). Clearly,
this change is discontinuous in general.
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The Copenhagen interpretation

The measurement problem, 4

We do not observe superpositions of macroscopic objects, which needs to
be explained as well. Many people see the measurement problem as the
question

How does the macroscopic world, in which physical objects have
definite properties, arise (at least approximately) from the microscopic
world, where QT with its indeterminism holds?

Another aspect is the question

What is a measurement? Which physical interactions are
measurements and which are not?

It has become clear already that the status of the measurement problem
depends on the status one ascribes to the state ψ—as a state of
knowledge, as a symbolic device, or as describing reality. More generally,
potential solutions to the measurement problem (and even the question
what could possibly count as a solution) depend on one’s philosphical and
metaphysical position with respect to QM and to physical theories in
general.
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EPR

EPR - completeness of QM and local realism

Einstein, Podolsky, Rosen, “Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?”, Phys. Rev. 47, 777–780
(1935)

This famous paper is a point of culmination in the Bohr-Einstein debate.
It discusses the completeness of QM. The “condition of completeness” for
a physical theory is:“[E]very element of the physical reality must have a
counterpart in the physical theory.”

EPR suggest the following sufficient, but not necessary criterion for
identifying physical reality: “If, without in any way disturbing the system,
we can predict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.”
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EPR

EPR argument, 1

Acoording to the eigenvector-eigenvalue link, a physical quantity A has a
definite value a in a given state ψ if Â(ψ) = aψ. Hence, there is an
element of physical reality corresponding to the physical quantity A.

If, on the other hand, we consider another physical quantity B such that ψ
is not an eigenstate of B, then B has no definite value in the state ψ.
EPR conclude that such a physical quantity has no physical reality in the
state ψ.

EPR state that “either (1) the quantum-mechanical description of reality
given by the wave function is not complete or (2) when the operators
corresponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality.”

NB: The latter statement is somewhat imprecise, since two
non-commuting operators can have common eigenvectors. Yet, there are
pairs of operators (like spin-x and spin-z) which have no common
eigenvectors. We concentrate on these.
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EPR

EPR argument, 2

EPR then consider an entangled state (without using the word) of a
composite system S = S1 � S2 whose components S1,S2 do not interact
anymore. (One may think of a spatially separated pair of electrons.) Let
A,B denote two physical quantities pertaining to the first component.

The state of the composite system can be written in two ways: let
(ui (S1))i=1,...,n denote the eigenbasis of Â, with eigenvalues ai , and let

(vj(S1))j=1,...,n be the eigenbasis of B̂, with eigenvalues bj . Then

ψ(S) =
n∑

i=1

ui (S1)⊗ ψi (S2) =
n∑

j=1

vj(S1)⊗ φj(S2).
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EPR

EPR argument, 3

Now perform a measurement of A on S1. Let us assume we obtain the
value ak as measurement result. The state of the composite system
changes from

∑n
i=1 ui (S1)⊗ ψi (S2) to

uk(S1)⊗ ψk(S2).

The second component, S2, hence is left in the state ψk(S2) after
measurement.

On the other hand, if we measure B on S1 and obtain the
value bl , then the state changes to

vl(S1)⊗ φl(S2),

so S2 is in the state φl(S2) after measurement.
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EPR

EPR argument, 4

EPR argue that, despite the fact that S2 is left in two different states after
the measurements of A resp. B on S1, there is no real change taking place
in the second system, since S1 and S2 do not interact anymore. They
continue: “Thus, it is possible to assign two different wave functions ... to
the same reality (the second system after the interaction with the first).”

It can happen that the two states of system S2 are eigenstates of physical
quantities C ,D pertaining to system S2 such that Ĉ and D̂ have no
common eigenvectors. EPR show this in an example involving position and
momentum of S2, but it can also be done for spin in x- and spin in
z-direction, for example.

Since eigenstates allow to predict the outcomes of measurements with
certainty, one is forced to ascribe reality to both physical quantities C ,D,
despite the fact that they are represented by non-commuting operators
Ĉ , D̂ with no common eigenstates.

Andreas Döring (Imperial College) Tutorial 21 / 40



EPR

EPR argument, 4

EPR argue that, despite the fact that S2 is left in two different states after
the measurements of A resp. B on S1, there is no real change taking place
in the second system, since S1 and S2 do not interact anymore. They
continue: “Thus, it is possible to assign two different wave functions ... to
the same reality (the second system after the interaction with the first).”

It can happen that the two states of system S2 are eigenstates of physical
quantities C ,D pertaining to system S2 such that Ĉ and D̂ have no
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EPR

EPR argument, 5

But, as we saw, QM does not allow to assign reality to two physical
quantities represented by non-commuting operators with no common
eigenvectors. Hence, EPR conclude, “the quantum-mechanical description
of reality by the wave function is not complete”. Some remarks:

‘elements of reality’ not really necessary for the argument

argument is ‘ontological’ in the sense that physical theories are
supposed to describe/mirror an underlying reality which is
independent of the observer, measurements etc.

no argument about signals, speed of light, no special relativity

non-interacting components: mostly interpreted as spatial separation
→ local realism

Einstein: “But on one supposition we should, in my opinion, hold
absolutely fast: the real factual situation of the system S2 is
inpedendent of what is done with the system S1, which is spatially
separated from the former.”
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Bell’s theorem

Bell’s theorem, 1

The lack of completeness of QM (plus local realism), as demonstrated by
EPR, lead to the consideration of hidden variable models. It was hoped
that by introducing new parameters besides the wave function, causality
and locality could be restored.

In

John S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics 1,
195–200 (1964),

Bell showed that local hidden variable models cannot reproduce the
predictions of QM.

He considers an EPR situation with two electrons in the singlet state

ψ =
1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) =
1√
2

(| ↑↓〉 − | ↓↑〉).

The total spin of the composite system is 0. Only spin degrees of freedom
are shown in ψ.
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Bell’s theorem

Bell’s theorem, 2

We assume that the two electrons are spatially separated and do not
interact. QM predicts that if we measure the spin of the first electron
(denoted S1) in some direction a, then

the result is either 1 or −1 (which holds for every spin measurement),

the result of the measurement of the spin of the second electron
(denoted S2) in some direction b is correlated to the result of the
measurement on S1: if a and b are unit vectors, then the expectation
value of the operator σ̂a ⊗ σ̂b is

−a · b.

In particular, for b = a, we obtain a perfect anticorrelation: the
measurement result on S2 is the negative of the measurement result
on S1.
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Bell’s theorem

Bell’s theorem, 3

Assume that the result S1(a, λ) of the spin measurement on S1 depends
on some hidden variables λ (including the quantum state ψ), and likewise
does the result S2(b, λ) of the spin measurement on S2.

The main assumption of local realism is that S1(a, λ) does not depend on
b and S2(b, λ) does not depend on a. If ρ(λ) is the probability distribution
of λ, then the expectation value of the product of the outcomes, as given
by the local realist theory, is

E (a,b) =

∫
dλρ(λ)S1(a, λ)S2(b, λ).

Here, the integral is over the set of hidden variables λ which reproduce
perfect anticorrelation for a = −b.

Bell shows that this cannot reproduce the QM expectation value −a · b for
general directions a and b, not even approximately.
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Bell’s theorem

Bell inequality and Aspect experiments

Bell derives a certain inequality between quantum correlations in his proof.
Roughly, the inequality gives an upper bound to the amount of correlation
that can be obtained from a local hidden variable theory.

Any experimental violation of this inequality proves that local hidden
variable theories cannot reproduce the predictions of QM. In the 60s, no
such experiments existed, since the setup of the detectors happened well
before the experiment such that communication (mediating correlations)
might have been possible.

In 1982, Alain Aspect conducted experiments that are widely regarded as
proving violations of Bell’s inequality. Hence, QM is confirmed, while local
realism is refuted.

A. Aspect, J. Dalibard, G. Roger, “Experimental Test of Bell’s Inequalities
Using Time-Varying Analyzers”, Phys. Rev. Lett. 49, 1804–1807 (1982)
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Bell’s theorem

CHSH inequality

Bell’s original inequality is rarely used. A related inequality is the CHSH
inequality:

−2 ≤ E (a,b) + E (a,b′) + E (a′,b)− E (a′,b′) ≤ 2,

where a, a′ are spin directions measured on S1 and b,b′ are spin directions
measured on S2.

J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt, “Proposed
experiment to test local hidden-variable theories”, Phys. Rev. Lett. 23,
880–884 (1969)
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Bell’s theorem

GHZ states and Bell’s theorem without inequalities, 1

D.M. Greenberger, M.A. Horne, A. Zeilinger, “Going beyond Bell’s
Theorem”, in Bells Theorem, Quantum Theory and Conceptions of the
Universe, ed. M. Kafatos, Kluwer, Dordrecht-Boston-London, 69–72
(1989), also available from arXiv:0712.0921

In this paper, the observation is made that the EPR argument applied to
spin measurements uses the case of perfect anticorrelation (spin
measurements in the same direction on both particles), while Bell needed
to consider spin measurements in different directions in order for his
argument on correlations to work.
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Bell’s theorem

GHZ states and Bell’s theorem without inequalities, 2

In fact, there exists a classical hidden variables model for the case of
perfect anticorrelation. GHZ consider if this is also true beyond the
two-particle case considered by Bell: can the case of perfect
quantum-theoretic anticorrelation always be modelled by a classical hidden
variables model?

They consider a 4-particle state, generated from a Bell-type situation
through further decay and show that there cannot be a hidden variables
model to reproduce the case of perfect anticorrelation. Soon after, similar
arguments were made for 3 entangled particles. The theoretical results
have been confirmed experimentally. Multi-partite entanglement is very
important in quantum information theory nowadays.
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Gleason’s theorem

Propositions, projections and probability, 1

A.M. Gleason, “Measures on the closed subspaces of a Hilbert space”,
Journal of Mathematics and Mechanics 6, 885–893 (1957)

Via the spectral theorem, a proposition of the form “A ∈ ∆”, that is, “the
physical quantity A has a value in the set ∆ of real numbers”, corresponds
to a projection operator P̂ = Ê [A ∈ ∆] on H. If the algebra of physical
quantities is a von Neumann algebra N (that contains the self-adjoint
operator Â representing the physical quantity A), then the projection is
contained in N .

Taking the probabilistic interpretation of QM seriously, one may wonder

a. What are the minimal requirements for a mapping from the
projections (representing propositions) to the unit interval [0, 1] to
count as a probability measure?

b. How do these measures relate to quantum states?

These are the questions answered by Gleason in his famous paper.
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to a projection operator P̂ = Ê [A ∈ ∆] on H. If the algebra of physical
quantities is a von Neumann algebra N (that contains the self-adjoint
operator Â representing the physical quantity A), then the projection is
contained in N .

Taking the probabilistic interpretation of QM seriously, one may wonder

a. What are the minimal requirements for a mapping from the
projections (representing propositions) to the unit interval [0, 1] to
count as a probability measure?

b. How do these measures relate to quantum states?

These are the questions answered by Gleason in his famous paper.
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Gleason’s theorem

Propositions, projections and probability, 2

The projections on a Hilbert space H, and, more generally, the projections
in any von Neumann algebra N ⊆ B(H), form a complete lattice. The
lattice operations are easier to understand for the isomorphic lattice of
closed subspaces of Hilbert space.

Let P̂, Q̂ be two projections, and let U
P̂
,U

Q̂
be the corresponding closed

subspaces. Then P̂ < Q̂ if U
P̂
⊂ U

Q̂
, and the meet (minimum) P̂ ∧ Q̂ is

the projection corresponding to the intersection U
P̂
∩ U

Q̂
. The join

(maximum) P̂ ∨ Q̂ corresponds to the closure of the subspace generated
by U

P̂
∪ U

Q̂
.

Two projections P̂, Q̂ are orthogonal if U
P̂
∩ U

Q̂
is the null subspace. In

this case, P̂Q̂ = Q̂P̂ = 0̂.

The lattice P(H) (or, more generally, P(N )) is ortho-complemented by
P̂ 7→ 1̂− P̂. Clearly, P̂Q̂ = 0̂ if and only if P̂ ≤ 1̂− Q̂.
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Andreas Döring (Imperial College) Tutorial 31 / 40



Gleason’s theorem

Propositions, projections and probability, 2

The projections on a Hilbert space H, and, more generally, the projections
in any von Neumann algebra N ⊆ B(H), form a complete lattice. The
lattice operations are easier to understand for the isomorphic lattice of
closed subspaces of Hilbert space.

Let P̂, Q̂ be two projections, and let U
P̂
,U

Q̂
be the corresponding closed

subspaces. Then P̂ < Q̂ if U
P̂
⊂ U

Q̂
, and the meet (minimum) P̂ ∧ Q̂ is

the projection corresponding to the intersection U
P̂
∩ U

Q̂
. The join

(maximum) P̂ ∨ Q̂ corresponds to the closure of the subspace generated
by U

P̂
∪ U

Q̂
.

Two projections P̂, Q̂ are orthogonal if U
P̂
∩ U

Q̂
is the null subspace. In

this case, P̂Q̂ = Q̂P̂ = 0̂.

The lattice P(H) (or, more generally, P(N )) is ortho-complemented by
P̂ 7→ 1̂− P̂. Clearly, P̂Q̂ = 0̂ if and only if P̂ ≤ 1̂− Q̂.
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Gleason’s theorem

Propositions, projections and probability, 3

The identity operator 1̂ represents the trivially true proposition. A
probability measure on the projections is a mapping

µ : P(H) −→ [0, 1]

such that

µ(1̂) = 1,

if P̂Q̂ = 0, then µ(P̂ ∨ Q̂) = µ(P̂ + Q̂) = µ(P̂) + µ(Q̂).

More specifically, this defines a finitely additive probability measure. If µ
behaves additively on countable families of pairwise orthogonal projections,
then it is called countably additive.

Gleason’s theorem shows that for dim(H) ≥ 3, every countably additive
probability measure on projections is of the form

∀P̂ ∈ P(H) : µ(P̂) = tr(ρP̂),

where ρ is a density operator.
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Gleason’s theorem

Density matrices and normal states

A density operator ρ is a positive trace class operator of trace 1. It induces
a linear functional on B(H) (or some von Neumann algebra N ) of norm 1,
i.e. a state (in the mathematical sense) by

tr(ρ ) : B(H) −→ C
Â 7−→ tr(ρÂ).

States of this form a normal, i.e., for every countable family (P̂i )i∈I of
pairwise orthogonal projections, one has

tr(ρ
∨
i∈I

P̂i ) =
∑
i∈I

tr(ρP̂i ).

Normal states (or just their density matrices) are usually regarded as
physical states, often called mixed states. They generalise the vector
states ψ (or rather 〈ψ, ψ〉 : B(H)→ C) we encountered before. Normal
states can be seen as convex combinations of vector states.
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Andreas Döring (Imperial College) Tutorial 33 / 40



Gleason’s theorem

Density matrices and normal states

A density operator ρ is a positive trace class operator of trace 1. It induces
a linear functional on B(H) (or some von Neumann algebra N ) of norm 1,
i.e. a state (in the mathematical sense) by

tr(ρ ) : B(H) −→ C
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Gleason’s theorem

Generalisation of Gleason’s theorem

Clearly, for every normal state, tr(ρ )|P(H) is a countably additive measure.

Gleason’s theorem hence shows that there is a bijection between normal
states and countably additive measures. This is the justification for
calculating expectation values using the trace (which goes back to von
Neumann in 1928).

There are von Neumann algebras, also such of physical significance, which
do not possess any normal states. Remarkably, Gleason’s theorem can be
generalised:

Let N be a von Neumann algebra with no direct summand of type I2.
Then every finitely additive probability measure on P(N ) can be extended
to a state of N .

S. Maeda, “Probability measures on projections in von Neumann
algebras.”, Rev. Math. Phys. 1, Issue 2/3, 235–290 (1989)
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Kochen-Specker theorem

An underlying theory?

S. Kochen, E.P. Specker, “The problem of hidden variables in quantum
mechanics”, Journal of Mathematics and Mechanics 17, 59–87 (1967).

While Bell’s theorem considers local hidden variable theories, Kochen and
Specker asked if there can exist theory underlying QM such that a state
space picture similar to classical physics can be regained. An analogy is
(classical) statistical mechanics, which underlies and subsumes
thermodynamics.

In classical physics, physical quantities are represented by real-valued
functions on the state space S of the system. The points of state space
are the states, and in any state s ∈ S, all physical quantities have values,
just by evaluation at s.

If a hidden state space theory underlying QT exists, then each self-adjoint
operator should correspond to a suitable real-valued function on this state
space Ω. The points of this hypothetical state space would not be vectors
ψ in Hilbert space.
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Kochen-Specker theorem

Valuation functions

Let us assume that a self-adjoint operator Â ∈ B(H) is represented by
some function f

Â
: Ω→ R. It is natural to require that

a. the range of the function f
Â

is the spectrum sp(Â),

b. if B̂ = g(Â) is some self-adjoint operator obtained from Â by applying
a real-valued (Borel) function, then f

B̂
= f

g(Â)
= g ◦ f

Â
.

Let ω ∈ Ω be a point of the hypothetical state space. Then we can
evaluate the functions f

Â
, ... at ω. Going back from the functions to the

operators, this would give a function

vω : B(H)sa −→ R

such that

A. for all Â ∈ B(H)sa, we have vω(Â) ∈ sp(Â),

B. if g : R→ R is a Borel function, then vω(g(Â)) = g(vω(Â)).

Such a function is called a valuation function.
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Kochen-Specker theorem

The Kochen-Specker construction

The existence of valuation functions is a necessary condition for the
existence of state space models of QT, since every point ω of a state space
Ω would give a valuation function vω.

For every non-trivial projection P̂ ∈ P(H), we have sp(P̂) = {0, 1}. Since
every self-adjoint operator is a limit of linear combinations of projection
operators via the spectral theorem, it suffices to consider projection
operators.

The question for the existence of valuation functions boils down to the
question for the existence of two-valued, finitely additive probability
measures on P(H). Kochen and Specker showed that if dim(H) ≥ 3, then
there exist no such measures on P(H), hence no valuation functions and
no state space model of quantum theory.

Interestingly, Kochen and Specker used a finite configuration of 117
projections onto one-dimensional subspaces of C3 in their proof. In 1966,
Bell gave the proof of a similar result using Gleason’s theorem.
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Kochen-Specker theorem

Generalisation of the Kochen-Specker theorem

Using the generalised version of Gleason’s theorem, the Kochen-Specker
theorem can be generalised to all von Neumann algebras N without
summands of type I1 and I2.

A. Döring, “Kochen-Specker theorem for von Neumann algebras”, Int. J.
Theor. Phys. 44, 139-160 (2005).

Physically, this means that even if the quantum system has many
symmetries and/or superselection rules, there is no state space model.
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Kochen-Specker theorem

A logical perspective on the Kochen-Specker theorem

We saw that the KS problem is the question if there are valuation functions

v : B(H)sa −→ R,

but equivalently, the question if there are two-valued measures

µ : P(H) −→ {0, 1}

on projections. Since every projection represents a proposition (actually,
more than one in general), such a measure can be seen as a Boolean
truth-value assignment. The KS theorem hence shows that we cannot
assign ‘true’ and ‘false’ to all propositions of the form “A ∈ ∆” at once.
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Kochen-Specker theorem

Contextuality

Many people interpret the KS theorem as saying that there are no
non-contextual hidden states models.

Contextuality has a certain variety of meanings. A context can be an
experimental setup, a collection of co-measurable physical quantities, or
algebraically, a commutative subalgebra of the non-commutative (C ∗- or
von Neumann) algebra of all physical quantities of the system under
consideration.

The perspective of KS is non-contextual, since they ask for valuation
functions which assign values directly to the self-adjoint operators, without
regarding the contexts they lie in.

A contextual theory would allow the value assigned to some operator Â to
depend on the context considered. In fact, Bohr’s view on QM comes
close to that.
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depend on the context considered. In fact, Bohr’s view on QM comes
close to that.
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