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Many modern programs are resource sensitive, that is, the amount of resources (e.g., energy,
bandwidth, time, memory), and their rate of consumption, must be carefully managed. Fur-
thermore, many programs handle sensitive resources, such as passwords, location data, photos,
and banking information. Ensuring that private data is not inadvertently leaked is as important
as the functional input-output behaviour of a program.

Various type-based solutions have been provided for reasoning about and controlling re-
sources. A general class of program behaviours called coeffects has been proposed as a
unified framework for capturing different kinds of resource analysis in a single type the-
ory [6, 7, 2, 3, 4, 1]. Recently it has been shown how coeffect types can be integrated with
effect types for resource reasoning with effects [3].

To gain experience with such type systems for real-world programming tasks, and as a
vehicle for further research, we are developing Gram1, a functional programming language
based on the linear λ-calculus augmented with graded modal types, inspired by the coeffect-
effect calculus [3].

Graded modal type theory A graded modality is an indexed family of modalities with
some additional structure on the indices which mirrors the structure of the axioms/proof rules.
For example, the exponential modality of linear logic ! has a graded counterpart in Bounded
Linear Logic [5], where ! is replaced with a family of modalities !n indexed by the natural
numbers (the reuse bound). The operations of the usual natural number semiring are then
used in the axioms/rules of the logic e.g., the transitivity axiom is !n∗mA →!n!mA. There
are various different examples in the literature under the name of coeffects which provide
fine-grained analysis of resources and context-dependence via graded necessity modalities.

The goal with Gram is to support arbitrary, user-customisable graded modalities to enable
fine-grained, quantitative program reasoning. At the moment, there are three built-in modali-
ties: BLL-style resource-bounded graded necessity, a security-lattice graded necessity, and an
effect-graded possibility modality for I/O. Type checking is based on a bidirectional algorithm,
interfacing with the Z3 SMT solver to discharge constraints.

Example 1: Reuse bounds The following is a valid Gram program:

dub : |Int| 2 -> Int

dub |x| = x + x

trip : |Int| 3 -> Int

trip |x| = x + x + x

twice : forall c . |(|Int| c -> Int)| 2 -> |Int| (2 * c) -> Int

twice |g| |x| = g |x| + g |x|

main : Int

main = twice |dub| |1| + twice |trip| |1|

The first definition specifies a function dub on the integers (type Int) whose first parameter is
used non-linearly, exactly twice, as captured by the resource bound 2 indexing the modality.
The type |Int| n can be read as !nInt in Girard et al.’s notation. The pattern match |x|

discharges the incoming modality and binds x as a non-linear variable. Looking at the type
signature for twice, we can deduce that it is a higher-order function: its first parameter is
a unary function whose parameter is used non-linearly exactly c times and which returns an
Int—a good fit for dub and trip. The second parameter of twice is used non-linearly exactly

1http://github.com/dorchard/gram_lang
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2 * c times, since g uses c copies of its first parameter and is applied twice. Thus, main will
produce the value 10. This example shows Gram’s support of coeffect polymorphism.

Example 2: Security levels Another modality available in Gram is indexed by a two-point
security lattice with levels: Lo and Hi. For example:

secret : |Int| Hi -- specified as Hi security

secret = |42|

dub : forall (l : Level) . |Int| l -> |Int| l -- at any level...

dub |x| = |(x + x)| -- ...double an int

main : |Int| Hi

main = dub secret -- double the secret

Here main is marked as a high-security value via its modal type. The dub function appears
again, but its type now tracks security levels and is level-polymorphic. It takes an integer at
any level l, returning a value at the same level. Crucially, the following program is ill-typed:

leak : |Int| Hi -> |Int| Lo -- fails to type check

leak |x| = |x|

However, we can define a well-typed constant function that discards its high-security value to
produce a low-security value by combining resource bounds with security levels:

notALeak : ||Int| Hi| 0 -> |Int| Lo

notALeak x = |0|

Example 3: Effects A graded possibility modality provides tracking of side effects in the
style of a graded monad and effect system. A type <t> f describes a computation returning a
value of type t and producing side effects f.

In the following code, input (read) and output (write) operations to the stdio are tracked:

echo : <Int> [R, W]

echo = let <x : Int> = read in write x

The following shows both reuse bound coeffects and I/O effects coming together, explaining
the side-effects of twice applying some integer function which has a read effect:

doTwice : |(Int -> <Int> [R])| 2 -> |Int| 2 -> <Int> [R, R]

doTwice |f| |x| = let <a : Int> = f x in

let <b : Int> = f x in <a + b>

Future work We are currently working on making the language more featureful (e.g., adding
recursion, algebraic data types). We are exploring various avenues of further work: (1) com-
bining different modalities smoothly, including compositional coeffects and interaction between
different coeffects and effects; (2) supporting user-definable modalities, e.g., via a type-class-like
mechanism with optional user-defined semantics and solver plug-ins; (3) combining dependent
types with graded modalities; and (4) integrating indexed modalities for guarded recursion.
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