
Gram: A linear functional language with graded modal

types (extended abstract)

Dominic Orchard, Vilem-Benjamin Liepelt
School of Computing, University of Kent, UK

Many modern programs are resource sensitive, that is, the amount of resources (e.g., energy,
bandwidth, time, memory), and their rate of consumption, must be carefully managed. Fur-
thermore, many programs handle sensitive resources, such as passwords, location data, photos,
and banking information. Ensuring that private data is not inadvertently leaked is as important
as the functional input-output behaviour of a program.

Various type-based solutions have been provided for reasoning about and controlling re-
sources. A general class of program behaviours called coeffects has been proposed as a
unified framework for capturing different kinds of resource analysis in a single type the-
ory [6, 7, 2, 3, 4, 1]. Recently it has been shown how coeffect types can be integrated with
effect types for resource reasoning with effects [3].

To gain experience with such type systems for real-world programming tasks, and as a
vehicle for further research, we are developing Gram1, a functional programming language
based on the linear λ-calculus augmented with graded modal types, inspired by the coeffect-
effect calculus [3].

Graded modal type theory A graded modality is an indexed family of modalities with
some additional structure on the indices which mirrors the structure of the axioms/proof rules.
For example, the exponential modality of linear logic ! has a graded counterpart in Bounded
Linear Logic [5], where ! is replaced with a family of modalities !n indexed by the natural
numbers (the reuse bound). The operations of the usual natural number semiring are then
used in the axioms/rules of the logic e.g., the transitivity axiom is !n∗mA →!n!mA. There
are various different examples in the literature under the name of coeffects which provide
fine-grained analysis of resources and context-dependence via graded necessity modalities.

The goal with Gram is to support arbitrary, user-customisable graded modalities to enable
fine-grained, quantitative program reasoning. At the moment, there are three built-in modali-
ties: BLL-style resource-bounded graded necessity, a security-lattice graded necessity, and an
effect-graded possibility modality for I/O. Type checking is based on a bidirectional algorithm,
interfacing with the Z3 SMT solver to discharge constraints.

Example 1: Reuse bounds The following is a valid Gram program:

dub : |Int| 2 -> Int

dub |x| = x + x

trip : |Int| 3 -> Int

trip |x| = x + x + x

twice : forall c . |(|Int| c -> Int)| 2 -> |Int| (2 * c) -> Int

twice |g| |x| = g |x| + g |x|

main : Int

main = twice |dub| |1| + twice |trip| |1|

The first definition specifies a function dub on the integers (type Int) whose first parameter is
used non-linearly, exactly twice, as captured by the resource bound 2 indexing the modality.
The type |Int| n can be read as !nInt in Girard et al.’s notation. The pattern match |x|

discharges the incoming modality and binds x as a non-linear variable. Looking at the type
signature for twice, we can deduce that it is a higher-order function: its first parameter is
a unary function whose parameter is used non-linearly exactly c times and which returns an
Int—a good fit for dub and trip. The second parameter of twice is used non-linearly exactly

1http://github.com/dorchard/gram_lang

1

2 * c times, since g uses c copies of its first parameter and is applied twice. Thus, main will
produce the value 10. This example shows Gram’s support of coeffect polymorphism.

Example 2: Security levels Another modality available in Gram is indexed by a two-point
security lattice with levels: Lo and Hi. For example:

secret : |Int| Hi -- specified as Hi security

secret = |42|

dub : forall (l : Level) . |Int| l -> |Int| l -- at any level...

dub |x| = |(x + x)| -- ...double an int

main : |Int| Hi

main = dub secret -- double the secret

Here main is marked as a high-security value via its modal type. The dub function appears
again, but its type now tracks security levels and is level-polymorphic. It takes an integer at
any level l, returning a value at the same level. Crucially, the following program is ill-typed:

leak : |Int| Hi -> |Int| Lo -- fails to type check

leak |x| = |x|

However, we can define a well-typed constant function that discards its high-security value to
produce a low-security value by combining resource bounds with security levels:

notALeak : ||Int| Hi| 0 -> |Int| Lo

notALeak x = |0|

Example 3: Effects A graded possibility modality provides tracking of side effects in the
style of a graded monad and effect system. A type <t> f describes a computation returning a
value of type t and producing side effects f.

In the following code, input (read) and output (write) operations to the stdio are tracked:

echo : <Int> [R, W]

echo = let <x : Int> = read in write x

The following shows both reuse bound coeffects and I/O effects coming together, explaining
the side-effects of twice applying some integer function which has a read effect:

doTwice : |(Int -> <Int> [R])| 2 -> |Int| 2 -> <Int> [R, R]

doTwice |f| |x| = let <a : Int> = f x in

let <b : Int> = f x in <a + b>

Future work We are currently working on making the language more featureful (e.g., adding
recursion, algebraic data types). We are exploring various avenues of further work: (1) com-
bining different modalities smoothly, including compositional coeffects and interaction between
different coeffects and effects; (2) supporting user-definable modalities, e.g., via a type-class-like
mechanism with optional user-defined semantics and solver plug-ins; (3) combining dependent
types with graded modalities; and (4) integrating indexed modalities for guarded recursion.

References

[1] Flavien Breuvart and Michele Pagani. Modelling coeffects in the relational semantics of linear
logic. In CSL, 2015.

[2] Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative coeffect
calculus. In ESOP, pages 351–370, 2014.

[3] Marco Gaboardi, Shinya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu.
Combining Effects and Coeffects via Grading. In ICFP. ACM, 2016.

[4] Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In ESOP, pages
331–350, 2014.

[5] Jean-Yves Girard, Andre Scedrov, and Philip J Scott. Bounded linear logic: a modular approach
to polynomial-time computability. Theoretical computer science, 97(1):1–66, 1992.

[6] Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: a calculus of context-dependent
computation. In ICFP, pages 123–135, 2014.

[7] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: Unified Static Analysis of
Context-Dependence. In ICALP (2), pages 385–397, 2013.

2

