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ABSTRACT
Current systems and formalisms for representing incomplete
information generally suffer from at least one of two weak-
nesses. Either they are not strong enough for representing
results of simple queries, or the handling and processing of
the data, e.g. for query evaluation, is intractable.

In this paper, we present a decomposition-based approach
to addressing this problem. We introduce world-set decom-
positions (WSDs), a space-efficient formalism for represent-
ing any finite set of possible worlds over relational databases.
WSDs are therefore a strong representation system for any
relational query language. We study the problem of effi-
ciently evaluating relational algebra queries on sets of worlds
represented by WSDs. We also evaluate our technique ex-
perimentally in a large census data scenario and show that
it is both scalable and efficient.

1. INTRODUCTION
Real-world data collections tend to be incomplete rather

than complete. Classical examples of incompleteness can be
found in data integration and wrapping applications, linguis-
tic collections, or whenever information is manually entered
and is therefore prone to inaccuracy or partiality. Neverthe-
less, there has been little research so far into expressive yet
scalable systems for representing incomplete information.

Current techniques for representing incomplete informa-
tion can be classified into two groups. The first group in-
cludes representation systems such as v-tables [10] and rela-
tions with or-sets [11] which are not strong enough to repre-
sent all results of relational algebra queries within the same
formalism. In v-tables the tuples can contain both constants
and variables, and each combination of possible values for
the variables yields a possible world. Relations with or-sets
can be viewed as v-tables, where each variable occurs only
at a single position in the table and can only take values
from a fixed finite set, the or-set of the field occupied by
the variable. The so-called c-tables (tables with conditions)
[10] belong to the second group of formalisms. They ex-
tend v-tables by adding conditions specified by logical for-
mulas over the variables, thus constraining the possible val-
ues. Although c-tables are a strong representation system,
they have not found application in practice. The main rea-
son for this is probably that they are awkward to handle;

storing c-tables directly is rather inefficient, and it is known
that already the data complexity [17], i.e. the complexity
of the query evaluation problem under the assumption that
the query size is fixed, of relational algebra over c-tables is
NP-hard [9]. In fact, due to the great power of the con-
dition formulas, processing queries on c-tables tends to be
intractable already for very small databases.

As a motivation, let us consider the following example.
Figure 2 shows two manually completed forms that may
originate from a census or some other kind of survey and
which allow for more than one interpretation. For simplicity
we assume that social security numbers consist only of three
digits. For instance, Smith’s social security number can be
read either as “185” or as “785”. We can represent the
available information using a relation with or-sets, as the
one in Figure 1.

(TID) S N M
t1 { 185, 785 } Smith { 1, 2 }
t2 { 185, 186 } Brown { 1, 2, 3, 4 }

Figure 1: Or-set relation.

It is easy to see that this or-set relation represents 2 ∗ 2 ∗
2 ∗ 4 = 32 possible relations, also called worlds.

Given such an incompletely specified database, it must
of course be possible to access and process the data. Two
data management tasks shall be pointed out as particularly
important, the evaluation of queries on the data, and the
use of data cleaning procedures by which certain unlikely or
invalid worlds can be excluded. However, the results of both
types of operation turn out not to be representable by or-
set relations in general. Consider for example the following
query: “Find all pairs of people that have a different marital
status.” Each tuple in the result contains two marital status
fields, which cannot have the same value at the same time.
This renders some combinations of values invalid, and the
query result cannot be represented as an or-set relation.

An example integrity constraint for data cleaning that
makes it impossible to store the data as an or-set relation is
the requirement that all social security numbers should be
unique. For our example database, this rule will eliminate 8
of the 32 worlds, namely the ones in which both tuples have
the value 185 as social security number.

It is impossible to represent the 24 worlds that remain
after applying the data cleaning rule from above using or-



Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

Figure 2: Two completed survey forms.

set relations. What we could do is store each possible world
explicitly. One way to do this is using a table called a world-
set relation of a given set of possible worlds. Each tuple in
this table represents one world and is the concatenation of
all tuples in that world (see Figure 3).

The most striking problem of world-set relations is their
size. If we conduct a survey of 50 questions on a population
of 200 million and we assume that one in 10000 answers
can be read in just two different ways, we get 2106

possi-
ble worlds. Each such world is a substantial table of 50
columns and 200 million rows. We cannot store all these
worlds explicitly in a world-set relation (which would have

1010 columns and 2106

rows). Data cleaning will often elim-
inate only some of these worlds, so a DBMS should be able
to manage those that remain.

In this paper, we aim at dealing with this complexity. Our
approach is based on the new notion of world-set decompo-
sitions (WSDs). These are decompositions of a world-set
relation into several relations such that their product (using
the product operation × of relational algebra) is again the
world-set relation.

Example 1.1. The world-set represented by our initial
or-set relation can also be represented by the product in
Figure 4.

Example 1.2. In the same way we can represent the re-
sult of data cleaning with the uniqueness constraint for the
social security numbers as the product of Figure 5.

One can observe that the result of this product is exactly
the world-set relation in Figure 3. The presented decompo-
sition is based on the independence between (sets of) fields,
subsequently called components. Only fields that depend on
each other, for example t1.S and t2.S, belong to the same
component. Since {t1.S, t2.S} and {t1.M} are independent,
they are put into separate components. 2

In practice, it is often the case that corresponding fields or
even tuples carry the same values in all worlds. For instance,
in the census data scenario discussed above, we assumed that
only one field in 10000 has several possible values. Such a
world-set decomposes into a WSD in which most fields are
in component relations that have precisely one tuple.

t1.S t1.N t1.M t2.S t2.N t2.M

185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1
185 Smith 2 186 Brown 2
185 Smith 2 186 Brown 3
185 Smith 2 186 Brown 4
785 Smith 1 185 Brown 1
785 Smith 1 185 Brown 2
785 Smith 1 185 Brown 3
785 Smith 1 185 Brown 4
785 Smith 1 186 Brown 1
785 Smith 1 186 Brown 2
785 Smith 1 186 Brown 3
785 Smith 1 186 Brown 4
785 Smith 2 185 Brown 1
785 Smith 2 185 Brown 2
785 Smith 2 185 Brown 3
785 Smith 2 185 Brown 4
785 Smith 2 186 Brown 1
785 Smith 2 186 Brown 2
785 Smith 2 186 Brown 3
785 Smith 2 186 Brown 4

Figure 3: World-set relation for the remaining 24
worlds after excluding the ones with duplicated so-
cial security numbers.

t1.S

185
785

×
t1.N

Smith
×

t1.M

1
2

×
t2.S

185
186

×
t2.N

Brown
×

t2.M

1
2
3
4

Figure 4: World-set decomposition for the initial or-
set relation.

t1.S t2.S

185 186
785 185
785 186

×
t1.N

Smith
×

t1.M

1
2

×
t2.N

Brown
×

t2.M

1
2
3
4

Figure 5: WSD of the world-set relation of Figure 3.

We will also consider a refinement of WSDs, WSDTs,
which stores information that is the same in all possible
worlds once and for all in so-called template relations.

Example 1.3. The world-set of the previous examples
can be represented by the WSDT of Figure 6. 2

Template S N M
t1 ? Smith ?
t2 ? Brown ?

t1.S t2.S
185 186
785 185
785 186

×
t1.M

1
2

×

t2.M
1
2
3
4

Figure 6: WSD with a template relation.



Using WSDs and WSDTs we can represent sets of worlds
that cannot be expressed with or-set relations; at the same
time the decomposition is just slightly larger than the orig-
inal or-set relation for those cases where world-sets are ac-
tually expressible as or-set relations and can be compared.

c-table S N M
(x = 185 ∧ z = 186)∨
(x = 785 ∧ z = 185)∨
(x = 785 ∧ z = 186)

x Smith y y = 1 ∨ y = 2
z Brown w w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4

Figure 7: A c-table encoding the WSDT of Figure 6.

WSDTs combine the advantages of WSDs and c-tables. In
fact, WSDTs can be naturally viewed as c-tables whose for-
mulas have been put into a normal form represented by the
component relations, and variables represent fields where
the worlds disagree. Indeed, each tuple in the product of
the component relations is one possible value assignment
for the variables in the template relation.

The c-table in Figure 7 is equivalent to the WSDT in
Figure 6. The WSDT components that encode dependencies
spanning over several tuples become in the equivalent c-table
global conditions, and each other component becomes local
condition to its respective tuple.

The technical contributions of this paper are as follows.

• We formally introduce WSDs and WSDTs and study
some of their properties. Our notion is a refinement
of the one presented above and allows to represent
worlds over multi-relation schemas which contain re-
lations with varying numbers of tuples. WSD(T)s can
represent any finite set of possible worlds over rela-
tional databases and are therefore a strong represen-
tation system for any relational query language.

• A problem with WSDs and WSDTs is that a DBMS
that manages such representations has to support re-
lations of arbitrary arity: the schemata of the compo-
nent relations of a decomposition depend on the data.
Unfortunately, DBMS (e.g. PostgreSQL) in practice
often do not support relations beyond a fixed arity.

For that reason we present refinements of the notion of
WSDs, the uniform WSDs (UWSDs), and their exten-
sion by template relations, the UWSDTs, and study
their properties as representation systems.

• We show how to process relational algebra queries over
world-sets represented by UWSDTs. For illustration
purposes, we first discuss the query evaluation problem
in the context of the much more graphic WSDs.

We also develop a number of optimizations and tech-
niques for normalizing the data representations ob-
tained by queries to support scalable query processing
even on very large world-sets.

• We briefly describe a prototype implementation on top
of the PostgreSQL RDBMS that supports the manage-
ment of incomplete information using UWSDTs.

• We initiate a study of the data cleaning problem in
the context of UWSDTs. We focus on two kinds of

dependencies, functional dependencies and a class of
(in)equality-generating dependencies, and adapt the
Chase procedure (cf. [12, 3, 8]) for incomplete infor-
mation to the framework of UWSDTs.

• We report on our experimental evaluation of UWS-
DTs as a representation system for large finite sets of
possible worlds. Our experiments show that UWSDTs
allow highly scalable techniques for managing incom-
plete information. We found that the size of UWSDTs
obtained as query answers or data cleaning remains
close to that of a single world. Furthermore, the pro-
cessing time for queries on UWSDTs is also compara-
ble to processing just a single world and thus a classical
relational database.

A fundamental assumption of this work is that one wants
to store and manage sets of possible worlds. We believe
that this is justified by previous work on representation sys-
tems, starting with Imielinski and Lipski [10], and by current
application requirements. Data cleaning is often an incre-
mental process that requires to store large intermediate re-
sults, world-sets, in databases. Our approach can deal with
databases in which some uncertainties could not be resolved.
Such databases are still valuable. It should be possible to
do data transformation queries that preserve as much in-
formation as possible, thus necessarily mapping from sets
of possible worlds to sets of possible worlds. A different
approach is followed in work on finding certain answers of
queries on incomplete-information databases (see e.g. [6]).

Differently from c-tables, WSDs cannot represent infinite
world-sets. A second assumption of this work is that finite
world-sets are relevant. We present several application sce-
narios in this paper (such as census) where this clearly is
the case. Furthermore, as discussed above, (U)WSDTs can
be seen as a normal form for the c-tables representing finite
world-sets. (U)WSDTs support efficient representation and
processing, with the promise of yet more expressive while
still scalable representation systems to follow in the future.

The structure of this paper is as follows. We start by intro-
ducing some required notation in Section 2. In Section 3, we
formally define the (U)WSDTs. Sections 4 and 5 discuss
efficient query evaluation in our framework and Section 6
addresses the data cleaning problem on WSDTs. Section 7
presents our experimental evaluation of the approach. Fi-
nally, Sections 8 and 10 discuss further application scenarios
of WSDs as well as future work.

2. PRELIMINARIES
We use the named perspective of the relational model with

the operations selection σ, projection π, product ×, union
∪, difference −, and attribute renaming δ (cf. e.g. [2]). A
relational schema Σ is a set of constructs of the form R[U ],
where R is a relation name and U is a set of attribute names.
The arity |U | of R is denoted by ar(R).

Let D be a finite set of domain elements. A relation over
schema R[A1, . . . , Ak] is a set of tuples (A1 : a1, . . . , Ak : ak)
where a1, . . . , ak ∈ D. A relational database A over schema
Σ is a set of relations RA, one for each relation schema R[U ]
from Σ. Sometimes, when no confusion of database may
occur, we will use R rather than RA to denote one particular
relation over schema R[U ]. By the size of a relation R,
denoted |R|, we refer to the number of tuples in R. For a



relation R over schema R[U ], let S(R) denote the set U of
its attributes.

Let R be a relation with schema R[U ]. Then a disjoint m-
partition {U1, . . . , Um} of U is called a (product) m-decom-
position of R iff πU1

(R)×· · ·×πUm(R) = R. The projections
πU1

(R), . . . , πUm(R) are called components.

A set of possible worlds (or world-set) over schema Σ is a
set of databases over schema Σ.

Let W be a set of structures, rep be a function that maps
to world-sets of the same schema. Then rep is a strong rep-
resentation system for a query language if, for each query Q
of that language and each W ∈ W such that Q is applicable
to the worlds in rep(W), there is a structure W ′ ∈ W such
that rep(W ′) = {Q(A) | A ∈ rep(W)}. Obviously,

Lemma 2.1. If rep is a function whose image is the set
of all finite world-sets, then rep is a strong representation
system for any relational query language.

For the remainder of the paper we consider that the arity
of all our database relations is at least one and the projection
operation does not project to the empty set of attributes.

3. WORLD-SET DECOMPOSITIONS

3.1 The Basic Notion
In order to use classical database techniques for storing

and querying data, we develop a scheme for representing a
world-set A by a single relational database.

Let A be a finite world-set over schema Σ. For each R ∈
Σ, let |R|max = max{|RA| : A ∈ A} denote the maximum
cardinality of R in any world of A. Given a world A with
RA = {t1, . . . , t|RA|}, let tRA be the tuple obtained as the

concatenation (denoted ◦) of the tuples of RA padded with
a special null value ⊥ 6∈ D up to arity ar(R) · |R|max,

tRA := t1 ◦ · · · ◦ t|RA| ◦ (⊥, . . . . . . . . . . . . ,⊥
︸ ︷︷ ︸

ar(R)·(|R|max−|RA|)

).

Then tuple tA := tRA
1

◦ · · · ◦ tRA
k

for Σ = {R1, . . . , Rk}

encodes all the information in world A. Now, by the world-
set relation W (A) of world-set A, we denote the relation
{tA | A ∈ A}. Relation W (A) has schema (attributes)
{R.ti.Aj | R[U ] ∈ Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}.

Given a world-set relation W , let repWS (W ) denote the
represented world-set A, i.e. the world-set s.t. W = W (A).
Given the above definition that turned every world in a tu-
ple in a canonical form, computing repWS(W ) is an easy
exercise. In order to have every world-set relation define a
world-set, let a tuple extracted from some tRA be in RA iff
it does not contain any occurrence of the special symbol ⊥.
That is, we map tRA = (a1, . . . , aar(R)·|R|max

) to RA as

tRA 7→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

(So one can think of ⊥ as a deletion marker for tuples.)
Observe that although world-set relations are not unique

as we have left open the ordering in which the tuples of
a given world are concatenated, all world-set relations of
a world-set A are equally good for our purposes because
repWS maps them invariantly back to A.

Definition 3.1. Let A be a world-set. Then a world-set
m-decomposition (m-WSD) of A is a tuple {C1, . . . , Cm}
such that C1 × · · · × Cm = W (A), that is, the schemata of
{C1, . . . , Cm} constitute an m-decomposition of the world-
set relation W (A). The world-set represented by m-WSD
{C1, . . . , Cm}, subsequently called rep({C1, . . . , Cm}), is
repWS (C1 × · · · × Cm).

Remark 3.2. There is a fairly large literature on the
universal relation assumption and relational decomposition,
particularly on lossless join decomposition, cf. e.g. [16, 2];
however, previous work assumes that decompositions are de-
fined intensionally using dependencies. Decompositions of
extensionally given relations are less natural in the classical
context because such decompositions may break on updates.

Somewhat simplified examples of world-set relations and
WSDs over a single relation R (thus “R” was omitted from
the attribute names of the world-set relations) were given in
Section 1. Further examples can be found in Section 4. It
should be emphasized that with WSDs we can also repre-
sent multiple relational schemata and even components with
fields from different relations.

It immediately follows from our definitions that

Proposition 3.3. Any finite set of possible worlds can be
represented as a world-set relation and as a 1-WSD.

Corollary 3.4 (Lemma 2.1). WSDs are a strong re-
presentation system for any relational query language.

As demonstrated in Section 1, this is not true for or-set
relations. For the relatively small class of world sets that
can be represented as or-set relations, the size of our repre-
sentation system is linear in the size of the or-set relations.
As seen in the examples, our representation is much more
space-efficient than world-set relations.

An m-WSD is called maximal(ly decomposed) if no n-
WSD of R exists with n > m.

Proposition 3.5. For each world-set relation a maximal
decomposition exists and is unique.

Proof. Existence is clear because a world-set relation is also
a 1-WSD. Uniqueness is shown by contradiction: Given re-
lation R of schema R[U ], assume that there are two different
maximal m-decompositions {U1, . . . , Um} and {V1, . . . , Vm}
of R. Since the two decompositions are different, there are
two sets Ui, Vj such that Ui 6= Vj and Ui ∩Vj 6= ∅. But then,
as of course R = πU−Vj

(R) × πVj
(R), we have πUi

(R) =

πUi

(
πU−Vj

(R) × πVj
(R)

)
= πUi−Vj

(R) × πUi∩Vj
(R). It fol-

lows that {U1, . . . , Ui−1, Ui −Vj , Ui ∩Vj , Ui+1, . . . , Um} is an
(m + 1)-decomposition of R, and m-decompositions cannot
be maximal. Contradiction. 2

3.2 Adding Template Relations
We now present our refinement of WSDs that uses tem-

plate relations to store information that is the same in all
possible worlds. The template relations contain special val-
ues ‘?’ /∈ D in fields at which different worlds disagree.

We will assume that tuples t have unique ids t̂. Let Σ =
{R1, . . . , Rk} be a schema and A a finite set of possible
worlds over Σ. Then, a database (R0

1, . . . , R
0
k, C1, . . . , Cm)

is called an m-WSD with template relations (m-WSDT) of



A iff there is a WSD (C1, . . . , Cm, D1, . . . , Dn) of A such
that |Di| = 1 for all i and if relation Di has attribute Rj .t̂.A
and value v in its unique Rj .t̂.A-field, then R0

j has a tuple

with id t̂ whose A-field has value v.
Of course WSDTs again can represent any finite world-

set and are thus a strong representation system for relation
query languages. Note that in contrast to WSDs, WSDTs
admit a unique maximal decomposition only if the template
relation R0 is fixed. Example 1.3 shows a WSDT for the
running example of the introduction.

3.3 Uniform World-Set Decompositions
In practice database systems often do not support rela-

tions of arbitrary arity. For that reason we introduce next
a modified representation of WSDs called uniform WSDs.
We use the fixed schema consisting of the three relation
schemata F [FID ,CID], W [CID, LWID], C[FID , LWID,VAL],
where FID is a triple1 (Rel ,TupleID ,Column) denoting the
Column-field of tuple TupleID in database relation Rel . In-
stead of having a variable number of component relations,
possibly with different arities, we store all values in a single
big relation C that has a fixed schema.

In this representation we need a restricted flavor of world-
ids called local world-ids (LWIDs). The local world-ids refer
only to the possible worlds within one component. LWIDs
avoid the drawbacks of “global” world IDs for the individual
worlds. This is important, since the size of global world IDs
can exceed the size of the decomposition itself, thus making
it difficult or even impossible to represent the world-sets in
a space-efficient way. If any world-set over a given schema
and a fixed active domain is permitted, one can verify that
global world-ids cannot be smaller than the largest possible
world over the schema and the active domain.

Given a WSD (C1, . . . , Cm) with schemata Ĉi[Ui] (we now
distinguish between the relation and its name), we populate
the corresponding UWSD as follows.

• F := {((R, t̂, A), Ĉi) | 1 ≤ i ≤ m, R.t̂.A ∈ Ui},

• (Ĉi, ŝ) ∈ W iff there is a tuple with id ŝ in Ci.

• ((R, t̂, A), ŝ, v) ∈ C iff, for some (unique) i, R.t̂.A ∈ Ui

and the field of column R.t̂.A in the tuple with id ŝ of
Ci has value v.

In general, the VAL column in the component relation C
must store values for fields of different type. One possibility
is to store all values as strings and use casts when required.
Alternatively, one could have one component relation for
each data type. In both cases the schema remains fixed.

Example 3.6. We modify the world-set represented in
Figure 5 such that the marital status in t2 can only have
the value 3. We obtain then a set of six worlds that can be
represented using our alternative representation with fixed
relational schemata for F , W , and C as shown in Figure 8.2

Finally, we add template relations to UWSDs in complete
analogy with the WSDTs, thus obtaining the UWSDTs.

Example 3.7. Consider the example of Figure 9, which
is the uniform version of the WSDT of Figure 6. Here R0

1That is, FID really takes three columns, but for readability
we keep them together under a common name in this section.

C FID LWID VAL
(R, t1, S) 1 185
(R, t1, S) 2 785
(R, t1, S) 3 785
(R, t2, S) 1 186
(R, t2, S) 2 185
(R, t2, S) 3 186
(R, t1, N) 1 Smith
(R, t1, M) 1 1
(R, t1, M) 2 2
(R, t2, N) 1 Brown
(R, t2, M) 1 3

F FID CID
(R, t1, S) C1

(R, t1, N) C2

(R, t1, M) C3

(R, t2, S) C1

(R, t2, N) C4

(R, t2, M) C5

W CID LWID
C1 1
C1 2
C1 3
C2 1
C3 1
C3 2
C4 1
C5 1

Figure 8: A uniform WSD for our running example.

R0 S N M
t1 ? Smith ?
t2 ? Brown 3

C FID LWID VAL
(R, t1, S) 1 185
(R, t2, S) 1 186
(R, t1, S) 2 785
(R, t2, S) 2 185
(R, t1, S) 3 785
(R, t2, S) 3 186
(R, t1, M) 1 1
(R, t1, M) 2 2

F FID CID
(R, t1, S) C1

(R, t1, M) C2

(R, t2, S) C1

W CID LWID
C1 1
C1 2
C1 3
C2 1
C2 2

Figure 9: A UWSDT corresponding to the WSDT
of Figure 6.

contains the values that are the same in all worlds. For
each field that can have more than one possible value, R0

contains a special placeholder, denoted by ‘?’. Just as before,
the possible values for the placeholders are defined in the
component table C. In practice, for incomplete-information
databases, we can expect that the majority of the data fields
can take only one value across all worlds, and can be stored
in the template relation. 2

It is easy to verify that

Proposition 3.8. Any finite set of possible worlds can be
represented as a 1-UWSD and as a 1-UWSDT.

It follows again that UWSD(T)s are a strong representa-
tion system for any relational query language.

4. QUERIES ON DECOMPOSITIONS
In this section we study the query evaluation problem for

WSDs. As pointed out before, UWSDTs are a better repre-
sentation system than WSDs; nevertheless WSDs are sim-
pler to explain and visualize and the main issues regarding
query evaluation are the same in both representation sys-
tems. For that reason we will first concentrate on query
evaluation in the WSD framework. Query evaluation for
UWSDTs is then discussed in Section 5.

4.1 Relational Algebra Operations on WSDs



algorithm select[Aθc] // compute P := σAθcR
begin

copy(R, P );
for each 1 ≤ i ≤ |P |max do begin

let C be the component of P.ti.A;
for each tC ∈ C do

if not (tC .(P.ti.A) θ c) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm product // compute T := R × S
begin

for each 1 ≤ j ≤ |S|max and R.ti.A ∈ S(R) do begin
let C be the component of R.ti.A;
C := ext(C, R.ti.A, T.tij .A);

end;
for each 1 ≤ i ≤ |R|max and S.tj .A ∈ S(S) do begin

let C′ be the component of S.tj .A;
C′ := ext(C′, S.tj .A, T.tij .A);

end
end

algorithm union // compute T := R ∪ S
begin

for each 1 ≤ i ≤ |R|max and A ∈ S(R) do begin
let C be the component of R.ti.A;
C := ext(C, R.ti.A, T.(R.ti).A);

end;
for each 1 ≤ j ≤ |S|max and A ∈ S(S) do begin

let C′ be the component of S.tj .A;
C′ := ext(C′, S.tj .A, T.(S.tj).A);

end
end

algorithm select[AθB] // compute P := σAθBR
begin

copy(R,P );
for each 1 ≤ i ≤ |P |max do begin

let C be the component of P.ti.A;
let C′ be the component of P.ti.B;
if (C 6= C′) then

replace components C, C′ by C := C × C′;
for each tC ∈ C do

if not (tC .(P.ti.A) θ tC .(P.ti.B)) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm project[U ] // compute P := πU (R)
begin

copy(R,P );
for each 1 ≤ i ≤ |P |maxdo

while no fixpoint is reached do begin
let C be the component of P.ti.A, where A ∈ U ;
let C′ 6= C be the component of P.ti.B, where

B 6∈ U and (∀A′ ∈ U : P.ti.A
′ /∈ S(C′)) and

(∀tC′ ∈ C′ : ⊥ ∈ tC′);
replace components C, C′ by C := C × C′;
propagate-⊥(C);
project away P.tj .B from C where B 6∈ U and j ≤ i;

end
for each 1 ≤ i ≤ |P |max and B /∈ U do begin

let C be the component of P.ti.B;
project away P.ti.B from C;

end
end

Figure 10: Evaluating relational algebra operations on WSDs.

The goal of this section is to provide, for each relational
algebra query Q, a query Q̂ such that for a WSD W,

rep(Q̂(W)) = {Q(A) | A ∈ rep(W)}.

Of course we want to evaluate queries directly on WSDs
using Q̂ rather than process the individual worlds using Q.

When compared to traditional query evaluation, the eval-
uation of relational queries on WSDs poses new challenges.
First, since decompositions in general consist of several com-
ponents, a query Q̂ that maps from one WSD to another
must be expressed as a set of queries, each of which defines
a different component of the output WSD. Second, as cer-
tain query operations may cause new dependencies between
components to develop, some components may have to be
merged (i.e., part of the decomposition undone using the
product operation ×). Third, the answer to a (sub)query
Q0 must be represented within the same decomposition as
the input relations; indeed, we want to compute a decom-
position of world set {(A, Q0(A)) | A ∈ rep(W)} in order to
be able to resort to the input relations as well as the result
of Q0 within each world.

Example 4.1. Consider for example a query σA=1(R) ∪

σB=2(R). If we first compute σA=1(R), we must not replace
R by σA=1(R), otherwise R will not be available for the
computation of σB=2(R). On the other hand, if σA=1(R) is
stored in a separate WSD, the connection between worlds
of R and the selection σA=1 is lost and we can again not
compute σA=1(R) ∪ σB=2(R). 2

We say that a relation P is a copy of another relation
R in a WSD if R and P have the same tuples in every
world represented by the WSD. For a component relation
C, an attribute R.t.Ai of C and a new attribute P.t.B, the
function ext extends C by a new column P.t.B that is a copy
of column R.t.Ai:

ext(C, Ai, B) := {(A1 : a1, . . . , An : an, B : ai) |

(A1 : a1, . . . , An : an) ∈ C}

Then copy(R, P ) executes C := ext(C, R.ti.A, P.ti.A) for
each component C of our WSD and each R.ti.A ∈ S(C).

Figure 10 presents implementations of the operations se-
lection (of the form σAθc or σAθB , where A and B are at-
tributes, c is a constant, and θ is a comparison operation, =,
6=, <, ≤, >, or ≥), projection, relational product, and union



of relational algebra on WSDs. In each case, the input WSD
is extended by the result of the operation.

Remark 4.2. Note that most of these operations can be
expressed as relational algebra queries themselves. However,
the encoding in relational algebra is nonuniform in that each
WSD may have a different schema; at the same time the en-
codings of these operations in relational algebra can be easily
generated, but are not fixed. We do not provide algorithms
for generating here because of lack of space; yet they can be
easily derived from the algorithms of Figure 10.

An exception here is the selection with “join condition”
AθB. A fixed such query can require the merging of an ar-
bitrary number of component relations into a single compo-
nent, causing an exponential blowup in the size of the WSD.
Since relational algebra has polynomial-time data complex-
ity [2], i.e., fixed queries can only produce results of size
polynomial in the input data, selection with conditions AθB
cannot be expressible in relational algebra. For that mat-
ter, such selections on WSDs are also not expressible in more
expressive query languages with polynomial-time data com-
plexity, such as datalog with stratified negation. As it turns
out, the ability to create new identifiers is necessary to form
exponential sets of tuples. 2

The algorithms of Figure 10 provide us with a machinery
to execute any relational algebra query using the operations
σ, π, ×, and ∪. Renaming and difference are discussed in
Section 4.2. Given a relational algebra query Q, let Q̂ denote
the query processor on WSDs we obtain by replacing each
operation of Q by its corresponding operation on WSDs.

Theorem 4.3 (Correctness). Let W be a WSD and

let W ′ be the WSD obtained from Q̂(W) by dropping all

relations but the result relation of Q̂. Then,

rep(W ′) = {Q(A) | A ∈ rep(W)}.

4.2 Discussion and Examples
Let us now have a closer look at the algorithms of Fig-

ure 10 for evaluating relational algebra operations on WSDs.
For this, we use as running example the set of eight worlds
over the relation R of Figure 11 and its maximal 7-WSD of
Figure 11 (b). The second component (from the left) of the
WSD spans over several tuples and attributes and each of
the remaining six components refer to one tuple and one at-
tribute. The first tuple of the second component of the WSD
of Figure 11 (b) contains the values for R.t1.B, R.t1.C, and
R.t2.B, i.e. some but not all of the attributes of the first and
second tuple of RA, for all worlds A.

Because of space limitations and our attempt to keep the
WSDs readable, we consistently show in the following ex-
amples only the WSDs of the result relations.

Selection with condition Aθc. In order to compute a se-
lection P := σAθc(R), we first compute a copy P of relation
R and subsequently drop tuples of P that do not match the
selection condition.

Dropping tuples is a fairly subtle operation, since tuples
of component relations may neither contain any world-tuple
t ∈ RA in its entirety nor will each component tuple in
general represent (parts of) only one world-tuple.

Thus a selection must not delete tuples from component
relations, but should mark fields as belonging to deleted

tuples using the special value ⊥. To evaluate σAθc(R), our
selection algorithm of Figure 10 checks for each pair of tuples
ti in the relation P and tC in the component C that has
attribute P.ti.A whether tC .(P.ti.A) satisfies the selection
condition2, i.e., tC .(P.ti.A)θc. If it does not, the tuple P.ti

is marked as deleted in all worlds that take values from tC .
This means that tC .(P.ti.A) is assigned value ⊥, and all
other attributes P.ti.A

′ of C referring to the same tuple ti

of P are assigned value ⊥ in tC (cf. the algorithm propagate-
⊥ of Figure 13). This assures that if we later project away
the attribute A of P , we do not erroneously “reintroduce”
tuple P.ti into worlds that take values from tC .

algorithm propagate-⊥(C: component)
begin

for each tC ∈ C and P.ti.A ∈ S(C) do
if tC .(P.ti.A) = ⊥ then

for each A′ such that P.ti.A
′ ∈ S(C) do

tC .(P.ti.A
′) := ⊥;

end

Figure 13: Propagating ⊥-values.

Example 4.4. The answer P to σC=7(R) is represented
by the WSD of Figure 12 (a). Figure 12 (b) shows the
result of query σB=1(R). Note that the resulting WSDs
should contain both the query answer P and the original
relation R, but due to space limitations we only show the
representation of P . One can observe that for both results
in Figure 12 we may obtain worlds of different sizes. For
example the worlds that take values from the first tuple of
the second component relation in Figure 12 (a) do not have
a tuple t1, while the worlds that take values from the second
tuple of that component relation contain t1. 2

Selection with condition AθB. The main added diffi-
culty of selections with conditions AθB as compared to selec-
tions with conditions Aθc is that two attributes of a tuple
are accessed, which do not necessarily reside in the same
component.

The 7-WSD of Figure 11 (b) has no component containing
values for both the attributes A and B of any tuple of the
decomposed worlds. Therefore, the test of the join condition
for each of these tuples has to span over several components
containing values for A and B. Additionally, the join condi-
tion may exclude some possible combinations of the values
from different components. Therefore, the current decom-
position may not capture exactly the combinations of values
satisfying the join condition. It may then be necessary to
merge the components that have values for A and B within
a same tuple of the decomposed worlds. After the compo-
sition phase, the selection algorithm follows the pattern of
the selection with constant.

2Of course the tuples over P can be different – even their
number may vary – in each of the possible worlds over P .
However, since world-set relations, and therefore their de-
compositions, reserve a slot for the same |P |max tuples in
each world, and just some worlds may have some of these
tuples marked as invalid, we may just as well refer to a tu-
ple of P as an object that has a different value, and in some
cases ⊥, in each possible world.



A B C
1 1 0
4 3 0
6 6 7

A B C
2 1 0
4 3 0
6 6 7

A B C
1 1 0
5 3 0
6 6 7

A B C
2 1 0
5 3 0
6 6 7

A B C
1 2 7
4 4 0
6 6 7

A B C
2 2 7
4 4 0
6 6 7

A B C
1 2 7
5 4 0
6 6 7

A B C
2 2 7
5 4 0
6 6 7

(a) Set of eight worlds of the relation R.

R.t1.A
1
2

×
R.t1.B R.t1.C R.t2.B

1 0 3
2 7 4

×
R.t2.A

4
5

×
R.t2.C

0
×

R.t3.A
6

×
R.t3.B

6
×

R.t3.C
7

(b) 7-WSD of the world-set of (a).

Figure 11: World-set and its decomposition.

P.t1.A
1
2

×
P.t1.B P.t1.C P.t2.B

⊥ ⊥ 3
2 7 4

×
P.t2.A

4
5

×
P.t2.C

⊥
×

P.t3.A
6

×
P.t3.B

6
×

P.t3.C
7

(a) P := σC=7(R) applied to the WSD of Figure 11 (b).

P.t1.A
1
2

×
P.t1.B P.t1.C P.t2.B

1 0 ⊥
⊥ ⊥ ⊥

×
P.t2.A

4
5

×
P.t2.C

0
×

P.t3.A
6

×
P.t3.B

⊥
×

P.t3.C
7

(b) P := σB=1(R) applied to the WSD of Figure 11 (b).

Figure 12: Selections P := σC=7(R) and P := σB=1(R) with R from Figure 11 (b).

P.t1.A P.t1.B P.t1.C P.t2.B
1 1 0 3
⊥ ⊥ ⊥ 3
⊥ ⊥ ⊥ 4
2 2 7 4

×
P.t2.A

4
5

×
P.t2.C

0
×

P.t3.A
6

×
P.t3.B

6
×

P.t3.C
7

(a) 6-WSD after filtering tuple t1 using condition A = B.

P.t1.A P.t1.B P.t1.C P.t2.A P.t2.B
1 1 0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 4
2 2 7 4 4
2 2 7 ⊥ ⊥

×
P.t2.C

0
×

P.t3.A
6

×
P.t3.B

6
×

P.t3.C
7

(b) 5-WSD after filtering tuples t1, t2 using condition A = B.

P.t1.A P.t1.B P.t1.C P.t2.A P.t2.B
1 1 0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 4
2 2 7 4 4
2 2 7 ⊥ ⊥

×
P.t2.C

0
×

P.t3.A P.t3.B
6 6

×
P.t3.C

7

(c) 5-WSD after filtering all tuples using condition A = B

Figure 14: P = σA=B(R) with R from Figure 11 (b).

R.t1.A
1
2

×
R.t1.B R.t2.A

3 5
4 6

×
R.t2.B

7
8

×
S.t1.C

a
b

×
S.t1.D S.t2.C

c e
d f

×
S.t2.D

g
h

(a) WSD of two relations R and S.

t11.A t12.A
1 1
2 2

×
t11.B t12.B t21.A t22.A

3 3 5 5
4 4 6 6

×
t21.B t22.B

7 7
8 8

×
t11.C t21.C

a a
b b

×
t11.D t21.D t12.C t22.C

c c e e
d d f f

×
t12.D t22.D

g g
h h

(b) WSD of their product R × S.

Figure 15: The product operation R × S.

Example 4.5. Consider the query σA=B(R), where R is
represented by the 7-WSD of Figure 11 (b). Figure 14 (a)
shows the 6-WSD obtained from the one of Figure 11 (b)
after tuple t1 has been processed (requiring the composi-
tion of the first and second component of the WSD of Fig-
ure 11 (b)). Further applying the selection to tuple t2 yields

the 5-WSD of Figure 14 (b). Finally, processing tuple t3
leads to the composition of the second and the third com-
ponents, as shown in Figure 14 (c). This 4-WSD represents
five worlds, where one world has three tuples, three worlds
have two tuples each, and one world has one tuple. 2



Projection. A projection P = πU (R) on an attribute set
U of a relation R represented by the WSD C is translated
into (1) the extension of C with the copy P of R, and (2)
projections on the components of C, where all component
attributes that do not refer to attributes of P in U are dis-
carded. Before removing attributes, however, we need to
propagate ⊥-values, as discussed in the following example.

Example 4.6. Consider the 3-WSD of Figure 16 (a) rep-
resenting a set of two worlds for R, where one world con-
tains only the tuple t1 and the other contains only the tuple
t2. Let P ′ represent the first two components of R, which
contain all values for the attribute A in both tuples. The re-
lation P ′ is not the answer to πA(R), because it encodes one
world with both tuples, and the information from the third
component of R that only one tuple appears in each world
is lost. To compute the correct answer, we progressively
(1) compose the components referring to the same tuple
(in this case all three components), (2) propagate ⊥-values
within the same tuple, and (3) project away the irrelevant
attributes. The correct answer P is given in Figure 16 (b).

Note that despite the component merging done by the pro-
jection, the size of the answer does not grow exponentially,
because of attribute pruning and propagation of ⊥-values.2

R.t1.A
a

×
R.t2.A

b
×

R.t1.B R.t2.B
c ⊥
⊥ d

(a) WSD for relation R.

P.t1.A P.t2.A
a ⊥
⊥ b

(b) P :=
πA(R).

Figure 16: Projection P := πA(R).

The algorithm for projection is given in Figure 10. For
each tuple ti, attribute A in the projection list, and attribute
B not in the projection list, the algorithm first propagates
the ⊥-values of P.ti.B of component C′ to P.ti.A of com-
ponent C. If C and C′ are the same, the propagation is
done locally within the component. Otherwise, C and C′

are merged before the propagation. Note that the propa-
gation is only needed if all tuples (i.e., worlds) of C′ have
at least one ⊥-value, i.e., there is no world with values for
all attributes of C′. This procedure is performed until no
other components C and C′ exist that satisfy the above cri-
teria. After the propagation phase, the attributes not in the
projection list are dropped from all remaining components.
Product. The product T := R × S of two relations R and
S, which have disjunct attribute sets and are represented
by a WSD C requires that the product relation T extends
a component C with |S|max (respectively |R|max) copies of
each column of C with values of R (respectively S). Addi-
tionally, the ith (jth) copy is named T.tij .A if the original
has name R.ti.A or S.tj .A.

Example 4.7. Figure 15 (b) shows the WSD for the prod-
uct of relations R and S represented by the WSD of Fig-
ure 15 (a). To save space, the relations R and S have been
removed from Figure 15 (b), and attribute names do not
show the relation name “T”. 2

Union, Difference, and Renaming. The algorithm of
Figure 10 for computing the union T := R ∪ S of two rela-

tions R and S works similarly to that for the product. Each
component C containing values of R or S is extended such
that in each world of C all values of R and S become also
values of T .

Two operations of relational algebra remain to be dis-
cussed, operator renaming δ and difference “−”. The oper-
ation δA→A′(R), which renames attribute A or relation R
to A′, is very easy to implement. For each tuple t of R, let
C be the component that has the attribute R.t.A. Then we
rename this attribute to R.t.A′ as C := δR.t.A→R.t.A′(C).

The difference operation R − S may require to merge all
components that handle fields of R or S and is thus by far
the least efficient to implement. However, this is a known
problem of strong representation systems for relational alge-
bra. For example, it is known that evaluating the difference
operation on c-tables can take exponential time [9].

4.3 Normalizing WSDs
The algorithms of Figure 10 can produce WSDs, which are

not maximal, even if their input is. Recall from Section 3
that each WSD admits one maximal equivalent decomposi-
tion, which takes the least space among all its equivalents.
Also, due to propagation of ⊥-values, the components can
encode tuples invalid in all worlds. Figure 17 gives two al-
gorithms that address these normalization problems.

algorithm remove invalid tuples
begin

for each 1 ≤ i ≤ |P |max and A ∈ S(P ) do begin
let C be the component of P.ti.A;
if πP.ti.A = {⊥} then

for each B ∈ S(P ) do begin
let C′ be the component of P.ti.B;
project away P.ti.B from C′;

end
end

end

algorithm decompose
begin

while no fixpoint is reached do begin
let C be a component such that C = C1 × C2;
replace C by C1, C2;

end
end

Figure 17: Algorithms for WSD normalization.

Example 4.8. The WSD of Figure 12 (a) has only ⊥-
values for P.t2.C. This can be interpreted as the absence of
tuple t2 of P from all worlds, and allows us to remove the
entries of that tuple from all components. Applied to this
WSD, the algorithm remove invalid tuples yields the equiva-
lent WSD of Figure 18. Similar simplifications apply to the
WSD of Figure 12 (b), where tuples t2 and t3 are invalid. 2

Example 4.9. The 4-WSD of Figure 14 (c) admits the
equivalent 5-WSD of Figure 14 (b), where the second com-
ponent is decomposed into two components. Such a case of
non-maximality is detected by the algorithm decompose. 2



P.t1.A
1
2

×
P.t1.B P.t1.C

⊥ ⊥
2 7

×
P.t3.A

6
×

P.t3.B
6

×
P.t3.C

7

Figure 18: Normalization for WSD of Figure 12 (a).

Remark 4.10. Note that the non-maximality case of the
WSD from Figure 14 (c) cannot appear for UWSDTs, be-
cause all but the first component of Figure 14 (c) contain
only one tuple and are stored in the template relation, where
no component merging occur.

Clearly, the removal of invalid tuples needs polynomial
time in the size of the WSD. Less obvious, finding the maxi-
mal equivalent decomposition of a component with arbitrary
arity can also be done in polynomial time [5]. 2

5. EFFICIENT QUERY EVALUATION ON
UWSDTS

The algorithms for computing the relational operations
on WSDs presented in Section 4 can be easily adapted to
UWSDTs. To do this, we follow closely the mapping of
WSDs, represented as sets of components C, to equivalent
UWSDTs, represented by a triple (F ,C,W ) and at least one
template relation R0:

• Consider a component K of WSD C having an at-
tribute R.t.A with a value v. In the equivalent UWSDT,
this value can be stored in the template relation R0 if
v is the only value of R.t.A, or in the component C
otherwise. In the latter case, the template R0 con-
tains the placeholder R.t.A in the tuple t. In addition,
in the mapping relation F there is an entry with the
placeholder R.t.A and a component identifier c, and C
contains a tuple formed by R.t.A, the value v and a
world identifier w.

• Worlds of different sizes are represented in WSDs by
allowing ⊥ values in components, and in UWSDTs by
allowing for a same placeholder different amount of
values in different worlds.

Any relational query is rewritten in our framework to a
sequence of SQL queries, except for the projection and selec-
tion with join conditions, where the fixpoint computations
are encoded as recursive PL/SQL programs. In all cases,
the size of the rewriting is linear in the size of the input
query. Due to space limitations, we only give our efficient
implementation of the selection with constant in Figure 19.

In contrast to some algorithms of Figure 10, for UWSDTs
we do not create a copy P of R at the beginning, but rather
compute directly P from R using standard relational algebra
operators. The template P 0 is initially the set of tuples of R0

that satisfy the selection condition, or have a placeholder ‘?’
for the attribute A (line 1). We extend the mapping relation
F with the placeholders of P 0 (line 2), and the component
relation C with the values of these placeholders, where the
values of placeholders P.t.A for the attribute A must satisfy
the selection condition (line 3). If a placeholder P.t.A has
no value satisfying the selection condition, then t is removed
from P 0 (line 6) and all placeholders of t are removed from
F (line 5) together with their values from C (line 4).

Many of the standard query optimization techniques are
also applicable in our context. For our experiments reported

algorithm select[Aθc] // compute P := σAθcR
begin

1. P 0 := σAθc∨A=?R
0;

2. F := F ∪ {(P.t.B, k) | (R.t.B, k) ∈ F, t ∈ P 0};
3. C := C ∪ {(P.t.B, w, v) | (R.t.B, w, v) ∈ C, t ∈ P 0,

(B = A ⇒ vθc)};
// Remove incomplete world tuples
4. C := C − {(P.t.X, w, v) ∈ C | (P.t.X, k), (P.t.Y, k) ∈ F,

t ∈ P 0, X 6= Y, 6 ∃v′ : (P.t.Y, w, v′) ∈ C};
5. F := F − {(P.t.B, k) | (P.t.B, k) ∈ F ,

6 ∃w, v : (P.t.B, w, v) ∈ C};
6. P 0 := P 0 − {t | t ∈ P 0, 6 ∃B,a : (P.t.B, a) ∈ F};
7. W := πcid,lwid(F ⊲⊳ C);

end

Figure 19: Evaluating P := σAθc(R) on UWSDTs.

in Section 7, we performed the following optimizations on
the sequences of SQL statements obtained as rewritings. For
the evaluation of a query involving join, we merge the prod-
uct and the selections with join conditions and distribute
projections and selections to the operands. When evaluat-
ing a query involving several selections and projections on
the same relation, we again merge these operators and per-
form the steps of the algorithm of Figure 19 only once. We
further tuned the query evaluation by employing indices and
materializing often used temporary results.

6. CHASING DEPENDENCIES
In this section we address the problem of removing in-

consistent worlds in an incompletely specified database. We
present a method called Chase [3, 12, 2] in the spirit of the
work of [8] for data cleaning on a world-set decomposition
of a relation R, given a set of dependencies Φ.

We consider the following types of dependencies over a re-
lation R: functional dependencies denoted by A1, . . . , Am →
A0, where Ai,∈ S(R), 0 ≤ i ≤ m, and equality-generating
dependencies of the form φ1 ∧ φ2 ∧ ... ∧ φm ⇒ φ0, where
each φi(Ai) = Aiθici, for 0 ≤ i ≤ m, is a binary oper-
ator comparing the value of an attribute Ai ∈ S(R) with
a constant ci. Relation R satisfies an equality-generating
dependency egd (denoted by R |= egd) if for each tuple
t ∈ R : t.A1θ1c1 ∧ . . . ∧ t.Amθkcm ⇒ t.A0θ0c0.

Recall Example 1.2 from the introduction. The unique-
ness constraint for the social security number is a functional
dependency S → N, M , which is of course equivalent to
the two functional dependencies S → N and S → M . To
enforce this constraint we combined the two S fields (t1.S
and t2.S) in the same component and removed the worlds
in which both have the same value (see Figure 5).

Assume now that from a reliable source we have the in-
formation that the person with social security number 785
is married. The current decomposition allows invalid com-
binations of values: those worlds in which t1.S = 785 and
t1.M 6= 1 (1 is the code for married). To remove incon-
sistencies, we must compose the first and the third compo-
nents and remove from the new component all tuples that
do not satisfy the given dependency. As a result of this
data-cleaning step we obtain the 4-WSD in Figure 20.

One would probably observe that enforcing a dependency
on a WSD resembles the selection operation with condition
AθB presented in Section 4. In both cases we identify depen-



t1.S t2.S t1.M

185 186 1
185 186 2
785 185 1
785 186 1

×
t1.N

Smith
×

t2.N
Brown

×

t2.M
1
2
3
4

Figure 20: Result of chasing S = 785 ⇒ M = 1 on the
WSD in Figure 5.

algorithm Chase
Input: Φ: set of dependencies, W: WSD
Output: a WSD satisfying Φ

begin
for each d ∈ Φ do

if d = A1, . . . , Am → A0 then // d is a fd on W
for each s, t ∈ W : {s, t} 2 d do begin

let Cji
, Cki

be the component of s.Ai, t.Ai,
respectively, for each 0 ≤ i ≤ m;

replace Cj0 , . . . , Cjm , Ck0
, . . . , Ckm in W

by their product C;
C := σd(C);
if C = ∅ then return ∅;

end
else if d = φ1 ∧ . . . ∧ φm → φ0 // d is a egd on W

for each t ∈ W : {t} 2 d do begin
let Ci be the component of t.Ai, for 0 ≤ i ≤ m;
replace C0, . . . , Cm in W by their product C;
C := σd(C);
if C = ∅ then return ∅;

end;
return W;

end.

Figure 21: Chase

dencies across components and compose dependent compo-
nents. Nevertheless there is an important difference between
the two operations. In the selection operation we are inter-
ested in finding a subset of the tuples valid in some world .
If a tuple fails to satisfy the selection condition, it is simply
dropped from the result. On the other hand, when enforc-
ing dependencies on a WSD, we want to get a subset of the
possible worlds such that the dependencies hold for all tu-
ples. If a tuple has no valid values in any of the worlds, this
automatically means that the database is inconsistent with
respect to the given set of dependencies.

As seen in the previous examples, cleaning inconsistent
worlds involves two basic steps: (1) composing dependent
components into one and (2) removing inconsistent tuples
from the resulting component. Repeating these two steps
iteratively for each dependency and each tuple in the given
WSD W would result in a WSD W’ satisfying all constraints.

Before proceeding to the formal algorithm for chasing de-
pendencies, we introduce the following notations.
If fd = A1, . . . , Am → A0 is a functional dependency, s, t ∈
W and all attributes s.Ai, t.Ai, 0 ≤ i ≤ m are defined in a
component C, the operation that retrieves all worlds in C
satisfying fd can be expressed by
σC.(s.A1) 6=C.(t.A1)∨...∨C.(s.Am) 6=C.(t.Am)∨C.(s.A0)=C.(t.A0)(C),

where σ is the relational selection. For the sake of brevity
we write σfd(C). Similarly, if t is a tuple from W, egd =
A1θ1c1 ∧ ... ∧ Amθmcm ⇒ A0θ0c0 is an equality-generating
dependency and all attributes t.Ai, 0 ≤ i ≤ m are defined in
a component C, the operation
σ¬(C.(t.A1)θ1c1)∨...∨¬(C.(t.Am)θmcm)∨(C.(t.A0)θ0c0)(C) retrieves
all valid worlds (with respect to egd) from C. We write
shortly σegd(C).

The algorithm of Figure 21 implements the data cleaning
for a given world-set decomposition and a set of dependen-
cies Φ.

Theorem 6.1. The Chase algorithm of Figure 21 termi-
nates on all inputs.

Theorem 6.2 (Correctness). For a WSD W and a
set of dependencies Φ, the algorithm of Figure 21 computes a
WSD W ′ s.t. rep(W ′) ⊆ rep(W) and for each A ∈ rep(W),

A ∈ rep(W ′) ⇔ A � Φ.

7. EXPERIMENTAL EVALUATION
The literature knows a number of approaches to repre-

senting incomplete information databases, but little work
has been done so far on expressive yet efficient representa-
tion systems. An ideal representation system would store a
large set of possible worlds using only a small overhead in
storage space and query processing time when compared to
a single world represented in a conventional way. In the pre-
vious sections we presented the first step towards this goal.
We introduced UWSDTs and studied the query processing
problem in this context. This section reports on experiments
with a large census database with noise.
Experimental Setting. The experiments were conducted
on a 3GHz/2GB Pentium machine running Linux 2.6.8 and
PostgreSQL 8.0.
Datasets. The IPUMS 5% census data (Integrated Public
Use Microdata Series, 1990) [14] used for the experiments is
the publicly available 5% extract from the 1990 US census,
consisting of 50 (exclusively) multiple-choice questions. It is
a relation with 50 attributes and 12491667 tuples (approx.
12.5 million). The size of this relation stored in PostgreSQL
is ca. 3 GB. We also used excerpts representing the first 0.1,
0.5, 1, 5, 7.5, and 10 million tuples.
Adding Incompleteness. We added incompleteness as
follows. First, we generated a large set of possible worlds
by introducing noise. After that, we cleaned the data by
removing worlds inconsistent with respect to a given set of
dependencies. Both steps are detailed next.

We introduced noise by replacing some values with or-sets.
We experimented with different noise densities: 0.005%,
0.01%, 0.05%, 0.1%. For example, in the 0.1% scenario one
in 1000 fields is replaced by an or-set. The size of each or-set
was randomly chosen in the range [2, min(8, size)], where
size is the size of the domain of the respective attribute
(with a measured average of 3.5 values per or-set). Note
that in one scenario we had far more than 2624449 possible
worlds, where 624449 is the number of the introduced or-sets
and 2 is the minimal size of each or-set (cf. Figure 23).
Data Cleaning. We enhance our Chase algorithm of Sec-
tion 6 in several ways. For a given dependency we retrieve
all inconsistencies at once instead of doing that tuplewise,
and we perform as many updates as possible at the same
time, instead of having one update per inconsistent tuple.



This is in the spirit of the semi-naive algorithm for datalog
evaluation [2].

The Chase uses the 12 equality-generating dependencies
from Figure 22. These represent real-life constraints on the
data. For example the first dependency states that citizens
born in the USA are not immigrants, and dependencies two
to five require that citizens who served in various wars have
done their military service. Note that relations with or-sets
are not expressive enough to represent the cleaned data with
dependencies.

1 CITIZEN = 0 ⇒ IMMIGR = 0
2 FEB55 = 1 ⇒ MILITARY ! = 4
3 KOREAN = 1 ⇒ MILITARY ! = 4
4 VIETNAM = 1 ⇒ MILITARY ! = 4
5 WWII = 1 ⇒ MILITARY ! = 4
6 MARITAL = 0 ⇒ RSPOUSE ! = 6
7 MARITAL = 0 ⇒ RSPOUSE ! = 5
8 LANG1 = 2 ⇒ ENGLISH ! = 4
9 RPOB = 52 ⇒ CITIZEN ! = 0

10 SCHOOL = 0 ⇒ KOREAN ! = 1
11 SCHOOL = 0 ⇒ FEB55 ! = 1
12 SCHOOL = 0 ⇒ WWII ! = 1

Figure 22: Dependencies for cleaning census data.

Figure 23 shows the effect of chasing our dependencies on
the 12.5 million tuples and varying placeholder density. As
a result of merging components, the number of components
with more than one placeholder (#comp>1) grows linearly
with the increase of placeholder density, reaching about 1.7%
of the total number of components (#comp) in the 0.1%
case. A linear increase is witnessed also by the chasing time
when the number of tuples is also varied.
Queries. Six queries were chosen to show the behavior of
relational operators combinations under varying selectivities
(cf. Figure 24). Query Q1 returns the entries of US citizens
with PhD degree. The less selective query Q2 returns the
place of birth of US citizens born outside the US that do not
speak English well. Query Q3 retrieves the entries of wid-
ows that have more than three children and live in the state
where they were born. The very unselective query Q4 re-
turns all married persons having no children. Query Q5 uses
query Q2 and Q3 to find all possible couples of widows with
many children and foreigners with limited English language
proficiency in US states with IPUMS index greater than 50
(i.e., eight ‘states’, e.g., Washington, Wisconsin, Abroad).
Finally, query Q6 retrieves the places of birth and work of
persons speaking English well.

Figure 23 describes some characteristics of the answers to
these queries when applied on the cleaned 12.5M tuples of
IPUMS data: the total number of components (#comp) and
of components with more than one placeholder (#comp>1),
the size of the component relation C, and the size of the
template relation R. One can observe that the number of
components increases linearly with the placeholder density
and that compared to chasing, query evaluation leads to a
much smaller amount of component merging.

Figure 25 shows that all six queries admit efficient and
scalable evaluation on UWSDTs of different sizes and place-
holder densities. For accuracy, each query was run ten times,
and the median time for computing and storing the answer
is reported.

The evaluation time for all queries but Q5 on UWSDTs
follows very closely the evaluation time in the one-world

Density 0.005% 0.01% 0.05% 0.1%
Initial #comp 31117 62331 312730 624449
After #comp 30918 61791 309778 612956
chase #comp>1 249 522 2843 10880

|C| 108276 217013 1089359 2150935
|R| 12.5M 12.5M 12.5M 12.5M

After #comp 702 1354 7368 14244
Q1 #comp>1 1 4 40 158

|C| 1742 3625 19773 37870
|R| 46600 46794 48465 50499

After #comp 25 56 312 466
Q2 #comp>1 0 1 8 9

|C| 93 269 1682 2277
|R| 82995 83052 83357 83610

After #comp 38 76 370 742
Q3 #comp>1 0 0 0 0

|C| 89 202 1001 2009
|R| 17912 17936 18161 18458

After #comp 1574 3034 15776 30729
Q4 #comp>1 11 28 127 557

|C| 4689 9292 48183 94409
|R| 402345 402524 404043 405869

After #comp 3 10 53 93
Q5 #comp>1 3 10 53 93

|C| 1221 5263 33138 50780
|R| 150604 173094 274116 393396

After #comp 97 189 900 1888
Q6 #comp>1 0 0 0 0

|C| 516 1041 4993 10182
|R| 229534 230113 234335 239488

Figure 23: UWSDTs characteristics before chasing
and after chasing and querying for 12.5M tuples.

case. The one-world case corresponds to density 0% in our
diagrams, i.e., when no placeholders are created in the tem-
plate relation and consequently there are no components. In
this case, the queries of Figure 24 were evaluated only on
the template relation.

An interesting issue is that all diagrams of Figure 25 show
a substantial increase in the query evaluation time for the
7.5M case. As the jump appears also in the one-world case,
it suggests poor memory management of Postgres in the case
of large tables. We verified this statement by splitting the
12.5M table into chunks smaller than 5M and running query
Q1 on those chunks to get partial answers. The final answer
is represented then by the union of each UWSDT relation
from these partial answers.

Although the evaluation of join conditions on UWSDTs
can require theoretically exponential time (due to the com-

Q1 := σYEARSCH=17∧CITIZEN=0(R)

Q2 := πPOWSTATE,CITIZEN,IMMIGR(σCITIZEN<>0∧ENGLISH>3(R))

Q3 := πPOWSTATE,MARITAL,FERTIL(σPOWSTATE=POB

(σFERTIL>4∧MARITAL=1(R)))

Q4 := σFERTIL=1∧(RSPOUSE=1∨RSPOUSE=2)(R)

Q5 := δPOWSTATE→P1
(σPOWSTATE>50(Q2)) ⊲⊳P1=P2

δPOWSTATE→P2
(σPOWSTATE>50(Q3))

Q6 := πPOWSTATE,POB(σENGLISH=3(R))

Figure 24: Queries on IPUMS census data.
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Figure 25: The evaluation time for queries of Figure 24 on UWSDTs of various sizes and densities.

position of some decomposed components), our experiments
suggest that they behave well in practical cases, as illus-
trated in Figures 25 (c) and (e) for queries Q3 and Q5 re-
spectively. Note that the time reported for Q5 does not
include the time to evaluate its subqueries Q2 and Q3.

In summary, our experiments show that UWSDTs behave
very well in practice. We found that the size of UWSDTs
obtained as query answers remains close to that of one of
their worlds. Furthermore, the processing time for queries
on UWSDTs is comparable to processing one world. The
explanation for this is that in practice there are rather few
differences between the worlds. This keeps the mapping and
component relations relatively small and the lion’s share of
the processing time is taken by the templates, whose sizes
are about the same as of a single world.

8. APPLICATION SCENARIOS
Our approach is designed to cope with large sets of possi-

ble worlds, which exhibit local dependencies and large com-
monalities. This data pattern can be found in many appli-
cations. In addition to the census scenario used in Section 7,
we next discuss two further application scenarios that can
profit from our approach. As for the census scenario, we
consider it infeasible both to iterate over all possible worlds
in secondary storage, or to compute UWSDT decomposi-
tions by comparing the worlds. Thus we also outline how
our UWSDTs can be efficiently computed.
Inconsistent databases. A database is inconsistent if it
does not satisfy given integrity constraints. Sometimes, en-
forcing the constraints is undesirable. One approach to man-
age such inconsistency is to consider so-called minimal re-
pairs, i.e., consistent instances of the database obtained with
a minimal number of changes [6]. A repair can therefore
be viewed as a possible (consistent) world. The number of
possible minimal repairs of an inconsistent database may in
general be exponential; however, they substantially overlap.

For that reason repairs can be easily modeled with UWS-
DTs, where the consistent part of the database is stored in
template relations and the differences between the repairs
in components. Current work on inconsistent databases [6]
focuses on finding consistent query answers, i.e., answers ap-
pearing in all possible repairs (worlds). With our approach
we can provide more than that, as the answer to a query
represents a set of possible worlds. In this way, we pre-
serve more information that can be further processed using
querying or data cleaning techniques.
Medical data. Another application scenario is modeling
information on medications, diseases, symptoms, and med-
ical procedures, see, e.g., [1]. A particular characteristic of
such data is that it contains a big number of clusters of inter-
dependent data. For example, some medications can inter-
act negatively and are not approved for patients with some
diseases. Particular medical procedures can be prescribed
for some diseases, while they are forbidden for others. In the
large set of possible worlds created by the complex interac-
tion of medications, diseases, procedures, and symptoms, a
particular patient record can represent one or a few possible
worlds. Our approach can keep interdependent data within
components and independent data in separate components.
One can ask then for possible patient diagnostics, given an
incompletely specified medical history of the patient, or for
commonly used medication for a given set of diseases.

In [1] interdependencies of medical data are modeled as
links. A straightforward and efficient approach to wrap such
data in UWSDTs is to follow the links and create one compo-
nent for all interrelated values. Additionally, each different
kind of information, like medications, diseases, is stored in
a separate template relation.

9. RELATED WORK
Recent years have witnessed important contributions to-

wards scalable methods for managing incompleteness in rela-



tional databases. This section compares expressiveness and
processing aspects of [7, 4, 15] with the WSD approach.
Tuple independence. Dalvi and Suciu propose probabilis-
tic databases to model data incompleteness [7]. Each tuple
in a probabilistic databases is assigned a confidence value,
which represents the probability of the tuple being in the
database. Dalvi and Suciu make the strong assumption that
each tuple is an independent probabilistic event, thus their
model cannot represent any finite world-set as WSDs can.
Rather, a possible world is a subset of the tuples in the
database and its probability is computed as the product of
probabilities of the tuples in the world and of the ones that
are not.

S A B
s1 m 1 0.8
s2 n 1 0.5

T C D
t1 1 p 0.6

Figure 26: A probabilistic database.

Figure 26 shows an example of a probabilistic database D
used in [7] with two relations S and T . The possible worlds
for D are given in Figure 27.

world
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = ∅ 0.04

Figure 27: The possible worlds of the probabilistic
database in Figure 26.

A natural probabilistic extension of WSDs can model the
probabilistic databases of Dalvi and Suciu in the follow-
ing way. Each tuple t with confidence c in a probabilistic
database induces a WSD component representing two local
worlds: the local world with tuple t and confidence c, and
the empty world with confidence 1 − c. Such a probabilis-
tic extension would further allow to assign probabilities not
only to individual tuples (as proposed by Dalvi and Suciu),
but also to dependencies of values across tuples, as defined
within WSD components (and not possible under the tu-
ple independence assumption). Figure 28 gives the WSD
encoding of the probabilistic database of Figure 26.

An important contribution of [7] is the evaluation of rank
queries under the strong assumption of tuple independence.
This is especially challenging because in general query evalu-
ation produces dependencies between tuples and complicates
rank computation. In contrast to this, WSDs can represent
uniformly tuple dependency and independency. In a follow-
up work [13] the probabilistic databases are extended to
represent (intentionally) complex correlated events as SQL
views.
Or-set independence. Or-set relations [11] are a simple
formalism for representing incompleteness by allowing re-
lation fields to contain finite sets of values, called or-sets.
Each value in an or-set is a possible assignment for the re-
spective field and each combination of assignments for the
different fields yields a possible world. As or-set relations

exhibit an independence of the contained or-sets, they are
too weak to represent answers even to simple selections, cf.
the discussion in Section 1. In contrast, WSDs can represent
any world-set, while being as succinct as or-set relations for
the case of world-sets representable as or-set relations. Also,
in such cases, processing WSDs is as efficient as processing
or-set relations.
Tuple-set independence. Miller et al. [4] study the prob-
lem of finding clean answers over dirty databases. A relation
in a dirty database is defined here as a set of independent
tuples, where each tuple has a set of (mutually exclusive,
thus dependent) alternatives. Each alternative is assigned a
probability of being in the clean database. Thus one possible
instance of a dirty database contains exactly one alternative
of each tuple.

In contrast to or-set relations, Miller’s representation sys-
tem contain alternatives for whole tuples rather than for
single tuple fields only. Its salient weakness is the inability
(1) to efficiently represent alternatives for single tuple fields
(as or-set relations and WSDs do), and (2) to represent alter-
natives for sets of fields across several tuples (as WSDs do).
To see the former point, consider an or-set relation with one
tuple, which has m or-sets, each with n values. The number
of alternatives of the same tuple is then nm, i.e, the number
of possible worlds. As a concrete example, Figure 29 gives
the encoding of the or-set relation from Figure 1 in Miller’s
representation system.

(TID) SSN Name Marital
t1 185 Smith 1
t1 185 Smith 2
t1 785 Smith 1
t1 785 Smith 2
t2 185 Brown 1
t2 185 Brown 2
t2 185 Brown 3
t2 185 Brown 4
t2 186 Brown 1
t2 186 Brown 2
t2 186 Brown 3
t2 186 Brown 4

Figure 29: The or-set relation of Figure 1 encoded
as a dirty database.

The clean answer of a query is defined as the set of tuples
that are possible answers of that query, together with their
probabilities. Miller et al. investigate the query evaluation
problem for the restricted class of queries with acyclic join
graphs.

Tuple-set independence can be easily modeled in WSDs
by having a component for each set of alternatives (which
become component’s tuples). For example, the above exam-
ple can be represented compactly as the WSD in Figure 4.

Note that the or-set, tuple, and tuple-set independence
assumptions discussed above drastically simplify the query
evaluation on WSDs, because each tuple of a database re-
lation becomes now a tuple in a component. Component
merging, the most expensive operation on WSDs, is thus
only needed when joining independent relations and not
needed for relational algebra operations on a single relation.
Strong Representation Systems. Recent work by Widom



S.s1.A S.s1.B
m 1 0.8
⊥ ⊥ 0.2

×
S.s2.A S.s2.B

n 1 0.5
⊥ ⊥ 0.5

×
T.t1.C T.t1.D

1 p 0.6
⊥ ⊥ 0.4

Figure 28: WSD equivalent to the probabilistic database in Figure 26.

et al. on uncertain information and lineage [18, 15] proposes
a system called Trio for managing incomplete data. Out of a
plethora of so-called working models of varying expressive-
ness, Trio has a complete model (called TCM), i.e., TCM
can represent any finite world-set. Because this is also the
goal of WSDs, their work and ours inherently share some
similarities, though they differ in important theoretical and
practical aspects.

TCM lies at the intersection of the c-tables of [10] and the
probabilistic databases of [13]. More precisely, in TCM the
worlds of a relation are represented as a table containing all
tuples of that relation as independent events. Additionally,
TCM allows to express complex tuple events using propo-
sitional formulas over tuple identifiers. As discussed in the
introduction, WSDs can be seen as a normal form for c-
tables, and thus for TCM instances.

As shown in [15], various decision problems like tuple pos-
sibility and certainty are NP-hard for TCM, which makes
TCM as unrealistic for practical purposes as c-tables are.
In contrast, in a current work [5] we show that both these
problems admit polynomial decision in the context of WSDs.

To date, the scalability of WSDs and Trio could not be
compared in practice, for Trio is still being built (cf. [15]).
Infinite world-sets. So far work on representing infinite
world-sets has been mainly theoretical. Formalisms include
v-tables, where fields can be occupied by variables, and c-
tables, where in addition to variables one can specify logical
constraints on their values. In [5] we propose an extension of
WSDs that adds support for infinite world-sets. This exten-
sion makes WSDs equivalent in expressive power to c-tables
and bears the promise of more efficient data management
and query processing.

10. FUTURE WORK
While first experiments suggest that WSDs are a very

promising framework for representing and managing incom-
plete information, we are currently working on evaluating
WSDs in applications other than survey data.

We have started the analysis of the data cleaning problem
in the context of UWSDTs and our experiments make use of
partially cleaned data. In the future, we will study the data
cleaning problem within our framework in greater depth.

Although in many application scenarios, e.g. census, the
data does not change over time, we intend to address the
problem of making updates to WSDs in the future. Note
that updates are easy to handle in the case when changes
made are the same in all worlds. For instance, adding a tuple
to each world of a UWSDT just means to add the tuple once
to the template relation. However, updating world-sets with
incomplete information – even defining meaningful notions
of this – is an interesting problem for future research.

We are currently working on generalizing the framework
of WSDs to support also infinite sets of possible worlds by
taking an approach that integrates WSDs with c-tables. Our
WSDs correspond to a certain CNF-like normal form for the
condition formulas in c-tables. In the future, we would like

to elaborate on this to define syntactic normal forms for c-
tables which are at the same time powerful as representation
systems (for finite as well as infinite world-sets) and allow for
scalable representation, data cleaning, and query processing.
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