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Abstract— Streams are preferable over data stored in memory
in contexts where data is too large or volatile, or a standard
approach to data processing based on storing is too time
or space consuming. Emerging applications such as publish-
subscribe systems, data monitoring in sensor networks, financial
and traffic monitoring, and routing of MPEG-7 call for queryi ng
streams. In many such applications, XML streams are arguably
more appropriate than flat streams, for they convey (possibly
unbounded) unranked ordered trees with labeled nodes. How-
ever, the flexibility enabled by XML streams in data modeling
makes query evaluation different from traditional settings and
challenging.

This article describes SPEX, a streamed and progressive eval-
uation of XPath. SPEX compiles queries into networks of simple
and independent transducers and processes XML streams with
polynomial combined complexity. This makes SPEX especially
suitable for implementation on devices with low-memory and
simple logic as used, e.g., in mobile computing.

Index Terms— Query Evaluation, Streams, Transducers, XML,
XPath

I. I NTRODUCTION

STREAMS are an emerging technology for data dissemination
in cases where the data throughput or size make it unfeasi-

ble to rely on the conventional approach based on storing the
data before processing it [1]. Areas where streams are applied
include monitoring of scientific data (environments [2], astron-
omy [3], meteorology), control data (traffic [4], networks [5],
logistics), financial data (bank transactions [6]), and MPEG-7
routing [7]. Streams are complementary and symmetrical to tradi-
tional databases. While in traditional databases data is persistent
and queries are volatile, in stream applications data is volatile but
queries are persistent. Streams are a new and promising setting in
which many conventional database methods have to be considered
anew.

Querying XML streams without storing and without decreasing
considerably the data throughput is especially challenging because
XML streams can convey tree structured data with unbounded
size and depth. Important desiderata for query processors against
XML streams are to employ streamed and progressive evaluation,
to scale in both data and query size, and to offer support
for reasonably expressive query languages. Streamed evaluation
means here that only one pass over the XML stream is used, and
progressive evaluation means that the answers are output assoon
as possible. Current streamed query processors, e.g., [8]–[14],
are not designed to accomplish all these desiderata, their focus
being in most cases a subset of them, possibly with additional
desiderata, e.g., support for indexing and evaluating large sets of
simple queries. We survey these processors in Section IX.
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The main contribution of this article is an evaluation method
that fulfills all four above desiderata. More precisely, thecontri-
butions are as follows.

• We describe a streamed and progressive query evaluation
against XML streams (SPEX for short). Extended abstracts
on SPEX are given by [15]–[17].

• The query language supported by SPEX is Forward Core
XPath [18] extended with path union and path difference.
This is a clean fragment of XPath [19]. XPath lies at the core
of important languages for the Web, e.g., the query language
XQuery [20], the transformation language XSLT [21], the
schema language XML-Schema [22], and the language for
addressing fragments of XML documents XPointer [23].

• SPEX has polynomial combined complexity, i.e., polynomial
in both the data and the query sizes. Chronologically, SPEX
is the first streamed Core XPath processor to enjoy polyno-
mially combined complexity [16]. This contrasts with most
approaches to streamed evaluation, which have exponential
query complexity, e.g., [8]–[11].

• We show that SPEX is scalable. Our experiments show that
SPEX scales for queries of 1000 steps as well as real-
life XML documents of 700 MB (the biggest sizes in our
experiments). Further experiments confirm SPEX scalability
for application-generated XML streams [17].

• SPEX is extensible by design. It compiles queries into
networks of independent transducers and the addition of
transducers implementing new query constructs does not
influence the behavior of the existing ones. Note that the
aforementioned streamed XPath processors are not extensi-
ble, for they are specifically designed for very small XPath
fragments.

• To further improve the evaluation time and also to give
an example of useful SPEX extensions, we introduce so-
called filters that reduce the stream traffic within transducer
networks. We experimentally confirm that the filters are
very effective, especially for networks representing selective
queries.

• SPEX is an open-source processor publicly available at
http://spex.sourceforge.net. The prototype imple-
ments also comparisons with constants and a restricted form
of aggregation (count), which are not discussed here.

We proceed as follows. In Section II we define annotated XML
streams and introduce the XPath fragment of concern. Section III
overviews the main ideas of SPEX. We show how XPath queries
are compiled into transducer networks in Section IV and define
various transducers in Section V. An optimization technique
for reducing the stream traffic within networks is describedin
Section VI. The complexity study of SPEX follows in Section VII
and experiments are reported in Section VIII. Finally, we give
credits to related work in Section IX and conclude in SectionX.
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Fig. 1. A tree and its corresponding XML stream (〈〉stands for stream
beginning and〈/〉for stream end).

II. PRELIMINARIES

A. Annotated XML Streams

XML streams correspond to depth-first, left-to-right, preorder
serializations of trees. Each node is represented by an opening and
closing tag as follows: on entering (exiting) that node, itsopening
(closing) tag is appended to the stream. For our purpose, each
opening tag is followed by an annotation, cf. Fig.1. Annotations
are used to mark selected nodes during query evaluation. The
annotations of particular nodes of interest are marked witha head
flag. This is the case of the nodes that can be in the answer (so-
called answer candidates).

An annotation is expressed as a list of positive integers in
ascending order, e.g., [1,2]. There are two special annotations:
the empty annotation, noted [ ], corresponding to the empty
list, and the full annotation, noted [0], corresponding to the list
containing all positive integers. There are three operations defined
for annotations: union⊔, intersect⊓, and inclusion⊑, whose
semantics resemble that of standard set operations∪, ∩, and⊆.
For example, the operationc⊔ s denotes the union of annotations
c and s with duplicate removal, like in [1,2]⊔[2,3]=[1,2,3]. Any
annotation contains the empty annotation and is contained in the
full annotation. We write a stream containing the messagem1

before the messagem2 asm1m2.
Although a node is not a stream message, for the sake of

conciseness we may often speak about streams made up of nodes.
Thus, the wordings (1) “all children of a noden are annotated in
the output stream with the annotation ofn from the input stream”
and (2) “all opening tags of children of a noden are immediately
followed in the output stream by the annotation that immediately
follows the opening tag ofn in the input stream” are equivalent.

B. The Query Language XPath

This article considers a clean fragment of XPath [19] defined
by the following abstract EBNF:

query: ‘/’ path | path | query ‘union’ query| query ‘except’ query
path: step (‘/’ step)*
step: axis ‘::’ nodetest (‘[’ pred ‘]’ )?
pred: pred ‘and’ pred| pred ‘or’ pred| ‘not’ ‘(’ pred ‘)’

| ‘(’ pred ‘)’ | path

A path is a sequence of steps and each step has an axis (i.e.,
a binary relation on nodes), a nodetest (i.e., wildcard ’*’ or a
node label), and possibly a predicate (i.e., a boolean formula over

paths). If a path is preceeded by ‘/’, then it is absolute, otherwise it
is relative. A query is a path, a union or a difference of paths. The
semantics of a pathL1[p1]/. . ./Ln[pn] is the set of all nodesmn

in stream order such that there is a list of nodes(m0, . . . , mn),
wherem0 is any node among a given set of (context) nodes, and
for all 1 ≤ i ≤ n we have(mi−1, mi) ∈ Li, and there are nodes
m′i for which (mi, m

′

i) ∈ pi. In case of an absolute path,m0 is
by default bound to the root node.

Our XPath fragment is restricted in that it only considers
forward axes. A forward axis relationα holds on two nodesn
andm, if m appears aftern in stream order orm equalsn. XPath
also defines reverse axes, which are inverses of forward axes. Note
that in the case of absolute paths the restriction to forwardaxes
does not make our XPath fragment less expressive [15], [24].The
supported forward axes are self (equality), fstChild (firstchild),
child (child), child+ (descendant), child∗ (descendant or self),
nextSibl (next sibling), nextSibl+ (next siblings), nextSibl∗ (next
siblings or self), and foll (following).

We also define vertical, horizontal, and diagonal paths and
predicates. From any noden, a vertical path selects descendants
of n and possiblyn itself, a horizontal path selects descendants
of the parent ofn, and a diagonal path selects descendants of the
root. Because we consider here only forward axes, the selected
nodes follow or equaln in all three cases. Syntactically, if we
ignore the occurences of self, a vertical path starts with fstChild,
child, or their closures, and can also contain nextSibl and its
closures. A horizontal path starts with nextSibl or its closures,
and can contain any axis but foll. A diagonal path can contain
any axis. A vertical (horizontal, diagonal) predicate consists of
vertical (horizontal, diagonal respectively) paths.

III. OVERVIEW OF SPEX PROCESSING

SPEX evaluates one XPath query againstone XML
stream (seehttp://www.pms.ifi.lmu.de/forschung/
spex/mq.html for a SPEX extension coping with large query
sets). This section discusses the processing strategy of SPEX for
a query of the general form /L1[p1]/. . ./Ln[pn]. SPEX uses a
compact data structure to encode matchings of each stepLi and
one buffer for possible answer candidates. A candidate is a node
matched by the last stepLn before the nodes required to evaluate
all predicatespi are encountered in the stream. For each stepLi

we construct a listSi, whose entries represent all matchings of
Li at any instant. An entryei+1 representing a nodex is added
to Si+1 when the stepLi+1 matchesx from a node previously
matched byLi and represented by an entryei. In this case, we
also have a link fromei+1 to ei. Note that there can be several
nodes matched byLi+1 from a node matched byLi and also
the same node can be matched byLi+1 from different nodes
matched byLi (both cases can happen if, e.g.,Li+1 is a closure
axis like descendant or next siblings). This implies there can be
many-to-many links between the entries of two successive lists.

Besides adding new entries to our lists, we may also replace or
remove existing entries. An entryei is replaced bytrue when the
predicatepi is satisfied at the matching node represented byei; if
Li has no predicate, thenei is true by default. The instant whenei

is removed depends on the rest of the query: If[pi]/ . . . /Ln[pn]

is vertical (horizontal or diagonal), thenei is removed when the
closing tag of the matching nodey it represents (the parent of
the matching nodey or the end of the stream respectively) is
encountered in the stream. The reason whyei is removed at that



instant is that the paths in[pi]/ . . . /Ln[pn] can only match nodes
that are descendants ofy or y itself (descendants of the parent of
y or of the root node respectively).

Each entryen of Sn represents a candidate. By following the
links back fromen to entries ofS1, we discover all dependencies
of a candidate represented byen. A dependency of a candidate
is thus a sequence (en, . . . , e1) of linked entries with one entry
from each listSi. When at least one dependency of a candidate
c becomes a sequence oftrue values, thenc is in the answer.
This is the case when each predicatepi is satisfied at the entry
ei of that dependency (1 ≤ i ≤ n). When at least one entry of
each dependency ofc is removed before becomingtrue, then c

is removed as well. This is the case when there is at least one
predicate that is not satisfied for each of the dependencies of c.
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Fig. 2. Partial matchings are encoded using an efficient datastructure.

Example 3.1:Consider a query that selects the d-node from the
input stream of Fig. 1: /child+::a[child::d]/child+::c/nextSibl+::* .

The partial matchings created for our query and stream at different
processing instants are shown in Fig. 2: (a) after processing the
first opening tag〈c〉, (b) after processing the second closing tag
〈/c〉, and (c) after processing the first opening tag〈d〉.

There are three listsS1, S2, andS3 corresponding to our three
steps. In case (a),S1 has two entriesa1 anda2 corresponding to
the two a-nodes already read,S2 has one entryc1 corresponding
to the first c-node, andS3 is empty. Note thatc1 is true and
linked with botha1 anda2, because the first c-node is descendant
of both a-nodes. In case (b), the entryc1 is removed (on reading
the closing tag of the first c-node), because the corresponding
c-node has no next sibling. Also,a2 is removed on reading the
closing tag of the second a-node, because this node has no child
d-node. For clarity, we still represent the removed entriesbut
marked as deleted. A new entryc2 (set totrue) is created for the
second c-node and is linked toa1, because the second c-node is a
descendant of the first a-node. In case (c),a1 is replaced bytrue,
because the first predicate is satisfied on the first a-node. Also,
there is a new entryd1 (set to true) in S3 corresponding to the
answer candidate represented by the d-node and linked toc2. We
can now decide that this candidate is in the answer, because all its
dependencies are resolved totrue. We then output this candidate
and, on reading its closing tag, we removed1 from S3. After
closing the first a-node, we can safely removea1 andc1. �

At any instant the size ofSi is bounded in the number of
matchings ofLi. Note that there can be exponentially (inn) many
dependencies, although our partial matching structure represents
them polynomially. The size of the candidates buffer is bounded
in the stream size (though the answer size can be quadratic in
the stream size). Also, the buffer is kept as small as possible by
discarding candidates as soon as their predicates are evaluated.

In addition to the memory-conscious data structures for can-
didates and step matchings, SPEX has efficient algorithms for
the structural joins represented by XPath forward axes. These
algorithms are realized as basic automata with output tape,
also called transducers. The main challenge in defining these

transducers is to compute matchings for several input nodesat the
same time and manage such matchings using only a stack. Later
in this section we define our new notion of SPEX transducer, and
Section V gives SPEX transducers for all XPath forward axes.

The transducers use their stacks to model the lists discussed
above. Also, they use their tapes to communicate with other
transducers. The communication of two transducers, sayTi and
Ti+1, for subsequent stepsLi andLi+1, is realized by making the
output tape ofTi be the input tape ofTi+1. The communication
is necessary to informTi+1 of the matchings ofTi and happens
along the stream as node anotations. By interconnecting thetrans-
ducers for the steps constituting a query, we construct a network
representing that query. Section IV defines the compilationof
queries into transducer networks.

A natural choice for processing a stream with a transducer
network is to let the stream flow through the network one message
at a time. By default, SPEX enforces that the entire network
processes a stream message before the next stream message
is processed. Section VI gives a SPEX extension that departs
from this rule and allows each message to be processed only
by transducers that can potentially use it to create or resolve a
candidate dependency.

SPEX transducers and transducer networks.Pushdown trans-
ducers are automata with pushdown store and output tape.
More formally, a pushdown transducer [25] is an eight-tuple
(Q,Σ, Γ, ∆, δ, q0, Z0, F ), where

• Q is a finite set of states.
• Σ, Γ, and∆ are the input, pushdown, and respectively output

alphabets.
• δ is a relation fromQ × (Σ ∪ {ε}) × (Γ ∪ {ε}) to 2Q ×

Γ∗ × (∆ ∪ {ε}) called the transition table, whose elements
are called transition rules.

• q0 ∈ Q is the initial state.
• Z0 ∈ Γ is the bottom pushdown symbol.
• F ⊆ Q is the subset of accepting or final states.

A deterministic pushdown transducer allows at most one transition
from any of its states. In this case, the transition relationbecomes
a function fromQ× (Σ∪{ε})× (Γ∪{ε}) to Q×Γ∗× (∆∪{ε}).

We use in this article a simplified class of transducers, which
we call SPEX transducers.

Definition 3.2: A SPEX transducer is a single-state determin-
istic pushdown transducer, where the input and output alphabets
are the setM of all opening and closing tags and annotations,
the stack alphabet is the setA of all annotations, the bottom
pushdown symbolZ0 is the empty annotation [ ], and the transi-
tion functionδ is canonically extended to the configuration-based
transition function⊢: M × A∗ → A∗ ×M∗. �

Section V gives the configuration-based transitions of SPEX
transducers for all our XPath axes.

Example 3.3:Consider the SPEX transducer defined by the
following transitions

1. ([c] , γ) ⊢ ([c] | γ, ε)
2. (〈η〉 , [s] | γ) ⊢ ([s] | γ, 〈η〉[s])
3. (〈/η〉, [s] | γ) ⊢ ( γ, 〈/η〉)

We use the notation [c] | γ to express that the stack of our
transducer is split in its top [c] and the restγ. We also useε to
denote that no symbol is output.

On receiving an annotation [c], the first transition pushes that
symbol onto the stack and outputs nothing.



On receiving an opening tag〈η〉, and with [s] the top of the
stack, the second transition keeps the same stack configuration
and outputs〈η〉 followed by [s].

On receiving a closing tag〈/η〉, and with [s] the top of the
stack, the third transition outputs the input symbol and pops the
top annotation off the stack.

It can be checked that the annotation of each node is moved to
its children. Section V shows indeed that this SPEX transducer
implements the child axis. �

Transducer networks are obtained by composing transducersin
sequence and parallel. If two transducerst1 andt2 are composed
in sequence, notedt1 · t2, then the output stream oft1 is the
input stream oft2. If two transducerst1 and t2 are composed in
parallel, notedt1 ++ t2, then they receive the same input stream.

For boolean (and, or) and set (union, except) operators we
specify transducers with several input tapes. Such a transducer
unifies the streams received on its input tapes by outputting
each opening and closing tag from the original stream only once
and after it reads that tag from all its input tapes. Additionally,
according to the semantics of the implemented operator, it uses
the annotations of each opening tag from all received streams to
compute and output a new annotation. The transducers for boolean
and set operators are given in Section V-C.

Example 3.4:Consider the following two input streams that
differ only in their annotations

〈r〉[0] 〈a〉[ ] 〈a〉[2] 〈c〉[ ] 〈/c〉〈/a〉〈c〉[ ] 〈/c〉〈d〉[3] 〈/d〉〈/a〉〈/r〉
〈r〉[0] 〈a〉[1] 〈a〉[1] 〈c〉[2] 〈/c〉〈/a〉〈c〉[ ] 〈/c〉〈d〉[ ] 〈/d〉〈/a〉〈/r〉

The output of the transduceror after reading the streams is

〈r〉[0] 〈a〉[1] 〈a〉[1,2] 〈c〉[2] 〈/c〉〈/a〉〈c〉[ ] 〈/c〉〈d〉[3] 〈/d〉〈/a〉〈/r〉

Note that each opening and closing tag appears only once in
the output. Also, each opening tag is annotated with the union of
the annotations of that tag in the input streams. �

Finally, there are three special transducersin, out, and head .
The transducerin is the first transducer in a network and

its task is to annotate the nodes from the input stream. Fig. 1
gives the output stream of transducerin, where the root node
is assigned a full annotation, and the other nodes are assigned
empty annotations. This annotation scheme corresponds to the
evaluation of absolute paths, i.e., paths that are always evaluated
from the root node. To evaluate paths from a given set of nodes,
these nodes are assigned a full annotation (this corresponds then
to the evaluation of relative paths).

The transducerout is the last transducer in a network and its
simple task is to manage the candidates, i.e., to store, output,
and discard them as soon as possible (as previously discussed in
Section III). For this task, the transducerout has a random-access
buffer. We skip here the specification of this transducer.

The transducerhead is positioned in a network immediately
after the transducer for the last query step and marks non-empty
annotations with aheadflag. Because the transducer for the last
query step annotates answer candidates, the transducerhead
ensures that the candidates are distinguished from the other nodes
in the stream.

IV. QUERY COMPILATION

SPEX compiles an XPath query into a transducer network
that mirrors the structure of the query. The compilation hasfour
distinct simple phases, which are detailed next.

1. Query Preparation Phase.We first add a new stepheadat
the end of the query (or of each operand, if the query is a set
operation with several operands). The semantics of head is that of
a self step with a wildcard nodetest (thus, by adding it to a query
we do not change the query semantics). Second, we annotate each
predicate with an identifier and with the type of the predicate and
of the paths following that predicate in the query. Recall from
Section II that XPath paths and predicates can be vertical (vfor
short), horizontal (h), or diagonal (d).

Example 4.1:The predicate [child::a] in the query
/child::b[child::a]/nextSibl+::c becomes [child::a]h

1 , because
the predicate is vertical and the path following it is horizontal.�

Jp1/p2K = Jp1K · Jp2K
Jp1[p2]xnK = Jp1K · J[p2]

x
nK

J[p]xnK =
→

scope
x

n · (JpK) · ←scope
x

n

Jp1 op p2K = (Jp1K ++ Jp2K) · op

Jnot(p)K = JpK · not

J(p)K = JpK
Jα::ηK = α · η

JheadK = head

Fig. 3. Query compilation phase.

2. Query compilation phase.The compilation is given in Fig. 3
by the functionJ K defined using pattern matching on the structure
of XPath queries. The operatorop is one ofunion, except, and,
or. For each predicate with identifiern and typex we create a
block (

→

scope
x

n,
←

scope
x

n) in the network. The XPath operators ‘/’
and ‘::’ are translated into sequential compositions, and for each
operatorop we compose in parallel the networks for its operands.
Note that we overload the names of operators, axes, and nodetests
to also denote transducers. Also, while the operators are infix in
queries, their corresponding transducers are postfix in networks.

(X · op’ ++ Y ) · op’ → (X ++ Y ) · op’ (1)

X · Y ++ X · Z → X · (Y ++ Z) (2)

X ++ X · Z → X · Z (3)
→

scope
x

n
·X ·

←

scope
x

n
· Y →

→

scope
x

n
· (X ++ Y ) · and ·

←

scope
x

n
(4)

Fig. 4. Network rewriting phase.

3. Network rewriting phase.The transducer networks produced
in the compilation phase can be further minimized using the term
rewriting system defined in Fig. 4, where the variablesX, Y , and
Z stand for arbitrary networks. Although not shown here, it can
be checked that the system is terminating and confluent.

Rule (1) eliminates redundant commutative and associative
operators (op’ is and, or, or union). For example,

((child ++ child+) · and ++ nextSibl) · and→

(child ++ child+ ++ nextSibl) · and

Rules (2) and (3) factor out common prefixes of subnetworks



composed in parallel. For example,

child · a · nextSibl+ ++ child · b · child+ →

child · (a · nextSibl+ ++ b · child+)

Rule (4) composes in parallel the subnetworks for predicates
and for their following subqueries. For example,

→

scope
v

1 · child · a ·
←

scope
v

1 · head →
→

scope
v

1 · (child · a ++ head ) · and ·
←

scope
v

1

4. Network fixup phase.We finally compose in sequence the
transducerin, the outcome of the previous rewriting phase, and
the transducerout.

Example 4.2:Consider a query that selects all d children of
a-nodes that are children of the root and have descendants b and
children c: /child::a[child+::b and child::c]/child::d.

After the preparation phase, the query becomes

/child::a[child+::b and child::c]v1/child::d/head

The compilation phase yields

child·a·
→

scope
v

1 ·(child+ ·b ++ child·c)·and·
←

scope
v

1 ·child·d· head .

Finally, the rewriting and fixup phases yieldin · child ·a ·
→

scope
v

1 ·

(child+ · b ++ child · (c ++ d · head )) · and ·
←

scope
v

1 · out �

V. EVALUATION WITH TRANSDUCERNETWORKS

This section defines SPEX transducers that implement the
XPath forward axes and nodetests. Sequential compositionsof
SPEX transducers implement then queries without predicates.
For queries with predicates and set operators, we give additional
transducers for handling predicates, as well as for booleanand
set operators.

A. SPEX Transducers for Forward Axes and Nodetests

Given a treeT and a set of context nodes inT , the evaluation
of a forward axisα yields the set of all nodes inT that stand in
relation α with at least one context node. Provided the context
nodes are marked with non-empty annotations in the input stream
conveying T , the transducer implementingα outputs a stream
that also conveysT and where the nodes that stand in relation
α with some context nodes are assigned the annotations of their
corresponding context nodes. Note that in general there canbe
several nodes that stand in relationα with the same context node
(for any axis relation but self and nextSibl), and even with several
context nodes (for closure relations like child+). It is crucial
for the efficiency of our approach that a SPEX transducer for a
forward axisα can annotate correctly inone passover the input
stream the nodes inT while using only a stack to keep track of
the depth of the nodes in the stream and to store annotations read
from the input stream.

Configuration-based transitions defining SPEX transducersfor
forward axes are given next. Initially, an empty annotation[ ] is
pushed onto the stack of each transducer. These transducersonly
differ in their first transitions, which are compactions of simpler
transitions that do only one stack operation.

The transducerchild moves the annotations of nodes to their
children. The transitions of this transducer read as follows: (1) if
an annotation [c] is received, then [c] is pushed onto the stack
and nothing is output; (2) if an opening tag〈η〉 is received, then

it is output followed by the top of the stack; (3) if a closing tag
is received, then it is output and the stack is popped.

1. ([c] , γ) ⊢ ([c] | γ, ε)
2. (〈η〉 , [s] | γ) ⊢ ([s] | γ, 〈η〉[s])
3. (〈/η〉, [s] | γ) ⊢ ( γ, 〈/η〉)

Recall that the annotation of a noden follows its opening tag.
When receiving a noden annotated with [c], [c] is pushed onto
the stack. The following two cases can then appear:
(1) the closing tag ofn is received, and [c] is popped off the

stack. This corresponds to the case when there are no other
children ofn left in the input stream.

(2) the opening tag of a child nodem of n is received, and it
is output followed by [c]. Thus, the nodem is annotated
correctly with [c], which was the annotation ofn.

In the second case, a new annotation, say [c′], is received
afterwards, pushed onto the stack, and used to annotate children
p of m. Only when the closing tag ofp is received, [c′] is popped
and [c] becomes again the top of the stack. At this time, siblings
of m can be received and annotated with [c] (the above cases 2),
or the closing tag ofn is received (the above case 1).

The transducerfstChild moves the annotations of nodes to their
first children. This transducer is a simplification of the child-
transducer, by restricting a stored annotation [s] of a noden to
mark at most one node. This node is necessarily the first childof
n, as ensured by the stream’s sequence. This restriction can be
realized by replacing [s] with the empty annotation as soon as a
child of n and its annotation, say [c], is received. Below, we give
the first transition modified accordingly. The other transitions are
as for the transducer child.

1. ([c], [s] | γ) ⊢ ([c] | [ ] | γ, ε)

The transducernextSibl moves the annotations of nodes to their
immediate next sibling, if any. The transitions of this transducer
are the same as for the transducer child, except for the first one
given below. In the first transition, the top of the stack [s] is
replaced with the received annotation [c] of a noden and pushes
an empty annotation [ ] onto the stack. The annotation [ ] is then
used to annotate children ofn. When the closing tag ofn is
received, the annotation [ ] is popped and its next sibling node
m can be annotated with [c]. The other next siblings can not be
annotated with [c], because [c] is replaced by the annotation of
m, say [c′], and now the immediate next sibling ofm can be
annotated with [c′].

1. ([c], [s] | γ) ⊢ ([ ] | [c] | γ, ε)

The transducerchild+ moves the annotations of nodes to their
descendants. The transitions of this transducer are the same as for
the child-transducer, except for the first one given below. In the
first transition, this transducer pushes onto the stack the received
annotation [c] togetherwith the top annotation [s]: [c]⊔[s]. The
difference to the transducer child is that also the annotations [s]
of the ancestorsna of n are used to annotate childrenm of n,
for the nodesm are also descendants of the nodesna.

1. ([c], [s] | γ) ⊢ ([c]⊔[s] | [s] | γ, ε)

When receiving a noden annotated with [c], [c] is pushed onto
the stack together with the current top [s]: [c]⊔[s]. The following
two cases can then appear:
(1) the closing tag ofn is received, and [c]⊔[s] is popped off

the stack. This corresponds to the case when there are no
other descendants ofn left in the incoming stream.

(2) the opening tag of a childm of n is received, and it is output
followed by [c]⊔[s]. Thus, the children ofn, which are also
descendants ofn, are annotated correctly.



input 〈a〉 [1] 〈a〉 [2] 〈b〉 [3] 〈/b〉 〈/a〉 〈b〉 [ ] 〈/b〉 〈/a〉
child::b 〈a〉 [ ] 〈a〉 [ ] 〈b〉 [2] 〈/b〉 〈/a〉 〈b〉 [1] 〈/b〉 〈/a〉
child+::b 〈a〉 [ ] 〈a〉 [ ] 〈b〉 [1,2] 〈/b〉 〈/a〉 〈b〉 [1] 〈/b〉 〈/a〉
nextSibl+::b 〈a〉 [ ] 〈a〉 [ ] 〈b〉 [ ] 〈/b〉 〈/a〉 〈b〉 [2] 〈/b〉 〈/a〉
foll ::b 〈a〉 [ ] 〈a〉 [ ] 〈b〉 [ ] 〈/b〉 〈/a〉 〈b〉 [2,3] 〈/b〉 〈/a〉

Fig. 5. Processing example with SPEX transducers.

In the second case, a new annotation, say [c′], is received
afterwards, the annotation [c′]⊔[c]⊔[s] is pushed onto the stack
and used to annotate childrenp of m. Thus, the annotation [c]
is also used to annotate childrenp of m (n′′), hence descendants
of n. Only when the closing tag ofp is received, [c′]⊔[c]⊔[s] is
popped and [c]⊔[s] becomes again the top of the stack. At this
time, siblings ofm can be received and annotated with [c]⊔[s]
(the above case 2), or the closing tag ofn is received (the above
case 1).

The transducernextSibl+ moves the annotations of nodes to
their next siblings. The transitions of this transducer arethe same
as for the child-transducer, except for the first one given below.
In the first transition, this transducer adds to the top of the
stack [s] the received annotation [c] of the source noden and
pushes an empty annotation [ ]. The annotation [ ] is then used
to annotate children ofn. When the closing tag ofn is received,
the annotation [ ] is popped and its next sibling nodesm can
be annotated with the top annotation [c]. Because the old top of
the stack [s] is kept together with the newly received annotation
[c], the annotations of preceding siblings ofn are also used to
annotate the following siblings ofn.

1. ([c], [s] | γ) ⊢ ([ ] | [c]⊔[s] | γ, ε)

The transducerchild∗ moves the annotations of each noden to
its descendants and to the noden itself. This transducer is defined
below similar to the transducer child+, with the difference that a
noden keeps its own annotation [c] together with the annotations
[s] of its ancestors.

1. ([c] , [s] | γ) ⊢ ([c]⊔[s] | [s] | γ, [c]⊔[s])
2. (〈η〉 , γ) ⊢ ( γ, 〈η〉)
3. (〈/η〉, [s] | γ) ⊢ ( γ, 〈/η〉)

The transducernextSibl∗ moves the annotations of each node
n to its next siblings and to the noden itself.

1. ([c] , [s] | γ) ⊢ ([ ] | [c]⊔[s] | γ, [c]⊔[s])
2. (〈η〉 , γ) ⊢ ( γ, 〈η〉)
3. (〈/η〉, [s] | γ) ⊢ ( γ, 〈/η〉)

A nodetestη is a unary relation. For a given set of context
nodes, it returns a subset of this set consisting of the nodeswith
that nodetest. This means that the initial and returned setsare the
same in the case of a wildcard nodetest. We therefore create no
transducer for a wildcard nodetest.

A transducer for a nodetestη replaces the annotations of nodes
without that nodetest by the empty annotation. The transitions of
this transducer are given next. For simplification, each transition
can consider two input symbols at a time. The nodetest¬η stands
for any nodetest butη from our finite set of nodetests.

1. (〈η〉[c] ) ⊢ (〈η〉[c])
2. (〈¬η〉[c]) ⊢ ( 〈η〉[ ])
3. (〈/η〉 ) ⊢ ( 〈/η〉)
4. (〈/¬η〉 ) ⊢ (〈/¬η〉)

Variations of Transducers for Forward Axes.We can summarize
the transitions of the previously defined transducers as follows ([c]
is the annotation ofn currently read and [s] is the current top of
the stack):

1. [c] is output as soon as it is read. Then, [c] is used to mark
alson.

2. [c] is pushed onto the stack. Then, [c] is used to mark also
the children ofn.

3. [c] is pushed one level below the top. Then, [c] is used to
mark also the next sibling ofn.

4. [s] is onto the stack. Then, [s] is used to mark also the
descendants ofn.

5. [s] is pushed one level below the top. Then, [s] is used to
mark also the next siblings ofn.

By mixing the above behaviors 1 to 5, one can get a transducer
for any axis. For example, combining behaviors 1 and any other
ensures the reflexivity of the axis. Combining behaviors 4 and
2, or 5 and 3, ensures the transitivity of the axis. Combining1
and 2 and 4, or 1 and 3 and 5, ensures both the transitivity and
reflexivity of the axis.

There are, of course, other possible combinations. For example,
the combination of 2 to 5 gives the implementation of the com-
plex relation child+-or-nextSibl+ = child+ ∪ nextSibl+. These
combinations are reflected in the following changed transition:

1. ([c], [s] | γ) ⊢ ([c]⊔[s] | [c]⊔[s] | γ, ε)

We next define the transducerfoll. In the first transition, it
replaces the old top annotation [s] with the new annotation [c]
and then pushes also the old top [s]. Because the nodes following
a noden are all nodes reachable in the further stream after closing
n, the annotation [c] becomes part of the top of the stack and
used to annotate incoming nodes as soon as the noden is closed
(transition 3). In contrast to the transducers defined previously,
once an annotation becomes part of the stack, it remains there,
because the following sibling nodes of the ancestor nodes ofn
follow also n.

1. ([c] , [s] | γ) ⊢ ([s] | [c] | γ, ε)
2. (〈η〉 , [s] | γ) ⊢ ( [s] | γ, 〈η〉[s])
3. (〈/η〉, [c] | [s] | γ) ⊢ ([c]⊔[s] | γ, 〈/η〉)

Although pushdown transducers are not closed under com-
position, the composition of pushdown and finite transducers
is possible and even beneficial. In this sense, one can create
transducers implementing composition of axes and nodetests.
We give below the transitions of the transducer child::a forthe
composition of the child axis and the a nodetest defining the step
child::a.

1. ([c] , γ) ⊢ ([c] | γ, ε)
2. (〈a〉 , [s] | γ) ⊢ ([s] | γ, 〈a〉[s])
3. (〈¬a〉 , γ) ⊢ ( γ, 〈¬a〉[ ])
4. (〈/a〉 , [s] | γ) ⊢ ( γ, 〈/a〉)
5. (〈/¬a〉, [s] | γ) ⊢ ( γ, 〈/¬a〉)

Example 5.1:Figure 5 gives the output streams of the SPEX
transducerschild+::b, nextSibl+::b, and foll::b after processing
an input stream. We explain how the transducerchild::b processes
incrementally that input stream.

Recall that the stack is initialized with an empty annotation
[ ]. The stack configuration changes only on receiving annotations
and closing tags. On receiving opening tags matching its nodetest,
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Fig. 6. Evaluating the query child::*/nextSibl+::b/foll::* with network child · nextSibl+ · b · foll.

the transducer outputs that opening tag followed by the top of its
stack.
〈a〉 is output followed by its top annotation [ ]. Thus, the first

a-node does not have in the input stream a parent with a
non-empty annotation. The stack configuration remains [ ].

[1] is pushed onto the stack, This way, it is instructed to
mark all b-children of the first a-node with [1]. The stack
configuration becomes [1]|[ ] (the top is at the left).

〈a〉 is output followed by [ ]. Although the top annotation is [1],
this output is correct, because the received node does not
have a b-nodetest. The stack configuration remains [1]|[ ].

[2] is pushed onto the stack. This way, it is instructed to mark
all b-children of the second a-node with [2]. The stack
configuration becomes [2]|[1]|[ ].

〈b〉 is output followed by the top annotation [2]. This output is
correct, because the received node does have a b-nodetest
and is a child of the second a-node. The stack configuration
remains [2]|[1]|[ ].

[3] is pushed onto the stack. This way, it is instructed to
mark all b-children of the first b-node with [3]. The stack
configuration becomes [3]|[2]|[1]|[ ].

〈/b〉 It pops the top [3] off the stack, meaning that there are no
children of the first b-node left in the stream. This is correct,
because the first b-node does not have children at all. The
stack configuration becomes [2]|[1]|[ ].

〈/a〉 It pops the top [2] off the stack, meaning that there are no
children of the second a-node left in the stream. The stack
configuration becomes [1]|[ ].

〈b〉 It outputs the tag, followed by the top annotation [1]. This
output is correct, because the received node does have a
b-nodetest and is a child of the first a-node. The stack
configuration remains [1]|[ ].

[ ] is pushed onto the stack. This way, it is instructed to markall
b-children of the second b-node with [ ]. Because the other
children are also marked with [ ], we can conclude that the
transducer will mark all children of the second b-node with

[ ]. The stack configuration becomes [ ]|[1]|[ ].
〈/b〉 It pops the top [ ] off the stack, meaning that there are no

children of the second b-node left in the stream. The stack
configuration becomes [1]|[ ].

〈/a〉 It pops the top [1] off the stack, meaning that there are
no children of the first a-node left in the stream. The stack
configuration becomes [ ] and the processing is finished.�

B. Transducer Networks for Location Paths without Predicates

SPEX compiles a query without predicates into a network
representing a sequence of transducers for the constituentlocation
steps. The network processes then the input stream and the nodes
annotated in the output stream represent the answer to that query.

Example 5.2:Consider the query child::*/nextSibl+::b/foll::*
that selects from any context node all nodes that follow the b-
labeled siblings of its children. SPEX compiles this query into
the networkin · child · nextSibl+ · b · foll · out. Consider thatin
annotates the input stream as given in the top-left tree of Fig. 6.
The stream of the bottom-left tree of Fig. 6 represents the output
of the transducerfoll, where only the last two nodes have the
non-empty annotations. This means that only these two nodes
stand in relation child::*/nextSibl+::b/foll::* with nodes from
the input stream. By inspecting their annotations, we conclude
that both of them are selected from the second a-node. The
transducerout outputs these two nodes in stream order. Fig. 6
also shows as annotated trees and streams the intermediary results
of the transducerschild, nextSibl+::b, andfoll, albeit they are not
materialized during processing. �

C. Handling Set Operators

The transducersunion and except have several input tapes.
Their common task is to unify the streams received on the input
tapes by outputting each opening and closing tag from the original
stream only once and when it is read from all input tapes. A
non-empty annotation is output if it appears in at least one input



in 〈〉 [0] 〈a〉 [ ] 〈a〉 [ ] 〈c〉 [ ] 〈/c〉 〈/a〉 〈c〉 [ ] 〈/c〉 〈d〉 [ ] 〈/d〉 〈/a〉 〈/〉
union 〈〉 [ ] 〈a〉 [0] 〈a〉 [0] 〈c〉 [0] 〈/c〉 〈/a〉 〈c〉 [0] 〈/c〉 〈d〉 [ ] 〈/d〉 〈/a〉 〈/〉
child · child 〈〉 [ ] 〈a〉 [ ] 〈a〉 [0] 〈c〉 [ ] 〈/c〉 〈/a〉 〈c〉 [0] 〈/c〉 〈d〉 [0] 〈/d〉 〈/a〉 〈/〉
except 〈〉 [ ] 〈a〉 [0] 〈a〉 [ ] 〈c〉 [0] 〈/c〉 〈/a〉 〈c〉 [ ] 〈/c〉 〈d〉 [ ] 〈/d〉 〈/a〉 〈/〉

Fig. 7. Processing example with transducers for set operators.

stream (forunion), or in the first stream and not in the others
(for except); otherwise, it is replaced by the empty annotation.

Example 5.3:Consider a query that selects all nodes la-
beled a or c without the second-level nodes in the
stream: /child+::a union /child+::c except /child::*/child::*. For
the stream given in Fig. 1, this query selects the first a-nodeand
the first c-node in stream order. The corresponding network is

in·(child+ ·(a ++ c)·union ++ child·child)·except· head ·out.

The output streams of some transducers from the network are
given in Fig. 7.

The entire network processes each stream message at a time.
The root node is marked by the transducer in with the full
annotation [0]. The opening tag of the root node reaches the
transducers child+ and child, which record its annotation to
later mark the descendants, respectively children of the root.
The second node has an empty annotation when it reaches the
transducers child+ and child. Both these transducers match the
node and annotate it with [0]. Among the remaining transducers,
only the nodetest transducer a matches the node and sends it
further with the same annotation. The transducer union receives
then this node on both its input tapes, one time with the empty
annotation (from nodetest transducer c) and one time with the
full annotation (from nodetest transducer a). Similar to union, the
transducer except receives this node on both its input tapes, one
time with full annotation (from the transducer union) and one time
with the empty annotation. The transducerhead marks then the
node as answer candidate and the transducer out decides it isan
answer node and starts outputting it. Until the second node labeled
c is read, no other candidate is encountered. When this node
reaches the transducer out, it becomes an answer node. However,
because this node is a descendant of the first answer node, it is
buffered until the first answer node is completely output. Then,
it is also output. �

D. Transducer Networks for Queries with Predicates

As specified in Section IV, a predicate [X]xn is compiled into
a network

→

scope
x

n · JXK · ←scope
x

n. The purpose of
→

scope
x

n is to
reannotate with fresh annotations the nodes that have non-empty
annotations in the stream and to create mappings between the
received annotations and the fresh ones. These fresh annotations
are used by the subnetworkJXK to evaluate the logic of the cor-
responding predicate. Finally,

←

scope
x

n uses the mappings created
by

→

scope
x

n to map back the received annotations to the original
ones. This reannotation allows SPEX to evaluate predicatesin a
modular way.

Annotation Scopes.Each annotation created by
→

scope
x

n has a
scope or lifetime that depends onx. The scope of an annotation
starts with the opening tag of the node, sayn, having that
annotation and it ends with the first closing tag after the last
possible node that can be matched by the paths ofX from the
context noden. This is the closing tag ofn for a vertical scope, the

closing tag of the parent ofn for a horizontal scope, and the end
of the stream for a diagonal scope. Annotations and the answer
candidates depending on them can be discarded as soon as their
scope is exhausted. The implication of discarding the annotations
as soon as possible is twofold. First, SPEX only buffers at
any instant answer candidates with unresolved dependencies;
candidates with resolved dependencies are discarded from the
buffer as soon as possible. Second, at any instant the amountof
annotations alive for

→

scope
x

n is bounded in (a) the maximum tree
depth for a vertical scope (x = v), (b) the sum of the maximum
tree depth and breadth for a horizontal scope (x = h), and (c) the
number of nodes in the tree for a diagonal scope (x = d).

Example 5.4:Fig. 8 shows how
→

scope
v

1 and
→

scope
h

1 reannotate
a given stream. �

Scope Transducers.We give next the definition of
→

scope
v

n.
The stack of the transducer is used as a counter that increases
with every received annotation and decreases with every received
closing tag. The counter is initialized with 1. For a received
annotation, this transducer creates a fresh annotation representing
a singleton list containing the current value of the counter.
Moreover, the transducer inserts in the stream a mapping between
the received annotation, say [c], and the fresh annotation, say
[s]: [c]

n
→ [s]. At the end of its lifetime, the annotation [s] is

discarded by inserting in the stream a mapping[ ]
n
← [s]. Two of

the transition rules of
→

scope
v

n are given below. The transitions for
the other message types simply copy the messages from the input
to the output stream and are skipped here. As an optimization(not
defined by our simplified transitions below), we may create fresh
annotations if the received annotation is non-empty.

1. ([c] , s) ⊢ (s + 1, [s]([c]
n
→ [s]))

2. (〈/η〉, s) ⊢ (s− 1, 〈/η〉([ ]
n
← [s− 1]))

The transducer
←

scope
x

n replaces each non-empty annotation [c]
encountered in the stream with the union [s] of all annotations
that are mapped to subsets of [c]. It also creates the mapping
[s]

n
← [c].
Boolean Transducers.Like the transducers for set operators, the

transducersand and or have several input tapes. Their common
task is to unify the streams received on the input tapes by
outputting each opening and closing tag from the original stream
only once and when it is read from all input tapes. A non-empty
annotation is output only if it appears in at least one input stream
(for or), or it already appeared in all input streams (forand).

The transduceror behaves precisely as the transducerunion.
The definition of and is given below as a modified SPEX
transducer without stack, but with an array, whose size is given
by the numberk of its input tapes. The transitions for messages
of other types simply copy such messages to the output. Below,
X stands for ([s1], . . . , [sk]) andY for ([s1]⊔ [c1], . . . , [sk]⊔ [ck ]).

1. (([c1], . . . , [ck]), X) ⊢ (Y ,
kd

i=1

([si] ⊔ [ci]))

2. ((〈η〉,. . .,〈η〉 , X) ⊢ (X, 〈η〉)
3. ((〈/η〉,. . .,〈/η〉) , X) ⊢ (X, 〈/η〉)

The transducernot uses the mappings created by
→

scope to
invalidate annotations. An annotation is forwarded by the trans-
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Fig. 8. Examples with vertical and horizontal scopes.

ducernot immediately before it gets invalidated, and only if the
transducernot does not receive it during its lifetime.

Example 5.5:Consider the horizontal predicate
[(child+::a and child+::c) or nextSibl::b]. From a given set
of context nodes, this predicate selects only those that have
descendants labeled a and c, or have an immediate sibling labeled
b. For the tree with annotated nodes given in Fig. 9, the first
b-node and the first a-node in stream order satisfy the predicate
(the predicate is satisfied for the a-node even twice becauseit
has descendants a and c and also an immediate sibling b).

One possible network corresponding to this predicate is
→

scope
h

1 ·

((child+ · a ++ child+ · c) · and ++ nextSibl · b) · or ·
←

scope
h

1 .

Fig. 9 shows the input and output streams of
←

scope
h

1 and
→

scope
h

1 . The output stream of the network contains the annotations
of those input nodes that satisfy the predicate. Also, these
annotations appear in the output stream as soon as possible.This
means that before encountering the opening tag of c, it is not
known whether any of the context nodes satisfy the predicate. �

VI. REDUCING THE STREAM TRAFFIC IN TRANSDUCER

NETWORKS

The transducers introduced in Section V receive, process, and
forward all nodes from the input stream, although this is by
far not necessary. Ideally, for a given query, a node from the
input stream should only be processed if it is critical for the
correct evaluation of that query. Using SPEX terminology, these
are the nodes that create or resolve candidate dependencies. We
next introduce so-called filter transducers to reduce the number
of nodes communicated between transducers in networks.

Vertical, Horizontal, and Diagonal Filters.We exemplify filters
on a (DBLP-like) stream containing articles possibly followed
at the very end of the stream by books. Consider the query
/child+::book[X]/child::authors asking for authors of books with
given properties (X stands for the XPath encoding of these
properties). The SPEX network for this query is (we assume the

type of X is x)

in · child+ · book·
→

scope
x

1 · (child · authors · head ++ JXK) · and ·
←

scope
x

1 · out

When the transducerbook encounters a book-node, then the node
is sent further to the successor transducers, with an additional
non-empty annotation signaling a match. In the case of nodes
with different labels and preceeding all book-nodes in the stream,
there is no need to send them further, as they are not criticalto
the query (the answers to our query against the streams with or
without these nodes respectively are the same). We can reduce
the stream traffic between transducers in (at least) two ways.

(A). Because all transducers following the transducerbook in
the network are always interested in nodes following book-nodes,
the query evaluation is not altered, if the transducer book sends
further only the nodes following the opening tag of the first node
book, and the other transducers do the same for the nodes they
are instructed to find relative to nodes found by their previous
transducers.

(B). Assume the transducers positioned after the transducer
book in the network are only interested in descendants of book-
nodes. Then, the transducerbook can safely send further only
the stream fragments corresponding to book-nodes.

Both aforementioned stream traffic reductions can be easily
supported by SPEX extended at compile-time with so-called filter
pushdown transducers. For example, in case (B), avertical filter
(vfilter for short) placed immediately after the transducerbook,
sends further only stream fragments corresponding to book-nodes.
The network with vfilter is

in · child+ · book · vfilter·
→

scope
v

1 · (child · authors · head ++ JXK) · and ·
←

scope
v

1 · out

In case (A), this filter is adiagonal filter (dfilter for short) and
sends further only stream fragments starting with an opening tag
book. Clearly, vertical filters make more sense for our case (B),
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Fig. 9. Processing with network
→

scope
h

1 · ((child+ · a ++ child+ · c) · and++ nextSibl· b) · or ·
←

scope
h

1 .

because they always forward smaller (or equally large) stream
fragments than diagonal filters. In general, diagonal filters are
not always superseded by vertical filters. It is enough to consider
that the subqueryX refers to nodesfollowing book-nodes. The
subnetworkJXK must then check for such nodes until the end of
the stream, and not only inside book-nodes.

If the subqueryX refers to following siblings of book-nodes,
then it is sufficient to forward only all following siblings and the
descendants of book-nodes. This can be achieved by placing a
horizontal filter (hfilter for short) after the transducerbook.

Remark 6.1:As illustrated above, the type of filters (vertical,
horizontal, or diagonal) can be inferred from the query at compile-
time, as it is the case of the transducers

→

scope. A filter of type x

is placed above a subnetworkJXK, if the subqueryX has only
paths of typex. �

Efficiency of Filters.The improvement achieved by filters
depends tremendously on the selectivity of the query evaluated
by the network. In the previous example, the selectivity is rather
high, because the transducer book, positioned near the top of the
network, finds book-nodes only at the end of a possibly large
stream. In such cases, the usage of filters is fully rewardingand
the evaluation resumes to mere parsing. However, in cases where
the query is not selective, the additional effort to run the filters
can be reflected in worse evaluation time. Section VIII shows
that the average time for the evaluation of hundreds of generated
queries is improved by filters up to several times.

Implementation of Filters.Fig. 10 gives the configuration-based
transition function of the diagonal and vertical filters. For more
compact definitions, we let stand for any annotation and may
read two input symbols at once. Note that this relaxation does not



1. (〈η〉[ ] , [ ] ) ⊢ ( [ ], ε)
2. (〈/η〉 , [ ]) ⊢ ( [ ], ε)
3. (〈η〉[ ] , [s]) ⊢ ([s], 〈η〉[ ])
4. (〈/η〉 , [s]) ⊢ ([s], 〈/η〉)
5. (〈η〉[s], ) ⊢ ([s], 〈η〉[s])

1. (〈η〉[ ] , [ ] ) ⊢ ( [ ], ε)
2. (〈/η〉 , [ ]) ⊢ ( [ ], ε)
3. (〈η〉[c], ) ⊢ ( [c] | , 〈η〉[c])
4. (〈η〉[ ] , | γ) ⊢ ([ ] | | γ, 〈η〉[ ])
5. (〈/η〉 , | γ) ⊢ ( γ, 〈/η〉)

(a) Diagonal filter. (b) Vertical filter.
Fig. 10. Configuration-based transitions for diagonal and vertical filter transducers.

make the filters more expressive than SPEX transducers. Initially,
there is an empty annotation on their stacks.

The transition rules of the diagonal filter read as follows. If
only empty annotations have been received (stated by the empty
annotation as the only stack entry), then no message is let through.
As soon as the stack consists of a non-empty annotation, all
subsequent messages are let through. Finally, in case the received
node has a non-empty annotation ([s] 6= [ ]), then it is sent through
and the annotation becomes the stack content.

The vertical filter uses its stack to remember the smallest depth
of a received node with a non-empty annotation. Therefore, only
if the stack consists of an empty annotation, then the opening and
closing tags of nodes with empty annotations are not let through.

VII. C OMPLEXITY

This section gives polynomial upper bounds for the complexity
of Forward Core XPath query evaluation against XML streams.
The polynomial lower bounds forin-memoryevaluation of Core
XPath are given by [26]. References [27], [28] give memory
lower bounds for the evaluation of queries from a large XPath
fragment against non-recursive streams. For queries with closure
axes and predicates, [28] shows that any streaming evaluation
algorithm must use at leastΩ(CONCUR(D, Q)) memory space,
whereCONCUR(D, Q) is the maximum number of candidates
for the evaluation ofQ against the streamD at any instant. In
worst case, this number is the number of stream nodes and hence
the entire stream has to be buffered.

In the remainder we consider that the query has sizeq (i.e.,
number of steps inside and outside predicates) andp outermost
predicates (i.e., predicates not included in other predicates); the
tree conveyed in the stream has depthd, breadthb, size s, and
number of nodesn. We also usec = CONCUR(D, Q).

We next present the space and time combined complexities for
the evaluation of queries from five XPath fragments. The rationale
behind choosing these fragments is given by the various sizes of
annotations created during query evaluation and by the lackor
need to buffer stream fragments. The syntactical characterization
of these fragments is given in Fig. 11. All fragments containnon-
closure axes, nodetests, and all boolean and set operators.

Following [18], [28] we only consider the problem of deciding
whether each node is in the answer set or not. Note that SPEX
fully supports the XPath semantics in that it outputs the query
answer and in stream order. This additional computational step
can take quadratic time in the stream size, because the answer
size can be quadratic in the input stream size.

Theorem 7.1:SPEX has time complexityO(q × s × ai) and
space complexityO((q × d + p × c) × ai) for XPathi and ai as
defined in Fig. 11 (1 ≤ i ≤ 5).

Proof: [Sketch] For all our XPath fragments the following
three properties hold. First, the size of a transducer network
for a query is linear in the query size (see the compilation
in Section IV). Second, the size of annotations present in the

Fragment predicates closure axes annotation sizeai

XPath1 none + O(1)

XPath2 vertical – O(1)

XPath3 vertical + O(d)

XPath4 horizontal + O(d + b)

XPath5 diagonal + O(n)

Fig. 11. XPath fragments and corresponding SPEX annotationsizes.

stream influences both the time and the space complexities of
query evaluation. Third, a transducer stack can store at most d

annotations, as shown next.
An annotation can only follow an opening tag in the stream.

For each received annotation, a transducer pushes an annotation
onto the stack and for each closing tag an annotation is popped
from the stack. A stack can have at mostd entries (=annotations),
for there can be at mostd opening tags encountered in the stream
before one of their closing tags is received.

To process an XML stream, a transducer network needs then
time linear inq and space linear inq andd. The time and space
complexities depend also on the size of annotations createdduring
processing, as discussed next.

XPath1 queries have no predicates, thus (a) there are no
candidates to buffer, and (b) the only used annotations are the
full and the empty annotations, both of constant size.

XPath2−5 queries can have predicates. The evaluation of
queries with predicates can require a buffer of maximum size
p × c × ai: there arec candidates at any instant and for each
candidate we keep at mostai annotations for each of the scopes
that nest the head transducer (in totalp such scopes).

XPath2 queries have no closure axes, thus there is no need to
union annotations, and each transducer matches at a fixed depth
in the stream. This makes that only three annotations are used
during processing, namely [ ], [0], and [1], all of constant size.

XPath3−5 queries can have closure axes and predicates. De-
pending on the predicate types, the unions of annotations is
bounded byd (for vertical predicates),d + b (for horizontal
predicates), orn (for diagonal predicates).

Remark 7.2:XPath1 queries have no predicates and therefore
p = 0. Thus the space complexity for XPath1 becomesO(q× d).
If XPath3−5 queries are restricted to only have closure axes, one
can show that the annotations can be represented as continuous
intervals of integers, where the biggest integer is boundedby d

(for vertical predicates),d+b (for horizontal predicates), orn (for
diagonal predicates). Then one only needslog(d), log(d + b), or
log(n) bits respectively, to represent an annotation. �

VIII. E XPERIMENTS

The polynomial combined complexity of SPEX is verified by
an extensive experimental evaluation conducted on a prototype
implementation of SPEX in Java (Sun JRE 1.5) on a Pentium 1.5
GHz with 500 MB under Linux 2.4.



XML Streams. We consider the effect of varying the stream
size s on the evaluation time for two XML stream sets. The
first set [29] provides real-life XML streams of up to21 million
nodes and depth up to36. We used in the experiments the small
XML documents region, nation, courses, sigmod, part, and orders
(with sizes from 1 KB to 5MB), and as medium to large XML
documents nasa, lineitem, treebank, dblp, and protein (with sizes
from 23 to 680 MB). The second set provides synthetic XML
streams with a slightly more complex structure that allows more
precise variations in the workload parameters [17]. The synthetic
data is generated from information about processes runningon
computer networks and corresponds to the output of the Linux
(SUSE) command “ps -elfH” in XML.

Queries. For each considered XML document we generated
queries using its DTD. This led to queries that express tree
navigation compatible to the document structure defined by the
DTD. The query generation was tuned with the query sizeq

(which means the number of location steps) and several prob-
abilities: pnextSibl, p+, p Y, andp∗ for next-sibling, closure axes,
predicates, and wildcard nodetest respectively. For example, a
path query hasp Y= 0. For each parameter setting,10–50 queries
were tested.

The query generation algorithm works as follows. We first
construct a graph representing the input DTD, where each node
represents a (possibly optional) token. Child-edges and sibling-
edges are created from a nodex to a (not necessarily distinct)
node y if y appears in the content model ofx in the DTD, or
if y can appear as a next-sibling in a document instance of the
DTD respectively. To generate a query, we start with the graph
node corrsponding to the given top token and decide to navigate
along a child-edge or a sibling-edge depending on the probability
pnextSibl; depending onp+, we decide to jump several edges
of the same type and depending onp Y we decide to create
a predicate with the steps generated using the same procedure
(predicates with simple paths or boolean connectors have equal
probabilities). Depending onp∗, we take as nodetest the current
token, or the wildcard ’*’. This procedure ends when the total
number of generated steps reaches the boundq. If the procedure
ends before reaching the desired number of steps, then additional
dummy steps self::* are appended.

Note that this algorithm can generate queries that yield empty
answers. This is because a DTD defines a set of different XML
documents and a generated query may have non-empty answers
on a subset of these documents, which may not contain the
document from our dataset. In our tests, about 5% of the queries
have empty answers.

Scalability. Scalability results are presented for stream and
query sizes. In both cases, the depth is bounded in a rather small
constant (d ≤ 36) and its influence on processing time showed
to be considerably smaller than that of the stream or query sizes.
Fig. 12 emphasizes the theoretical results: The processingtime
increases linearly with the stream size as well as with the query
size. The effect is visible in both the real-life and the synthetic
data set, with a slightly higher increase for the synthetic data due
to its more complex structure.

Varying the query characteristics. Fig. 13(a) shows an
increase of the evaluation time by a factor of less than2 when
p∗ and p+ increase from0 to 100%. It also suggests that the
evaluation times for nextSibl and child are comparable.

Thememory usageis almost constant over the full range of the

previous tests. Cf. Fig. 13(b), an increase of the query sizeq from
1 to 1000 leads to an increase from 2 to 8 MB of the memory for
the network and for its processing. The memory use is measured
by inspecting the properties of the Java virtual machine (e.g.,
using the Runtime Java package).

Reducing the stream traffic. All previous tests show results
for “naive” SPEX, i.e., SPEX without the filters described in
Section VI. Fig. 14 shows how these filters affect the evaluation
time. The phase2 filters (vertical and horizontal) improve the
evaluation time up to 3 times for our tests using queries, whose
sizes range from 5 to 1000, cf. Fig. 14(a). The same figure shows
also that, for small XML streams, our evaluation strategy isin
average five times slower than the mere parsing of the XML
stream1, if phase2 is used, 10 times slower if phase1 (diagonal
filters only) is used, and 15 times slower for naive SPEX. Using
phase2, an increase in the query sizeq tends to have little to
constant influence on the evaluation time. This result is explained
by the fact that an increase in the query size leads often to
an increase in its selectivity, thus supporting the rationale for
employing filters. The same explanation applies to Fig. 14(b),
where the increase of the closure probability (p+) makes the
queries less selective and leads to a less effective gain achieved
by the filters.

Non-polynomial behavior of other engines.Work indepen-
dent of ours confirms experimentally the polynomial complexity
of SPEX versus the exponential complexity of the XPath engine
Xalan-Java 2.6 [30] for queries that involve closure axes [31].
Xalan, as also other engines [9]–[11], have exponential query
complexity because they lack efficient set-at-a-time processing:
given a path and a set of context nodes, Xalan computes the
set of nodes reachable via the given path from each context
node independently of the other context nodes, although the
computed sets can overlap. To ensure correct answer without
duplicates and in stream order, Xalan unions the computed sets,
sorts the result, and removes the duplicates. This operation can
take exponential space in the query size, because for each step the
set of nodes reachable from any node can be linear in the stream
size. The engines [9]–[11] are based on automata that can have
an exponential number of states to encode that at any instantthe
current node can be matched by several query steps.

IX. RELATED WORK

There is a large amount of work in the field of XPath evaluation
against XML streams. We look next at the characteristics of the
most known processors through SPEX glasses.

In the context of publish-subscribe or event notification sys-
tems, the XML stream needs to be filtered by a large number of
simple forward queries. Engines like [9], [10], [12] assumethe
stream partitioned into small XML documents (up to thousands
of elements per XML document). Except of [12], they perform
query matching with exponential query complexity. Recently, [27]
gives lower bounds for the query matching problem in the case
of two fragments of XPath (Univariate XPath and Structural
Subsumption-free XPath) and non-recursive streams. It also gives
a matching algorithm, whose space is close to these bounds.

The query answering engines XSQ [11] and HAOS [13] and
TwigM [32] are the closest in spirit to SPEX and deserve closer

1We used the Crimson SAX parser available athttp://xml.apache.
org/crimson/.
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inspection. XSQ supports queries limited to child and descendant
axes and unnested predicates with at most one step. It can compile
one query into an exponential number of pushdown transducers
augmented with queues that are gathered into a hierarchicaldeter-
ministic pushdown transducer. XSQ can perform an exponential
number of operations per stream message, even for non-recursive
streams.

HAOS supports child and descendant axes and their symmet-
rical reverse axes parent and ancestor. A query is compiled into
a DAG structure where nodes are XPath nodetests and edges are
XPath axes. The reverse axes are rewritten similar to [16] using
rewrite rules of [15]. The evaluation is based on the incremental
construction of a matching structure consisting of mappings of
nodes from the DAG query to nodes from the tree conveyed
in the input stream. This evaluation approach is similar to the
standard tree pattern evaluation algorithm, presented, e.g., in [33],
though the latter constructs the matching structure bottom-up in
the data tree, whereas the former constructs the structure top-
down, as imposed by the stream’s sequence. All answers of the
query are accumulated and are delivered after processing the
entire stream. Thus, no progressive processing is performed. An
answer is determined uniquely by exactly one matching of each
query node, and all these matchings are accumulated until the
end of the processing. SPEX constructs also a matching structure
updated constantly on the arrival of new stream messages and
distributed on the stacks of its transducers. However, at any time

this structure contains only sufficient information to determine
the next answers, and previous matchings that are not needed
anymore for possible new answers are dropped. This way, the
memory footprint of SPEX remains lower than that of HAOS.

Recently, [32] presented an efficient query answering engine
called TwigM for an XPath fragment with child and descen-
dant axes and predicates (thus strictly weaker than our XPath
fragment). The experimental evaluation reported in [32] shows
that TwigM scales very well when compared to XSQ [11] and
XMLTK [10].

XSM [34] is a streaming engine also based on networks
of transducers. Unlike a SPEX pushdown transducer, an XSM
transducer has buffers with random access and several read
and write pointers. Our SPEX transducers clearly show that an
efficient implementation of any XPath forward axis does not need
the expressiveness of such complex XSM transducers.

XSM can evaluate queries consisting of steps with descendant
axis and nodetests different from wildcard, value-based joins, and
XQuery static element constructors against XML streams with
non-recursive structure definition. Recall that the key feature of
SPEX is the efficient processing ofstructural joins (the XPath
forward axes) onarbitrary XML streams. We do not see any
straightforward extension of XSM to cope with XPath axes and
arbitrary XML streams. For the (rather trivial) XPath fragment
and XML streams supported by both XSM and SPEX, we
note that both engines become very similar. Due to the severe



restriction on the input XML streams, SPEX transducers for a
step child+::η, with a nodetestη different from wildcard, can
only match at most one node along any path from the root to a
leaf. Thus the SPEX transducers do not need stacks. Then, like
for XSM, we can compose all transducers of a network into a
single finite transducer [35].

X. CONCLUSION

This article describes SPEX, a streamed and progressive evalu-
ation of XPath queries against XML streams. The streamed aspect
of SPEX resides in the sequential (as opposed to random) access
to the XML stream. SPEX is progressive because it delivers the
query answers as soon as possible. Queries are compiled into
networks of deterministic transducers that process XML streams
with polynomial combined complexity. Experiments confirm the
scalability of SPEX.
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