
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

An Efficient Single-Pass Query Evaluator
for XML Data Streams

Dan Olteanu, Tim Furche, François Bry

Technical Report, Institute for Computer Science, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2004-1, 2004

An Efficient Single-Pass Query Evaluator for
XML Data Streams

Dan Olteanu, Tim Furche, François Bry
Institute for Computer Science, University of Munich, Germany

{olteanu, timfu, bry}@informatik.uni-muenchen.de

ABSTRACT
Data streams might be preferable to data stored in mem-
ory in contexts where the data is too large or volatile, or a
standard approach to data processing based on data parsing
and/or storing is too time or space consuming. Emerging ap-
plications such as publish-subscribe systems, data monitor-
ing in sensor networks [6], financial and traffic monitoring,
and routing of MPEG-7 [7] call for querying data streams.
In many such applications, XML streams are arguably more
appropriate than flat data streams, for XML data is record-
like, though not precluding multiple occurrences of fields
with the same name. Evaluating selection queries against
XML streams is especially challenging because XML data is
structured (like records) and might have unbounded size.

This paper proposes an efficient single-pass evaluator of
XPath queries against XML data streams unbounded (pos-
sibly infinite) in size. The evaluator is based on networks of
independent deterministic pushdown transducers and it is
especially suitable for implementation on devices with low-
memory and simple logic as used, e.g., in mobile computing.

Keywords
XML streams, XPath, Single-Pass Query Evaluation

1. INTRODUCTION
XML Streams are unparsed XML documents, i.e., XML

documents in linear form as generated, e.g., by a Web page
editor or exchanged by applications on the Internet. Well-
formed XML streams convey tree-shaped data items called
XML document trees. A t-labeled node in such a tree cor-
responds to a well-formed XML stream fragment called ele-
ment beginning with an opening tag 〈t〉 and ending with the
corresponding closing tag 〈/t〉. In this paper, it is assumed
that the XML document trees conveyed by XML streams
are not materialized. Recall that a sequential traversal of
an XML stream amounts to a depth-first left-to-right pre-
order traversal of the XML document tree associated with
the XML stream. In the following, XML streams are as-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2001 ACM 1-58113-812-1/03/04 ...$5.00.

sumed to be well-formed. This condition might be ensured
by the applications generating the XML streams. Note that
the query evaluator described below can be extended so as
to detect whether an XML stream is not well-formed.

SXP. XPath has established itself as the prime language
for expressing selection queries on XML documents and it is
a central component of the standard Web query and trans-
formation languages XQuery and XSLT. In the following,
familiarity with XPath is assumed. For the sake of sim-
plicity and conciseness, a core fragment of XPath referred
to as “Simple XPath” (short “SXP”) is considered here.
SXP includes XPath’s (1) forward axes child, descendant
(short desc), following-sibling (short fsibl), following (short
foll), self and reverse axes parent, ancestor, preceding-sibling,
preceding, (2) node tests, (3) possibly nested predicates, and
(4) the union, intersect, and except set operations. Among
XPath features not included in SXP are the value-based
comparisons of subquery results (such as [child::a = fsibl::a])
and positional predicates (such as [position() = 1]). The
query evaluator described in the present paper easily ex-
tends to full-fledged XPath, though in presence of the above
comparisons the efficiency results of Section 3 degrade.

XPath’s (and hence SXP’s) query paradigm refers to XML
document trees, not to XML streams. XPath (and SXP)
queries return as answers sequences of elements (XML doc-
ument tree nodes). The SXP query /desc::a[child::b][fsibl::c]
selects from an XML stream fragments conveying a-labeled
elements that have both, b-labeled child elements and c-
labeled sibling elements that follow them. The SXP query
/desc::a[child::b]/fsibl::c selects fragments conveying c-labeled
elements that are preceded by a-labeled sibling elements
having themselves b-labeled child elements.

FSXP. The forward and reverse axes of XPath and SXP
enable random access to all nodes of an XML document
tree. If queries are to be evaluated against XML streams,
data cannot be accessed randomly, but rather in the stream’s
sequence, thus making XPath’s reverse axes undesirable.

Methods such as [10] have been developed for rewriting
queries (within an XPath fragment semantically equivalent
to SXP) including reverse axes into queries in which only
forward axes occur. These methods are practicable because
(1) they preserve query equivalence (i.e., both the initial
and rewritten queries yield the same answers when applied
to the same XML document), and (2) the rewritten query
has a size linear in the size of the initial query. Let FSXP
denote the fragment of SXP including only forward axes.
FSXP is semantically equivalent to SXP. In the following,
only the evaluation of FSXP queries is considered.

and

child::b fsibl::c

desc::a

(a) /desc::a[child::b][fsibl::c]

fsibl::c

desc::a

and

child::b

(b) /desc::a[child::b]/fsibl::c

union

desc::a

and

child::b fsibl::c desc::d

(c) /desc::a[child::b]/fsibl::c union /desc::d

Figure 1: FSXP queries and their corresponding AXP queries

2. THE QUERY EVALUATOR
The evaluator described here processes an FSXP query

against an XML stream as follows. First, it generates a net-
work of transducers from the FSXP query. Second, this
network of transducers computes the answers to the ini-
tial FSXP query from the XML stream. Most transducers
considered are single-state pushdown automata with output
tape. The transducer networks are directed acyclic graphs.

Compiling FSXP Queries into Transducer Net-
works. The transducer network associated with an FSXP
query is constructed in two steps.

First, the FSXP query is parsed and translated into a
query in abstract syntax, which consists either in a path if
the query is a sequence of axes and node tests, or in a tree if
the query has also predicates, or in a directed acyclic graph
if the query contains also set operators. Let AXP denote
the language of queries in abstract syntax into which FSXP
queries are translated. Each node in an AXP query specifies
a transducer. There are transducers for each pair (axis, node
test), for predicates, and for set operations.

Second, the transducer network specified by an AXP query
is extended at its beginning with a stream-delivering in trans-
ducer, and at its end with an answer-collecting funnel, i.e.,
a network of auxiliary transducers serving to collect the po-
tential answers computed by the transducer network.

The first step is illustrated by FSXP queries and their
translation into AXP shown in Figure 1. Square boxes de-
note the answers sought for, round boxes correspond to
(parts of) predicates. The and transducer expresses that
both sub-networks child::b and fsibl::c specify conditions on
those elements satisfying desc::a. An and transducer has two
or more outgoing edges. Note that while FSXP (like XPath)
requires to mark predicates (with square brackets), AXP
marks answer nodes (with square boxes). Answer nodes of
AXP queries are called head nodes or head transducers. It is
worth pointing out that AXP can be seen as a generalization
of FSXP in two ways: (1) AXP abstracts out some irrelevant
(syntactical) aspects of FSXP like any abstract language
used in compiling, and (2) AXP makes queries with several
answer nodes (i.e., several square boxes) possible, although
such queries do not correspond to FSXP queries. Allowing
several answer nodes is an important step towards a single-
pass multi-query evaluator on XML streams as described in
[3] and as needed, e.g., in publish-subscribe systems.

The second step is illustrated by an FSXP query and its
translation into a complete transducer network shown in

fsibl::c

desc::a

and

child::b

in

and

desc::d child::e

cd

cd

out

funnel

Figure 2: Transducer network for FSXP query
/desc::a[child::b[desc::d]/child::e]/fsibl::c

Figure 2. For each predicate in the FSXP query there is
a pair (and, cd) of transducers in the network (cd stands for
condition determinant). The nesting of (and, cd) pairs cor-
responds to the nesting of predicates in the FSXP query. A
cd transducer has as many ingoing edges as its correspond-
ing and transducer has outgoing edges, i.e., two or more.
The fsibl::c transducer is in this case the head, as indicated
by the square box. The last transducer of the funnel is the
out transducer that buffers potential answers and outputs
the answers selected by the head, as explained below.

Transducer Communication. A transducer network
processes the XML stream delivered by its first transducer
in. Each transducer in the network processes stepwise the
XML stream it receives and transmits it unchanged or an-
notated with conditions to its successor transducers. An
annotation immediately follows an opening tag of an ele-
ment. Processing an XML stream this way corresponds to
a depth-first traversal of the (implicit) XML document tree
associated with the XML stream. Exploiting the affinity be-
tween depth-first search and stack management, the trans-
ducers use their stacks for keeping track of the depth of the
elements in the XML document tree conveyed by the XML
stream. This way, forward axes, e.g., child or desc, can be

evaluated in a single pass.
The answers computed by a transducer network are among

the elements annotated by a head. These elements are po-
tential answers, as they may depend on a downstream satis-
faction of some predicates. The predicate satisfaction is con-
veyed in the transducer network by conditions with which
elements are annotated. Until the predicate satisfaction
is decided, the potential answers are buffered by the out
transducer. Consider the evaluation of the FSXP query
/desc::a[child::b]. When encountering on the XML stream
an opening tag 〈a〉 marking the beginning of an a-labeled
element, it is not yet known whether this a-labeled element
has a b-labeled child element, i.e., whether it is an answer
or not. Indeed, by definition of XML streams, such a child
can only appear downstream. This might remain unknown
until the corresponding closing tag 〈/a〉 is processed. At this
point, it is impossible for the a-labeled element to have fur-
ther b-labeled children because the XML stream is assumed
to be well-formed. Thus, the stream fragment correspond-
ing to a potential answer has to be buffered as long as it is
not known whether predicates that might apply are satisfied
or not, but no longer.

Conditions are generated as follows. The in transducer (cf.
Figure 2) annotates the first element in the XML stream
with an initial condition [1], which is considered satisfied.
Each of the next elements is annotated with the empty con-
dition [], which is always unsatisfied. Upon receiving an
element e annotated with a condition [c] (different from []),
generated by the in transducer or a previous and transducer,
an and transducer (that expresses FSXP predicates, cf. Fig-
ures 1 and 2) replaces this condition with a novel condition
[n]. n is the running condition number of the and trans-
ducer, which is its stack size. The and transducer increases
its stack size by 1, and forwards the condition mapping [c]
→ [n] to its corresponding cd transducer and the condition
[n] to all its outgoing edges. When [n] is collected from all
ingoing edges of the cd transducer, [n] is considered satisfied.
Using the received condition mapping [c]→ [n] the cd trans-
ducer converts [n] back to [c] and forwards [c] to an ingoing
edge of the cd transducer corresponding to the preceding
and transducer that created [c], or of the out transducer cor-
responding to the in transducer. However, as soon as it is
known that [n] can no longer be satisfied, [n] is considered
unsatisfied. E.g., if the second and transducer in Figure 2 re-
ceives the closing tag of the element e (that was annotated
with [c]), then its stack size is decreased by 1. When the
same closing tag reaches also the corresponding cd trans-
ducer and [n] was not yet satisfied, then [n] is considered
unsatisfied. In this case, the elements annotated with [n] by
a head and buffered by the out transducer are discarded.

Condition mappings are indispensable for representing
predicate scopes in the transducer network’s computation.
A transducer network for an FSXP query with p predicates
has p (and, cd) pairs, hence p predicate scopes. Consider
the condition mappings [ci] → [ci+1] (1 ≤ i ≤ p − 1) cre-
ated by a transducer network with p predicate scopes during
processing, where each mapping corresponds to a scope. If
a head has annotated elements with [ch], then they become
answers only when [ch] is satisfied and from each other scope
i (1 ≤ i ≤ p, i 6= h) at least one condition [ci] that is mapped
directly or indirectly to [ch] is also satisfied. As soon as they
become answers, the out transducer outputs and removes
them from the buffer.

Specification of Transducers for Forward Axes. All
transducers (except the auxiliary cd and out transducers) are
single-state deterministic pushdown transducers (q,Σ,Γ, δ),
where q is the single state; Σ the input and output al-
phabet consisting of all opening and closing tags, e.g., 〈t〉
and 〈/t〉, and conditions; Γ is the stack alphabet consist-
ing of all conditions; the transition function δ is canoni-
cally extended to the configuration-based transition func-
tion `: Σ×Γ∗ → Γ∗×Σ∗ (used below as infix operator). In
the following specifications, [c] | γ reads: [c] is the top of the
stack |-separated from the rest of the stack γ. [c] stands for
a condition, like [1, 2], or []. [c] ∪ [s] denotes the set union
of [c] and [s].

Configuration-based transitions defining the child::a,
desc::a, fsibl::a, and foll::a transducers are given in the follow-
ing. These configurations differ only in the first transition.
Actually, the first transition of each transducer definition
is a compaction of several simpler transitions that do only
one stack operation. Note that the node test a is just a
parameter, and it can be replaced by any other node test,
including the wildcard (matching any tag label). The tag
label x stands for any tag label but a. In the case of a wild-
card node test, the transitions 4 and 5 can be dropped (cf.
child::a transitions below), for the differentiate treatment for
matching vs. non-matching labels is not needed.

Every element, say e, received by a transducer is anno-
tated with a condition [c]. Recall that an element is anno-
tated with a condition when that condition follows immedi-
ately the element opening tag in the XML stream. An r::a
transducer for an axis r and a node test a identifies each
element e′ from the incoming stream that stands in rela-
tion r::a with e and annotates it with [c]. E.g., for a child::a
transducer, the elements e′ are a-labeled children of e.

Assume that [s] is the topmost condition of the stack of
the r::a transducer when it receives an element e annotated
with a condition [c]. Depending on where [c] is stored on
the stack, the following transducer specifications show four
possible cases corresponding to four different axes:

child::a transducer. If [c] is pushed alone as a new stack
entry, then each a-labeled element e′ child of e is annotated
with [c]. The next message received can be (1) a new open-
ing tag, corresponding to an a-labeled element e′ child of
e followed by a condition [c′], (2) a new opening tag corre-
sponding to an x -labeled element e′′, or (3) the closing tag
of e. In the first case, the topmost condition (now [c]) is out-
put together with the opening tag of e′ and [c′] is pushed as
a new stack entry. When the closing tag of e′ is received, [c′]
is popped from the stack and new a-labeled elements that
are children of e can be annotated with the topmost stack
entry [c]. In the second case, the label x of the element e′′

is not matched by a and therefore e′′ is annotated with the
empty condition [], and not with [c]. In the third case, [c]
is popped from the stack, for there are no children of e left.

1. ([c] , γ) ` ([c] | γ, ε)
2. (〈a〉 , [s] | γ) ` ([s] | γ, 〈a〉[s])
3. (〈/a〉, [s] | γ) ` (γ, 〈/a〉)
4. (〈x〉 , γ) ` (γ, 〈x〉[])
5. (〈/x〉, [s] | γ) ` (γ, 〈/x〉)

desc::a transducer. If [c] is stored together with the
previous top [s] as a new stack entry, then each a-labeled
element e′ descendant of e is annotated with [c]. Indeed,
all a-labeled descendants e′ are annotated with [c] because

(1) the previous top ([s]) is always carried in the current top
([c]∪[s]), and (2) the incoming a-labeled elements are always
annotated with the topmost condition.

1. ([c], [s] | γ) ` ([c]∪[s] | [s] | γ, ε)

The transitions (2 to 5) are as for the child::a transducer.
fsibl::a transducer. If [c] is stored together with the pre-

vious top [s], and an empty condition [] becomes the current
top, then each sibling a-labeled element that follows e is an-
notated with [c]. On receiving the closing tag of e, [c]∪[s]
becomes the topmost condition on the stack. From now on,
each a-labeled element e′ sibling of e is annotated also with
[c]. When the closing tag of the parent of the element e is
read, then also [c]∪[s] is popped, for there are no siblings of
e left.

1. ([c], [s] | γ) ` ([] | [c]∪[s] | γ, ε)

The transitions (2 to 5) are as for the child::a transducer.
foll::a transducer. If [c] is stored together with the pre-

vious top [s], and [s] becomes also the current top, then each
a-labeled element that follows e is annotated with [c].

1. ([c], [s] | γ) ` ([s] | [c]∪[s] | γ, ε)

The transitions (2 to 5) are as for the child::a transducer.
The first transitions of the above transducers can be com-

pared as follows: if [c] is pushed as a new stack entry, then
child elements of e are annotated with [c]. Carrying on the
previous top gives rise to closure relations, like desc (verti-
cal closure) or fsibl (horizontal closure). E.g., if the previous
top is also part of the current top, then descendant elements
of e are annotated with [c]. If the previous top remains in
its place, then following sibling elements of e are annotated
with [c]. Restrictions or combinations of these behaviours
can give rise to other non-trivial relations, e.g., first-child (se-
lecting only the first child of an element), first-fsibl (selecting
only the first following sibling of an element), or child-or-fsibl
(selecting all children and following siblings of an element).

The self::a transducer performs only the associated node
test a, i.e., it forwards only conditions received for a-labeled
elements. For the other elements it replaces the conditions
with the empty condition [].

Set Operation Transducers. The set operation trans-
ducers are similar to the and transducer. However, as set
operations are defined for k ≥ 2 operands, the set transduc-
ers have k ingoing edges and their corresponding cd trans-
ducers have k outgoing edges, one edge for each sub-network
implementing an operand. For each received element, a set
transducer receives also a condition [ci] (1 ≤ i ≤ k) from
each ingoing edge, and possibly maps all [ci] to a new con-
dition [n]. The intersect transducer creates the new condi-
tion [n] only if all [ci] conditions are non-empty, the union
transducer creates [n] if at least one of the received condi-
tions is non-empty. The except transducer assumes an order
between its ingoing edges: the first ingoing edge is the min-
uend, whereas the others are subtrahends. Hence, it creates
a new condition only if the first condition [c1] is non-empty.

If a head has annotated potential answers with [n], then
they become answers only when [n] is satisfied (i.e., it is
received by the cd transducer), at least one condition that
is mapped directly or indirectly to [n] from each predicate
scope is satisfied, and (1) for the union transducer at least
one [ci] condition is satisfied, (2) for the intersect transducer
all [ci] conditions are satisfied, (3) for the except transducer
only the first condition [c1] is satisfied.

3. COMPLEXITY
Analytical Results. The FSXP query evaluator de-

scribed in Section 2 has a polynomial combined complex-
ity in both the stream and the query size, which is near
the theoretical optimum for in-memory FSXP evaluation [4].
Due to space reasons, the complexity of the query evaluator
for a query of size q is presented in the following without
proofs. Former investigations [9] report on closely related
complexity results. It is assumed that the XML document
tree conveyed by the XML stream can have recursive struc-
ture definition and has maximal depth d, maximal breadth
b, and size s. In most practical cases the depth d is by or-
ders of magnitude smaller than the size s. The space Si and
time Ti complexities are given for five fragments of FSXP
(1 ≤ i ≤ 5):

(1) FSXP1 contains all axes, wildcard, and set operations,
but no predicates; S1 = O(q × d) and T1 = O(q × s).

(2) FSXP2 contains child and self axes, wildcard, set oper-
ations, and predicates; S2 = O(q×d+s) and T2 = O(q×s).

(3) FSXP3 contains FSXP2 and the desc axis. If in or
after a predicate desc is the first axis, or all axes before the
first desc have a wildcard node test, then S3 = S2, T3 = T2.
Otherwise, S3 = O(q × d2 + s) and T3 = O(q × d× s).

(4) FSXP4 contains FSXP3 and the fsibl axis. If fsibl
occurs as the first axis in or after a predicate, then S4 =
O(q × d × max(d, b) + s) and T4 = O(q × max(d, b) × s).
Otherwise, S4 = S3, T4 = T3.

(5) FSXP5 contains FSXP4 and the foll axis; S5 = O(q ×
d× s) and T5 = O(q × s2).

For evaluating queries with predicates (i ≥ 2), the extra
space s can be needed for buffering potential answers. As
explained in Section 2, buffering potential answers is inde-
pendent of the present query evaluator and in some cases
unavoidable. The entire space s is needed for buffering only
in pathological cases, e.g., when the entire XML stream is
a potential answer that depends on a condition satisfaction
which can be decided only at the end of the XML stream.

Among the presented FSXP fragments, only FSXP1 is
suitable for querying infinite XML streams. For the other
fragments, advanced approximation techniques for query eval-
uation under memory constraints can be used, e.g., [12].

Experimental Results. The theoretical results have
been verified by experiments with a prototype implemented
in Java (Sun Hotspot JRE 1.4.1) on a Pentium 1.5 GHz with
500 MB under Linux 2.4.

XML Streams. The effect of varying the stream size s
on query evaluation time is considered for two XML stream
sets. The first set [8] provides real-life XML streams, ranging
in size from 21 to 21 million elements and in depth from 3
to 36. The second set provides synthetic XML streams with
a slightly more complex structure that allows more precise
variations in the workload parameters.

Queries. Only FSXP queries that are “schema-aware”
are considered, i.e., that express structures compatible with
the schema of the XML streams considered. Their genera-
tion has been tuned with the query size q and several prob-
abilities for query constructs: pfsibl for fsibl, pdesc for desc,
p[] for predicates, p{} for set operations, and pwild for wild-
card. E.g., a query without set operations is obtained with
p{} = 0, whereas a simple path query with p[] = p{} = 0. If
not varied, all probabilities are set to 0.5. For each param-
eter setting 10–30 queries have been tested, totaling about
1200 queries.

0

400

800

1200

1600

2000

0 100 200 300 400 500 600 700

tim
e

(s
ec

)

stream size s (MB)

real-life data
synthetic data

Figure 3: Varying stream size s (q = 10, d ≤ 32)

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

0% 20% 40% 60% 80% 100%

tim
e

(s
ec

)

probability (%)

desc
fsibl

wildcard

Figure 4: Effect of pwild, pdesc, and pfsibl (s = 244 KB,
d = 32, q = 10)

Scalability. The depth d has shown to be considerably
less influential on processing time than the stream size s and
the query size q. The evaluation time increases linearly with
both the stream size s and the query size q. The effect is
visible for both the real-life and the synthetic XML stream
sets, with a higher increase for the latter due to the more
complex data structure, cf. Figure 3.

Varying query characteristics. Figure 4 shows an in-
crease of the evaluation time by a factor of less than 2 when
pwild and pdesc increase from 0 to 100%. It also suggests that
the evaluation times for fsibl and child are comparable. Fur-
ther experiments have shown that the evaluation of queries
with predicates and set operations is slightly more expensive
than the evaluation of simple path queries.

The memory usage has been almost constant over the
full range of the experiments. Only an increase in query size
q proved to have a noticeable effect: Increasing the query
size from 1 to 1000 has led to an increase in memory usage
of Java from 2 to 8 MB. This includes the memory needed
for the transducer network and for its processing.

4. RELATED WORK AND CONCLUSION
There is a significant body of work in filtering and query-

ing XML streams. Due to space reasons, only the general
research directions are given here.

(1) In the context of publish-subscribe or event notifica-
tion systems, the XML stream needs to be filtered by a large
number of queries. In contrast to our work, the stream is as-
sumed to be partitioned into comparatively small documents
(in the range of hundreds to thousands of elements per doc-
ument), and it is deemed sufficient to determine whether
some queries match a document, rather than answering the
queries. The filtering engines proposed recently, e.g., XFil-
ter [1], construct an NFA for a bulk of queries, which is then
transformed into a DFA. XTrie [2] introduces a novel query

index structure for efficient query matching.
(2) Another direction is to provide an efficient single-pass

XPath evaluator for single queries. XSM [5] proposes a net-
work of finite-state transducers with buffers. Apart of the
support for joins and element creation enabled by random-
access buffers, the query language is severely restricted. Fur-
thermore, it processes only streams with non-recursive struc-
ture definition. XSQ [11] introduces a hierarchical push-
down transducer, that provides good performance for re-
stricted XPath (only child and desc axes, unnested predi-
cates with at most one such axis), but only limited exten-
sibility. Experiments with these systems show reasonable
average-case performance, though the required space can
grow exponentially in the query size.

The approach presented in the present paper is based on a
network of simple, independent pushdown transducers that
can be connected in a flexible manner. It allows not only
for easy query language extensions, since adding new query
constructs implemented by new transducers does not affect
the existing ones, but also for extensive query optimization,
e.g., by sharing transducers. Recent work of the authors
[3] shows that this approach easily scales to large number
of queries (e.g., tens of thousands of queries with average
size 10) to be evaluated in a single-pass over the stream,
as needed by publish-subscribe systems. This advantage is
combined with a space and time complexity near the theo-
retical optimum for in-memory XPath evaluation [4], and a
larger XPath fragment than in previous work, including all
axes, structural (nested) predicates, and set operations.

References
[1] Mehmet Altinel and Michael J. Franklin, Efficient fil-

tering of XML documents for selective dissemination of
information, Proc. of VLDB, 2000.

[2] Chee-Yong Chan, Pascal Felber, Minos Garofalakis,
and Rajeev Rastogi, Efficient filtering of XML docu-
ments with XPath expressions, VLDB Journal (2002).

[3] Tim Furche, Optimizing multiple queries against XML
streams, Diploma thesis, Univ. of Munich, 2003.

[4] Georg Gottlob, Christoph Koch, and Reinhard Pichler,
XPath processing in a nutshell, ACM SIGMOD Record
32 (2003).

[5] Bertram Ludäscher, Pratik Mukhopadhyay, and Yan-
nis Papakonstantinou, A transducer-based XML query
processor, Proc. of VLDB, 2002.

[6] Sam Madden and Michael J. Franklin, Fjording the
stream: An architecture for queries over streaming sen-
sor data, Proc. of ICDE, 2002.

[7] José M. Mart́ınez, MPEG-7 overview, Tech. Report
N4980, ISO/IEC JTC1/SC29/WG11, 2002.

[8] Gerome Miklau, XMLData repository, Univ. of Wash-
ington, 2003.

[9] Dan Olteanu, Tim Furche, and François
Bry, Evaluating complex queries against XML
streams with polynomial combined complex-
ity, Tech. Report PMS-FB-2003-15, Univ. of
Munich, 2003, http://www.pms.informatik.uni-
muenchen.de/publikationen.

[10] Dan Olteanu, Holger Meuss, Tim Furche, and François
Bry, XPath: Looking forward, Proc. of EDBT Work-
shop XMLDM, 2002, LNCS 2490.

[11] Feng Peng and Sudarshan S. Chawathe, XPath queries
on streaming data, Proc. of ACM SIGMOD, 2003.

[12] Dominik Schwald, Approximate streamed evaluation of
XPath under memory constraints, Project thesis, Univ.
of Munich, 2003.

