
The XML Stream Query Processor SPEX

François Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan Olteanu, Markus Spannagel
Institute for Informatics, University of Munich, Germany

{bry,furche,olteanu}@pms.ifi.lmu.de {coskun,durmaz,spannage}@stud.ifi.lmu.de

1 Introduction

Data streams (e.g., [1]) are an emerging technology for
data dissemination in cases where the data throughput or
size make it unfeasible to rely on the conventional ap-
proach based on storing the data before processing it. Ar-
eas where data streams are applied include monitoring of
scientific data (astronomy, meteorology), control data (traf-
fic, logistics, networks), and financial data (bank transac-
tions). They are complementary and symmetrical to tradi-
tional databases: While in traditional databases data is per-
sistent and queries are volatile, in data stream applications
data is volatile but queries are persistent. Data streams are
a new and promising setting in which many conventional
database methods have to be considered anew. Querying
XML data streams without storing and without decreas-
ing considerably the data throughput is especially challeng-
ing because XML streams convey tree structured data with
(possibly) unbounded size and depth.

SPEX, initially described in [3], evaluates XPath queries
against XML data streams. XPath is a key query lan-
guage used, e.g., in standards like XQuery, XSLT, XML-
Schema, XLink, XPointer etc., for expressing selection of
or reference to XML data. SPEX is built upon formal
frameworks for (1) rewriting XPath queries into equivalent
XPath queries without reverse axes [4] and (2) correct query
evaluation with polynomial complexity using networks of
pushdown transducers [2]. Such transducers are simple,
independent, and can be connected in a flexible manner.
They communicate through annotations added to the input
stream. SPEX allows easily not only extensions (for pro-
cessing new query constructs implemented by new trans-
ducers does not affect the processing of existing ones) but
also extensive query optimization (e.g., by sharing trans-
ducers). As a proof of concept, SPEX is extended here with
novel compile-time optimizations that reduce both the size
of the transducer network and the processing of irrelevant
stream fragments.

SPEX is demonstrated using a practically useful ap-
plication for monitoring processes running on UNIX sys-
tems, and a novel, sophisticated visualization of its run-time

system, called SPEX Viewer. The monitoring application
demonstrates well the features of SPEX, i.e., (1) the pro-
cessing of XML streams with recursive structure definition
and unbounded size as gathered from the information about
UNIX processes, and (2) the detection of specific patterns
in such richly structured streams based on the evaluation of
rather complicated XPath queries. SPEX Viewer makes it
possible to visualize (1) the rewriting of XPath queries into
equivalent queries without reverse axes, (2) the networks
of pushdown transducers generated from such queries, (3)
the incremental processing of XML streams with these net-
works under various novel optimization settings, and (4) the
progressive generation of answers.

2 Application scenario:
Monitoring Computer Processes

For demonstrating the SPEX query processor, a concrete
application is used: monitoring processes currently running
on UNIX computers. The process parameters are constantly
gathered as a continuous XML stream from the output of the
ps -elfH command. The information about a process is
represented as an XML elementprocess containing child
elements for various properties of a process, such asmem-
ory and time used, currentpriority and state, and child
processes. Thus, the process hierarchy is represented by
ancestor-descendant relations betweenprocess-elements.

The XML stream generated in this manner is unbounded
in size and depth, because (1) new process information
wrapped in XML is repeatedly sent in the stream and (2) the
process hierarchy can contain arbitrarily nested processes1.

By means of XPath queries (for the sake of simplicity
but without loss of generality, omitting value-based compar-
isons of subquery results and providing restricted support
for positional predicates) the monitoring application allows
the user to specify what process information conveyed in
the XML stream is to be watched and reported back. One
can, e.g., monitor suspended processes with CPU and mem-
ory expensive subprocesses. More specifically, these can be

1In practice, many Linux versions allow at most 512 processes running
at a time on one machine, thus limiting the process hierarchy depth to 512.

1



/desc::process[child::time > 24 or child::memory > 500]/anc::process[child::priority < 10 and child::state = ”stopped”]

Figure 1. Sample query for monitoring processes ( desc and anc abbreviate descendant and ancestor)

/desc::process[child::priority < 10 and child::state = ”stopped” and desc::process[child::time > 24 or child::memory > 500] ]

Figure 2. Equivalent forward XPath query for query of Figure 1

processes with a certain low priority (e.g., below 10) that are
currently stopped and are ancestors of at least one process in
the process hierarchy. Furthermore, this other process must
use more than 500 MB main memory or be already running
for more than 24 hours. The corresponding XPath query is
shown in Figure1.

Monitoring queries can also express simple aggrega-
tions, e.g., so as to select processes that together with their
subprocesses use a certain amount of memory or that have
more than a given number of subprocesses. Note that rather
complex and possibly nested queries can be expressed in
XPath and processed with SPEX. Query nestings reflect
process nestings expressed in the XML stream. The com-
bination of the XML encoding of process information used
here and an XML stream query evaluator like SPEX turns
out to be a natural, declarative, and effective solution for
monitoring relations between nested processes.

3 The SPEX Query Processor

Querying XML streams with SPEX consists in four
steps, as shown in Figure3. First, the input XPath query
is rewritten into a forward XPath query [4], i.e., without
reverse axes. For the query of Figure1, the result of this
source-to-source transformation is shown in Figure2. The
forward XPath query is compiled into a logical query plan
that abstracts out details of the concrete XPath syntax. Fig-
ure 4 gives a logical query plan for the query of Figure2.
Then, a physical query plan is generated by extending the
logical query plan with operators for determination and col-
lection of answers. Figure5 shows a physical query plan for
the logical query plan of Figure4. In the last step, the XML
stream, which in the chosen application scenario consists
in information about the status of processes, is processed
continuously with the physical query plan, and the output
stream conveying the answers to the original query is gener-
ated progressively. All four steps are further detailed below.

Step 1: Source-to-source query transformations.The
forward and reverse XPath axes enable random access to
nodes of an XML tree. If queries are to be evaluated against
streams conveying XML trees, nodes cannot be accessed
randomly, but rather in the stream’s sequence. The evalua-
tion of reverse axes, e.g.,ancestor andpreceding, would
demand then the buffering of already processed stream

fragments. SPEX proposes a framework [4] for rewriting
queries with reverse axes into equivalent queries in which
only forward axes occur. E.g., the query of Figure1 is
rewritten into the query of Figure2.

Further source-to-source transformations that optimize
the evaluation of forward XPath queries are also ap-
plied in this step. Such optimizations focus on prun-
ing redundant computations. E.g., consider the query
/child::process/following::state that selects allstate-
elements followingprocess children of the root. For the
set ofstate-elements that follow the firstprocess child of
the root is already the set ofstate-elements that follow all
process children of the root, this query can be rewritten
to /child::process[1]/following::state, so that only the first
process child of the root is considered during evaluation.

Step 2: Compilation into a logical query plan.A forward
XPath query is compiled into a logical query plan that con-
sists either in a path, if the query is a sequence of steps, in a
tree, if the query has also predicates, or in a directed acyclic
graph, if the query has also set operators. Each construct
in a forward XPath query, such as an axis or a predicate,
induces a corresponding operator in the logical query plan.
Figure4 shows the logical query plan for the query of Fig-
ure 2. Square boxes denote the answers sought for, round
boxes correspond to (parts of) predicates. E.g., theand (or)
operator of Figure4 expresses that both (at least one of the)
subplans rooted at the subjacentchild operator further con-
strain the answers selected by the firstprocess operator.

At this step, further compile-time optimizations can be
applied. As shown in Figure4, both prefixeschild of the
branches rooted at theand (or) operator are compacted into
a singlechild operator. Note that such a branch compaction
is not possible at the level of XPath syntax.

Step 3: Generation of a physical query plan. A phys-
ical query plan is a transducer network that computes the
answers to the initial query from the XML stream. Such a
network is created from a logical query plan in two steps.

First, each operator from a logical query plan is realized
in a network as a deterministic pushdown transducer. Sec-
ond, the network is extended at its beginning with a stream-
delivering transducerin, and at its end with an answer-
collectingfunnel, i.e., a subnetwork of auxiliary transducers
serving to collect the computed potential answers. Figure5
shows the network constructed from the logical query plan

2



Source-to-source 
transformationsXPath Query

Forward 
Optimized 

XPath Query
Compilation

Logical 
Query Plan

Generation
Physical 

Query Plan

Status of 
processes

continuously gathered into XML Stream

Output
Stream

Processing

� � � �

Figure 3. Steps of the SPEX processor

�������

and

���
	���

or

priority state process

< 10

process

�������

����	���

memory time

= "stopped"

> 500 > 24

Figure 4. Logical query plan for Figure 1

of Figure4. For each predicate in the query there is a pair
(and, cd-and) or (or, cd-or) of transducers in the network
(cd stands for condition determinant). The nesting of such
pairs corresponds to the nesting of predicates in the query.
The topmostprocess transducer is the answer transducer,
as indicated by the square box. The last transducer of the
funnel is theout transducer that buffers potential answers
and delivers the query answers.

Step 4: Processing with a physical query plan.Process-
ing an XML stream corresponds to a depth-first left-to-right
preorder traversal of the (implicit) XML tree conveyed by
that stream. Exploiting the affinity between preorder traver-
sal and stack management, the transducers use their stacks
for remembering the depth of the nodes in the implicit XML
tree. This way, forward XPath axes, e.g.,child anddesc,
can be evaluated in a single pass. A physical query plan,
i.e., a transducer network, processes the XML stream an-
notated by its first transducerin. The other transducers in
the network process stepwise the received annotated XML
stream and send it with changed annotations to their succes-
sor transducers. E.g., a transducerchild moves the annota-
tion of each node to all children of that node.

The answers computed by a transducer network are
among the nodes annotated by the answer transducer. These
nodes arepotentialanswers, as they may depend on a down-

�������

and

���
	����

in

or

priority state

cd-and

cd-or

out

stream

process

< 10

process

�������

��
	����

=  "stopped"

memory time

> 500 > 24

funnel

Figure 5. Physical query plan for Figure 2

stream satisfaction of predicates. The information on predi-
cate satisfaction is conveyed in network also by annotations.
Until the predicate satisfaction is decided, the potential an-
swers are buffered by theout transducer.

Those optimizations that are specific to stream process-
ing are applied only to the physical query plan. Specialized
transducers are employed to minimize the stream fragment
processed by transducers in a network. E.g., in the physi-
cal query plan of Figure5, all transducers after the answer
transducer require only the stream fragments conveying the
subtrees rooted at nodes selected bydesc::process and the

3



Figure 6. SPEX Viewer illustrates how SPEX processes XML streams

irrelevant stream fragments can be filtered out by an appro-
priate pushdown transducer placed after the answer trans-
ducer. Various structural filters can be added to physical
query plans, depending on the kind of transducers existent
in a network and on the stream structure. The latter depen-
dencies can be derived, e.g., from schemas of the stream.

4 SPEX Viewer

The SPEX processor is demonstrated using the SPEX
Viewer, that visualizes how SPEX processes XML streams.
The salient features of the SPEX Viewer consist in illus-
trating the four steps of the SPEX processor, in particular
showing (1) the logical and physical query plans, (2) the
stepwise processing of XML streams with physical query
plans together with the progressive generation of answers,
and (3) windows over the most recent messages from the
input XML stream and the most recent answers.

A vector-based graph rendering engine has been de-
signed and implemented that fits the needs of demonstrat-
ing SPEX. Since query plans and SPEX transducer net-
works may be quite large, reversible actions like moving,
hiding parts, and zooming are offered. As displayed trans-
ducer stacks change during query processing in content and
size, automatic on-line graph reshaping is provided. Fig-
ure6 shows a rendering of the physical query plan of Fig-
ure5 in the middle area of the visualization tool. The lower
area shows (from left to right) windows over the most re-
cent fragment of the input XML stream, over the current
potential answers, and over the most recent query answers.

For a detailed insight into the processing, three process-
ing modes are provided that can be switched at any time
during processing. In thestep-by-step mode, the content
of each transducer stack and the message passing between
transducers can be inspected for each incoming stream mes-
sage. In therunning mode, the input stream is processed
message after message with a speed chosen by the user (cf.
the delay slider on the topright of Figure6). The pause
modeis used to interrupt the processing for a detailed in-
spection of transducers in the SPEX transducer network.
While in the pause mode, processing can be resumed by se-
lecting either the step-by-step or the running mode. Break-
points can be specified to alert when a given XML tag
reaches given transducers, or when given transducers have
particular stack configurations.

The SPEX Viewer can also give a concrete feeling for the
polynomial combined complexity of SPEX [2] and for the
influence of various optimizations on the stream processing.

References

[1] N. Koudas and D. Srivastava. Data stream query processing: A tuto-
rial. In Proc. of VLDB, 2003.

[2] D. Olteanu, T. Furche, and F. Bry. Evaluating Complex Queries
against XML streams with Polynomial Combined Complexity. In
Proc. of BNCOD, 2004.

[3] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of regular path
expressions with qualifiers against XML streams. InProc. of ICDE,
2003.

[4] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward.
In Proc. of EDBT Workshop XMLDM, 2002. LNCS 2490.

4


	1 Introduction
	2 Application scenario:Monitoring Computer Processes
	3 The SPEX Query Processor
	4 SPEX Viewer

