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Abstract We present a decomposition-based approach to Given such an incompletely specified database, it must
managing probabilistic information. We introduserld-set  of course be possible to access and process the data. Two
decompositions (WSD$) space-efficient and complete rep- data management tasks shall be pointed out as particularly
resentation system for finite sets of worlds. We study themportant, query evaluation arthta cleaning25,16, 26],
problem of efficiently evaluating relational algebra geeri by which certain worlds can be shown to be impossible and
on world-sets represented by WSDs. We also evaluate owan be excluded. The results of both types of operation turn
technique experimentally in a large census data scenattio amut not to be representable by or-set relations in general.
show that it is both scalable and efficient. Consider for example the integrity constraint that all so-
cial security numbers be unique. For our example database,
this constraint excludes 8 of the 32 worlds, namely those in
1 Introduction which both tuples have the value 185 as social security num-
ber. Itis impossible to represent the remaining 24 worlds us
Incomplete information is commonplace in real-world data-ing or-set relations. This is an example of a constraint that
bases. Classical examples can be found in data integratiofin pe used for data cleaning; similar problems are observed

and wrapping applications, linguistic collections, or whe ith queries, e.g., the query asking for pairs of persons wit
ever information is manually entered and is therefore prongjtfering social security numbers.

to inaccuracy or incompleteness.
As a motivation, consider two manually completed forms  what we could do is store each world explicitly using

that may originate from a census and which allow for mor _ - .
than one interpretation (Figure 1). For simplicity we aseumea table called avorld-set relationof a given set of worlds.

that social security numbers consist of only three digits. F Each tuple in this table represents one world and is the con-
instance, Smith’s social security number can be read eitheatenation of all tuples in that world (see Figure 2).
as “185” or as “785". We can represent the available infor-

mation using a relation with or-sets: The most striking problem of world-set relations is their
(TID) | s N M size. If we conduct a survey of 50 questions on a popula-
t1 {185,785} Smith {1,23 tion of 200 million and we assume that oneliot answers
t2 | {185,186} Brown {1,2,3,4} can be read in just two different ways, we @&t worlds.

This relation represengs 2 -2 - 4 = 32 possible worlds ~ Each such world is a substantial table of 50 columps gnd

2 - 10® rows. We cannot store all these worlds explicitly in

This article is an extended version of the paper with the saame 5 world-set relation (which would havi®!° columns and

that appeared in the Proceedings of the International Cemée on 108 . . T

Data Engineering (ICDE) 2007 [7]. 219" rows). Data cleaning will often eliminate only some of_
these worlds, so a DBMS should manage those that remain.
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/) 8 5 {t1.5,t2.S} and{t,.M} are independent, they are put into

Social Security Number: different components. O

Name: (& \N\L,‘U’\ Often, one can quantify the uncertainty of a dependency
of possible values using probabilities. For example, an-aut
matic extraction tool that extracts structured data froxh te
can produce a ranked list of possible extractions, each as-

Marital Status: (1) single X (2) married @G
(3) divorced O (4) widowed O

\ % 6‘ sociated with a probability of being the correct one [19].
Social Security Number: WSDs can elegantly represent such uncertain data by using
Name: BI_QNP'\ anew column P for each component. Th_|s column then dg—
fines the probabilities of the dependencies of the values in
Marital Status: (1) single O (2) maried O each component tuple.
(3) divorced O (4) widowed O
to.M| P
Fig. 1 Two completed survey forms. t1.5t3.5| P
185 18602 [aN[P [LMP e | L [025
X - x| 1 [0.7|x x| 2 ]0.25
1.8 t1.N M 2.8 ta.N ta.M 785 1850.4| " [Smith| 1 > o3 Brown|1 3 lo25
185 Smith 1 186 Brown 1 785 18604 4 o025
185  Smith 1 186 Brown 2
185 Smith 1 186 Brown 3 Fig. 4 Probabilistic version of the WSD of Figure 3.
185  Smith 1 186 Brown 4
185  Smith 2 186 Brown 1

: Example 3Figure 4 gives a probabilistic version of the WSD

785  Smith 2 186 Brown 4 of Figure 3. The probabilities in the last component state
Fig. 2 World-set relation containing only worlds with unique saci that the pOSSIble values for the marital ,Status n m@,lare
security numbers. equally likely. In case of;, it is more likely to be single

(value 1) than married. The probabilities for the name val-
ues fort; andt, equal one, as this information is certain.

Example 1The world-set represented by our initial or-set

relation can also be represented by the product Given a probabilistic WSK{Cy, . .., Cy, }, we obtain a
possible world by choosing one tuplg out of each compo-
2. M nent relatiorC;. The probability of this world is then com-
f1-S t1.N tM f2.S t2.N 1 puted asﬁ w;.P. For example, in Figure 4, choosing the
185 IXsmin %] L 1] 8% ¥ Brown |¥| 2 , i=1 : : .
785 2 186 3 first, the second, and the third tuple from the first, the third
4 and the fifth component, respectively, results in the world
The WSD representation of an or-set relation requires in R | SSN Name MS
general the same amount of space as the or-set relatidiritsel t1 | 185 Smith 2

to 186 Brown 2
Example 2In the same way we can represent the result offhis world’s probability isD.2 - 1-0.3-1-0.25 = 0.015.
data cleaning with the uniqueness constraint enforced®n th  |n practice, it is often the case that fields or even tuples
social security numbers as the product of Figure 3. carry the same values in all worlds. For instance, in the cen-
sus data scenario discussed above, we assumed that only one
field in 10000 has several possible values. Such a world-set

1S5S t2.M decomposes into a WSD in which most fields in component
185 186 t1.N t1.M t2.N 1 relations are certain, i.e., have precisely one tuple.
785 185 | [ Smith | © ; *Brown |* g We will also consider a refinement of WSD&/SDTs
785 186 4 which store information that is the same in all possible d®rl
once and for all in so-calleggmplate relations
Fig. 3 WSD of the relation in Figure 2. Example 4The world-set of the previous examples can be

represented by the WSDT of Figure 5. O

The above product is exactly the world-set relation in  WSDTs combine the advantages of c-tables [20] and
Figure 2. The presented decomposition is based omtlee ~ WSDs. In particular, WSDTs can be naturally viewed as c-
pendencéetween sets of fields, subsequently caltedh- tables where the body of the c-table corresponds to the tem-
ponents Only fields that depend on each other, for exam-plate relation, and whose formulas have been put imtora
ple t;.S andt,.S, belong to the same component. Sincemal formrepresented by the component relations, and null



Template| S N M — We develop data cleaning techniques in the context of

2 Z :rrgm : WSDs. We focus on two kinds of dependencies, func-
' ' M P tional dependencies and a class of equality-generating
t1-St2.S| P | s 1 (025 dependencies, and adapt tBhase proceduréct. [24,
185 186/0.2 . . .
785 18504 | L [07]x| 2 ]0.25 3,18]) for incomplete information to the framework of
785 1860.4f 2123 | %1925 WSDs.
: — We describe a prototype implementation built on top of

Fig. 5 Probabilistic WSD with a template relation. the PostgreSQL RDBMS. Our system is called MayBMS

and supports the management of incomplete information
using UWSDTSs.

We report on our experimental evaluation of UWSDTSs
as a representation system for large finite sets of possible
worlds. Our experiments show that UWSDTSs yield scal-
able techniques for managing incomplete information.

values ‘?’ in the template relations represent fields on tvhic
the worlds disagree. Indeed, each tuple in the product of the™
component relations is a possible value assignment for the
variables in the template relation. While query evaluation
needs to access both the template relation and the compo- . .
nents, this brings advantages that are best justified irscase Ve found that the size of UWSDTs obtained as query
where most data is certain. The following c-table with globa ~ 2NSWers or data cleaning results remains close to that of

conditiond is equivalent to the WSDT in Figure 5 (without & Single world. Furthermore, the query processing time
the probabilistic weights): is also comparable to processing just a single world and

thus a classical relational database.

T[S N M
x Smith y WSDs are designed to cope with large sets of worlds
2z Brown w which exhibit local dependencies and large commonalities.

This data pattern can be found in many applications. Besides

the census scenario, Section 10 describes two further-appli

(r=T8Nz=186)A(y=1Vy=2)A cations: managing inconsistent databases using minimal re

(w=1Vw=2Vw=3Vw=4) pairs [10,12] and medical data.

A fundamental assumption of this work is that one wants

to managefinite sets of possible worldFhis is justified

— We formally introduce WSDs and WSDTs and studypy previous work on representation systems starting with
some of their properties. Our notion is a refinement ofimielinski and Lipski [20], by recent work [15,4,11], and
the one presented above and allows to represent worldg, cyrrent application requirements. Our approach can deal
over multi-relation schemas which contain relations withyith databases with unresolved uncertainties. Such dsgsba
varying numbers of tuples. WSD(T)s can represent anyre still valuable. It should be possible to do data trans-
finite set of possible worlds over relational databases anghymations that preserve as much information as possible,
are therefore a strong representation systenafyrre-  ths necessarily mapping between sets of possible worids. |
lational query language this sense, WSDs represent@mpositional frameworkor

— A practical problem with WSDs and WSDTs is that a gyerying and data cleaning. A different approachiis folldwe
DBMS that manages such representations has to SUpPGH e g., [10,13], where the focus is on findingrtain an-

relations of arbitrary arity: the schemata of the composyersof queries on incomplete and inconsistent databases.
nent relations of a decomposition depend on the data. o )
Unfortunately, DBMSs (e.g. PostgreSQL) in practice Of_Related Work. Early work on managing incomplete infor-

ten do not support relations beyond a fixed arity. mation in the relational setting was presented in [20] which

For that reason we present refinements of the notion dptrod_ucedv-tablesand c-tables _In v-tables the tuples can
WSDs, theuniform WSDs (UWSDspnd their exten- contain both constants and variables, and each combination

of possible values for the variables yields a possible world
properties as representation systems Relations with or-sets [21] can be viewed as v-tables, where

— We show how to process relational algebra queries ove‘?aCh variable occurs only at a single position in the tabte an

world-sets represented by UWSDTs. For illustration purSa" only take values from a fixed finite set, the or-set of the

poses, we discuss query evaluation in the context of thgeld occupied by .the varigple. The §9-calledab!es[20]
more visual WSDs. extend v-tables with conditions specified by logical formu-

We also develop a number of optimizations and tech!as over the variables, thus constraining the possiblesgalu

hiques for normalizing the data representations obtained; The version of the MayBMS system released in early 2009]-avai

by queries to support scalable query processing even Olpje at http:/maybms.sourceforge.net, uses a repréisentystem
very large world-sets. other than WSDs.

®=((x=185A2=186)V (z =785 A z = 185) V

The technical contributions of this article are as follows.

sion by template relations, théVSDTsand study their




and form a strong representation system for relationalyquer  The model used by the Orion system [30] can be seen as

languages. an extension of the world-set-decomposition model for con-
The probabilistic databases of [15,14] and the dirty redinuous distributions. There, correlated attributes aoeiged

lations of [4] are examples of practical representation systogether and represented by a single joint distributiom-Si

tems that are not strong for relational algebra. As query arilarly, in a WSD each component represents the joint (dis-

swers in general cannot be represented as a set of possilgkete) distribution of a set of correlated attributes.

worlds in the same formalism, query evaluation is focused In [9] we provide complexity results for different deci-

on computing the certain answers to a query, or the probgion problems on WSDs, such as query possibility and cer-

bility of a tuple being in the result. Such formalisms closetainty, and present a polynomial algorithm for relationed d

the possible worlds semantics using clean answers [4] argPmposition. Finally, the more recent work [5] builds upon

probabilistic-ranked retrieval [15]. As we will see in tiis ~ WSDs to create a representation system where correlations

ticle, our approach subsumes the aforementioned two and ¢an be represented in a more intensional but still relationa

strictly more expressive than them. way, which ensures more compact representation and effi-
In parallel to our approach, [28,11] propose ULDBs thatCient query processing. [17] shows how to manage interval

combine uncertainty and a low-level form of lineage to moddtrobabilities, either because the exact probabilitiesnate

any finite world-set. Like the dirty relations of [4], ULDBs known, or because they were introduced by evaluating se-

represent a set of independent tuples with alternatives. Li ections on top of approximated confidence values.

eage is then used to represent dependencies among alterna-

tives of different tuples and thus is essential for the expre L

. . . 2 Preliminaries
sive power of the formalism. Note that lineage corresponds

to local conditions in c-tables [20]. . We use the named perspective of the relational model with
As both ULDBs and WSDs can model any finite world- i operations selection, projection, productx, union

set, they inherently share some similarities, yet diffenn U, difference—, and attribute renaming (cf. e.g. [2]). A
portant aspects. WSDs support efficient algorithms for findya|ational schemas a upleX = (Ri[U1],..., RulUs),
ing a minimal data representation based on relationalfacto,yhare eachR, is a relation name ant, is a set of attribute
ization. Differently from ULDBs, WSDs allow representing names. LeD be a set of domain elements.rélation over
uncertainty at the level of tuple fields, not only of tUpleS-schemaR[Al, ..., Ag]is a set of tuplegA; : a1,..., Ay :
This causes, for instance, or-set relations to have liregar r a) whereas, ..., a; € D. A relational databased over
resentations as WSDs, but (in general) exponential repreehemas is a set of relations?4, one for each relation
sentations as ULDBs. As reported in [11], resolving tUpleschemaR[U] from X. Sometimes, when no confusion of
dependencies, i.e., tracking which alternatives of d#ifér 45i3pase may occur, we will ugrather thank* to denote
tuples belong to the same world, often requires the compys,e particular relation over scheni®U/]. By the size of a
tation of lineage closure. Additionally, query operati@ms  g|ation R, denoted R|, we refer to the number of tuples in
ULDBSs can produce inconsistencies and anomalies, such 38 ko a relationR over schemaR[U], let sch(R) denote
erroneous dependencies and inexistent tuples. In contragte seti7 of its attributes and letr(R) denote the arity of

WSDs avoid both pitfalls. R.

In [29] probabilistic databases are modeled using graph- A productm-decompositiorof a relationR is a set of
ical models. Each tuple has an associated random variablggn-nullary relations{C1, ..., C,,} such thatC; x --- x
specifying the existence of the tuple in the database, and, — R. The relationg,, ..., C,, are calleccomponents

correlations between tuples are given by links between thg productm-decomposition of? is maximalif there is no
corresponding nodes in the graphical model. Querying thgroductr-decomposition o with n > m.

graphical model is done by introducing new factors, and A set ofpossible worldgor world-se} over schema is
computing confidence of tuples is reduced to probabilistiGy set of databases over schemal et W be a set of struc-
inference in graphical models. Note that world-set decomtures, rep be a function that maps frof# to world-sets of
positions correspond to flat graphical models, where the coRhe same schema. ThEW , rep) is astrong representation
ditional independence between variables is made explicisystenfor a query language if, for each quegyof that lan-
Indeed, WSDs are based on the idea of independence bggage and eachy € W such thatQ is applicable to the
tween variables (attribute values), which is a special kihd \yorlds inrep(W), there is a structur®’ € W such that

conditional independence. In some cases, graphical models; (V') = {Q(A) | A € rep(W)}. Obviously,
can be more succinct than WSDs. However, evaluating re-

lational algebra queries on top of graphical models tends tbémma 1 If rep is a function from a set of structured/
produce flat models with high treewidth, which makes conZ0 the set of all finite world-sets, th&W, r¢p) is a strong
fidence computation hard on graphical models. representation system for any relational query language.



3 World-Set Decompositions can be mapped invariantly back &0 However different or-

derings of the tuples might have implications on the com-
In order to use classical database techniques for storidg apactness of the decomposition. Note that for each world-set
querying incomplete data, we develop a scheme for repreelation a maximal decomposition exists, is unique, and can
senting a world-seA by a single relational database. be efficiently computed [9].

Let A be a finite world-set over schema= (R, ..., R).
For eachR in X, let |R|max = max{|R*| : A € A} de-
note the maximum cardinality of relatioR in any world
of A. Given a worldA with R4 = {t1,... t/za}, let
inline(R*) be the tuple obtained as the concatenation (de- We will refer to each of the: elements of a world-set-
notedo) of the tuples ofR4 in an arbitrary order padded decomposition asomponentsand to the component tuples
with a special tupleé,; = (L,..., L) up to arity|R|max: aslocal worlds Somewhat simplified examples of world-set

— relations and WSDs over a single relatiinthus “R” was
omitted from the attribute names of the world-set relatjons
inline(RY) ==ty 0--- o tRAL O (ELy e 1) were given in Section 1. Further examples can be found in
Section 4. It should be emphasized that with WSDs we can
also represent multiple relational schemata and even arbi-
Then tuple trary correlations of fields across relations (by having eom

ponents with fields from different relations).

Definition 2 LetW = {C4,...,C),} be an m-WSD. Then

encodes all the information in world. The “dummy” tu- the functionrep that maps/V to a set of possible worlds is
ples with L -values are only used to ensure that the relatiorflefined as
R has the same number of tuples in all worldsAinWe ex- ¢ (W) = U{inline_l(t) [teCyx...xCn}
tend this interpretation and generally defing asany tuple
that has at least one symhatl i.e., (A1 : a1, ..., Ay : ap),
where at least one; is L, is at, tuple. This allows for Proposition 1 Any finite set of possible worlds can be rep-
several different inlinings of the same world-set. resented as a world-set relation and ag-4VSD.

By aworld-set relationof a world-setA, we denote the
relation{inline(A) | A € A}. This world-set relation has
schema{R.t;.A; | R[U] € X,1 < i < |R|max,4; € U}.

Definition 1 Let A be a world-set and?” a world-set re-
lation representing\. Then aworld-setm-decomposition
(m-WSD)of A is a productn-decomposition ofV.

ar(R)

[ Rlmax—|RA]

inline(A) := inline(R{) o - - - o inline(R{")

It immmediately follows from our definitions that

Corollary 1 (Lemma 1) WSDs are a strong representation
system for any relational query language.

Note that in defining this schema we useto denote the As pointed out in Section 1, this is not true for or-set
position (or identifier) of tuple; in inline(R*) and notits ~ relations. For the relatively small class of world-setst tha
value. can be represented as or-set relations, the size of our rep-

Given the above definition that turned every world in aresentation system is linear in the size of the or-set miati
tuple of a world-set relation, computing the initial world- AS Seen in the examples, our representatiomigh more
set is an easy exercise. In order to have every world-set réPace-efficient than world-set relations
lation define a world-set, let a tuple extracted from som
tpa = inline(R*) be in R iff it does not contain any oc-
currence of the special symbal. That is, we magra =
(ai,... ’aaT(R)'|R|n]ax) to R4 as

q\/lodeling Probabilistic Information. We can quantify the
uncertainty of the data by means of probabilities using a
natural extension of WSDs. Arobabilistic world-set m-
decompositiorfprobabilistic m-WSD) is an m-WSD

inline™! (tga) == {C4,...,Cn}, where each component relatiGrhas a spe-
cial attribute P in its schema defining the probability for

{@ar(m k15 Gar(y (v40) |0 S B < [ Rlma, the local worlds, that is, for each combination of values de-
Qar(R)k+1 7 Loy Qar(R) (b41) 7 L} fined by the component. For a component tupjeve have
If t4 = tpao...o...tpais the inlining for worldA, we  tc-P & (0,1]. To ensure valid probability distribution, we
can restored in the following way: require that the probabilities in a component sum up to one,
i.e. Z tc.P=1.
inline ' (t4) = (mlinefl(tR{x), ce inlineil(tR?)) tceC

Probabilistic WSD% generalize the probabilistic tuple-
Observe that although world-set relations are not unique @adependent model of [15], as we show next.
we have left open the ordering in which th(? tples of a giverr, Like most recent work we assume that probabilities are gagn
world are concatenated, all world-set relations of a weBt-  inpyt, for example by an expert, or learned. Follow-up wdikhe au-
A are equally good for encoding the world-set because theyors discusses how probabilities can be introduced usieges [8].




Example S5Figure 6 (a) is an example taken from [15]. It < and if relationD; has attribute?;.t. A and valuev in its

shows a tuple-independent probabilistic database with twaniqueR;.t. A-field, then the template relatioﬁg? has a tu-

relationsS andT'. Each tuple is assigned a confidence valueple with identifiert whoseA-field has value.

which represents the probability of the tuple being in the  Of course WSDTSs again can represent any finite world-

database, and the tuples are assumed independent. A posst and are thus a strong representation system for any re-

ble world is obtained by choosing a subset of the tuples itational query language. Example 4 shows a WSDT for the

the tuple-independent probabilistic database, and itb-pro running example of the introduction.

ability is computed by multiplying the probabilities for-se Uniform World-Set Decompositions.In practice, database

lecting a tuple or not, depending on whether that tuple is irsystems often do not support relations of arbitrary arity.(e

the world. The set of possible worlds fér is given in Fig- WSD components). For that reason we introduce next a mod-

ure 6 (b). For example, the probability of the woilld can  ified representation of WSDs calleshiform WSDsInstead

be computed agl — 0.2) - 0.5 - 0.6 = 0.06. O  of having a variable number of component relations, pos-
sibly with different arities, we store all values in a single
relationC that has a fixed schema. We use the fixed schema

world P consisting of the three relation schemata
s A B p D, = {Sl,SQ,tl} 0.24
—Tm 1108 Dy ={s1,t1} 0.24 C|FID, LWID, VAL, F|FID, CID],W|CID, LWID, PR]
s; n 1|05 Dy = {s2,t2} 0.06
Dy ={t1} 0.06 where FID is a tripl€® (Rel, TupleID, Attr) denoting the
T|c D| P g5 = {s1, 82} 0.16 Attr-field of tupleTuplelI D in database relatioRel.
6 = {s1} 0.16 ) ) )
ti |1 p|O06 D7 = {s2} 0.04 In this representation we need a restricted flavor of world-
@ Dg =0 0.04 ids calledlocal world-ids(LWIDs). The local world-ids re-
fer only to the possible worlds within one component. LWIDs
() avoid the drawbacks of “global” world IDs for the individual
Fig. 6 A tuple-independent probabilistic database for relatisrend  worlds. This is important, since the size of global world IDs
T (a), and the represented set of possible worlds (). can exceed the size of the decomposition itself, thus making

it difficult or even impossible to represent the world-sets i

We obtain a probabilistic WSD in the following way. & Space-efficient way. If any world-set over a given schema
Each tuple with confidence: in a tuple-independent prob- @nd a fixed active domain is permitted, one can verify that
abilistic database induces a WSD component representir9j0b3| world-ids cannot be smaller than the largest possibl
two local worlds: the local world with tupleand probability ~ World over the schema and the active domain.
¢, and the empty world with probability— ¢. Figure 7 gives Given a WSD{C, . .., C, } with schemata’; [Us], we
the WSD encoding of the tuple-independent probabilisti®oPulate the corresponding UWSD as follows.
database of Figure 6. Of course, in probabilistic WSDs we _ ((R,t, A),s,v) € C iff, for some (unique), R.t.A €

can assign probabilities not only to individual tuples, but 7. and the field of columr.t. A in the tuple with ids
also to combinations of values for fields of different tuples  of ¢, has valuey.

or relations. — F={((R,t,A),C;) |1 <i<m, RtAcU},
— (C;, s,p) € W iff there is a tuple with identifies in C;,
C1]s1.A 51.B]P Ca|s2.A52.B|P Cs|t:1.Ct1.D|P whose probability ig.
1lm 108 x|1| n 1]|05x[1|1 p |06 i .
2| L 1102 |2] L 1]os5 |2 L L |04 Intuitively, the relationC' stores each value from a com-

ponent together with its corresponding field identifier and
the identifier of the component-tuple in the initial WSD (col
umn LWID of C). The relationF' contains the mapping be-
Adding Template Relations.We now present our refine- tween tuple fields and component identifiers, &tideeps
ment of WSDs with so-calletmplate relationsA template ~ track of the worlds present for a given component.

stores information that is the same in all possible worlds an ~ In general, the VAL column in the component relation
contains special value§” ¢ D in fields at which different C must store values for fields of different type. One pos-

Fig. 7 WSD equivalent to the probabilistic database in Figure 6 (a)

worlds disagree. sibility is to store all values as strings and use casts when
LetY = (Ry,..., R;) be a schema and a finite set of required. Alternatively, one could have one component re-

possible worlds oveE. Then, the database lation for each data type. In both cases the schema remains

(RY,...,RY,{Cy,...,Cn})is called ann-WSD with tem-  fixed.

pIate relations (”'WSDT)Of A iff there is a WSD 3 FID really takes three columns, but for readability we kelegni

{C1,...,Cn,D1,...,D,} of AsuchthatD;| = 1forall  together under a common name in this section.



RO f N ’\f') . . . The goal of this section is to provide, for each relational
2 > Bsrrg\',\t/: 3 | B6.5  C algebra queryy, a query@ such that for a WSDV,
: y U1, 1
(R,t1,M)  Ca
c FID LWID VAL R,t2,8) C A
Tns 1 1% (s rep(QOV)) = {Q(A) | A € rep(W)}.
(R,t2,8) 1 186 W | CID LWID | PR
Eg’ 22; ; Igg gi ; 8'421 Of course we want to evaluate queries directly on WSDs
(R: t. Sy 3 785 c, 3 |04 using() rather than process the individual worlds using the
(R,t2,S) 3 186 Cy 1 0.7 original queryQ.
Eg’ zl’ ]\1\2 ; % Gz 2 03 The algorithms for processing relational algebra queries
s U1,

presented next are orthogonal to whether or not the WSD
stores probabilities. According to our semantics, a query i
conceptually evaluated in each world and extends the world
with the result of the query in that world. In Section 6, we
Finally, we add template relations to UWSDs in com-also consider queries that look across worlds and compute
plete analogy with WSDTs, thus obtaining the UWSDTs. theconfidencef tuples in query results.
. o When compared to traditional query evaluation, the eval-
Example 6We modify the world-set represented in Figure yation of relational queries on WSDs poses new challenges.
4 such that the marital status 4n can only have the value First, since decompositions in general consist of severatc
ure 4. HereR contains the values that are the same in alkyst be expressed as a set of queries, each of which de-
worlds. Foroeach field that can have more than one possfmes a different component of the output WSD. Second, as
ble value,R” contains a special placeholder, denoted®By *  certain query operations may cause new dependencies be-
The pOSSib|e values for the p|aceh0|ders are defined in thﬂveen Components to develop, some Components may have
component tabl€’. In practice, we can expect that the ma-to be merged (i.e., part of the decomposition undone using
jority of the data fields can take only one value across althe product operation). Third, the answer to a (sub)query
worlds, and can be stored in the template relation. T ) must be represented within the same decomposition as
- o ) the input relations to correctly represent the correlatioe-
Proposition 2 Any finite set of possible worlds can be rep-yveen the input and the result of the subquery; indeed, we
resented as 4-UWSD and as a-UWSDT. want to compute a decomposition of world $&#1, Qo (A)) |
It follows again that UWSD(T)s are a strong representa—“.4 € rep(W)} in order to be abI.e FO resort to the mput. rela-
. . tions as well as the result ¢f, within each world. Consider
tion system foiany relational query language .
for example a query 4—1(R) U op=2(R). If we first com-

Remark 1In theory and as presented in this section, WSDPUt€ 7a=1(R), we must store it in the same WSD as the
can be obtained by decomposing the world-set relation, angput relation, oth_erW|se the connection between worlds of
an efficient algorithm for achieving this is described in.[9] 1t @nd the selectiom 4, is lost and we cannot compute
However, we consider this infeasible in practice as the numZ4=1(E) U op=2(R) correctly.

ber of possible worlds (which determines the size of the ~We say that a relatiof” is a copy of another relatioR
world-set relation) can be exponential. Instead, we assuni8 & WSD if B and P have the same tuples in every world
that in practice WSDs will be constructed by starting offrepresented by the WSD. For a compon€htan attribute
with a “dirty” relation describing the possible values, andR-t-A; of C'and a new attributé”.. B, the functionext ex-
then repairing the database to satisfy given constraitts. T tendsC' by a new columnP.¢. B3 that is a copy of2.t. A;:
decomposition algorithm will be then used to optimize the

representation. U ext(C,A;,B) :=={(A1:a1,...,Ap:an,B:a;) |
(Al :al,...,An:an) EC}

Fig. 8 A UWSDT corresponding to the WSDT of Figure 5.

4 Queries on World-set Decompositions

Thencopy(R, P) execute€’ := ext(C, R.t;. A, P.t;.A) for
In this section we study the query evaluation problem foreach componert' and eachi.t;.A € sch(C).
WSDs. As pointed out before, UWSDTSs are a better repre- The implementation of some operations requires the com-
sentation system than WSDs; nevertheless WSDs are simpesition of components. L&t; andC, be two components
pler to explain and visualize and the main issues regardingith schematdA,, ..., A, P), and
query evaluation are the same for both systems. (By,...,By, P), respectively. Then the composition €f



algorithm selectid6c]  // computeP := o 49.R
begin
Copy(R, P);
for each1 < i < |P|ma2 do begin
let C be the component aP.t;. A;
for eachtc € C do

if not (tc.(P.t;.A) 0 c) then algorithm projectlU]  // computeP := ny (R)
to.(Pt;.A) =1 begin
propagate-L (C); copy(R, P);
end foreach1 < ¢ < |P|mazdo
end while no fixpoint is reachedo begin
let C be the component aP.t;. A, whereA € U;
algorithm selectdoB] // computeP := o9 R let C’ # C be the component af.t;. B, where
begin BgUand A’ € U: P.t;. A’ ¢ sch(C")) and
copy(R, P); Bter € C" 1 tor.B = 1);
for each1 < i < |P|mae do begin replace components, C’ by C := compose(C, C’);
let C be the component aP.i;. A; propagate-_L (C);
let C’ be the component df.t;.B; project awayP.t;.B from C whereB ¢ U andj < 1;
if (C # C’)then end
replace components, C’ by C := compose(C,C”); foreachl < i < |P|marz @andB ¢ U do begin
for eachts € C do let C be the component a.t;. B;
if not (tc.(P.t;.A) 0 tc.(P.t;.B)) then project awayP.t;.B from C;
to.(Pt;.A) = L end
propagate-L (C); end
end
end algorithm rename  // computé, _, 4/ (R)
begin
algorithm product  // computd := R x S for each 1 < i < |R|maz do begin
begin let C be the component ak.t;.A;
foreach1 < j < |S|maz @andR.t;. A € sch(R) do begin C:=0p+;. A—Rt;.A(C);
let C be the component ak.¢;.A; end;
C:=ext(C,R.t;. A, T.t;;.A); end
end,
for each1 < i < |R|maz andS.t;.A € sch(S) do begin algorithm difference  // computé® := R — S
let C’ be the component &f.t;. A; begin
C':=ext(C’,S.t;.A, T.t;;.A); copy(R, P);
end foreach1 < ¢ < |P|mazdo
end foreachl < j < |S|mazdo
let C1,. .., C} be the components for the fields Bft; andS.t;;
algorithm union  // computel’ := RU S replaceCi,...,Cy by C := compose(C1,...,Cy);
begin for each¢c € C do begin
foreach1 < i < |R|maz and A € sch(R) do begin if tc.(P.t;.A) = tc.(S.t;.A) forall A € sch(R) then
let C be the component ak.¢;.A; to.(Pt;.A) = L,
C :=ext(C,R.t;. A, T.(R.t;).A); end
end, end
foreachl < j < |S|maz andA € sch(S) do begin end

let C’ be the component &f.t;. A,
C':=ext(C’, S.t;.A, T.(S.tj).A);
end
end

Fig. 9 Evaluating relational algebra operations on WSDs.

andCs is defined as:

compose(C1,Cs) :=

{(Al Zal,...,AkZak,Blibl,...,Blel,

P :p1-pa) | ing tuples from the input components.

In the non-probabilistic case the composition of some
components is simply their relational product. In the proba
bilistic case, the probability of a tuple in the resultingrco
ponent is the product of the probabilities of the correspond

(A1 :a1,..., A s ag, P :p1) € Ch, Figure 9 presents implementations of the relational alge-
(By:by,...,Bi b, P:py) €Ca} bra operations selection (of the fodmg. Or o495, Where



A and B are attributesg is a constant, and is a compari-
son operation=, #, <, <, >, or >), projection, relational

Dropping tuples is a fairly subtle operation, since tuples
can spread over several components and a component can

product and union on WSDs. In each case, the input WSQlefine values for more than one tuple.

is extendedy the result of the operation.
Given a relational algebra quelg, let @ denote the

Thus a selection must not delete tuples from component
relations, but should mark fields as belonging to deleted tu-

query processor on WSDs we obtain by replacing each ogples using the special value. To evaluates 4¢.(R), our

eration of(Q) by its corresponding operation on WSDs.

Theorem 1 (Correctness) etV be a WSD and leV’ be
the WSD obtained frop (W) by dropping all relations but
the result relation of). Then,

repWV') = {Q(A) | A € rep(W)}.

selection algorithm of Figure 9 checks for each tuplén
the relationP andt¢ in component” with attribute P.t;. A
whethertc.(P.t;.A)fc. In the negative case the tupfet;
is marked as deleted in all worlds that take values ftgm
For that,tc.(P.t;.A) is assigned value., and all other at-
tributesP.t;. A’ of C referring to the same tuplg of P are
assigned value_ in ¢, (cf. the algorithmpropagate- | of

Proof The proof of correctness of the translation is by in-Figure 12). This assures that if we later project away the at-

duction on the structure of que€y.

Base caselLetQ = R. Then the result of the query {4 |
A € repOWV)} = rep(W’).

Induction step: Let @ = o 4¢.(Q’) and suppose

repWV’) # {Q(A) | A € rep(W)}

Suppose first thaty = {C'}, that isW is a 1-WSD. Let
t4 € C be atuple inC that corresponds to a world. The
translation)) replaces withL the values for all tuples in4
that do not satisfy the selection condition, andtigtbe the
result of this operation. Thus by definitionline='(t/,) =
Q(A) andrep(W) = {Q(A) | A € rep(W)}.

Consider now an m-WsDV = {C4,...,C,,} and let
ta =tc, o...0tc, bethe tuple for world4, wheretc, €
C;. Lett € Q' and lett. A be defined in componeidt;. If
te,.(t.A)fc, Q leaves the values farunchanged i, , oth-
erwisetc,.(t.A) is replaced byl . But then by our seman-
tics inline ' (t4) does not contain tuplg ast 4.(t.A) = L.
Thusinline ' (t4) contains exactly the tuples @(.A).

The correctness for the remaining operators follows alo

the same lines.

tribute A of P, we do not erroneously “reintroduce” tuple
P.t; into worlds that take values frong..

algorithm propagate-_ (C: component)
begin
for eacht- € C andP.t;.A € sch(C) do
if to.(Pt;.A) =1 then
for each A’ such thatP.t;. A’ € sch(C) do
to.(Pt;.A") == 1;
end

Fig. 12 Propagatingl-values.

Example 7Figure 11 shows the answers dg—7(R) and
op=1(R). Note that the resulting WSDs should contain both
the query answel” and the original relationk, but due

to space limitations we only show the representatioi of
One can observe that for both results in Figure 11 we obtain

nv(aorlds of different sizes. For example the worlds that take

values from the first tuple of the second component relation

Let us now have a closer look at the evaluation of rein Figure 11 (a) do not have a tuplg while the worlds that
lational algebra operations on WSDs. For this, we use atike values from the second tuple of that component relation

running example the set of eight worlds over the relafibn

of Figure 10 (a) and its maximal 7-WSD of Figure 10 (b).
The second component (from the left) of the WSD span

containt;. O

§election with condition A9 B. The main added difficulty

over several tuples and attributes and each of the remainirﬁ] selections with conditiond¢ 5 as compared to selections

six components refer to one tuple and one attribute. The fir
tuple of the second component of the WSD of Figure 10 con

tains the values foR.t1.B, R.t1.C, andR.t».B, i.e. some

but not all of the attributes of the first and second tuple of

é/yith conditionsAfc is that it creates dependencies between

two attributes of a tuple, which do not necessarily reside in
the same component.
As the current decomposition may not capture exactly

RA, for all worlds.A. In our attempt to keep the WSDs read- the combinations of values satisfying the join conditicme
able, we consistently show in the following examples onlyponents that have values fdrand B of the same tuple are

the WSDs of the result relations.

Selection with condition Afc. In order to compute a selec-

tion P := o44.(R), we first compute a copy of relation
R and subsequently drop tuples Bfthat do not match the
selection condition.

composed. After the composition phase, the selection algo-
rithm follows the pattern of the selection with constant.

Example 8Consider the query 4—g(R), whereR is rep-
resented by the 7-WSD of Figure 10. Figure 13 shows the
query answer, which is a 4-WSD that represents five worlds,



A BC A BC A BC A BC A BC A BC A BC A BC
110 210 110 210 127 227 127 227
4 30 4 30 530 530 4 40 4 40 540 540
6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7
(a) Set of eight worlds of the relatiaR.
R.t1.A R.t1.B Rt#.C R#5.B R.ts.A RG.C Riz.A Riz.B Ri3.C
1 X 1 0 3 X 4 X 0 X 5 X 3
2 2 7 4 5
(b) 7-WSD of the world-set of (a).
Fig. 10 World-set and its decomposition.
Pt A Pt,.B Pz,.C Pt>.B Pits.A Pi5.C Pis A Pis B Pi5.C
1 X € € 3 X 4 X T X 5 X 3 X
2 2 7 4 5
(@) P := oc—7(R) applied to the WSD of Figure 10.
Pi1.A P#1.B P#;.C  Pi2.B Pi2.A P, .C Pl A Pl B P .C
1 X 1 0 L X 4 X 0 3 T
2 1 1 1 5
(b) P := op=1(R) applied to the WSD of Figure 10.
Fig. 11 SelectionsP := oc—7(R) andP := o1 (R) with R from Figure 10.
Pt A Pt1.B Pz,.C Pts.A Pt2.B
1 1 0 1 1
1 1 1 1 1 Pt,.C Pts.A Pit3.B Pt3.C
L L L 4 4 |*[0 6 6 7
2 2 7 4 4
2 2 7 € €
Fig. 13 P = 0 4—p(R) with R from Figure 10.
R.t1.A R.t1.B Rits.A R.t2.B St:..C St:.D St,.C Sit2.D
1 X 3 5 X 7 X a X c e X g
2 4 6 8 b d f h
(a) WSD of two relationg? and S.
ti1.A t12.A t11.B t12.B to1.A too A to1.B t29.B t11.C t21.C t11.D t21.D t12.C t25.C t12.D too.D
1 1 X 3 3 5 5 |x 7 7 X a a [x c c e e g g
2 2 4 4 6 6 8 8 b b d d f f h h

(b) WSD of their productr x S.
Fig. 14 The product operatio® x S.

where one world has three tuples, three worlds have two tuProjection. A projection P = 7y (R) on an attribute set
ples each, and one world has one tuple. O U of arelationR represented by the WSD is translated
into (1) the extension of with the copyP of R, and (2)
Product. The productl” := R x S of two relationsR and  projections on the components@fwhere all component at-
S, which have disjunct attribute sets and are represented Rjhytes that do not refer to attributesBfn U are discarded.

a WSD requires that the product relatigrextends a com- - gefore removing attributes, however, we need to propagate
ponentC' with |Smas (respectively R|mq.) copies of each | _yalues, as discussed in the following example.
column of C with values of R (respectivelyS). Addition-

ally, theith (jth) copy is named'.t;;.A if the original has

Example 10Consider the 3-WSD of Figure 15 (a) repre-
nameR.t;. AorS.t;.A.

senting a set of two worlds faR, where one world contains

only the tuplet; and the other contains only the tupbe Let
Example 9Figure 14 (b) shows the WSD for the product of P’ represent the first two components ®f which contain

relationsRk and.S represented by the WSD of Figure 14 (a). all values for the attributd in both tuples. The relatiof”’ is
To save space, the relatiofs and S have been removed notthe answer ta 4(R), because it encodes one world with
from Figure 14 (b), and attribute names do not show the rebothtuples, and the information from the third component

lation name 7. O of R that only one tuple appears in each world is lost. To



compute the correct answer, we progressively (1) composgenerating dependency. The answer to the original query can
the components referring to the same tuple (in this case dltle obtained by

three components), (2) propagatevalues within the same
tuple, and (3) project away the irrelevant attributes. Tdre c
rect answerP is given in Figure 15 (b). |

R.t1.BRt2.B Pt1.A Pty A
R.t;.A % R.té.A % c n a T
s d L b
(a) WSD for R. (b) WSD for P.

Fig. 15 ProjectionP := w4 (R).

The algorithm for projection is given in Figure 9. For
each tuple;, attribute A in the projection list, and attribute

B not in the projection list, the algorithm first propagates

the L-values ofP.t;. B of component’’ to P.t;.A of com-

ponentC. If C and C’ are the same, the propagation is

done locally within the component. Otherwisg,and C’

P(¢ | ¢) = P(¢)P(¢ Ap) = P(9) (P(¢) — P(¢ A —¢))

where— is existential.

Discussion The operators selection, product and union can
be implemented in polynomial time on WSDs. The imple-
mentation of the join selection, projection and difference
can require the composition of components and can poten-
tially lead to an exponential blow-up in the representation
Composing components in the projection operation can be
avoided by introducing an additional “exists” column to re-
place columns withl -values that are projected away. With
this addition, the projection can also be implemented igpol
nomial time. As for join and difference, the exponentialtlo

up can be avoided by encoding correlations in a more inten-
sional way than the one offered by WSDs. This is the case
of U-relations [5], for instance, which generalize WSDs.

Remark 2The evaluation of relational algebra queries does

are merged before the propagation. Note that the Propagiyy depend on the probabilities of the worlds, since itis-con

tion is only needed if some tuples 6f have at.l-value
for t;.B. This procedure is performed until no other compo
nentsC andC” exist that satisfy the above criteria. After the
propagation phase, the attributes not in the projectivatis
dropped from all remaining components.

Union. The algorithm for computing the unidh := R U

S of two relationsR and S works similarly to that for the
product. Each componeft containing values oR or S is
extended such that in each world@fall values ofR andS
become also values df.

Renaming The operationd 4, 4/(R) renames attributel

of relation R to A’ by renaming all attribute®.t.A in a
component' to R.t.A’.

Difference. To compute the difference operatiéh.= R —

ceptually performed in each possible world. Evaluating pro

jection and join selection modifies the WSD by composing
components; in that case we recompute the probabilities of
the tuples in the new component. With the exception of those
two operators, all other (positive) relational algebrarape
tors do not need access to the probabilities stored with the
data. The confidence computation operator presented in Sec-
tion 6 makes use of the probability information. )

5 Efficient Query Evaluation on UWSDTs

The algorithms for computing the relational operations on
WSDs presented in Section 4 can be easily adapted to UWS-

5 we scan and compose components of the wo relatlonﬁ.rs. To do this, we follow closely the mapping of WSDs,

R and S. For the worlds where a tuplefrom R matches
some tuple fromS, we placel-values to denote thatis
not in these worlds of?; otherwiset becomes a tuple of

represented as sets of componaht$o equivalent UWS-
DTs, represented by a triplé’(C',W) and at least one tem-
plate relation’:

P. The difference is by far the least efficient operation to
implement not only on WSDs, where it can lead to the com- —
position of all components, but also on the other succinct
representation systems. However, if we want to close the
possible world semantics and compute the confidence of tu-
ples in the answer to a difference query, we can often avoid
computing the representation of the result. [22] makes the
observation that computing the confidence of tuples in the
answer to a difference can be done by computing confidence
of the negated positive query which in turn can be efficiently
approximated. This is a special case of computing the con—
ditional probabilityP(¢ | v) of a positive queryp given a
universal constraint. The formulay can express for ex-
ample a functional dependency, or another type of equality-

Consider a componet of WSD C having an attribute
R.t.A with a valuev. In the equivalent UWSDT, this
value can be stored in the template relatibhif v is the
only value ofR.t. A, or in the componen® otherwise. In
the latter case, the templa®¥ contains the placeholder
R.t.Ain the tuplet. In addition, in the mapping relation
F there is an entry with the placehold&t.A and a
component identifier, andC contains a tuple formed
by R.t. A, the valuev and a world identifiet.

Worlds of different sizes are represented in WSDs by
allowing L values in components, and in UWSDTs by
allowing for a same placeholder different amount of val-
ues in different worlds.



Any relational query is rewritten in our framework to 6 Confidence Computation in Probabilistic WSDs
a sequence of SQL queries, except for the projection and
selection with join conditions, where the fixpoint compu- Section 4 discusses query evaluation algorithms for rela-
tations are encoded as recursive PL/SQL programs. In aflonal algebra on top of WSDs. Since we consider queries
cases, the size of the rewriting is linear in the size of thahat are semantically evaluated within each world, these al
input query. For the operators that require pure SQL onlyorithms do not need to explicitly take into account proba-
this essentially means that the complexity of queryingés pr bility distributions over the possible worlds.
served and remains polynomial. Figure 16 shows the imple- |, this section, we also consider queries that look across
mentation of the selection with constant on UWSDTs. worlds and compute confidence of tuples. Toefidencef
a tuplet in the result of a query) is defined as the sum of
the probabilities of the worlds that contairin the answer
to Q. Clearly, iterating over all possible worlds is infeasible
algorithm selectidéc]  // computeP := oagc.R We therefore adopt an approach where we only iterate over

begin
1 PO = oapea s RO: the local worlds of the relevant components.

2.F:=FU{(Pt.B,k) | (Rt.B,k) € F,t € P°};
3.C:= CU{(Pt.B,w,v) | (Rt.B,w,v) € C,t € P°,

(B=A=v0c)}; /I computec := con f(t)
/I Remove incomplete world tuples algorithm conf (tuplet over schemgAy, ..., An))
4.C:=C - {(Pt.X,w,v) € C| (Pt.X,k),(Pt.Y,k) € F, begin
te PO, X £Y, A : (Pt.Y,w,v') € C}; lettq,...,tn be the ids of tuples defined by input WSD;
5. F:=F—{(Pt.B,k)| (Pt.B,k) € F, /I Keep only columns and rows of component3/f
Aw,v : (P.t.B,w,v) € C}; /I that define possible fields of
6.P0:=P0—{t|tePY AB,a: (P.t.B,a) € F}; foreachC; € Wdo C] :=my, (04, (C;)) where
end i = SCh(Ci)ﬂ{tl.A]‘ [1<1<n,1<j<m} and
. . b=V (tA; =t.A);
Fig. 16 EvaluatingP := o 44.(R) on UWSDTSs. . AjEN,

compute equivalent tuple-level WSB” of the above set of/;
(i.e., compose components defining fields of the same tuple)

¢ := 0; // initially, confidence oft is 0
foreachC € W’ do
In contrast to some algorithms of Figure 9, for UWSDTs begin

we do not create a copl of R at the beginning, but rather confc := 0; // probability thatC' defines tuples that equal
. . ; for eachtc € C do
compute directly” from R using standard relational algebra it £ = (0. (1. A1), ...t (1. Apm)) for sOMmEt;
operators. The templafé® is initially the set of tuples ofz° then con for 1= confe + to. P:
that satisfy the selection condition, or have a placehofier // matches irC are independent from those in other components
for the attributeA (line 1). We extend the mapping relation ot 1= ~¢)-(1~confo);

F with the placeholders aP? (line 2), and the component
relationC' with the values of these placeholders, where the
values of placeholdet®.t. A for the attributed must satisfy ~ Fig- 17 Computing confidence of possible tuples.
the selection condition (line 3). If a placeholder. A has

no value satisfying the selection condition, thesremoved
from PP (line 6) and all placeholders ofare removed from
F (line 5) together with their values frodl (line 4).

end

Figure 17 gives our confidence computation algorithm
for a tuplet over schemdA,, ..., 4,,). It first computes a
pruned version of the input WSD, where we keep for each

Many of the standard query optimization techniques aréomponent only columns that define fields for attributes
also applicable in our context. For our experiments regortet:-A1, - . ., ti.Ap, of any tuple idt;, and only rows that define
in Section 9, we performed the following optimizations onfields, whose values equal the corresponding ones in
the sequences of SQL statements obtained as rewritings. For Next, a tuple-level representation of the pruned WSD is
the evaluation of a query involving join, we merge the prod-computed. This representation enforces that all fields wf an
uct and the selections with join conditions and distributetuple encoded by the WSD are defined in the same compo-
projections and selections to the operands. When evaluatent. Confidence computation can be performed efficiently
ing a query involving several selections and projections omn tuple-level WSDs. This tuple-level normalization cawho
the same relation, we again merge these operators and peser lead to a exponential blowup in the representation size
form the steps of the algorithm of Figure 16 only once. WeThis is necessary, since there may be exponentially many
further tuned the query evaluation by employing indices angbossible tuples encoded by a WSD. Moreover, special cases
materializing often used temporary results. of confidence computation, such as deciding whether a tuple



is certain, i.e., it occurs in all worlds represented by a WSD

are known to be NP-hard [9]. d lcon.”E“teP ::.gloss"blep(R)
Confidence computation on tuple-level WSDs is based zg&zt m possibie

on the observation that worlds containingre extensions of P =0

local worlds from a componeid where some tuples equal for each distinctt in possible(R) do

add(t, conf(t)) to P;

t. Since the local worlds of a component define non-overlapg end

ping sets of worlds, to compute the probability that a com
ponentC defines tuples that equalwe only need tosumup  — _ _ _ _ _
the probabilities of the local worlds @f that definet. Fur- Fig. 19 Computing possible tuples together with their confidences.
thermore, since any two components of a WSD are indepen-

dent of each other, the events stating that a given componefifay pe computed in two steps: First computing the query

defines tuples that equadre pairwise independent. result, and then computing the possible tuples and their con
We next consider the operator possible that computes thgjences.

tuples appearing in at least one world of the world-set. For-

mally, for a relation namé& and a world-sef\, the operator Example 11Consider the probabilistic WSD of Figure 4,
possible is defined as: query@ = ws(R), and tuplet = (185). Let Cy denote the
first component. This component represents the answer to
the projection query. There are two tuple ids whose values
match the given tuplé, and they are already defined in the
same component;. To compute the confidence ofwe

possible(R)(A) := {t | A€ A,t € R*}

/I computeP := possible(R) therefore need to sum up the probabilities of the first and
Slgqflthm possible (relationz over schemdAs, . .., Am)) second local world, obtaining24-0.4 = 0.6. The following
egin . . .
let 1., be the ids of tuples i defined by input WSDV: ta_ble co_ntams_the pos§|ble tuples in the answé) together
/1 Keep only columns of components of the input WBD with their confidences:

// that define possible tuples iR
for eachC; € Wdo C/ := 7, (C;) where
Ai = sch(C;)) N {RtA | t € {t1,...,tn},A €
{Alv ces Am}}

compute equivalent tuple-level WS’ of the above set of/;
(i.e., compose components defining fields of the same tuple)

P := (; //initially, no tuple is possible

for eachtuple idt € {t1,...,t,} do . S
for eachug Elw,edgl’ in} 7 Normalizing probabilistic WSDs

addmr.i Ay, Rt Apm (N, Rt.a;71(C)) 1OP; o . o
end - The normalization of a WSD is the process of finding an
equivalent probabilistic WSD that takes the least spacangmo
all its equivalents. Examples of not normalized WSDs are
non-maximal WSDs (with respect to product decomposi-
tion) or WSDs defining invalid tuples (i.e., tuples that d@ no

Figure 18 gives an algorithm for computing the set ofappear in any world). Note that removing invalid tuples and
possible tuples of a relatiofl in the non-probabilistic case. maximizing world-set decompositions can be performed in
The algorithm first discards all columns of components inyolynomial time [9].
the input WSD that do not define possible fields for tuples  Figyre 20 gives three algorithms that address these nor-
of R. It then computes an equivalent tuple-level WSD repmalization problems. The second algorithm decomposes a
resentation of the set of components of the previous step. ASsmponent into a set of components whose product is equal
for confidence computation, this tuple-level normalizatio {4 the original component. A polynomial-time algorithm for
can lead to an exponential blowup. Also here, this is Unfinding the prime factorization of a relation, i.e. for maxi-
avoidable, since a WSD can represent exponentially many,|ly decomposing a relation is presented in [9]. The third
possible tuples (similar to or-sets). In case the input WSy qorithm scans for identical tuples in a component and com-

is already tuple-level, it then encodes polynomially manyyresses them into one by summing up their probabilities.
possible tuples and our algorithm would only need polyno-

mially many computation steps. Example 12The WSD of Figure 11 (a) has only-values

In the probabilistic case, the operator possible can be exXer P.to.C. This means that the tuptge of P is absent (or
tended to also compute the confidence of the possible tupleisvalid) in all worlds and can be removed. The equivalent
see Figure 19. Confidences of tuples in query results caw/SD of Figure 21 shows the result of this operation. Similar

Fig. 18 Computing possible tuples.



algorithm removeinvalid_tuples
begin
foreachl < i < |P|maz @andA € sch(P) do begin
let C be the component aP.t;. A;
if TPt A= {J_} then
for each B € sch(P) do begin
let C’ be the component aP.t;.B;
project awayP.t;.B from C’;
end
end
end

algorithm decompose
begin
while no fixpoint is reachedo begin
let C be a component such that
C=C1 x...xChp;
replaceC by C1, ..., Ch;
end
end

algorithm compress
begin
while no fixpoint is reachedo begin
let C' be a componenty;, w2 € C such that
wi.A=wq. Aforall A € sch(C), A # P;
let w be a tuple such that. P := w1.P + w2. P,
w.A:=wi.Aforall A € sch(C), A # P;
replacew;, ws in C by w;
end
end

Fig. 20 Algorithms for WSD normalization.

simplifications apply to the WSD of Figure 11 (b), where

tuplest, andts are invalid.

Pt A P+1.B Pt;.C

Pt3.A Pt3.B P#3.C

1
2

x| L L |x

X X
5 7 6 6 7

Fig. 21 Normalization of WSD of Figure 11 (a).

[18] for data cleaning on a world-set decomposition of a re-
lation R, given a set of dependenciés

We consider the following types of dependencies over a
relationR:

— functional dependencielenoted by
Ar,..., Ay — Ap, where A; € sch(R),0<i<m

— single-tuple equality-generating dependenciithe form
O1L N\ P2 A oo A Oy, = Do

where eaclp;(A;) = A;0;c;,0 < i < m s abinary op-
eration comparing the value of an attribute € sch(R)
with a constant;. Relation R satisfies a single-tuple
equality-generating dependefi@gd (denoted byR |=
egd) if for each tuplet € R

t.Al Orci AL A tAm O cm = t.AQ 90 Co

To remove worlds inconsistent with an integrity con-
straints from a set of possible worlds represented as a WSD
we need to exclude combinations of values from the com-
ponents that cause the constraint to be violated. For that
we may need to compose components to be able to enforce
the dependencies. Recall Example 2 from the introduction.
The uniqueness constraint for the social security number is
a functional dependency — N, M, equivalent to the two
functional dependencies — N andS — M. To enforce
this constraint we combined the twgfields ;.S andt,.S)
in the same component and removed the worlds in which
both have the same value (see Figure 4).

Assume now that from a reliable source we have the in-
formation that the person with social security number 785
is married. The current decomposition allows invalid com-
binations of values: those worlds in whi¢ch.S = 785 and
t1.M # 1 (1 is the code for married). To remove incon-
sistencies, we must compose the first and the third compo-
nents and remove from the new component all tuples that do
not satisfy the given dependency. When removing tuples of
a component we must also renormalize the probabilities of

Example 13The 4-WSD of Figure 13 admits the equiva- f[he remaining tuples so that they sum up to one again. This

lent 5-WSD, where the third component is decomposed int
two components. This non-maximality case cannot appe
for UWSDTSs, because all but the first component contai

¢s easily done in the following way: if a tuple with proba-
Aility z is removed from a component, apds the original
fprobability of a tuple that remains, then the new probapilit

! H ~
only one tuple and are stored in the template relation, wheré Of the second tuple is recomputedifis= y/(1 — ). In
no component merging occurs.

8 Chasing Dependencies

our example, as a result of the data-cleaning step we obtain
the 4-WSD in Figure 22.

Enforcing a dependency on a WSD resembles the selec-
tion operation with conditiomd B presented in Chapter 4.

In both cases we identify dependencies across components

In this section we address the problem of removing incong;md compose dependent components. Nevertheless there is

sistent worlds from a probabilistic database. We present a+ gypsequently, whenever we refer to edgs, we mean single-tup
method calledChase[3,24,2] in the spirit of the work of edgs.




t1.St2.St1. M| P to.M| P
185 186 1]0.1842 1025
185 186 2 |0.0790 | x St?n:\tlh ',i x |3tr26van '; <| 2025
785 185 1 |0.3684 3 |0.25
785 186 1 |0.3684 4 0.25

Fig. 22 Result of chasing = 785 = M = 1 on the WSD in Figure 4.

an important difference between the two operations. In the We can further refine the data cleaning rules and avoid
selection operation we are interested in finding, for eachledundant operations if we make the following observations
world, the subset of tuplegalid in it. On the other hand, For a functional dependency

when enforcing dependencies on a WSD, we want tohget

maximal subset of the possible worklsch that the depen- fd=Ay, ..., Am — Ag

dencies hold foall tuples If a tuple has no valid values in
any of the worlds, this automatically means that the databa hats.A; — t.A; in all worlds, we do not need to join the

1S |nconS|ste_nt with respect to the given set Ofde.pendehmecomponents defining.A; andt.A;. Alternatively, if in all
As seen in the previous examples, cleaning inconsistent
. . . worldss. Ay # t.Ap, we can leave the components for
worlds involves two basic steps: (1) composing dependent . .
) N X andt.Aq unmerged. The same idea can be applied for an
components into one and (2) removing inconsistent tuples . .
. L .-equality-generating dependency
from the resulting component, and normalizing the probabil
ities _of the remaining tuples so that they sum up to one. Exégd — A1 011 A NA, O e = Ao B co
ecuting these two steps for each dependency and each (pair
of) tuple(s) in the input WSD results in a WSD satisfying all tuple s and an attributel,;, 1 < i < m, such that,(¢.4;) =
constraints. true in all worlds, orgg(t.Ao) is alwaysfalse, we do not
Before proceeding to the formal algorithm for chasingneed to compose the corresponding component.
dependencies, we introduce the following notations. The chase procedure is not affected by the order in which
If fd = A4,..., A, — Agis afunctional dependency for dependencies are chased, as it always produces the set of
relation R, s,t are tuples ids inR and all attributess. A;,  possible worlds consistent with the given dependencies-Ho
t.A; with 0 < i < m are defined in a compone@t, and ever, order may have an impact on the size of the resulting
tc is atuple ofC, we will usete | fd(s,t) to express the decomposition. This means that the world-set decomposi-
condition that the dependengy! is satisfied fors and¢ in  tion produced by the Chase algorithm may be non-maximal,
the worldst¢: which was also the case with querying. Consider for exam-

lo = fd(s,t) < ple the WSD in Figure 23 (a) and the set of two dependen-

cies
N (to-(s.4) = to.(t.A)) = to.(s.Ag) = te.(t.Ag)
i D={di=B—-C)dy=(A=1= B#2)}

Similarly, if ¢ is a tuple id for relatiornR,

and tuples andt, if for an attributeA;, 1 < i < m it holds

Chasingd; = B — C requires the compositions of the
egd = A1 01 c1 A oo A Ay O o = Ag 0o co components fot;.B, t2.B, t1.C andt,.C to remove the worlds
in whicht,.B = t5.B andt;.C' # t5.C (see Figure 23 (c)),
is an equality-generating dependency aend all attributes and enforcingd, deletes tuples from the resulting compo-
t.A;,0 <4 < mare defined in a compone@t andtc isa nent (see Figure 23 (d)). However, if we start with, in
tuple ofC, t¢ |= egd(t) is true if and only if the dependency the resulting WSDd; will also be satisfied and no merg-

egd is satisfied for in the worldst: ing of components will be necessary (Figure 23 (e)). Note
that although the two world-set decompositions are differ-
to = egd(t) < /\(tc'(t'Ai) 0i ci) = te.(t-4o) 0o co ent, they are equivalent with respect to the set of possible

3

worlds they represent. Indeed, the WSD in Figure 23 (d) can
The algorithm of Figure 24 implements the data cleanbe reduced to the one in Figure 23 (e) using the normaliza-

ing for a given world-set decomposition and a set of depention techniques from Section 7.

denciesd. Note that as opposed to the traditional chase on Asinthe case of querying, the chase might need to merge

tableaux ([24]), here we do not need a fixpoint computaan arbitrary number of components. However, if constraints

tion but a single pass over all dependencies and tuples iare local and do not span over numerous tuples, the chase

the WSD. The reason for this is that enforcing a functionalwill also behave nicely.

or equality-generating dependency on a WSD cannot induce The following theorems prove the correctness of the Chase

further inconsistencies in the data. algorithm.



t1.B | P t2.B| P t2.C| P
tll'A '; x[T [05|x tls'c '; x t22'A '; «[ T2 [05|x[ 5 [05|D={di=(B—C)d=(A=1=B+2)}
2 0.5 3 0.5 6 0.5
(a) World-set decomposition (b) Set of dependencies
t1.Bt2.Bt1.Ct3.C | P
1 g 2 2 ig I BLBLCLC|P
AP [RATP] | 1 3 5 5 |7 nAP) [BA]P], 1 g 2 2 8'52
1 1 2 1 1 3 5 6 |1/7 1 1 2 1 '
5> 2 5 5 |17 1 3 5 5 |025
5 3 5 5 |17 1 3 5 6 |0.25
2 3 5 6 |17
(c) Result of chasing; on the WSD of (a) (d) Result of chasirg on the WSD of (c)
WA[P| [4B[P| [ClP| [BA[P| 2B L t2C| P
1 1 X 1 1 X 5 1 X > 1 X 2 0.5 [x 5 0.5
3 0.5 6 0.5

(e) Result of chasing: befored;

Fig. 23 Impact of order on chasing.

/I chase a set of dependencies
algorithm chase
begin
for each d for relationR in ¢ do
ifd=A1,...,Apn — Apthen//disafd
for eachs,t € R: {s,¢} ¥ d in some worlddo begin
let C;,, Cy, be the component f A;,t. A;,
respectively, for each < i < m;
replaceCj,, ..., Cj,.,Crqys - - -, Ck,, INW
by their productC;
for eachtc € C do
if tc ¥ d(s,t) then
removetc from C;
for eacht,, € C do
/I normalize probabilities
ty. P =t.P/(1—tc.P);
end if
if C = () then error("World-set is inconsistent”);
end
elseifd =¢1 A... A pm — ¢o // disanegd
for eacht € R : {¢t} ¥ d in some worlddo begin
let C; be the component afA;, for 0 < i < m;
replaceCo, . .., Cm in W by their produciC;
for eachtc € C do
if to ¥ d(t) then
removetc from C;
for eacht;, € C do
/I normalize probabilities
ty,.P =t.P/(1—tc.P);
end if
if C = () then error("World-set is inconsistent.”);
end,
end.

Fig. 24 Algorithm for chasing integrity constraints on probalitis

WSDs.

Theorem 2 The algorithm of Figure 24 terminates on all
inputs.

Theorem 3 (Correctness)or a WSDW and a set of de-
pendencie®, the algorithm of Figure 24 exits with an error
message if no world is consistent with the given set of depen-
dencies, or computes a WS’ s.t. rep(W') C rep(W)

and for eachA € rep(WV):

AecrepW) & AE &.

9 Experimental Evaluation

The literature knows a number of approaches to representing
incomplete information databases, but little work has been
done so far on expressive yet efficient representation sys-
tems. An ideal representation system would allow a large set
of possible worlds to be managed using only a small over-
head in storage space and query processing time when com-
pared to a single world represented in a conventional way.
In the previous sections we presented the first step towards
this goal. This section reports on experiments with a large
census database with noise represented as a UWSDT, where
the focus is on representation sizes and processing times fo
relational algebra queries on world-set decompositiores. W
do not investigate here the confidence computation aspect
of query processing. Followup work of the authors [23] re-
ports on experiments using scalable confidence computation
techniques.

Setting. The experiments were conducted on a Dual Intel
Xeon 5335 processor machihwith 32 GB RAM, running

5 The processor has 8 cores running at 2.0 Ghz. The experiments
were run on a single core.



Red Hat Enterprise Linux 4 (Linux Kernel 2.6.18) and Post- ; E:ETEEEN = (1) = :\'}I/:M'T(ZRRY = 2
. = = | =
greSQL 8.3 configured to use 256MB as buffer. . 3| KOREAN —1 — MILITARY 1_4
Datasets The IPUMS 5% census data (Integrated Public 4| VETNAM =1 = MILITARY '=4
Use Microdata Series, 1990) [27] used for the experiments is 2 | wwill =1 = MILITARY !=4
the publicly available 5% extract from the 1990 US census, g maggﬁt - = Egigﬂgg : ZS
.. . . . . = = | =
f:on5|st|n_g of 50 (exclu§|vely) multiple-choice questiots 8 | LANG1 _ . ENGLISH 1—2
is a relation with 50 attributes and 12491667 tuples (approx 9 | RPOB —-52 — CITIZEN 1—0
12.5 million). The size of this relation stored in PostgréSQ 10 | SCHOOL =0 = KOREAN !=1
is ca. 3 GB. We also used excerpts representing the first 0.1, | 11 | SCHOOL =0 = FEBS5 t=1
12 | SCHOOL =0 = Wwill =1

0.5,0.75, 1,5, 7.5, and 10 million tuples.
Adding Incompleteness We added incompleteness as fol- Fig. 25 Example dependencies for cleaning census data.
lows. First, we generated a large set of possible worlds by

introducing noise. After that, we cleaned the data by remov- Chase times
ing worlds inconsistent with respect to a given set of depen- 10000 p————7— —rT3
dencies. Both steps are detailed next. 1000 [ 0.05% --x---

We introduced noise by replacing some values with or- o bomee o o
set§. We experimented with different noise ratios: 0.005%, 100 F o 1»‘»’,,:,1/:""' |
0.01%, 0.05%, 0.1%. For example, in the 0.1% scenario one =g 0 3
in 1000 fields is replaced by an or-set. The size of each or-set
was randomly chosen in the ran@emin(8, size)], where
sizeis the size of the domain of the respective attribute (with tuples in millions (In scale)

Eig. 26 Time for chasing the dependencies of Figure 25 on UWSDTs
a measured average of 3.5 values per or-set). In one scenagiq,. ious sizes and densities

we had far more thaf®24449 worlds, where 624449 is the

=
o

time in sec (In scale)

1
— [IT)
~

[N

0.75
10

125

0
S]

0.1

number of the introduced or-sets and 2 is the minimal size Density | 0.005% 0.01%  0.05% 0.1%
of each or-set (cf. Figure 27). Initial | #comp 31095 62517 312699 624311
We th ¢ d data cleani ing 12 lit After | #comp 30820 61945 309788 618466
Ne then performed data cleaning using 12 equality gen- ;.ce | 4comp-1 | 268 547 2805 5612
erating dependencies, representing real-life constaint lel 105150 211770 1061212 2117219
the census data, shown in Figure 25. These represent real- |R)| 125M  125M  12.5M 12.5M
life constraints on the census data. The first one for examplegfter Zcomp . 274 71503 571333 7164251
.\ . . . 1 comp>
says that citizens bo-rn in the USA are not |mm|gr§mts, and | 1773 4017 19225 37661
the second one requires that citizens who served in the sec- IR| 46608 46827 48460 50466
ond world war have done their military service. Note that After | #comp 21 46 256 459
or-set relations are not expressive enough to represent thé’2 ch|0mp>1 82 %45 ‘l - 126361
cleaned data VYIth dependenues. _ _ IR| 82996 83029 83275 83616
To remove inconsistent worlds with respect to given de="after | #comp 61 113 292 961
pendencies, we apply the chase algorithm from Section 8,Q3 #comp-1 | O 0 0 0
see also [6]. The chase is implemented in Java as a layer on }g: 13851 21:‘3?)19 11%1556 210920354
i - e
tpp of Pos?greSQL. Flggre 26 shows a log Iog scale of the Afier | Fcomp 1558 3150 5553 31379
times pbtameq for chasing the ;2 dep.endenmes on datasetg, #comps1 | 15 29 141 322
with different sizes and uncertainty ratios. |C| 4870 9117 46715 94747
Figure 27 shows the effect of chasing our dependencies |R| 402349 402541 404031 405830
on the 12.5 million tuples and varying placeholder density. A" Zggmgﬂ ig gg i;g ggg
As a resul.t of merging components, the number of com- *° C| 24451 40552 279295 561545
ponents with more than one placeholder (#coripgrows IR 158519 188790 378849 584207
linearly with the increase of placeholder density, reaghin After | #comp 94 193 950 1877
about 1.7% of the total number of components (#comp) in ¢ chc|omp>1 219 2077 05303 010304
the 0.1% case. A linear increase is witnessed also by the IR| 200592 230102 234195 239621

chasing time when the number of tuples is also varied. Fig-_ —
ure 28 breaks down the distribution of component size, thaf'd- 27 UWSDTs characteristics for 12.5M tuples.
is the number of placeholders per component for some of

6 We consider it infeasible to iterate over all worlds in sestany our scenarios. One can see that the number of components

storage or to compute UWSDT decompositions by comparing th&Vith |.arger size drops QOwn very quickly and mOSt ﬁe|d_5
worlds. remain independent. Since we used an anonymized version



Size OD%?)SEY Sizzeolg Sige 2| size 3| size 4 and more Figure 27 describes some characteristics of the answers
gm 0:01;;/0 ;4254 ;12 ? to these queries when applied on the cleaned 12.5M tuples of
EM 0.05% | 122652 | 1065 | 38 IPUMS data: the total number of components (#comp) and
5M 0.1% 245561 | 2142 | 93 of components with more than one placeholder (#cothp
10M | 0.005% | 24310 | 200 | 6 the size of the componentrelatiéh and the size of the tem-
18'\" 8-81?’ 48943 | 430 | 16 plate relationR. One can observe that the number of com-
iom o:oioz ig?gig géid' 33 ponents increases linearly with the placeholder densitly an
125M | 0.005% | 30552 | 261 | 7 that compared to chasing, query evaluation leads to a much
125M | 0.01% | 61398 | 522 | 25 smaller amount of component merging.
12.5M | 0.05% | 306983 | 2703 | 98 Figure 30 shows that all six queries admit efficient and
12.5M | 0.1% 612854 | 5384 | 223 scalable evaluation on UWSDTs of different sizes and place-
Fig. 28 Distribution of component size (number of placeholders perholder densities. The Figure plots on a log-log scale the eva
component) of the chased relations for different sizes amdities. uation time versus the size of the relation, and each line cor
responds to a different noise density. The evaluation time
for all queries but)s on UWSDTSs follows very closely the
evaluation time in the one-world case. The one-world case
corresponds to density 0% in our diagrams, i.e., when no
placeholders are created in the template relation and eonse
quently there are no components. In this case, the original
queries (that is, not the rewritten ones) of Figure 29 were
evaluated only on the (complete) template relation.

g b O|O|O|O| Ol N OO

Q1= C"YEARSCH:17/\CITIZEN:0(R)

Q2 = 7rPOWSTATE,CITIZEN,IMMIGR(O'CITIZEN<>0/\ENGLISH>3(}%))

Qs := 7rPOWSTATE,MARITAL,FERTIL(‘J'POWSTATE:POB
(UFERTIL>4/\MARITAL:1(R)))

Q4 = OFERTIL=1A(RSPOUSE=1vRSPOUSE=2) (I?)

@5 = dpowsTate— P, (TPOWSTATE > 50 (Q2)) BIPy =P, Although the evaluation of join conditions on UWSDTs
SpowsTATE — P, (PowsTATE > 50 (Q3)) can require exponential time (due to the composition of-arbi
Q6 := mpowsTaTE POB (7ENGLISH=3 (1)) trarily many components), our experiments suggest thgt the
behave well in practical cases, as illustrated in FigurggB0
Fig. 29 Queries on IPUMS census data. and (e) for querie®); and @5 respectively. The time re-

ported for@; does not include the time to evaluate its sub-

queries@-, and@s. In our largest scenarios (12.5M tuples
of the census dataset, we did not perform the chase witdnd varying densities of uncertainty), the time to evaluate
key dependencies like the ones described in Section 1. NotgieryQs increases non-linearly, partly due to the change of
that when chasing dependencies we only need to composgiery plans used by PostgreSQL and triggered by the in-
components if the possible values for the fields allow for ecrease in the input data size.
constraint to be violated, that is, if there is an invalid d@m In summary, our experiments show that UWSDTs be-
nation of values for the respective fields. Thus while chsin have very well in practical cases. We found that the size of
key constraints can in theory require the composition of allJWSDTs obtained as query answers remains close to that
components for a given attribute, this is unlikely to happerof one of their worlds. Furthermore, the processing time for
in practice as it will require the existence of a chain of pair queries on UWSDTSs is comparable to processing one world.
of uncertain key fields that share at least one value. The explanation for this is that in practice there are rather

Queries Six queries were chosen to show the behavior of€W differences between the worlds. This keeps the mapping
relational operators combinations under varying seliigiy ~ @nd componentrelations relatively small and the lion'ssha
(cf. Figure 29). Query), returns the entries of US citizens of the processing time is take_n by the templates, whose sizes
with PhD degree. The less selective quély returns the ~are aboutthe same as of a single world.

place of birth of US citizens born outside the US that do not

speak English well. Quergs retrieves the entries of wid-

ows that have more than three children and live in the stat&0 Application Scenarios

where they were born. The very unselective qu@uyre-

turns all married persons having no children. Qu@gyuses  Our approach is designed to cope with large sets of possi-
query@, andQ@s to find all possible couples of widows with ble worlds, which exhibit local dependencies and large com-
many children and foreigners with limited English languagemonalities. This data pattern can be found in many applica-
proficiency in US states with IPUMS index greater than 5Qtions. In addition to the census scenario used in Section 9,
(i.e., eight ‘states’, e.g., Washington, Wisconsin, Alitfoa we next discuss two further application scenarios that can
Finally, queryQg retrieves the places of birth and work of profit from our approach. As for the census scenario, we
persons speaking English well. consider it infeasible both to iterate over all possiblelder
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Fig. 30 The evaluation time for queries of Figure 29 on UWSDTs ofmasisizes and densities.

in secondary storage, or to compute UWSDT decomposieomponents and independent data in separate components.
tions by comparing the worlds. Thus we also outline howOne can ask then for possible patient diagnostics, given an

our UWSDTs can be efficiently computed. incompletely specified medical history of the patient, ar fo
Inconsistent databasesA database is inconsistent if it does commonly used medication for a given set of diseases.
not satisfy given integrity constraints. Sometimes, ecifay In [1] interdependencies of medical data are modeled as

the constraints is undesirable. One approach to manage sulihks. A straightforward and efficient approach to wrap such
inconsistency is to consider so-callednimal repairsi.e., datain UWSDTSs is to follow the links and create one com-
consistent instances of the database obtained with a minimponent for all interrelated values. Additionally, eachelif
number of changes [10]. A repair can therefore be viewed asnt kind of information, like medications, diseases, isexio

a possible (consistent) world. The number of possible miniin a separate template relation.

mal repairs of an inconsistent database may in general be ex-

ponential; however, they substantially overlap. For teatr

son repairs can be easily modeled with UWSDTS, where theé1 Conclusion

consistent part of the database is stored in templateaakati

and the differences between the repairs in components. Curhis article presents one of the first database approaches to
rent work on inconsistent databases [10] focuses on findinmanaging probabilistic data on a large scale. We describe
consistent query answelise., answers appearing in all pos- world-set decompositions which can compactly store large
sible repairs (worlds). With our approach we can providesets of possible worlds by exploiting independence of uncer
more than that, as the answer to a query represents a settainty at the attribute level. WSDs form a strong representa
possible worlds. In this way, we preserve more informatiortion system for any relational query language. This is an im-
that can be further processed using querying or data clganirportant property for implementing operations that transfo
techniques. world-sets such as data cleaning or evaluating expressive
Medical data. Another application scenario is modeling in- queries on top of the world-set; it also allows for decougplin
formation on medications, diseases, symptoms, and medicebnfidence computation from relational algebra processing
procedures, see, e.g., [1]. A particular characteristgugh  and using a preferred query plan for optimal performance.
data is that it contains a big number of clusters of interde©Our experimental evaluation shows that WSDs admit effi-
pendent data. For example, some medications can interagient query evaluation.

negatively and are not approved for patients with some dis-

eases. Particular medical procedures can be prescribed for

some diseases, while they are forbidden for others. In thacknowledgments

large set of possible worlds created by the complex interac-

tion of medications, diseases, procedures, and symptoms;Tais work has been supported by grant KO 3491/1-1 of the
particular patient record can represent one or a few pa&ssiblGerman National Science Foundation (DFG) and later by
worlds. Our approach can keep interdependent data withigrant [1S-0812272 of the US National Science Foundation.
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