Declarative Probabilistic Programming with Datalog

Vince Bárány, LogicBlox, inc.
Balder ten Cate, LogicBlox, inc.
Benny Kimelfeld, LogicBlox, inc. and Technion – Israel Institute of Technology
Dan Olteanu, LogicBlox, inc. and University of Oxford
Zografoula Vagena, LogicBlox, inc.

Probabilistic programming languages are used for developing statistical models. They typically consist of two components: a specification of a stochastic process (the prior), and a specification of observations that restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include the development of algorithms in machine learning and artificial intelligence.

In this article we establish a probabilistic-programming extension of Datalog that, on the one hand, allows for defining a rich family of statistical models, and on the other hand retains the fundamental properties of declarativity. Our proposed extension provides mechanisms to include common numerical probability functions; in particular, conclusions of rules may contain values drawn from such functions. The semantics of a program is a probability distribution over the possible outcomes of the input database with respect to the program. Observations are naturally incorporated by means of integrity constraints over the extensional and intensional relations. The resulting semantics is robust under different chases and invariant to rewritings that preserve logical equivalence.

CCS Concepts:
- **Theory of computation → Constraint and logic programming; Database query languages (principles)**;
- **Mathematics of computing → Probabilistic representations**;

General Terms: Languages, Theory

Additional Key Words and Phrases: Chase, Datalog, declarative, probability measure space, probabilistic programming

1. INTRODUCTION

Languages for specifying general statistical models are commonly used in the development of machine learning and artificial intelligence algorithms for tasks that involve inference under uncertainty. A substantial effort has been made on developing such formalisms and corresponding system implementations [Paige and Wood 2014; Hershey et al. 2012; Pfeffer 2009; Mansinghka et al. 2014; Patil et al. 2010; Cowles 2013; Carpenter et al. 2016]. An actively studied concept in that area is that of Probabilistic Programming (PP) [Goodman 2013], where the idea is that the programming language allows for specifying general random procedures, while the system executes the program not in the standard programming sense, but rather by means of inference. Hence, a PP system is built around a language and an (approximate) inference engine, which typically makes use of Markov Chain Monte Carlo methods (e.g., the Metropolis-Hastings algorithm). The relevant inference tasks can be viewed as probability-aware aggregate operations over all possible outcomes of the program, also referred to as possible worlds. Examples of such tasks include finding the most likely possible world, or estimating the probability of a property of the outcome. Recently, DARPA initiated the
Probabilistic Programming for Advancing Machine Learning (PPAML), aimed at advancing PP systems, focusing on a specific collection of systems [Pfeffer 2009; Mansinghka et al. 2014; Milch et al. 2005], towards facilitating the development of algorithms and software that are based on machine learning.

In probabilistic programming, a statistical model is typically phrased by means of two components. The first component is a generative process that produces a random possible world by straightforwardly following instructions with randomness, and in particular, sampling from common numerical probability functions; this gives the prior distribution. The second component allows to phrase constraints that the relevant possible worlds should satisfy, and, semantically, transforms the prior distribution into the posterior distribution—the subspace obtained by conditioning on the constraints.

As an example, in supervised text classification (e.g., spam detection) the goal is to classify a text document into one of several known classes (e.g., spam/non-spam). Training data consists of a collection of documents labeled with classes, and the goal of learning is to build a model for predicting the classes of unseen documents. The common Bayesian approach to this task assumes a generative process that produces random parameters for every class, and then uses these parameters to define a generator of random words in documents of the corresponding class [Nigam et al. 2000; McCallum 1999]. The prior distribution thus generates parameters and documents for each class, and the posterior is defined by the actual documents of the training data. In unsupervised text classification the goal is to cluster a given set of documents, so that different clusters correspond to different topics that are not known in advance. Latent Dirichlet Allocation [Blei et al. 2003] approaches this problem in a similar generative way as the above, with the addition that each document is associated with a distribution over topics.

A Datalog program is a set of logical rules, interpreted in the context of a relational database (where database relations are also called the extensional relations), that are used to define additional relations (known as the intensional relations). Datalog has traditionally been used as a database query language. In recent years, however, it has found new applications in data integration, information extraction, networking, program analysis, security, cloud computing, and enterprise software development [Huang et al. 2011]. In each of these applications the motivation is that being declarative, Datalog has the potential to make specifications easier to write (sometimes with orders-of-magnitude fewer lines of code than imperative code, e.g., [Loo et al. 2009]), comprehend and maintain, the canonical example being reachability or cyclicity testing in graphs.

Our goal in this article is to establish a probabilistic extension of Datalog that, on the one hand, allows for defining a rich family of statistical models, and on the other hand retains the fundamental properties of declarativity, namely independence of the execution order and invariance under equivalence-preserving rewriting. On a par with existing languages for PP, our proposed extension consists of two parts: a generative Datalog program that specifies a prior probability space over (finite or infinite) sets of facts that we call possible outcomes, and a definition of the posterior probability by means of observations, which come in the form of ordinary logical constraints over the extensional and intensional relations. We subscribe to the premise of the PP community (and PPAML in particular) that this paradigm has the potential of substantially facilitating the development of applications that involve machine learning for inferring missing or uncertain information. Indeed, probabilistic variants are explored for the major programming languages, such as C [Paige and Wood 2014], Java [Hershey et al. 2012], Scala [Pfeffer 2009], Scheme [Mansinghka et al. 2014] and Python [Patil et al. 2010]. We discuss the relationship of this work to related literature in Section 7. In the context of the LogicBlox system [Aref et al. 2015], we are interested in extending...
Declarative Probabilistic Programming with Datalog

the Datalog-based LogiQL [Halpin and Rugaber 2014] with PP to enable and facilitate the development of predictive analysis. We believe that, once the semantics becomes clear, Datalog can offer a natural and appealing basis for PP, since it has an inherent (and well studied) separation between given data (EDB), generated data (IDB), and conditioning (constraints).

When attempting to extend Datalog with probabilistic programming constructs, a fundamental challenge is to retain the inherent features of Datalog. Specifically, the semantics of Datalog does not depend on the order by which the rules are resolved (chased). Hence, it is safe to provide a Datalog engine with the ability to decide on the chasing order that is estimated to be most efficient, and to apply techniques for partial evaluation of rules in incremental view maintenance [Gupta et al. 1993; Aref et al. 2015; Motik et al. 2015]. Another inherent feature is invariance under logical equivalence: two Datalog programs have the same semantics whenever their rules are equivalent when viewed as theories in first-order logic. Hence, it is safe for a Datalog engine to rewrite a program into one that is more efficient to execute, as long as logical equivalence is preserved.

For example, consider an application where we want to predict the number of visits of clients to some local service (e.g., a doctor’s office). For simplicity, suppose that we have a schema with the following relations: LivesIn(person, city), WorksFor(person, employer), LocatedIn(company, city), and AvgVisits(city, avg). The following rule provides an appealing way to model the generation of a random number of visits for a person.

\[
\text{Visits}(p, \text{Poisson}[\lambda]) \leftarrow \text{LivesIn}(p, c), \text{AvgVisits}(c, \lambda)
\]

(1)

The conclusion of this rule involves sampling values from a parameterized probability distribution. Next, suppose that we do not have all the addresses of persons, and we wish to expand the simulation with employer cities. Then we might use the following additional rule.

\[
\text{Visits}(p, \text{Poisson}[\lambda]) \leftarrow \text{WorksFor}(p, e), \text{LocatedIn}(e, c), \text{AvgVisits}(c, \lambda)
\]

(2)

Now, it is not clear how to interpret the semantics of Rules (1) and (2) in a manner that retains the declarative nature of Datalog. If, for a person \(p \), the right sides of both rules are true, should both rules “fire” (i.e., should we sample the Poisson distribution twice)? And if \(p \) works in more than one company, should we have one sample per company? And if \(p \) lives in one city but works in another, which rule should fire? If only one rule fires, then the semantics becomes dependent on the chase order. To answer these questions, we need to properly define what it means for the head of a rule to be satisfied when it involves randomness such as Poisson[\(\lambda \)].

Furthermore, consider the following (standard) rewriting of the above program.

\[
\text{PersonCity}(p, c) \leftarrow \text{LivesIn}(p, c)
\]

\[
\text{PersonCity}(p, c) \leftarrow \text{WorksFor}(p, e), \text{LocatedIn}(e, c)
\]

\[
\text{Visits}(p, \text{Poisson}[\lambda]) \leftarrow \text{PersonCity}(p, c), \text{AvgVisits}(c, \lambda)
\]

As a conjunction of first-order sentences that views Poisson[\(\lambda \)] as a function term, the rewritten program is logically equivalent to the previous one (made up of (1) and (2)); we would therefore like the two programs to have the same semantics. In rule-based languages with a factor-based semantics, such as Markov Logic Networks [Domingos and Lowd 2009] or Probabilistic Soft Logic [Bröcheler et al. 2010], the above rewriting may change the semantics dramatically.

We introduce PPDL, a purely declarative probabilistic programming language based on Datalog. The generative component of a PPDL program consists of rules extended
with constructs to refer to conventional parameterized numerical probability functions (e.g., Poisson, geometrical, etc.). Specifically, these mechanisms allow sampling values from the given parameterized distributions in the conclusion of a rule, and if desired, use these values as parameters of other distributions. In this article, our focus is on discrete numerical distributions. As we discuss in Section 8, the framework we introduce admits a natural generalization to continuous distributions, such as Gaussian or Pareto, but adjusting our theoretical analysis to such distributions is nontrivial since our proof techniques essentially rely on the discreteness of distributions. Semantically, a PPDL program associates to each input instance \(I \) a probability distribution over possible outcomes. In the case where all the possible outcomes are finite, we get a discrete probability distribution, and the probability of a possible outcome can be defined immediately from its content. But in general, a possible outcome can be infinite, and moreover, the set of all possible outcomes can be uncountable. Hence, in the general case we obtain a probability measure space. We define a natural notion of a probabilistic chase where existential variables are produced by invoking the corresponding numerical distributions. We define a measure space based on a chase, and prove that this definition is robust, in the sense that the same probability measure is obtained no matter which chase order is used.

A short version of this article has appeared in the 19th International Conference on Database Theory (ICDT 2016) [Bárány et al. 2016]. This article has the following additions compared to the short version. First, it includes all the proofs and intermediate results, which were omitted from the short version. Second, it includes a new section, Section 6, that describes the translation of Markov Logic Networks and stochastic context-free grammars into PPDL.

The rest of the article is organized as follows. After presenting preliminary definitions and concepts (Section 2) we describe the generative component of PPDL that we term GDatalog (Section 3). We then present a chase procedure for GDatalog and use it to prove some fundamental results (Section 4). We complement GDatalog with constraints (or observations) to establish the PPDL language (Section 5). We illustrate PPDL by showing a general translation from Markov Logic Networks (MLNs) into PPDL, and a translation from stochastic context-free grammars into PPDL (Section 6). Finally, we discuss related work (Section 7) and conclude (Section 8).

2. PRELIMINARIES

In this section we present preliminary notation and definitions that we use throughout the article.

2.1. Schemas and Instances

A (relational) schema is a collection \(S \) of relation symbols, where each relation symbol \(R \) is associated with an arity, denoted \(\text{arity}(R) \), which is a natural number. An attribute of a relation symbol \(R \) is any number in \(\{1, \ldots, \text{arity}(R)\} \). For simplicity, we consider here only databases over real numbers; our examples may involve strings, which we assume are translatable into real numbers. A fact over a schema \(S \) is an expression of the form \(R(c_1, \ldots, c_n) \) where \(R \) is an \(n \)-ary relation in \(S \) and \(c_1, \ldots, c_n \in \mathbb{R} \). An instance \(I \) over \(S \) is a finite set of facts over \(S \). We denote by \(R^I \) the set of all tuples \((c_1, \ldots, c_n) \) such that \(R(c_1, \ldots, c_n) \in I \).

2.2. Datalog Programs

PPDL extends Datalog without the use of existential quantifiers. However, we will make use of existential rules indirectly in the definition of the semantics. For this reason, we review here Datalog as well as existential Datalog. Formally, an existential Datalog program, or Datalog\(^2\) program, is a triple \(\mathcal{D} = (\mathcal{E}, \mathcal{I}, \Theta) \) where: (1) \(\mathcal{E} \) is a
schema, called the extensional database (EDB) schema, (2) \(I \) is a schema, called the intensional database (IDB) schema, disjoint from \(E \), and (3) \(\Theta \) is a finite set of Datalog\(^2\) rules, that is, first-order formulas of the form \(\forall x \left((\exists y \psi(x, y)) \leftarrow \varphi(x) \right) \) where \(\varphi(x) \) is a conjunction of atomic formulas over \(E \cup I \) and \(\psi(x, y) \) is an atomic formula over \(I \), such that each variable in \(x \) occurs in \(\varphi \). Here, by an atomic formula (or, atom) we mean an expression of the form \(R(t_1, \ldots, t_n) \) where \(R \) is an \(n \)-ary relation and \(t_1, \ldots, t_n \) are either constants (i.e., numbers) or variables. For readability’s sake, we omit the universal quantifier and the parentheses around the conclusion (left-hand side), and write simply \(\exists y \psi(x, y) \leftarrow \varphi(x) \). Datalog is the fragment of Datalog\(^2\) where the conclusion of each rule is an atomic formula without existential quantifiers.

Let \(D = (E, I, \Theta) \) be a Datalog\(^2\) program. An input instance for \(D \) is an instance \(I \) over \(E \). A solution of \(I \) w.r.t. \(D \) is a possibly infinite set \(F \) of facts over \(E \cup I \), such that \(I \subseteq F \) and \(F \) satisfies all rules in \(\Theta \) (viewed as first-order sentences). A minimal solution of \(I \) w.r.t. \(D \) is a solution \(F \) of \(I \) such that no proper subset of \(F \) is a solution of \(I \). The set of all, finite and infinite, minimal solutions of \(I \) w.r.t. \(D \) is denoted by \(\text{min-sol}_{D}(I) \), and the set of all finite minimal solutions is denoted by \(\text{min-sol}_{D}^{\text{fin}}(I) \). It is a well known fact that, if \(D \) is a Datalog program (that is, without existential quantifiers), then every input instance \(I \) has a unique minimal solution, which is finite, and therefore \(\text{min-sol}_{D}^{\text{fin}}(I) = \text{min-sol}_{D}(I) \) [Abiteboul et al. 1995].

2.3. Probability Spaces

We separately consider discrete and continuous probability spaces. We initially focus on the discrete case; there, a probability space is a pair \((\Omega, \pi)\), where \(\Omega \) is a finite or countably infinite set, called the sample space, and \(\pi : \Omega \rightarrow [0, 1] \) is such that \(\sum_{o \in \Omega} \pi(o) = 1 \). If \((\Omega, \pi)\) is a probability space, then \(\pi \) is a probability distribution over \(\Omega \). We say that \(\pi \) is a numerical probability distribution if \(\Omega \subseteq \mathbb{R} \). In this work we focus on discrete numerical distributions.

A parameterized probability distribution is a function \(\delta : \Omega \times \mathbb{R}^{k} \rightarrow [0, 1] \), such that \(\delta(\cdot, \p) : \Omega \rightarrow [0, 1] \) is a probability distribution for all \(\p \in \mathbb{R}^{k} \). We use \(\text{pardim}(\delta) \) to denote the parameter dimension \(k \). For presentation’s sake, we may write \(\delta(o|\p) \) instead of \(\delta(o, \p) \). Moreover, we denote the (non-parameterized) distribution \(\delta(\cdot|\p) \) by \(\delta[\p] \). An example of a parameterized distribution is \(\text{Flip}(\cdot|p) \), where \(\Omega = \{0, 1\} \), and for a parameter \(p \in [0, 1] \) we have \(\text{Flip}(1|p) = p \) and \(\text{Flip}(0|p) = 1 - p \). Another example is \(\text{Poisson}(\cdot|\lambda) \), where \(\Omega = \mathbb{N} \), and for a parameter \(\lambda \in (0, \infty) \) we have \(\text{Poisson}(x|\lambda) = \lambda^{x}e^{-\lambda}/x! \). In Section 8 we discuss the extension of our framework to models that have a variable number of parameters, and to continuous distributions.

Let \(\Omega \) be a set. An \(\sigma \)-algebra over \(\Omega \) is a collection \(F \) of subsets of \(\Omega \), such that \(F \) contains \(\Omega \) and is closed under complement and countable unions. (Implied properties include that \(F \) contains the empty set, and that \(F \) is closed under countable intersections.) If \(F' \) is a nonempty collection of subsets of \(\Omega \), then the closure of \(F' \) under complement and countable unions is a \(\sigma \)-algebra, and it is said to be generated by \(F' \). A probability measure space is a triple \((\Omega, F, \pi)\), where: (1) \(\Omega \) is a set, called the sample space, (2) \(F \) is a \(\sigma \)-algebra over \(\Omega \), and (3) \(\pi : F \rightarrow [0, 1] \), called a probability measure, is such that \(\pi(\Omega) = 1 \), and \(\pi(E) = \sum_{e \in E} \pi(e) \) for every countable set \(E \) of pairwise-disjoint elements of \(F \). For example, a discrete probability space \((\Omega', \pi')\) is viewed as the probability measure space \((\Omega, F, \pi)\) where \(\Omega' = \Omega \), the \(\sigma \)-algebra \(F \) consists of all the subsets of \(\Omega \), and \(\pi' \) is defined by \(\pi'(e) = \sum_{o \in e} \pi(e) \).

3. GENERATIVE DATALOG

A Datalog program without existential quantifiers specifies how to obtain a minimal solution from an input instance by producing the set of inferred IDB facts. In this
section we present generative Datalog programs, which specify how to infer a distribution over possible outcomes given an input instance. In Section 5 we will complement generative programs with constraints to establish the PPDL framework. We begin by describing the syntax of generative Datalog programs, and then establish their semantics. Specifically, we describe the notion of possible outcomes that constitute the samples in the sample space, which may be uncountable. We then construct a probability measure space over the sample space. Our main result (Theorem 3.8) states that this probability measure space is well defined. The proof of this result is deferred to Section 4. Finally, we discuss a syntactic restriction, weak acyclicity, which guarantees finiteness of possible outcomes.

3.1. Syntax

The syntax of a generative Datalog program is defined as follows.

Definition 3.1 (GDatalog(Δ)). Let Δ be a finite set of parameterized numerical distributions.

1. A Δ-term is a term of the form δ[p₁, . . . , pₖ] where δ ∈ Δ is a parameterized distribution with \text{pardim}(δ) = ℓ ≤ k, and each pᵢ (i = 1, . . . , k) is a variable or a constant. To improve readability, we will use a semicolon to separate the first ℓ arguments (corresponding to the distribution parameters) from the optional other arguments, which we will call the event signature, as in δ[p; q] (with q being the event signature). When the event signature is empty (i.e., when k = ℓ), we write δ[p].

2. A Δ-atom in a schema S is an atomic formula R(t₁, . . . , tₙ) with R ∈ S an n-ary relation, such that exactly one term tᵢ (i = 1, . . . , n) is a Δ-term and the other terms tⱼ are variables and/or constants.

3. A GDatalog(Δ) rule over a pair of disjoint schemas \mathcal{E} and \mathcal{I} is a first-order sentence of the form \forall x (\psi(x) \leftarrow \phi(x)) where \phi(x) is a conjunction of atoms in \mathcal{E} ∪ \mathcal{I} and ψ(x) is either an atom in \mathcal{I} or a Δ-atom in \mathcal{I}.

4. A GDatalog(Δ) program is a triple \mathcal{G} = (\mathcal{E}, \mathcal{I}, Θ), where \mathcal{E} and \mathcal{I} are disjoint schemas and Θ is a finite set of GDatalog(Δ) rules over \mathcal{E} and \mathcal{I}.

Example 3.2. Our example is based on the burglar example of Pearl [Pearl 1989] that has been frequently used to illustrate probabilistic programming (e.g., [Nori et al. 2014]). Consider the EDB schema \mathcal{E} consisting of the following relations: House(h, c) represents houses h and their location cities c, Business(b, c) represents businesses b and their location cities c, City(c, r) represents cities c and their associated burglary rates r, and AlarmOn(x) represents units (houses or businesses) x where the alarm is on. Figure 1 shows an instance I over this schema. Now consider the GDatalog(Δ) program \mathcal{G} = (\mathcal{E}, \mathcal{I}, Θ) of Figure 2.

Here, Δ consists of only one distribution, namely Flip. Rule (1) in Figure 2, intuitively, states that, for every fact of the form City(c, r), there must be a fact Earthquake(c, y)

Intuitively, δ[p; q] denotes a sample from the distribution δ(p) where different samples are drawn for different values of the event signature q (cf. Example 3.2).

The restriction to at most one Δ-term per atom is only for presentational purposes, cf Section 3.5.
where \(y \) is drawn from the Flip (Bernoulli) distribution with the parameter 0.01. Rules (2) and (3) define Unit as the union of House and Business. Rule (4) states that a burglary in a unit \(x \) is drawn by a Flip distribution with the parameter \(r \), which is the burglary rate of the city of \(x \). Rules (5) and (6) state that an alarm is randomly triggered in a house if there is either an earthquake or a burglary; in the first case the probability is 0.6 and in the second 0.9. Finally, Rule (7) states that the alarm is on in unit \(x \) if it is triggered therein.

The additional arguments Earthquake and \(c \) given after the semicolon (where Earthquake is a constant) enforce that different samples are drawn from the distribution for different cities (even if they have the same burglary rate), and that we use samples different from those in Rules (5) and (6), as those use the constant Trig rather than Earthquake. Similarly, the presence of the additional argument \(x \) in Rule (4) enforces that a different sample is drawn for a different unit, instead of sampling only once per city.

Example 3.3. The program of Figure 4 models virus dissemination among computers of email users. For simplicity, we identify each user with a distinct computer. Every message has a probability of passing a virus, if the virus is active on the source. If a message passes the virus, then the recipient has the virus; but the virus is not necessarily active, for instance, since the computer has the proper defence. And every user has a probability of having the virus active on her computer, in case she has the virus. Our program has the following EDBs:

- \(\text{Message}(m, s, t) \) contains message identifiers \(m \) sent from the user \(s \) to the user \(t \).
- \(\text{VirusSource}(x) \) contains the users who are known to be virus sources.

In addition, the following IDBs are used.

- \(\text{PassVirus}(m, b) \) determines whether message \(m \) passes a virus (\(b = 1 \) or not \(b = 0 \)).
- \(\text{HasVirus}(x, b) \) determines whether user \(x \) has the virus (\(b = 1 \) or not \(b = 0 \)).
- \(\text{ActiveVirus}(x, b) \) determines whether the virus is active for user \(x \) (\(b = 1 \) or not \(b = 0 \)).
3.1.1. Syntactic sugar. The syntax of GDatalog[Δ], as defined above, requires us to always make explicit the arguments that determine when different samples are taken from a distribution (cf. the argument c after the semicolon in Rule 1 of Figure 2, and the arguments x, c after the semicolon in Rule 4 of the same program). To enable a more succinct notation, we use the following convention: consider a Δ-atom \(R(t_1, \ldots, t_n) \) in which the \(i \)-th argument, \(t_i \), is a Δ-term. Then \(t_i \) may be written using the simpler notation \(\delta[p] \), in which case it is understood to be a shorthand for \(\delta[p; q] \) where \(q \) is the sequence of terms \(r, i, t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n \). Here, \(r \) is a constant uniquely associated with the relation \(R \). Thus, for example, \(\text{Earthquake}(c, \text{Flip}[0.01]) \leftarrow \text{City}(c, r) \) is taken to be a shorthand for \(\text{Earthquake}(c, \text{Flip}[0.01; \text{Earthquake}, c]) \leftarrow \text{City}(c, r) \). Using this syntactic sugar, the program in Figure 2 can be rewritten in a notationally less verbose way, cf. Figure 3. Note, however, that the shorthand notation is less explicit as to describing when two rules involve the same sample vs. different samples from the same probability distribution.

3.2. Possible Outcomes

A GDatalog[Δ] program \(G = (E, I, \Theta) \) is associated with a corresponding Datalog\(^3\) program \(\hat{G} = (E, I^\Delta, \Theta^\Delta) \). The possible outcomes of an input instance \(I \) w.r.t. \(\hat{G} \) will then be minimal solutions of \(I \) w.r.t. \(\hat{G} \). Next, we describe \(I^\Delta \) and \(\Theta^\Delta \).

The schema \(I^\Delta \) extends \(I \) with the following additional relation symbols: for each \(\delta \in \Delta \) with \(\text{pardim}(\delta) = k \) and for each \(n \geq 0 \), we have a \((k + n + 1) \)-ary relation symbol \(\text{Result}_n^\delta \). These relation symbols \(\text{Result}_n^\delta \) are called the distributional relation symbols of \(I^\Delta \), and the other relation symbols of \(I^\Delta \) (namely, those of \(I \)) are referred to as the ordinary relation symbols. Intuitively, a fact in \(\text{Result}_n^\delta \) represents the result of a particular sample drawn from \(\delta \) (where \(k \) is the number of parameters of \(\delta \) and \(n \) is the number of optional arguments that form the event signature).

The set \(\Theta^\Delta \) contains all Datalog rules from \(\Theta \) that have no Δ-terms. In addition, for every rule of the form \(\psi(x) \leftarrow \phi(x) \) in \(\Theta \), where \(\psi \) contains a Δ-term of the form \(\delta[p; q] \) with \(n = |q| \), \(\Theta^\Delta \) contains the rules \(\exists y \text{Result}_n^\delta(p, q, y) \leftarrow \phi(x) \) and \(\psi'(x, y) \leftarrow \phi(x), \text{Result}_n^\delta(p, q, y) \), where \(\psi' \) is obtained from \(\psi \) by replacing \(\delta[p; q] \) by \(y \).

A possible outcome is defined as follows:

Definition 3.4 (Possible Outcome). Let \(I \) be an input instance for a GDatalog[Δ] program \(G \). A possible outcome for \(I \) w.r.t. \(G \) is a minimal solution \(F \) of \(I \) w.r.t. \(\hat{G} \), such that \(\delta(b[p]) > 0 \) for every distributional fact \(\text{Result}_n^\delta(p, q, b) \in F \).

We denote the set of all possible outcomes of \(I \) w.r.t. \(G \) by \(\Omega_G(I) \), and we denote the set of all finite possible outcomes by \(\Omega^\Omega_G(I) \).

Example 3.5. The GDatalog[Δ] program \(G \) given in Example 3.2 gives rise to the Datalog\(^3\) program \(\hat{G} \) of Figure 5. For instance, Rule 6 of Figure 2 is replaced with Rules 6a and 6b of Figure 5. An example of a possible outcome for the input instance \(I \) is the instance consisting of the relations in Figure 6 (ignoring the "Pr(f)" columns for now), together with the relations of \(I \) itself.
The following proposition provides an insight into the possible outcomes of an instance, and will reappear later on in our study of the chase. For any distributional relation $R_n^x \in \Theta^x$, the functional dependency associated with R_n^x is the functional dependency $R_n^x : \{(1, \ldots, \text{arity}(R_n^x) - 1) \} \rightarrow \text{arity}(R_n^x)$, expressing that the last attribute of R_n^x is functionally determined by the other attributes.

Proposition 3.6. Let I be any input instance for a GDatalog[Δ] instance G. Then every possible outcome in $\Omega_G(I)$ satisfies all functional dependencies associated with distributional relations.

Proof. If an instance J violates the functional dependency associated with a distributional relation R_n^x, then one of the two facts involved in the violation can be removed, showing that J is, in fact, not a minimal solution w.r.t. G. □

3.3. Probabilistic Semantics

The semantics of a GDatalog[Δ] program is a function that maps every input instance I to a probability distribution over $\Omega_G(I)$. We now make this precise. For a distributional fact f of the form $\text{Result}_n^y(p, q, a)$, the probability of f, denoted $\Pr(f)$, is defined to be $\delta(a|p)$. For an ordinary (non-distributional) fact f, we define $\Pr(f) = 1$. For a finite set F of facts, we denote by $P(F)$ the product of the probabilities of all the facts in F:

$$P(F) \equiv \prod_{f \in F} \Pr(f)$$

Example 3.7. (continued) Let J be the instance that consists of all of the relations in Figures 1 and 6. As we already remarked, J is a possible outcome of I w.r.t. G. For convenience, in the case of distributional relations, we have indicated the probability of each fact next to the corresponding row. $P(J)$ is the product of all of the numbers in the columns titled "$\Pr(f)$," that is, $0.01 \times 0.99 \times 0.9 \times \cdots \times 0.99$.

One can easily come up with examples where possible outcomes are infinite, and in fact, the space $\Omega_G(I)$ of all possible outcomes is uncountable. Hence, we need to consider probability spaces over uncountable domains; those are defined by means of measure spaces.

Program G^2 for the GDatalog[Δ] program G of Figure 2:

\begin{verbatim}
1a \exists y \text{Result}_n^x(0.01, \text{Earthquake}, c, y) \leftarrow \text{City}(c, r)
1b \text{Earthquake}(c, y) \leftarrow \text{City}(c, r), \text{Result}_n^x(0.01, \text{Earthquake}, c, y)
2 \text{Unit}(h, c) \leftarrow \text{House}(h, c)
3 \text{Unit}(b, c) \leftarrow \text{Business}(b, c)
4a \exists y \text{Result}_n^x(r, \text{Burglary}, x, c, y) \leftarrow \text{Unit}(x, c), \text{City}(c, r)
4b \text{Burglary}(x, c, y) \leftarrow \text{Unit}(x, c), \text{City}(c, r), \text{Result}_n^x(r, \text{Burglary}, x, c, y)
5a \exists y \text{Result}_n^x(0.6, \text{Trig}, x, y) \leftarrow \text{Unit}(x, c), \text{Earthquake}(c, 1)
5b \text{Trig}(x, y) \leftarrow \text{Unit}(x, c), \text{Earthquake}(c, 1), \text{Result}_n^x(0.6, \text{Trig}, x, y)
6a \exists y \text{Result}_n^x(0.9, \text{Trig}, x, y) \leftarrow \text{Burglary}(x, c, 1)
6b \text{Trig}(x, y) \leftarrow \text{Burglary}(x, c, 1), \text{Result}_n^x(0.9, \text{Trig}, x, y)
7 \text{Alarm}(x) \leftarrow \text{Trig}(x, 1)
\end{verbatim}

Fig. 5. The Datalog3 program G^2 for the GDatalog[Δ] program G of Figure 2

\(^3\)The product reflects the law of total probability and does not assume that different random choices are independent (and indeed, correlation is clear in the examples throughout the article).
Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, and let \(I \) be an input for \(\mathcal{G} \). We say that a finite sequence \(f = (f_1, \ldots, f_n) \) of facts is a derivation (w.r.t. \(I \)) if for all \(i = 1, \ldots, n \), the fact \(f_i \) is the result of applying some rule of \(\mathcal{G} \) that is not satisfied in \(I \cup \{f_1, \ldots, f_{i-1}\} \); in the case of applying a rule with a \(\Delta \)-atom in the head, \(f_i \) contains a randomly chosen value. If \(f_1, \ldots, f_n \) is a derivation, then the set \(\{f_1, \ldots, f_n\} \) is a derivation set. Hence, a finite set \(F \) of facts is a derivation set if and only if \(I \cup F \) is an intermediate instance in some chase tree.

Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, \(I \) be an input for \(\mathcal{G} \), and \(F \) be a set of facts. We denote by \(\Omega^F_\mathcal{G}(I) \) the set of all possible outcomes \(J \subseteq \Omega_\mathcal{G}(I) \) such that \(F \subseteq J \). The following theorem states how we determine the probability space defined by a GDatalog\([\Delta] \) program. The proof is will be given in Section 4.2.

Theorem 3.8. Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, and let \(I \) be an input for \(\mathcal{G} \). There exists a unique probability measure space \((\Omega, \mathcal{F}, \pi) \), denoted \(\mu_{\mathcal{G},I} \), that satisfies all of the following.

1. \(\Omega = \Omega_\mathcal{G}(I) \);
2. \((\Omega, \mathcal{F}) \) is the \(\sigma \)-algebra generated from the sets of the form \(\Omega^F_\mathcal{G}(I) \) where \(F \) is finite;
3. \(\pi(\Omega^F_\mathcal{G}(I)) = \mathbb{P}(F) \) for every derivation set \(F \).

Moreover, if \(J \) is a finite possible outcome, then \(\pi(\{J\}) \) is equal to \(\mathbb{P}(J) \).

Theorem 3.8 provides us with a semantics for GDatalog\([\Delta] \) programs: the semantics of a GDatalog\([\Delta] \) program \(\mathcal{G} \) is a map from input instances \(I \) to probability measure spaces \(\mu_{\mathcal{G},I} \) over possible outcomes—this is the measure space uniquely determined according to the theorem.
A direct corollary Theorem 3.8 applies to the important case where all possible outcomes are finite. Note that in this case the probability space may still be infinite, but it is necessarily discrete.

Corollary 3.9. Let \(G \) be a GDatalog\([\Delta]\) program, and \(I \) an input instance for \(G \), such that \(\Omega_G(I) = \Omega_G^{\text{fin}}(I) \). Then \(P \) is a discrete probability function over \(\Omega_G(I) \); that is,
\[
\sum_{J \in \Omega_G(I)} P(J) = 1.
\]

In essence, Corollary 3.9 states that the function \(P(\cdot) \) forms a probability distribution over the possible outcomes, even though it is defined in an algebraic manner. In Section 4 we will associate this probability distribution with a natural stochastic process. The following section introduces a syntactic condition, weak acyclicity, that guarantees the finiteness of solutions. Note, however, that we do not assume finiteness or acyclicity in the article, unless explicitly stated.

3.4. Finiteness and Weak Acyclicity

Corollary 3.9 applies only when all solutions are finite, that is, \(\Omega_G(I) = \Omega_G^{\text{fin}}(I) \). We now present the notion of weak acyclicity for a GDatalog\([\Delta]\) program, as a natural syntactic condition that guarantees finiteness of all possible outcomes (for all input instances). This draws on the notion of weak acyclicity for Datalog\([\Delta]\) [Fagin et al. 2005]. Intuitively, weak acyclicity is a synthetic condition that guarantees that the program holds the property of distribution stratification defined for the Distributional Clauses (DC) [Gutmann et al. 2011]; we further discuss DC and distribution stratification in Section 7. Consider any GDatalog\([\Delta]\) program \(G = (E, I, \Theta) \). A position of \(I \) is a pair \((R, i)\) where \(R \in I \) and \(i \) is an attribute of \(R \). The dependency graph of \(G \) is the directed graph that has the positions of \(I \) as the nodes, and the following edges:

- A normal edge \((R, i) \rightarrow (S, j)\) whenever there is a rule \(\psi(x) \leftarrow \varphi(x) \) and a variable \(x \) occurring at position \((R, i)\) in \(\varphi(x) \), and at position \((S, j)\) in \(\psi(x) \).
- A special edge \((R, i) \rightarrow^* (S, j)\) whenever there is a rule of the form
 \[
 S(t_1, \ldots, t_{j-1}, \delta[p: q], t_{j+1}, \ldots, t_n) \leftarrow \varphi(x)
 \]
 and a variable \(x \) occurring at position \((R, i)\) in \(\varphi(x) \) as well as in \(p \) or \(q \).

We say that \(G \) is weakly acyclic if no cycle in its dependency graph contains a special edge. The following theorem states that, as promised, weak acyclicity guarantees finiteness of the possible outcomes. The proof is similar to that of the corresponding result of Fagin et al. [Fagin et al. 2005, Theorem 3.9]. Moreover, as in their work, weak acyclicity of a program can be tested efficiently via graph reachability.

Theorem 3.10. If a GDatalog\([\Delta]\) program \(G \) is weakly acyclic, then \(\Omega_G(I) = \Omega_G^{\text{fin}}(I) \) for all input instances \(I \).

Next, we give an example.

Example 3.11. The burglar example program in Figure 2 is easily seen to be weakly acyclic (indeed, every non-recursive GDatalog\([\Delta]\) program is weakly-acyclic). In the case of the virus-dissemination example of Figure 4, the dependency graph in Figure 7 shows that, although this program features recursion, it is weakly acyclic as well.

3.5. Discussion

We conclude this section with some comments. First, we note that the restriction of a conclusion of a rule to include a single \(\Delta \)-term significantly simplifies the presentation, but does not reduce the expressive power. In particular, we could simu-
late multiple \(\Delta \)-terms in the conclusion using a collection of predicates and rules. For example, if one wishes to have conclusion where a person gets both a random height and a random weight (possibly with shared parameters), then she can do so by deriving \(\text{PersonHeight}(p, h) \) and \(\text{PersonWeight}(p, w) \) separately, and using the rule \(\text{PersonHW}(p, h, w) \leftarrow \text{PersonHeight}(p, h), \text{PersonWeight}(p, w) \). We also highlight the fact that our framework can easily simulate the probabilistic database model of independent tuples [Suciu et al. 2011] with probabilities mentioned in the database. The framework can also simulate Bayesian networks, given relations that store the conditional probability tables, using the appropriate numerical distributions (e.g., \text{Flip} for the case of Boolean random variables). In addition, we note that a disjunctive Datalog rule [Eiter et al. 1997], where the conclusion can be a disjunction of atoms, can be simulated by our model (with probabilities ignored): If the conclusion has \(n \) disjuncts, then we construct a distributional rule with a probability distribution over \(\{1, \ldots, n\} \), and additional \(n \) deterministic rules corresponding to the atoms.

4. CHASING GENERATIVE PROGRAMS

The chase [Maier et al. 1979; Aho et al. 1979] is a classic technique used for reasoning about database integrity constraints such as tuple-generating dependencies. This technique can be equivalently viewed as a tableaux-style proof system for \(\forall \otimes \exists \)-Horn sentences. In the special case of full tuple-generating dependencies, which are syntactically isomorphic to Datalog rules, the chase is closely related to (a tuple-at-a-time version of) the naive bottom-up evaluation strategy for Datalog program (cf. [Abiteboul et al. 1995]). We now present a suitable variant of the chase for generative Datalog programs, and use it in order to construct the probability space of Theorem 3.8. Specifically, we first define the concepts of a chase step and chase tree. We then define a probability measure space by means of a random walk over the chase tree. We establish two main results. First, while chase trees for the same program can be different (due to different chasing orders), they define the same probability measure space (Theorem 4.7). Second, this measure space is the one that realizes Theorem 3.8 (Section 4.2).

We note that, although the notions and results could arguably be phrased in terms of a probabilistic extension of the bottom-up Datalog evaluation strategy, the fact that a GDatalog\(\Delta \) rule can create new values makes it more convenient to phrase them in terms of a suitable adaptation of the chase procedure.

Throughout this section, we fix a GDatalog\(\Delta \) program \(\mathcal{G} = (\mathcal{E}, \mathcal{I}, \Theta) \) and its associated Datalog\(\Delta \) program \(\widehat{\mathcal{G}} = (\mathcal{E}, \mathcal{I}^\Delta, \Theta^\Delta) \). We first define the notions of chase step and chase tree. These are similar to the probabilistic \(\Sigma \)-process in CP-logic [Vennekens et al. 2009], which we discuss in more details in Section 7, except that our chase trees can have infinite paths.

Chase step. Consider an instance \(J \), a rule \(\tau \in \Theta^\Delta \) of the form \(\psi(x) \leftarrow \varphi(x) \), and a tuple \(a \) such that \(\varphi(a) \) is satisfied in \(J \) but \(\psi(a) \) is not satisfied in \(J \). If \(\psi(x) \) is a distributional atom of the form \(\exists y \text{Result}_i(p, q, y) \), then \(\psi \) being “not satisfied” is inter-
In this section we show several properties of our chase procedure. These properties are

4.1. Properties of the Chase

chase trees can be constructed, for example, by maintaining a queue of “active rule

restrict attention to fair chase trees. Fairness is a classic notion in the study of infinite

fairness

than one node; that is, for

n

cestors of

n

ancestor of

n

I

J

P

j

J

P

\tau

J

\pi

\Theta

\Delta

\gamma

\gamma

\Delta

\gamma

J

\pi

\gamma

\gamma

\gamma

\gamma

\gamma

\Delta

\Delta

\Delta

\tau

\ta
must belong J, and hence, J violates the functional dependency of Proposition 3.6. Hence, we have reached a contradiction. \square

Proposition 4.2. Let I be any input instance, and consider any chase tree for I w.r.t. G. Then every intermediate instance satisfies all functional dependencies associated with distributional relations.

Proof. The proof is by induction on the distance from the root of the chase tree. The basis is the root of the tree, where no IDB facts exist, and the functional dependencies are satisfied in a vacuous manner. For the inductive step, suppose that in a chase step $J \xrightarrow{\tau(a)} (J', \pi)$, some $J' \in J$ contains two R_i^a-facts that are identical except for the i-th attribute (recall that R_i^a is a distributional atom of arity i). Then, we have two cases. Either J already contains both atoms, in which case we can apply our induction hypothesis. Otherwise, J' is obtained by extending J with one of the two facts in question. In the latter case, the conclusion of τ was already satisfied for the tuple a, which is not possible in case of a valid chase step. \square

Let G be a GDatalog$[\Delta]$ program, I be an input for G, and T be a chase tree. The next theorem shows that there is a bijective correspondence between the maximal paths of T and the possible outcomes of G. This gives us a crucial tool to construct the probability measure of Theorem 3.8. First, some notation is needed. We denote by $\text{paths}(T)$ the set of maximal paths of T. (Note that $\text{paths}(T)$ may be uncountably infinite.) For $P \in \text{paths}(T)$, we denote by $P \cup$ the union of the (chain of) labels $L(v)$ along P.

Theorem 4.3. Let G be a GDatalog$[\Delta]$ program, I an input for G, and T a fair chase tree. The mapping $P \rightarrow (P \cup)$ is a bijection between $\text{paths}(T)$ and $\Omega_G(I)$.

Proof. We first prove that every $P \cup$ is in $\Omega_G(I)$. Let $P \in \text{paths}(T)$ be given. We need to show that $P \cup \in \Omega_G(I)$. By definition it is the case that every distributional fact of $P \cup$ has a nonzero probability. It is also clear that $P \cup$ is consistent, due to the fairness property of T. Hence, it suffices to prove that $P \cup$ is a minimal solution, that is, no proper subset of $P \cup$ is a solution. So, let K be a strict subset of $P \cup$ and suppose, by way of contraction, that K is also a solution. Let (J, J') be the first edge in P such that $P \cup$ contains a fact that is not in K. Now, consider the chase step that leads from J to J'. Let f be the unique fact in $J \setminus J$. Then $J \subseteq K$ and $f \in J' \setminus K$. The selected rule τ in this step cannot be deterministic, or otherwise K must contain f as well. Hence, it is a distributional rule, and f has the form $R_i^a(a|p)$. But then, K satisfies this rule, and hence, K must include a fact $f' = R_i^a(a'|p)$, where a' differs from a only in the ith element. And since some node in $P \cup$ contains both f and f', we get a violation of the functional dependency of Proposition 4.2. Hence, a contraction.

Next, we prove that every possible outcome J in $\Omega_G(I)$ is equal to $P \cup$ for some $P \in \text{paths}(T)$. Let such J be given. We build the path P inductively, as follows. We start with the root, and upon every node v we select the next edge to be one that leads to a subset K of J; note that K must exist since J resolves the rule violated in $L(v)$ by some fact, and that fact must be in one of the children of v. Now, $P \cup$ is consistent since T is fair, and $P \cup \subseteq J$ by construction. And since J is a minimal solution, we get that $P \cup$ is in fact equal to J.

Finally, we need to prove that if $P_1 = P_2$ then $P_1 = P_2$. We will prove the contrapositive statement. Suppose that $P_1, P_2 \in \text{paths}(T)$ are such that $P_1 \neq P_2$. The two paths agree on the root. Let J be the first node in the paths such that the two paths disagree on the outgoing edge of J. Suppose that P_1 has the edge from J to J_1 and P_2 has an edge from J to J_2. Then $J_1 \cup J_2$ has a pair of facts that violate the functional de-
pendency of Proposition 4.2, and in particular, \(J_1 \not\subseteq \cup P_2 \). We conclude that \(\cup P_1 \neq \cup P_2 \), as required. \(\square \)

4.1.1. Chase measure. Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, let \(I \) be an input for \(\mathcal{G} \), and let \(T \) be a chase tree. Our goal is to define a probability measure over \(\Omega_{\mathcal{G}}(I) \). Given Theorem 4.3, we can do that by defining a probability measure over \(\text{paths}(T) \). A random path in \(\text{paths}(T) \) can be viewed as an infinite Markov chain that is defined by a random walk over \(T \), starting from the root. A measure space for such a Markov chain is defined by means of cylindrification [Ash and Doleans-Dade 2000]. Let \(v \) be a node of \(T \). The \(v \)-cylinder of \(T \), denoted \(C^T_v \), is the subset of \(\text{paths}(T) \) that consists of all the maximal paths that contain \(v \). A cylinder of \(T \) is a subset of \(\text{paths}(T) \) that forms a \(v \)-cylinder for some node \(v \). We denote by \(C(T) \) the set of all the cylinders of \(T \). The following theorem is a special case of a classic result on Markov chains (cf. [Ash and Doleans-Dade 2000, Section 2.7]), stating that if every step is a well defined probability measure space, then the infinite chain defines a probability measure space that is unique defined by the cylinders and their probabilities. Recall that \(L(v) \) is a finite set of facts, and observe that \(P(L(v)) \) is the product of the probabilities along the path from the root to \(v \).

Theorem 4.4. Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, let \(I \) be an input for \(\mathcal{G} \), and let \(T \) be a chase tree. There exists a unique probability measure \((\Omega, \mathcal{F}, \pi) \) that satisfies all of the following conditions.

1. \(\Omega = \text{paths}(T) \);
2. \((\Omega, \mathcal{F}) \) is the \(\sigma \)-algebra generated from \(C(T) \);
3. \(\pi(C^T_v) = P(L(v)) \) for all nodes \(v \) of \(T \).

Theorems 4.3 and 4.4 suggest the following definition.

Definition 4.5 (Chase Probability Measure). Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, let \(I \) be an input for \(\mathcal{G} \), let \(T \) be a chase tree, and let \((\Omega, \mathcal{F}, \pi) \) be the probability measure of Theorem 4.4. The probability measure \(\mu_T \) over \(\Omega_{\mathcal{G}}(I) \) is the one obtained from \((\Omega, \mathcal{F}, \pi) \) by replacing every maximal path \(P \) with the possible outcome \(\cup P \).

Our main result for this section is Theorem 4.7 below, which states that the probability measure space represented by a chase tree is independent of the specific chase tree of choice. In other words, the semantics is robust to the chase order, as long as fairness is guaranteed. To state and prove this result, we need some notation and a lemma. Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, let \(I \) be an input for \(\mathcal{G} \), let \(T \) be a chase tree, and let \(v \) be a node of \(T \). We denote by \(\cup C^T_v \) the set \(\cup \{ P \mid P \in C^T_v \} \).

Lemma 4.6. Let \(\mathcal{G} \) be a GDatalog\([\Delta] \) program, let \(I \) be an input for \(\mathcal{G} \), and let \(T \) be a fair chase tree. Let \(v \) be a node of \(T \) and \(F = L(v) \). Then \(\cup C^T_v = \Omega_{\mathcal{G}}(I) \); that is, \(\cup C^T_v \) is the set \(\{ J \in \Omega_{\mathcal{G}}(I) \mid L(v) \subseteq J \} \).

Proof. From Theorem 4.3 it follows that every fact set in \(\cup C^T_v \) is a possible outcome; since each such possible outcome contains \(L(v) \), we have that

\[
\cup C^T_v \subseteq \{ J \in \Omega_{\mathcal{G}}(I) \mid L(v) \subseteq J \}.
\]

Theorem 4.3 also implies that every possible outcome is equal to \(\cup P \) for some maximal path \(P \) in \(\text{paths}(T) \). If such \(P \) is not in \(C^T_v \), then it branches out from some ancestor of \(v \), say \(u \). Proposition 4.2 implies that \(\cup P \) and \(L(v) \) satisfy a functional dependency, for the distributional fact associated with \(u \), but with different values. It does follows that \(P \) does not contain \(L(v) \). Therefore, we have the reverse containment:

\[
\{ J \in \Omega_{\mathcal{G}}(I) \mid L(v) \subseteq J \} \subseteq \cup C^T_v .
\]
This completes the proof.

We can now prove our result.

Theorem 4.7. Let \mathcal{G} be a GDataLog[Δ] program, let I be an input for \mathcal{G}, and let T and T' be two fair chase trees. Then $\mu_T = \mu_{T'}$.

Proof. Let $\mu_T = (\Omega, \mathcal{F}, \pi)$ and $\mu_{T'} = (\Omega', \mathcal{F}', \pi')$. We need to prove that $\Omega = \Omega'$, $\mathcal{F} = \mathcal{F}'$ and $\pi = \pi'$. We have $\Omega = \Omega'$ due to Theorem 4.3. To prove that $\mathcal{F} = \mathcal{F}'$, it suffices to prove that every $\mathcal{C}^T_{u,v}$ is in \mathcal{F}' and every $\mathcal{C}^{T'}_{u,v}$ is in \mathcal{F} (since both σ-algebras are generated by the cylinders). And due to symmetry, it suffices to prove that $\mathcal{C}^{T'}_{u,v}$ is in \mathcal{F}. So, let v' be a node of T'. Recall that $L(v')$ is a set of facts. Due to Lemma 4.6, we have that $\mathcal{C}^{T'}_{u,v}$ is precisely the set of all possible outcomes J in $\Omega(I)$ such that $L(v') \subseteq J$. Let U be the set of all nodes u of T with $L(v') \subseteq L(u)$. Then, due to Theorem 4.3 we have that $\mathcal{C}^{T'}_{u,v} = \bigcup_{u \in U} (\mathcal{C}^T_{u,v})$. Observe that U is countable, since T has only a countable number of nodes (as every node is identified by a finite path from the root). Moreover, (Ω, \mathcal{F}) is closed under countable unions, and therefore, $\bigcup_{u \in U} (\mathcal{C}^T_{u,v})$ is in \mathcal{F}.

It remains to prove that $\pi = \pi'$. By now we know that the σ-algebras (Ω, \mathcal{F}) and (Ω', \mathcal{F}') are the same. Due to Theorem 4.3, every measure space over (Ω, \mathcal{F}) can be translated into a measure space over the cylinder algebra of T and T'. So, due to the uniqueness property of Theorem 4.4, it suffices to prove that every $\mathcal{C}^{T'}_{u,v}$ has the same probability in μ_T and $\mu_{T'}$. That is, $\pi(\mathcal{C}^{T'}_{u,v}) = \mathbf{P}(L(v'))$. We do so next. We assume that v' is not the root of T', or otherwise the claim is straightforward. Let U be the set of all the nodes u in T with the property that $L(v') \subseteq L(u)$ but $L(v') \nsubseteq L(p)$ for the parent p of u. Due to Lemma 4.6 we have the following:

$$\pi(\mathcal{C}^{T'}_{u,v}) = \sum_{u \in U} \mathbf{P}(L(u))$$

(3)

Let E be the set of all the edges (v_1, u_1) of T, such that $L(u_1) \setminus L(v_1)$ consists of a fact in $L(v')$. Let Q be the set of all the paths from the root of T to nodes in U. Due to Proposition 4.2, we have that every two paths P_1 and P_2 in Q and edges (v_1, u_1) and (v_2, u_2) in P_1 and P_2, respectively, if both edges are in E and $v_1 = v_2$, then $u_1 = u_2$. Let T'' be the tree that is obtained from T by considering every edge (v_1, u_1) in E, changing its weight to 1, and changing the weights of the remaining (v_1, u_1') emanating from v_1 to 0. Then we have the following for every node $u \in U$.

$$\mathbf{P}(L(u)) = w_{T''}(u) \cdot \mathbf{P}(L(v'))$$

(4)

where $w_{T''}(u)$ is the product of the weights along the path from the root of T'' to u. Combining (3) and (4), we get the following:

$$\pi(\mathcal{C}^{T'}_{u,v}) = \mathbf{P}(L(v')) \cdot \sum_{u \in U} w_{T''}(u)$$

Let $s = \sum_{u \in U} w_{T''}(u)$. We need to prove that $s = 1$. Observe that s is the probability of visiting a node of U in a random walk over T'' (with the probabilities defined by the weights). Equivalently, s is the probability that the random walk over T'' eventually sees all of the facts in v'. But due to the construction of T'', every rule violation that arises due to facts in both $L(v')$ and any node of T'' is deterministically resolved exactly as in $L(v')$. Moreover, since $L(v')$ is obtained from a chase derivation (i.e., $L(v')$ is a derivation set), solving all such rules repeatedly results in the containment of $L(v')$. Finally, since T'' is fair (because T is fair), we get that every random walk over T'' eventually sees all of the facts in $L(v')$. Hence, $s = 1$, as claimed.

\[\square\]
4.2. Proof of Theorem 3.8

We can now prove Theorem 3.8. Let G be a GDatalog[Δ] program, let I be an input for G, and let T be a fair chase tree for I w.r.t. G. Let $\mu_T = (\Omega_G(I), F_T, \pi_T)$ be the probability measure on $\Omega_G(I)$ associated with T, as defined in Definition 4.5.

Lemma 4.8. The σ-algebra $(\Omega_G(I), F_T)$ is generated by the sets of the form $\Omega_G^{FC}(I)$, where F is finite.

Proof. Let $(\Omega_G(I), F)$ be the σ-algebra generated from the sets $\Omega_G^{FC}(I)$. We will show that every $\Omega_G^{FC}(I)$ is in F_T, and that every $\cup C^I_u$ is in F. The second claim is due to Lemma 4.6, so we will prove the first. So, let $\Omega_G^{FC}(I)$ be given. Due to Lemma 4.6, the set $\Omega_G^{FC}(I)$ is the countable union $\cup_{u \in U}(\cup C^I_u)$ where U is the set of all the nodes u such that $F \subseteq L(u)$. Hence, $\Omega_G^{FC}(I) \in F_T$. \square

Lemma 4.9. For every derivation set F we have $\pi_T(\Omega_G^{FC}(I)) = P(F)$.

Proof. Let F be a derivation set. Due to Theorem 4.7, it suffices to prove that for some chase tree T' it is the case that $\pi_T(\Omega_G^{FC}(I)) = P(F)$. But since F is a derivation set, we can craft a chase tree T' that has a node v with $L(v) = F$. Then we have that $\pi_T(\Omega_G^{FC}(I))$ is the product of the weights along the path to v, which is exactly $P(F)$. \square

Lemma 4.10. Let $\mu = (\Omega, F, \pi)$ be any probability space that satisfies the three conditions of Theorem 3.8. Then $\mu = \mu_T$.

Proof. Let $\mu_T = (\Omega_G(I), F_T, \pi_T)$. Due to Lemma 4.8, we have that $F = F_T$. So it is left to prove that $\pi = \pi_T$. Due to Lemmas 4.9 and 4.6, π agrees with π_T. Due to Theorems 4.3 and 4.4 we get that π must be equal to π_T due to the uniqueness of π_T. \square

The above lemmas show that $\mu_T = (\Omega_G(I), F_T, \pi_T)$ is a probability measure space that satisfies conditions (1)–(3) of Theorem 3.8, and moreover, that no other probability measure space satisfies conditions (1)–(3).

5. Probabilistic-Programming Datalog

To complete our framework, we define probabilistic-programming Datalog, PPDL for short, wherein a program augments a generative Datalog program with constraints; these constraints unify the traditional integrity constraints of databases and the traditional observations of probabilistic programming. After defining PPDL, we prove that the probabilistic semantics of PPDL programs is preserved under logical equivalence (Theorem 5.5). To do so, we define two concepts of equivalence of PPDL programs: first-order equivalence (the programs are equivalent when viewed as ordinary first-order theories), and semantic equivalence (defining the same probability measure spaces). Finally, we discuss the decidability of the two properties for generative Datalog (Theorem 5.6).

Definition 5.1 (PPDL[Δ]). Let Δ be a finite set of parameterized numerical distributions. A PPDL[Δ] program is a quadruple (E, I, Θ, Φ), where (E, I, Θ) is a GDatalog[Δ] program and Φ is a finite set of logical constraints over $E \cup I$.\(^4\)

Example 5.2. Consider again Example 3.2. Suppose that we have the EDB relations ObservedHAlarm and ObservedBAlarm that represent observed home and busi-

\[^4\]We will address the choice of constraint language, and its algorithmic impact, in future work.
ness alarms, respectively. We obtain from the program in the example a PPDL[Δ] program by adding the following constraints.

1. $\text{ObservedHAlarm}(b) \rightarrow \text{Alarm}(b)$
2. $\text{ObservedBAlarm}(b) \rightarrow \text{Alarm}(b)$

We use right (in contrast to left) arrows to distinguish constraints from ordinary Datalog rules. A possible outcome J of an input instance I satisfies these constraints if J contains $\text{Alarm}(x)$ for all $x \in \text{ObservedHAlarm}^I \cup \text{ObservedBAlarm}^I$.

A PPDL[Δ] program defines the posterior distribution over its GDatalog[Δ] program, conditioned on the satisfaction of the constraints. A formal definition follows.

Let $P = (E, I, \Theta, \Phi)$ be a PPDL[Δ] program, and let G be the GDatalog[Δ] program (E, I, Θ). An input instance for P is an input instance I for G. We say that I is a legal input instance if $\{ J \in \Omega_G(I) \mid J \models \Phi \}$ is a measurable set in the probability space $\mu_{G, I}$, and its measure is nonzero. Intuitively, I is legal if it is consistent with the observations (i.e., with the constraints in Φ), given G. The semantics of a PPDL[Δ] program is defined as follows.

Definition 5.3. Let $P = (E, I, \Theta, \Phi)$ be a PPDL[Δ] program, G the GDatalog[Δ] program (E, I, Θ), I a legal input instance for P, and $\mu_{G, I} = (\Omega_G(I), F_G, \pi_G)$. The probability space defined by P and I, denoted $\mu_{P, I}$, is the triple $(\Omega_P(I), F_P, \pi_P)$ where:

1. $\Omega_P(I) = \{ J \in \Omega_G(I) \mid J \models \Phi \}$
2. $F_P = \{ S \cap \Omega_P(I) \mid S \in F_G \}$
3. $\pi_P(S) = \pi_G(S)/\pi_G(\Omega_P(I))$ for every $S \in F_P$.

In other words, $\mu_{P, I}$ is $\mu_{G, I}$ conditioned on Φ.

Example 5.4. Continuing Example 5.2, the semantics of this program is the posterior probability distribution that is obtained from the prior of Example 3.2, by conditioning on the fact that $\text{Alarm}(x)$ holds for all $x \in \text{ObservedHAlarm}^I \cup \text{ObservedBAlarm}^I$. Similarly, using an additional constraint we can express the condition that an alarm is off unless observed. One can ask various natural queries over this probability space of possible outcomes, such as the probability of the fact $\text{Earthquake}($Napa, 1$)$.

When G is weakly acyclic, the event defined by Φ is measurable (since in that case the probability space is discrete) and the definition of legality boils down to the existence of a possible outcome.

5.1. Invariance under First-Order Equivalence

PPDL[Δ] programs are fully declarative in a strong sense: syntactically their rules and constraints can be viewed as first-order theories. Moreover, whenever two PPDL[Δ] programs, viewed in this way, are logically equivalent, then they are equivalent as PPDL[Δ] programs, in the sense that they give rise to the same set of possible outcomes and the same probability distribution over possible outcomes. We make this statement formal in Theorem 5.5 below.

We say that two PPDL[Δ] programs, $P_1 = (E, I, \Theta_1, \Phi_1)$ and $P_2 = (E, I, \Theta_2, \Phi_2)$, are **semantically equivalent** if, for all input instances I, the probability spaces $\mu_{P_1, I}$ and $\mu_{P_2, I}$ coincide. Syntactically, the rules and constraints of a PPDL[Δ] program can be viewed as a finite first-order theory over a signature consisting of relation symbols, constant symbols, and function symbols (here, if the same name of a function is used with different numbers of arguments, such as Flip in Figure 2, then we treat them as distinct function symbols). We say that P_1 and P_2 are **FO-equivalent** if, viewed as first-order theories, Θ_1 is logically equivalent to Θ_2 (i.e., the two theories have the same
Theorem 5.5. If two PPDL[Δ] programs are FO-equivalent, then they are semantically equivalent (but not necessarily vice versa).

Proof. For simplicity, we will first restrict attention to constraint-free programs. Let \(G_1 = (E, I, \Theta_1) \) and \(G_2 = (E, I, \Theta_2) \) be FO-equivalent GDatalog[Δ] programs, and let \(I \) be any input instance. We will show that \(\Omega_{G_1}(I) = \Omega_{G_2}(I) \). It then follows from Theorem 3.8 that \(\mu_{G_1,I} \) and \(\mu_{G_2,I} \) coincide.

Recall that a model of an arbitrary first-order theory \(\Theta \) in a signature \(\{R_1, \ldots, R_n, c_1, \ldots, c_m, f_1, \ldots, f_k\} \) is a structure \(M = (\text{dom}, R_1^M, \ldots, R_n^M, c_1^M, \ldots, c_m^M, f_1^M, \ldots, f_k^M) \), where \(\text{dom} \) is a set called the domain of \(M \), each \(R_i^M \) is a relation over \(\text{dom} \) of appropriate arity, each \(c_i^M \) is an element of \(\text{dom} \), and each \(f_i^M \) is a function on \(\text{dom} \) of appropriate arity, such that \(M \models \Theta \), i.e., all sentences in \(\Theta \) are satisfied in \(M \). Recall that all constants that may occur in PPDL[Δ] program are real numbers. We say that a structure is real-valued if \(\text{dom} = \mathbb{R} \) and each constant symbol is a real number denoting itself. We say that a structure \(M \) is a relationally-minimal model of a first-order theory \(\Gamma \) if \(M \) is a model of \(\Gamma \) and no structure obtained from \(M \) by dropping one or more tuples from relations is a model of \(\Gamma \).

We denote by \(\Omega'_{\varphi}(I) \) the set of relationally-minimal real-valued models of \(\varphi \cup \Gamma \) (where \(I \) is viewed as a theory as well, more specifically, a set of ground atomic facts). If two first-order theories are FO-equivalent, a fortiori, they have the same relationally-minimal real-valued models. Since we have assumed that \(G_1 \) and \(G_2 \) are FO-equivalent, we have that \(\Omega'_{G_1}(I) = \Omega'_{G_2}(I) \).

We will now establish a correspondence between models \(M \in \Omega'_{G_1}(I) \) and possible outcomes \(J \in \Omega_{G}(I) \). To formulate this correspondence, we need one more definition, namely that of an active term. We denote by \(\text{REL} \text{Diagram}(M) \) the relational diagram of \(M \), i.e., the set of all ground relational facts \(R_i(\bar{a}) \) that are true in \(M \). We say that a ground term of the form \(f(a_1, \ldots, a_n) \) is active in a model \(M \) relative to a first-order theory \(\Gamma \), if \(\Gamma \cup \text{REL} \text{Diagram}(M) \) entails an atomic formula containing the term \(f(a_1, \ldots, a_n) \). For example, if \(\Gamma = \{ \forall x R(x) \rightarrow Q(f(x)) \} \) and \(M \models P(1) \), then the term \(f(1) \) is active in \(M \), because \(\Gamma \cup \{P(1)\} \models Q(f(1)) \). The intuition behind this definition is as follows: a first-order structure must, by definition, always interpret a function symbol by a total function (defined on all inputs). When a term \(f(a_1, \ldots, a_n) \in M \) is active with respect to \(\Gamma \), it means that it actually plays an active role in the satisfaction of \(\Gamma \) in \(M \).

For each \(M \in \Omega'_{G_1}(I) \), let \(\bar{M} \) be the instance consisting of (a) all relational facts (i.e., facts of the form \(R(a) \) of \(M \)), and all relational facts of the form \(\text{Result}(\bar{a}, b) \) where \(f^M(\bar{a}) = b \) and \(f(\bar{a}) \) is active in \(M \) w.r.t. \(\varphi \). Then,

1. For each \(M \in \Omega'_{G_1}(I) \), we have that \(\bar{M} \in \Omega_{G}(I) \).
2. Each member of \(\Omega_{G}(I) \) coincides with \(M \) for some \(M \in \Omega'_{G_1}(I) \).

The argument for (2) uses Proposition 3.6.

In particular, it follows from (1) and (2) that \(\Omega_{G}(I) \) uniquely determines \(\Omega_{G}(I) \). Since we have already established that \(\Omega'_{G_1}(I) = \Omega'_{G_2}(I) \), we conclude that \(\Omega_{G_1}(I) = \Omega_{G_2}(I) \). Since \(I \) was chosen arbitrarily, we conclude that \(G_1 \) and \(G_2 \) are semantically equivalent.

The argument immediately extends to the case of PPDL[Δ] programs with constraints: let \(P_1 = (E, I, \Theta_1, \Phi_1) \) and \(P_2 = (E, I, \Theta_2, \Phi_2) \) be FO-equivalent PPDL[Δ] programs. Then, in particular, \(G_1 = (E, I, \Theta_1) \) and \(G_2 = (E, I, \Theta_2) \) are FO-equivalent GDatalog[Δ] programs, and hence, as we have shown, for all input instances \(I \), \(\mu_{G_1,I} \) and \(\mu_{G_2,I} \).
and \(\mu_{G_2,I} \) coincide. Furthermore, \(\Phi_1 \) and \(\Phi_2 \) are FO-equivalent. It then follows by the semantics of PPDL constraints (and for legal input instances \(I \)), that \(\mu_{P_1,I} \) and \(\mu_{P_2,I} \) coincide as well. In other words, \(P_1 \) and \(P_2 \) are semantically equivalent.

Semantic equivalence does not imply FO-equivalence. Indeed, let \(P, Q \) be IDB predicates, and consider the program consisting of the rule \(Q(x) \leftarrow P(x) \). Since there are no rules that derive IDB-facts from EDB-facts, this program is semantically equivalent to the program without any rules. Nevertheless, these two programs are not FO-equivalent. Intuitively, semantic equivalence is only concerned with minimal models (since a minimality requirement is built into the notion of a possible outcome) while FO-equivalence is concerned with arbitrary models. In addition to this, first-order equivalence is oblivious to facts about the specific probability distributions in \(\Delta \).

The following theorem discusses the decidability of two types of equivalences for GDatalog[\(\Delta \)], and shows that FO-equivalence is decidable for weakly acyclic programs, while semantic equivalence is not.

Theorem 5.6. First-order equivalence is decidable for weakly acyclic GDatalog[\(\Delta \)] programs. Semantic equivalence is undecidable for weakly acyclic GDatalog[\(\Delta \)] programs (in fact, even for \(\Delta = \emptyset \)).

Proof. The decidability is proved using the following well known technique: for each rule of one of the two programs, we take the canonical instance of the right hand side of the rule, chase it with the other program, and test that the left hand side of the rule is in the result of the chase. In this way, we can test containment in both directions (i.e., equivalence of the two programs). Before spelling out the procedure, we illustrate it with an example. Consider the following two GDatalog[\(\Delta \)] programs:

- \(G_1 \) is defined by the following rules:

 \[
 (1) \ Q(x) \leftarrow P(x) \quad ; \quad (2) \ P(x) \leftarrow Q(x) \quad ; \quad (3) \ R(\delta[x]) \leftarrow P(x)
 \]

- \(G_2 \) is defined by the following rules:

 \[
 (1) \ Q(x) \leftarrow P(x) \quad ; \quad (2) \ P(x) \leftarrow Q(x) \quad ; \quad (3) \ R(\delta[x]) \leftarrow Q(x)
 \]

To test that \(G_1 \) and \(G_2 \) are equivalent, we test that \(G_1 \) logically implies each rule of \(G_2 \), and, conversely, \(G_2 \) logically implies each rule of \(G_1 \). Each can be tested by chasing the right hand side of the rule in question, and verifying that the left hand side belongs to the result of the chase. For example, to show that \(G_1 \) logically implies the third rule of \(G_2 \), we consider the canonical instance of its right hand side (i.e., \(\{Q(a)\} \)), and chase it with the rules of \(G_1 \), obtaining the chase result \(\{Q(a), P(a), R(\delta[a])\} \). Indeed, it can be confirmed that the left hand side of the rule in question is satisfied (under the same assignment of values to variables, i.e., \(R(\delta[a]) \)) in the chase result.

The general procedure for testing that two weakly acyclic GDatalog[\(\Delta \)] programs \(G_1 \) and \(G_2 \) are FO-equivalent is as follows: for each rule \(r \) of \(G_1 \), we take a canonical instance of the right-hand side of \(r \) (replacing each variable by a fresh, distinct constant) and chase it with the rules of \(G_2 \). Note that, by weakly acyclicity, this chase is guaranteed to terminate and yield a finite instance. We then test that the canonical instance of the left-hand side of \(r \) (under the same replacement of variables by constants) is contained in the result of this chase. Likewise, for each rule \(r \) of \(G_2 \) we take a canonical instance of the right-hand side of \(r \) (replacing each variable by a fresh, distinct constant), chase it with the rules of \(G_1 \), and test that the canonical instance of the left-hand side of \(r \) (under the same replacement of variables by constants) is contained in the result of this chase. If each of these tests succeeds, then \(G_1 \) and \(G_2 \)
must be FO-equivalent. If not, then the canonical instance of the failing rule provides us with a counterexample to the FO-equivalence of G_1 and G_2.

The undecidability claim follows immediately from the undecidability of equivalence of Datalog programs [Shmueli 1993].

Remark 5.7. We remind the reader that, in the programs G_1 and G_2 used in the last proof, “$R(\delta[x])$” uses our sugared syntax, and it stands for the formal syntax defined in Section 3, which in this case would be “$\overline{R(\delta[x])}$.” This is an important point, since the correctness of Theorem 5.6 is based on the fact that we define FO-equivalence by reference to the unsugared program.

Remark 5.8. The PPDL[Δ] programs given in Figures 2 and 3 are not semantically equivalent: once the syntactic sugar in the second program is expanded, the 4th rule of this program may generate R_{4}^{Flip} facts, whereas no possible solution for the first program contains any R_{4}^{Flip} fact. Nevertheless, the two programs are equivalent in a weaker sense. To make this precise, we define another probability space, $\mu_{G,J}$. Let $\mathcal{P} = (E,I,\emptyset,\emptyset)$, let J be an input instance over E, and let $J \in \Omega_{\mathcal{P}}(I)$ be a possible outcome for $I \in \mathcal{P}$. Recall that J is an instance over the schema $E \cup I$. We denote by J the instance over schema $E \cup I$ that is obtained from J by dropping all facts using relation symbols from $I \setminus J$. In other words, (\cdot) is the natural “forgetful” map form $E \cup I$-instances to E-instances. We define $\mu_{\mathcal{P},I}$ to be the image of the measure space $\mu_{\mathcal{P},J}$ under the map (\cdot) (a standard topological operation). Then (\cdot) is a σ-algebra homomorphism from $\mu_{\mathcal{P},J}$ to $\mu_{\mathcal{P},I}$. Intuitively, all that we have done is “forget” all information regarding distributional facts. We say that two PPDL[Δ] programs, $\mathcal{P}_1, \mathcal{P}_2$, are weakly semantically equivalent if, for all instances I, the probability spaces $\mu_{G_1,I}$ and $\mu_{G_2,I}$ coincide.

Semantic equivalence implies weak semantic equivalence. Weak equivalence does not imply strong equivalence: the program consisting of the rules $P(x,0) \leftarrow Q(x)$, $P(x,1) \leftarrow Q(x)$, and $P(x,\text{Flip}(0.5;x)) \leftarrow Q(x)$ is weakly equivalent, but not strongly equivalent, to the same program in which the third rule is dropped. It can be shown that the PPDL[Δ] programs given in Figure 2 and Figure 3 are indeed weakly semantically equivalent.

For PPDL[Δ] programs with $\Delta = \emptyset$, semantic equivalence and weak semantic equivalence coincide. Therefore, Theorem 5.6 implies that weak semantic equivalence of weakly acyclic PPDL[Δ] programs is undecidable as well.

6. PPDL EXAMPLES

To further illustrate PPDL, we now show two examples of translations there to. The first is a translation from a Markov Logic Network (MLN) [Domingos and Lowd 2009], and the second from a stochastic context-free grammar.

6.1. Markov Logic Networks in PPDL

Jha and Suciu [Jha and Suciu 2012] showed how MLN inference can be reduced to inference in tuple-independent probabilistic databases. More precisely, they considered the task of computing the probability of a Boolean query over the probability space defined by an MLN. They showed that this probability is a function of the probabilities of a few Boolean queries over a tuple-independent probabilistic database. Since the latter can be represented in GDatalog[Δ], assuming Δ contains the distribution Flip, then the same reduction can be done for GDatalog[Δ] and PPDL[Δ]. In this section, we show a stronger result, where the application of the PPDL[Δ] program to the input instance induces the exact same probability distribution as the MLN. Next, we introduce the MLN formalism, and then show how PPDL can capture it fairly simply.
6.1.1. Markov Logic Networks. We view an MLN as a pair of a program consisting of constraints and of domains of attributes.

Definition 6.1 (MLN Program). An MLN program is a tuple \((\mathcal{T}, \Gamma, \Psi, W)\), where:

- \(\mathcal{T}\) is a relational schema.
- \(\Psi\) and \(\Gamma\) are sets of first-order-logic formulas over \(\mathcal{T}\) such that every free variable occurs in at least one atomic formula (over a relation symbol of \(\mathcal{T}\)). Formulas in \(\Psi\) are hard constraints and formulas in \(\Gamma\) are soft constraints.
- \(W : \Gamma \rightarrow \mathbb{R}\) is the weight function that associates a weight with every soft constraint.

Let \(Q = (\mathcal{T}, \Psi, \Gamma, W)\) be an MLN program. An attribute of \(Q\) is a pair \((R, i)\) where \(R\) is a relation symbol of \(\mathcal{T}\) and \(1 \leq i \leq \text{arity}(R)\). The domain schema of \(Q\) is the relational schema that consists of a unary relation symbol \(R_{[i]}\) for every attribute \((R, i)\) of \(Q\). An MLN is a pair \((Q, D)\) where \(Q\) is an MLN program and \(D\) is an instance over the domain schema of \(Q\). For short, we call \(D\) a domain instance for \(Q\).

Example 6.2. For illustration, we use a simplified version of a bibliography resolution task [Singla and Domingos 2006], where we have a collection of bibliography entries from various resources, where common references may be represented differently (due to format differences and/or typos). This task is one of the popular instances of the general problem of entity resolution. In our example, we construct an MLN program \(Q = (\mathcal{T}, \Psi, \Gamma, W)\) where \(\mathcal{T}\) consists of the following relation symbols:

- \(\text{InBib}(a, b)\): entry \(b\) mentions author name \(a\);
- \(\text{SimilarTitle}(b_1, b_2)\): entries \(b_1\) and \(b_2\) have a similar title (by some similarity test);
- \(\text{SimilarName}(a_1, a_2)\): author names \(a_1\) and \(a_2\) are similar (by some other test);
- \(\text{SameAuthor}(a_1, a_2)\): author names \(a_1\) and \(a_2\) refer to the same real-life author;
- \(\text{SameBib}(b_1, b_2)\): entries \(b_1\) and \(b_2\) refer to the same resource (e.g., article).

In an application of the program, the relations \(\text{InBib}\), \(\text{SimilarTitle}\), and \(\text{SimilarName}\) are given as observations, and the goal is to infer \(\text{SameAuthor}\) and \(\text{SameBib}\) (or just one of them). A typical domain instance \(D\) for \(Q\) associates with each \(b\) attribute the set of bibliography entries, and with each \(a\) attribute the set of author names in those entries. Hence, in such an instance the unary relations \(\text{InBib}_{[2]}\), \(\text{SimilarTitle}_{[1]}\), \(\text{SimilarTitle}_{[2]}\), \(\text{SameBib}_{[1]}\) and \(\text{SameBib}_{[2]}\) are the same—the list of given bibliography entries. Similarly, \(\text{InBib}_{[1]}\), \(\text{SimilarName}_{[1]}\), \(\text{SimilarName}_{[2]}\), \(\text{SameAuthor}_{[1]}\) and \(\text{SameAuthor}_{[2]}\) are the same—the list of author names.

The set \(\Psi\) consists of four hard constraints that require \(\text{SameAuthor}\) and \(\text{SameBib}\) to be equivalence relations.

\begin{align*}
\text{(Hard1)} & \quad \text{SameAuthor}(a, a) \\
\text{(Hard2)} & \quad \text{SameAuthor}(a_1, a_2) \rightarrow \text{SameAuthor}(a_2, a_1) \\
\text{(Hard3)} & \quad \text{SameAuthor}(a_1, a_2) \land \text{SameAuthor}(a_2, a_3) \rightarrow \text{SameAuthor}(a_1, a_3) \\
\text{(Hard4)} & \quad \text{SameBib}(b, b) \\
\text{(Hard5)} & \quad \text{SameBib}(b_1, b_2) \rightarrow \text{SameBib}(b_2, b_1) \\
\text{(Hard6)} & \quad \text{SameBib}(b_1, b_2) \land \text{SameBib}(b_2, b_3) \rightarrow \text{SameBib}(b_1, b_3)
\end{align*}
Finally, the set Γ consists of the following soft rules, where each rule γ is preceded by its weight $W(\gamma)$:

(soft1) $3 : \text{SameAuthor}(a_1, a_2) \rightarrow \text{SimilarName}(a_1, a_2)$
(soft2) $1 : \text{SimilarName}(a_1, a_2) \rightarrow \text{SameAuthor}(a_1, a_2)$
(soft3) $3 : \text{SameBib}(b_1, b_2) \rightarrow \text{SimilarTitle}(b_1, b_2)$
(soft4) $1 : \text{SimilarTitle}(b_1, b_2) \rightarrow \text{SameBib}(b_1, b_2)$
(soft5) $-5 : \text{SameBib}(b_1, b_2) \land \text{InBib}(a_1, b_1) \land \forall a_2[\text{InBib}(a_2, b_2) \rightarrow \neg \text{SameAuthor}(a_1, a_2)]$

The first four rules reward occurrences of consistency between similarity and identity, whereas the fifth rule penalizes a world for every two entries b_1 and b_2 with an author name a_0 such that a_1 is in b_1 but no author name in b_2 is equal to a_1.

Let (Q, D) be an MLN where $Q = (T, \Psi, \Gamma, W)$. A grounding of a (hard or soft) constraint ϕ of Q is obtained from ϕ by replacing every free variable with a constant from a suitable domain; that is, if a variable occurs in an attribute (R, i) then it is replaced with a constant from $R^D_{[i]}$. Denote by $\text{grd}(\phi, D)$ the set of all groundings of ϕ. Then $\text{grd}(\phi, D)$ is a set of Boolean propositional formulas (without free variables) over T. A possible world of (Q, D) is an instance I of T that satisfies the following conditions.

(1) On every attribute (R, i), the instance I has only constants from $R^D_{[i]}$.
(2) $I \models \psi$ for every hard constraint $\psi \in \Psi$ and grounding $\psi \in \text{grd}(\psi)$.

We denote by $\text{PW}(Q, D)$ the set of possible worlds of (Q, D). The weight $W(I)$ of a possible world I is given by:

$$
\text{weight}(I) \overset{\text{def}}{=} \exp \left(\sum_{\gamma \in \Gamma} \sum_{g \in \text{grd}(\gamma)} W(\gamma) \right)
$$

An MLN (Q, D) defines a discrete probability space (Ω, π), where $\Omega = \text{PW}(Q, D)$ and π is given by $\pi(I) = \text{weight}(I)/Z$, where the normalization factor Z, also called the partition function, is equal to $\sum_{J \in \text{PW}(Q, D)} \text{weight}(J)$. This probability space is denoted by $\Pi_{Q,D}$.

6.1.2. Translation into PPDL. We now turn to PPDL and show that MLN can be captured by PPDL. In order to obtain the same probability distribution as the given MLN, we need to eliminate the intermediate (helper) predicates from the possible worlds, and we do so in a straightforward way by projecting over the relations of interest. A formal definition follows.

Let $\mathcal{P} = (\mathcal{E}, \mathcal{I}, \Theta, \Phi)$ be a PPDL[Δ] program, let I be an instance over \mathcal{E}. Let \mathcal{I}' be a subschema of \mathcal{I}, that is, \mathcal{I}' is obtained from \mathcal{I} by removing some of the relation symbols. For a possible outcome J, we denote by $J[\mathcal{I}]$ the restriction of J to the relations of \mathcal{I}' (that is, $J[\mathcal{I}]$ consists of the relations R' where R belongs to \mathcal{I}'). Suppose that $\mu_{\mathcal{P}, I}$ is a discrete probability space (i.e., the sample space is countable and every set of samples is measurable), and let us denote it by (Ω, π). The projection of $\mu_{\mathcal{P}, I}$ to \mathcal{I}' is the probability space that is obtained from $\mu_{\mathcal{P}, I}$ by replacing every J with $J[\mathcal{I}]$, and assigning to $J[\mathcal{I}]$ its marginal probability. More formally, the projection of $\mu_{\mathcal{P}, I}$ to \mathcal{I}' is the discrete probability space (Ω', π') where:

- $\Omega' \overset{\text{def}}{=} \{J[\mathcal{I}] \mid J \in \Omega\}$;
- $\pi'(J') \overset{\text{def}}{=} \sum_{J \in \Omega, J[\mathcal{I}] = J'} \pi(J)$.
Following is the main result of this section, showing that every MLN program can be translated into a PPDL program, in the sense that the two define the same distribution when applied to the same domain. Moreover, the only numerical distribution function required for the PPDL program is Flip.

Theorem 6.3. Let \(\Delta \) be a set of distributions that includes Flip. For every MLN program \(Q = (\mathcal{T}, \Psi, \Gamma, W) \) there exists a PPDL[\(\Delta \)] program \(P = (\mathcal{E}, \mathcal{I}, \Theta, \Phi) \) with the following properties.

1. \(\mathcal{E} \) is the domain schema of \(Q \);
2. \(\mathcal{I} \) contains \(\mathcal{T} \);
3. \(\Phi \) is a set of formulas in first-order logic;
4. For every domain instance \(D \) of \(Q \), the projection of \(\mu_{P,D} \) to \(\mathcal{T} \) is equal to \(\Pi_{Q,D} \).

In the remainder of this section, we prove Theorem 6.3 by presenting a translation of an MLN program into a PPDL[\(\Delta \)] program with \(\Delta = \{\text{Flip}\} \). We fix an MLN program \(Q = (\mathcal{T}, \Psi, \Gamma, W) \), and we denote by \(\mathcal{E} \) the domain schema of \(Q \). To define the PPDL[\(\Delta \)] program \(P = (\mathcal{E}, \mathcal{I}, \Theta, \Phi) \), we then need to define \(\mathcal{I} \), \(\Theta \) and \(\Phi \).

As a first step, we determine a random truth value for every possible fact over \(\mathcal{T} \). For every domain instance \(\Phi \), we then need to define \(\gamma \) as weights are normalized, multiplying the weight of each world that satisfies a grounding of \(\gamma \) by \(\exp(W(\gamma)) \) has the same effect as multiplying the weight of each world that violates that grounding by \(\exp(-W(\gamma)) \).

This completes our construction of the PPDL[\(\Delta \)] program \(P = (\mathcal{E}, \mathcal{I}, \Theta, \Phi) \).

Example 6.4. Figure 8 depicts the PPDL program \(P = (\mathcal{E}, \mathcal{I}, \Theta, \Phi) \) of the MLN program \(Q = (\mathcal{T}, \Psi, \Gamma, W) \) that we introduced in Example 6.2. Rules (1) – (4) correspond to the construction of Equation (6), Rules (5) – (10) correspond to the hard constraints,
where (for readability) we avoided quantification over the domains when it is natural
to do so, Rules (11) – (18) correspond to the soft constraints with a positive weight, and
Rules (19) – (20) correspond to the soft constraint with a negative weight. This PPDL
program simplifies the general construction in two ways.

— Using the fact that domains are shared across attributes, we replaced all of the
relational symbols R_{ij} with two unary relations: Bib for bibliography mentions, and
AuthorName for author mentions. For example, in Rule (1) that corresponds to Equa-
tion (6) with R being for SameAuthor, the body uses AuthorName twice instead of
SameAuthor[1] and SameAuthor[2].

— Making the assumption that InBib, SimilarTitle and SimilarName are always given
as observations, we actually view them as EDBs in \mathcal{E}. This illustrates a general
principle that, in our construction, only the inferred relations of the MLN need to
be IDBs, and we can replace the observed relations by EDB relations.

Regarding Rule (20), the reader can verify that the conclusion is the negation of the
corresponding soft rule (soft5), as required by our construction.

Our construction can be adapted to show that when the MLN is defined in a smaller
fragment of first-order logic, the constraints of the obtained PPDL program also
belong to the same fragment, provided that the fragment satisfies the suitable closure
conditions.

6.1.3. Proof of correctness. We now prove the correctness of the construction. Let D
be a domain instance for \mathcal{Q}, and let (Ω, π) be the probability space $\Pi_{Q,D}$. Recall that
$\mathcal{Q} = \langle T, \Psi, \Gamma, W \rangle$. Let (Ω', π') be the projection of $\mu_{P,D}$ to T. We need to prove that
(Ω, π) is equal to (Ω', π'). We show that for every instance J over T with attribute
values from D, the probability of J is the same in both probability spaces. Since both are (discrete) probability spaces, it suffices to prove that the unnormalized probability of J in one is proportional (i.e., within a multiplicative factor that is independent of J)

![Fig. 8. PPDL translation of the MLN of Example 6.2](image-url)
to the unnormalized probability of J in the other. In the remainder of this section we fix such instance J.

If J violates a hard constraint γ in Ψ, then J is, by definition, not in Ω. But J cannot be in Ω' either, since violation of γ implies that the constraint (7) is violated as well. Conversely, if J satisfies γ then the constraint (7) is satisfied. It thus follows that J is in Ω if and only if J is in Ω'. In the sequel, we assume that J satisfies Ψ and, hence, $J \in \Omega$ and $J \in \Omega'$. By definition, $\pi(J)$ is:

$$\pi(J) \sim \exp \left(\sum_{\gamma \in \Gamma} \sum_{g \in \text{grd}(\gamma)} W(\gamma) \right)$$

Consider the space of random chases of (E, I, Θ) over D. Recall that we are free to chase in whatever order we wish, and so, we assume that the chase follows the rules in the order we have defined them. (Observe that our PPDL program is weakly acyclic, and hence, every chase necessarily terminates.) Let (Ω_e, π_e) be the distribution over the resulting instances. Let E_J be the event that J is precisely the set of facts $R(a_1, \ldots, a_m)$ such that the chase produced $R_I(x_1, \ldots, x_m, b)$ for $b = 1$ (as opposed to $b = 0$). Let E_O be the event that all of the groundings of the constraints defined in (7) and (9) hold when the chase terminates. Then, we have the following:

$$\pi'(J) = \Pr(E_J \mid E_O) = \frac{\Pr(E_O \mid E_J) \cdot \Pr(E_J)}{\Pr(E_O)}$$

The notation $\Pr(\cdot)$ applies to the probability space (Ω_e, π_e). Now, observe that $\Pr(E_O)$ is the same for all J. Moreover, $\Pr(E_J)$ is also the same for all J since (6) assigns a uniform distribution to the assignment of 0/1 to the set of all R_Is. We conclude the following.

$$\pi'(J) \sim \Pr(E_O \mid E_J)$$

Denote by Γ^+ the set $\{ \gamma \in \Gamma \mid W(\gamma) \geq 0 \}$ and by Γ^- the set $\{ \gamma \in \Gamma \mid W(\gamma) < 0 \}$. For a constraint γ and a grounding $g \in \text{grd}(\gamma)$, let E_g denote the event that the corresponding grounding of (7) or (9) is true. From the order of the chase it follows that, given the event E_J (i.e., the truth assignment for R_Is), the events E_g are independent across different γs. So, we have the following.

$$\Pr(E_O \mid E_J) = \prod_{\gamma \in \Gamma^+} \prod_{g \in \text{grd}(\gamma)} \Pr(E_g \mid E_J) \times \prod_{\gamma \in \Gamma^-} \prod_{g \in \text{grd}(\gamma)} \Pr(E_{\neg g} \mid E_J)$$

We now process each of the three main factors. For a grounding g we denote by g_i the value that g assigns to the variable x_i. For $\gamma \in \Gamma^+$ and $g \in \text{grd}(\gamma)$, the event E_g always holds if J satisfies g, due to (9). If J violates g, then E_g holds with probability...
probabilistic context-free grammar as a

We first recall the notion of a stochastic context-free grammar.

6.2. Stochastic Context-Free Grammars in PPDL

As explained earlier in this section, this proportionality suffices to complete the proof.

Therefore, from (11) and (12) we conclude that

Finally, we assume that \(J \) satisfies \(\Psi \), and therefore, for \(\gamma \in \Psi \) we have \(\Pr(E_g \mid E_J) = 1 \). Therefore, from (11) and (12) we conclude that

\[
\Pr(E_O \mid E_J) \sim \exp \left(\sum_{\gamma \in \Gamma^-} \sum_{g \in \text{grd}(\gamma)} W(\gamma) \right).
\]

As explained earlier in this section, this proportionality suffices to complete the proof.

6.2. Stochastic Context-Free Grammars in PPDL

We first recall the notion of a stochastic context-free grammar (SCFG for short), also known as probabilistic context-free grammar (PCFG). An SCFG is a tuple \((T, N, S, \rho)\), where:

- \(T \) and \(N \) are disjoint finite sets of terminals and nonterminals, respectively.
- \(S \in N \) is a start symbol.
- \(\rho \) is a function that maps every nonterminal \(N \in N \) to a finite probability distribution \(\rho_N \) over \((T \cup N)^*\) (i.e., the set of all finite sequences of elements in \(T \cup N \)).
The semantics of an SCFG is a probability space over parse trees, where a *parse tree* is a (possibly infinite) directed and ordered tree such that the root is labeled with the start symbol S, each leaf is labeled with a terminal, and each nonleaf is labeled with a nonterminal. The generative process that constructs a parse tree begins with the tree that consists of only S, and repeatedly selects a leaf v (say, of a minimal distance from the root) with a nonterminal label N, randomly and independently selects a sequence A_1, \ldots, A_m from the distribution ρ_N, and adds to v a sequence of m children with the labels A_1, \ldots, A_m in order.

In this section we show how to represent SCFGs in PPDL. Formally, we will define a PPDL program \mathcal{P} so that every SCFG (T, N, S, ρ) can be translated into an input I for \mathcal{P}, in such a way that the probability space over the parse trees is represented by $\mu_{\mathcal{P}, I}$.

For presentation sake, we make two simplifying assumptions on the given SCFG. The first assumption is that (T, N, S, ρ) is in epsilon-free Chomsky Normal Form (CNF), that is, for every nonterminal N and sequence $A_1^N \cdots A_m^N$ in the support of ρ_N, either $m = 2$ and both A_1^N and A_2^N are nonterminals, or $m = 1$ and A_1^N is a terminal (while $A_2^N = \epsilon$ and ignored). The translation into general forms is straightforward, but requires more technical details. The second assumption is that each ρ_N consists of precisely two sequences (which can be the same). Every SCFG can be changed to satisfy this requirement, by using extra nonterminals. Therefore, we will assume that ρ_N has the following form:

$$\rho_N(\alpha) = \begin{cases} p & \text{if } \alpha = A_1^N A_2^N; \\ (1-p) & \text{if } \alpha = B_1^N B_2^N. \end{cases}$$

In both cases, either both symbols are nonterminals, or one of them is a terminal and the other the special symbol ϵ.

6.2.1. The Program
We first need to explain how (T, N, S, ρ) is represented in an EDB schema. Our EDB schema \mathcal{E} has the following relation symbols:

- T and N are unary relation symbols that store terminals and nonterminals, respectively.
- Start is a unary relation that stores the start symbol S.
- Rho represents ρ using tuples of the form $(N, A_1^N, A_2^N, B_1^N, B_2^N, p)$, stating that ρ_N selects $A_1^N A_2^N$ with probability p and $B_1^N B_2^N$ with probability $(1-p)$.

From the above it is obvious how (T, N, S, ρ) is represented in an input I over \mathcal{E}.

The IDB schema \mathcal{I} represents a random parse tree. Each node v in the tree is identified by an integer i, with the start nonterminal having identifier 0. This integer is consistent with a left-to-right BFS traversal of the parse tree, that is, for two nodes v and v' with identifiers i and i', respectively, we have $i < i'$ if v' is deeper (i.e., farther from the root) than v, or if v and v' are on the same depth and v is left to v'. The IDB schema consists of two relations.

- V represents nodes v using tuples of the form (i, A), where i is the identifier of v and A is the (terminal or nonterminal) label of v.
- Choice represents the random choices associated with nonterminal nodes, using facts of the form (i, b), stating that the nonterminal node identified by i has selected $A_1^N A_2^N$ (if $b = 0$) or $B_1^N B_2^N$ (if $b = 1$).

The PPDL program \mathcal{P} is the following.

5For simplicity, we ignore the parse tree of the empty word.
For readability sake, we use the convention of replacing a variable that occurs only once with underscore (_). The first rule constructs the root, which corresponds to the start symbol. The second rule states that every node \(i\) with a nonterminal label \(A\) needs to make a random choice of a sequence from the distribution \(\rho_A\). The third rule says that if a node \(i\) with the nonterminal label \(A\) has chosen the left sequence \(A^1A^2\), then we construct a child \(u\) of \(i\) with the label \(A^1\); the identifier of \(u\) is \(2i+1\). The fourth rule does the same, except that \(u\) has a greater index \((2i+2)\) in the identifier, and it is constructed only if \(A^2\) is a nonterminal. The choice of the indices \(2i+1\) and \(2i+2\) guarantees the correspondence to BFS scanning. The fifth and sixth rules are the same as the third and fourth, respectively, except that they apply to the case where node \(i\) has chosen the right sequence \(B^1B^2\).

Our Datalog model does not allow arithmetic operations such as \(2i+1\) and \(2i+2\). Nevertheless, these can be simulated as special cases of (deterministic) numerical distributions.

6.2.2. Accounting for Input Strings

In practice, an SCFG is used for representing the probability space of parses of a given input string [Klein and Manning 2003]. Formally, for a given string \(s\) of terminals, the probability space is conditioned on two properties:

1. The parse tree is finite.
2. The sequence of leaf terminals, from left to right, forms the string \(s\).

Next, we will show how to realize these conditions in our PPDL program \(P\).

We represent the string \(s\) using a binary EDB \(\text{Str}\) that stores tuples of the form \((j, c)\), stating that the character at position \(j\) is \(c\). For a technical reason, we also need the unary EDB \(\text{Len}\) that stores the length of \(\text{Str}\) (in a single tuple). For example, the string PPDL will be represented using the facts \(\text{Str}(1, P)\), \(\text{Str}(2, P)\), \(\text{Str}(3, D)\), \(\text{Str}(4, L)\) and \(\text{Len}(4)\). The following set of rules constructs the IDB relation \(\text{SameStr}(i, j, k)\), stating that the subtree under the nonterminal node \(i\) spans the substring from position \(j\) to position \(k\).

\[
\begin{align*}
\text{SameStr}(i, j, j) & \leftarrow \text{V}(i, _), \text{V}(2i + 1, c), \text{Str}(j, c) \\
\text{SameStr}(i, j, k) & \leftarrow \text{SameStr}(2i + 1, j, \ell), \text{SameStr}(2i + 2, \ell + 1, k)
\end{align*}
\]

The first rule says that a nonterminal node \(i\) spans the terminal at position \(j\) if \(i\) is the parent of the only (terminal) node with the label \(c\). The second rule states that \(i\) spans the substring from \(j\) to \(k\) if \(i\) has two children, which must be \(2i+1\) and \(2i+2\), such that for some \(\ell\) it holds that the first child spans the substring from \(j\) to \(\ell\) and second spans the substring from \(\ell + 1\) to \(k\). We then add the following condition, stating that the root spans the entire string.

\[
\text{Len}(n) \rightarrow \text{SameStr}(0, 1, n)
\]

Recall that 0 is the identifier of the root. It can be shown (e.g., by induction on \(k-j\)) that if we have an entry \(\text{SameStr}(i, j, k)\), then the subtree underneath node \(i\) is finite,
and moreover, it indeed spans the substring from \(j \) to \(k \). Hence, the above condition captures precisely the condition of parsing the input string.

7. RELATED WORK

In this section we compare PPDL to related formalisms from the literature, and contrast them with our work. We consider several categories of formalisms. For the first three categories, we adopt the classification of De Raedt and Kimmig [2015]. These formalisms fall in the broader category of Statistical Relational Learning (SRL). For a thorough survey on SRL we refer the reader to De Raedt et al. [2016].

7.1. Imperative Specifications

The first category includes imperative probabilistic programming languages [http://www.probabilistic programming.org 2014]. We also include in this category declarative specifications of Bayesian networks, such as Context-Sensitive Probabilistic Knowledge [Ngo and Haddawy 1997] and BLOG [Milch et al. 2005]. Although declarative in nature, these languages inherently assume a form of acyclicity that allows the rules to be executed in a serial manner. We are able to avoid such an assumption since our approach is based on the minimal solutions of an existential Datalog program. The program in Figure 4, for example, uses recursion (as is typically the case for probabilistic models in social network analysis), and so is the translation from SCFGs that we discussed in Section 6.2. In particular, it is not clear how the virus program can be phrased by translation into a Bayesian network, and SCFG (that may define an uncountable probability space [Etessami and Yannakakis 2009]) cannot be translated in Bayesian networks. BLOG can express probability distributions over logical structures, via generative stochastic models that can draw values at random from numerical distributions, and condition values of program variables on observations. In contrast with closed-universe languages such as SQL and logic programs, BLOG considers open-universe probability models that allow for uncertainty about the existence and identity of objects. Related models are those of MCDB [Jampani et al. 2008] and SimSQL [Cai et al. 2013] that propose SQL extensions coupled with Monte Carlo simulations and parallel database techniques for stochastic analytics in the database. Again, these formalisms assume an order over the execution of rules, hence their association with the first category.

7.2. Logic over Probabilistic Databases

The formalisms in the second category, also referred to as the distributional semantics [Raedt and Kimmig 2015], view the generative part of the specification of a statistical model as a two-step process. In the first step, facts are randomly generated by a mechanism external to the program. In the second step, a logic program, such as Prolog [Kimmig et al. 2011] or Datalog [Abiteboul et al. 2014], is evaluated over the resulting random structure. This approach has been taken by PRISM [Sato and Kameya 1997], and to a large extent by probabilistic databases [Suciu et al. 2011] and their semistructured counterparts [Kimelfeld and Senellart 2013]. The Dyna [Eisner and Filardo 2010] system has adopted this approach to extend the semantics of Datalog with randomness. The focus of our work is on a formalism that completely defines the statistical model, without referring to external processes. As an important example, in PPDL one can sample from distributions that have parameters that by themselves are randomly generated using the program. This is the common practice in Bayesian machine learning (e.g., logistic regression), but it is not clear how it can be done within approaches of the second category.

One step beyond the second category and closer to our work is taken by uncertainty-aware query languages for probabilistic data such as TriQL [Widom 2008], I-SQL, and
Declarative Probabilistic Programming with Datalog

world-set algebra [Antova et al. 2007a; 2007b]. The latter two are natural analogs to SQL and relational algebra for the case of incomplete information and probabilistic data [Antova et al. 2007a]. They feature constructs such as repair-key, choice-of, possible, and group-worlds-by that can construct possible worlds representing all repairs of a relation w.r.t. key constraints, close the possible worlds by unioning or intersecting them, or group the worlds into sets with the same results to sub-queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and while-languages [Deutch et al. 2010] to define Markov chains. While such languages cannot explicitly specify probability distributions, they may simulate a specific categorical distribution indirectly using non-trivial programs with specialized language constructs like repair-key on input tuples with weights representing samples from the distribution.

7.3. Model Representation via Formula Grounding

Formalisms in the third category use rule weighting as indirect specifications of probability spaces over the Herbrand base, which is the set of all the facts that can be obtained using the predicate symbols and the constants of the database. This category includes MLNs [Domingos and Lowd 2009; Niu et al. 2011] (which we discussed in detail in Section 6.1), where the logical rules are used as a compact and intuitive way of defining factors. In other words, the probability of a possible world is the product of all the numbers (factors) that are associated with the grounded rules that the world satisfies. This approach is applied in DeepDive [Niu et al. 2012], where a database is used for storing relational data and extracted text, and database queries are used for defining the factors of a factor graph. We view this approach as indirect since a rule does not determine directly the distribution of values. Moreover, the semantics of rules is such that the addition of a rule that is logically equivalent to (or implied by, or indeed equal to) an existing rule changes the semantics and thus the probability distribution. A concept similar to MLN is defined by the hybrid relational dependency networks [Ravkic et al. 2015], where each grounding of a rule defines a factor as a probability distribution over a random variable that might be continuous. Probabilistic Soft Logic [Bröcheler et al. 2010], where in each possible world every fact is associated with a degree of truth.

Further formalisms in this category are probabilistic Datalog [Fuhr 2000] and probabilistic Datalog+- [Gottlob et al. 2013]. There, every rule is associated with a probability. The semantics of the former is different from ours and that of the other formalisms mentioned thus far. There, a Datalog rule is interpreted as a rule over a probability distribution over possible worlds, and it states that, for a given grounding of the rule, the marginal probability of being true is as stated in the rule. Probabilistic Datalog+- uses MLNs as the underlying semantics.6 Besides our support for numerical probability distributions, our formalism is used for defining a single probability space, which is in par with the standard practice in probabilistic programming.

7.4. Recursion Models

As discussed earlier, GDatalog[Δ] allows for recursion, and the semantics is captured by (possibly infinite) Markov chains. Related formalisms are that of SCFGs and the more general Recursive Markov Chains (RMC) [Etessami and Yannakakis 2009], where the probabilistic specification is by means of a finite set of transition graphs that can call one another (in the sense of method calls) in a possibly recursive fashion. In the database literature, SCFGs and RMCs are used in the context of probabilistic

6Another variant of Probabilistic Datalog+- [Riguzzi et al. 2012] adopts the distributional semantics, and belongs in the former category (Logic over Probabilistic Databases).
These formalisms do not involve numerical distributions. We have shown a translation from SCFGs to PPDL. In future work, we plan to further study the relative expressive power of these models, compared to restrictions of our framework.

7.5. Probabilistic Datalog Models

We now discuss the formalisms that we view as closest to ours. Like PPDL, these formalisms propose Datalog with deterministic bodies and probabilistic conclusions such that the random choice is applied upon each firing of a rule, and they make no assumption of acyclicity or stratifiability on the programs. These include the Constraint Logic Programming, denoted CLP(BN) [Costa et al. 2003], the Independent Choice Logic (ICL) [Poole 2008], P-log [Baral et al. 2009], the Causal Probabilistic logic (CP-logic) [Vennekens et al. 2009], and the Distributional Clauses (DC) [Gutmann et al. 2011; Nitti et al. 2016].

Yet, each of these models makes substantial assumptions in order to define the probabilistic semantics, assumptions that we are able to avoid in PPDL. In CLP(BN) the assumption is that each random value can be tracked to precisely one grounded rule that generates it. In particular, the semantics is not defined when a random value can be generated by different two groundings of a rule (when the distribution may entail different parameters each time), as in the case where existential variables appear in the body. Moreover, it is not clear how their semantics can be extended to guarantee independence of the chase order.

In ICL the assumption is that the rules are acyclic in their grounded version. That is, there is assignment of a natural number (stratum) to each ground atom so that the number assigned to the head of each clause greater than those of the atoms in the body. For instance, the natural program that tests whether a graph contains a cycle is not acyclic in this sense. In DC this assumption is weakened to the requirement of being “distribution stratified.” This means that the number assigned to the head of each clause is greater or equal to those of the atoms in the body (hence, recursion is allowed within a stratum), but distributional heads should have a strictly higher number. Yet, it is not clear how stratification at the ground level can be verified. As an example, consider the following PPDL program, simulating announcement propagation in a social network.

\[
\begin{align*}
\text{Shares}(x, \text{Flip}(0.2)) & \leftarrow \text{Knows}(x) \\
\text{Knows}(x) & \leftarrow \text{Follows}(x, y), \text{Shares}(y, 1)
\end{align*}
\]

The program states that if a person knows about the announcement, then she shares it with probability 0.2, and she knows about the announcement whenever a friend of her shares it. In DC, the corresponding program is the following.

\[
\begin{align*}
\text{Shares}(x) \sim [0.2 : 1, 0.8 : 0] & \leftarrow \text{Knows}(x) \\
\text{Knows}(x) & \leftarrow \text{Follows}(x, y), \simeq(\text{Shares}(y)) \text{ is } 1
\end{align*}
\]

In the above program, Shares(z) represents a random variable (for every z), and \simeq(\text{Shares}(z)) stands for its sampled value. Now, suppose that we have two people that follow each other, say Alice and Bob. The stratum assigned to the head Shares(Alice) \sim [0.2 : 1, 0.8 : 0] should be higher than that of Knows(Alice), which should be at least that of \simeq(\text{Shares}(Bob)). Moreover, DC requires the stratum of \simeq(\text{Shares}(Bob)) to be at least that of Shares(Bob) \sim [0.2 : 1, 0.8 : 0]. Hence, the stratum of Shares(Alice) \sim [0.2 : 1, 0.8 : 0] should be higher than that of Shares(Bob) \sim [0.2 : 1, 0.8 : 0]. Yet, due to symmetry the same should hold when replacing Alice and Bob. Therefore, the above DC program is,
in fact, illegal. We mention here that DC supports significant features that PPDL does not, such as continuous numerical distributions and negation.

In P-log several assumptions are made (phrased as Conditions 1–3) the boil down to saying that in every possible world a random value can be mapped to precisely one ground rule that produced it, but it is not clear how such conditions can be verified. In CP-logic the assumption is that each ground rule can fire at most once. In particular, by adding to a program a rule that is equivalent (or even identical) to an existing rule, we may change the semantics of the program, since the new rule may fire additional random choices. Hence, CP-logic is not invariant under equivalence-preserving transformations.

Another significant difference from P-log and CP-logic is that in each of the two, the number of random choices is determined by the number of groundings, and in fact, such programs can be translated into ProbLog. In particular, the translation from SCFG that we showed in Section 6.2 can be carried out in neither P-log nor CP-logic.

8. CONCLUDING REMARKS

We proposed and investigated a declarative framework for specifying statistical models in the context of a database, based on a conservative extension of Datalog with numerical distributions. The framework differs from existing probabilistic programming languages not only due to the tight integration with a database, but also because of its fully declarative rule-based language: the interpretation of a program is independent of transformations (such as reordering or duplication of rules) that preserve the first-order semantics. This was achieved by treating a GDatalog program as a Datalog program with existentially quantified variables in the conclusion of rules, and applying a suitable variant of the chase.

This work opens various important directions for future work. One direction is to establish tractable conditions that guarantee that a given input is legal. Also, an interesting problem is to detect conditions under which the chase is a self conjugate [Raiffa and Schlaifer 1961], that is, the probability space $\mu_{P,I}$ is captured by a chase procedure without backtracking.

Our ultimate goal is to develop a full-fledged PP system based on the declarative specification language that we proposed here. In this work we focused on the foundations and robustness of the specification language. As in other PP languages, inference, such as computing the marginal probability of an IDB fact, is a challenging aspect, and we plan to investigate the application of common approaches such as sampling-based and lifted-inference techniques. We believe that the declarative nature of PPDL can lead to identifying interesting fragments that admit tractable complexity due to specialized techniques, just as is the case for Datalog evaluation in databases.

Practical applications will require further extensions to the language. We plan to support continuous probability distributions (e.g., continuous uniform, Pareto, and Gaussian), which are often used in statistical models. Syntactically, this extension is straightforward: we just need to include these distributions in Δ. Likewise, extending the probabilistic chase is also straightforward. More challenging is the semantic analysis, and, in particular, the definition of the probability space induced by the chase. We also plan to extend PPDL to support distributions that take a variable (and unbounded) number of parameters. A simple example is the categorical distribution where a single member of a finite domain of items is to be selected, each item with its own probability; in this case we can adopt the repair-key operation of the world-set algebra [Antova et al. 2007a; 2007b]. Finally, we plan to add support for multivariate distributions, which are distributions with a support in \mathbb{R}^k for $k > 1$ (where, again, k can be variable and unbounded). Examples of popular such distributions are multinomial, Dirichlet, and multivariate Gaussian distribution.
We are working on extending LogiQL [Halpin and Rugaber 2014], the programming language of LogicBlox [Aref et al. 2015], with PPDL. An interesting syntactic and semantic challenge is that a program should contain rules of two kinds: probabilistic programming (i.e., PPDL rules) and inference over probabilistic programs (e.g., find the most likely execution). The latter rules involve the major challenge of efficient inference over PPDL. Towards that, our efforts fall in three different directions. First, we implement samplers of random executions. Second, we translate programs of restricted fragments into external statistical solvers (e.g., Bayesian Network and factor-graph libraries). Third, we are looking into fragments where we can apply exact and efficient (lifted) inference.

Acknowledgments
We are thankful to Molham Aref, Todd J. Green and Emir Pasalic for insightful discussions and feedback on this work. We also thank Michael Benedikt, Georg Gottlob and Yannis Kassios for providing useful comments and suggestions. Benny Kimelfeld is a Taub Fellow, supported by the Taub Foundation. Kimelfeld’s work was supported in part by the Israel Science Foundation. Dan Olteanu acknowledges the support of the EPSRC programme grant VADA number M025268. This work was supported by DARPA under agreements #FA8750-15-2-0009 and #FA8750-14-2-0217. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright thereon.

REFERENCES
Lyublena Antova, Christoph Koch, and Dan Olteanu. 2007a. From complete to incomplete information and back. In SIGMOD. 713–724.
Lyublena Antova, Christoph Koch, and Dan Olteanu. 2007b. Query language support for incomplete information in the MayBMS system. In VLDB. 1422–1425.
Declarative Probabilistic Programming with Datalog

Nissim Francez. 1986. Fairness. Springer. DOI: http://dx.doi.org/10.1007/978-1-4612-4886-6

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: before time.

Andrew McCallum. 1999. Multi-Label Text Classification with a Mixture Model Trained by EM. In *AAAI workshop on text learning*.

