
Probabilistic XML via Markov Chains∗

Michael Benedikt
Oxford University, UK

michael.benedikt@comlab.ox.ac.uk

Evgeny Kharlamov
†

Free University of Bozen-Bolzano, Italy
kharlamov@inf.unibz.it

Dan Olteanu
Oxford University, UK

dan.olteanu@comlab.ox.ac.uk

Pierre Senellart
Institut Télécom; Télécom ParisTech; CNRS LTCI

pierre.senellart@telecom-paristech.fr

ABSTRACT
We show how Recursive Markov Chains (RMCs) and their
restrictions can define probabilistic distributions over XML
documents, and study tractability of querying over such
models. We show that RMCs subsume several existing prob-
abilistic XML models. In contrast to the latter, RMC models
(i) capture probabilistic versions of XML schema languages
such as DTDs, (ii) can be exponentially more succinct, and
(iii) do not restrict the domain of probability distributions to
be finite. We investigate RMC models for which tractability
can be achieved, and identify several tractable fragments
that subsume all known tractable probabilistic XML mod-
els. We then look at the space of models between existing
probabilistic XML formalisms and RMCs, giving results on
the expressiveness and succinctness of RMC subclasses, both
with each other and with prior formalisms.

1. INTRODUCTION
Uncertainty is inherently ubiquitous in today’s data, and

can take the shape, for instance, of measurement errors in
scientific experiments or sensor readings [20] or typographical
errors in manually entered data [4].
The clear demand has spurred much research activity

around managing uncertain relational data, using a wide
range of models and processing techniques, e.g., [20, 4]. Un-
certain XML data has also received attention, e.g., [1, 16],
albeit less than in the relational case. XML is neverthe-
less the de facto model for Web data, and uncertainty is
commonplace in a Web context: It arises from unreliability
of Web data sources, errors in automated Web information
extraction tools, or imprecision in integration of XML data
from sources of varying structures and vocabularies.
Existing models for uncertain XML have emerged as gen-

eralizations of concrete documents with additional structure
to capture uncertainty. This paper discusses a different ap-
∗This research was funded by the FP7 European Research
Council grant agreements Webdam number 226513 and FOX
number FP7-ICT-233599.
†The author is co-affiliated with INRIA Saclay.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

proach, adapting existing probabilistic word models to the
XML context. We adapt Recursive Markov Chains (RMCs)
[11] and restrictions thereof to define probabilistic distribu-
tions over XML documents. RMCs are extensions of the
standard Markov chains, i.e., of graphs whose edges are la-
beled with probabilities and that define processes evolving
via independent choices at nodes. The extension consists of
a notion of subroutine or recursive call and, consequently,
the runs of RMCs have a natural hierarchical structure, and
can thus be seen as nested words or trees.
The motivation behind our investigation is threefold.
Firstly, we argue that RMCs are a more natural formalism

to model probability distributions over XML documents than
existing representation systems proposed in the literature,
called hereafter PrXML [1]. Previous PrXML systems are de-
signed to represent finite probability spaces, where the sizes
of the representation and of each represented XML document
have the same order of magnitude. RMCs capture these sys-
tems, yet they can do much more. We study a space of RMC
representation systems that are wide, i.e., they do not impose
a bound on the width of represented documents, and also
deep in that they do not restrict the depth of the documents.
This ability to represent XML documents whose sizes are not
bounded by the size of the representation makes RMCs more
succinct and more expressive than existing PrXML systems,
and is the key ingredient needed to express probabilistic
versions of XML schema languages such as DTDs.

Secondly, PrXML does not represent the limit of tractable
query evaluation. The largest prior class of tractable queries
is the model PrXMLexp (see Section 2) which was shown
in [7] to have tractable evaluation for queries in the expres-
sive query language of Monadic Second-Order logic (MSO).
Though unrestricted RMCs are not known to be MSO-trac-
table, we show that important restrictions are tractable under
fixed-cost arithmetic and others are tractable in the usual bit
cost arithmetic model. Our work thus provides models that
are much more expressive and succinct than prior classes,
but retain tractability.
Thirdly, by looking at RMCs we connect questions on

probabilistic XML to the rich set of tools and techniques
available from the study of computational issues surrounding
Markov models. This allows existing results and algorithms
to be applied. Techniques for learning and analyzing vari-
ants of RMCs have been developed in several communities:
hidden Markov models and stochastic context-free grammars
are variants studied within machine learning and computa-
tional linguistics, while probabilistic automata have been
investigated from the point of view of verification.

Our aim in this work is to understand and quantify the
inherent tension between three fundamental aspects of prob-
abilistic XML representation systems: expressiveness, suc-
cinctness, and tractability of query evaluation. To this end,
we provide a map of restrictions to the RMC model that
exhibit different levels of expressiveness, succinctness, and
tractability. At one end of this map we find PrXML models
from the literature [1] that are fully tractable, yet narrow
and shallow, i.e., they bound the depth and the width of the
represented XML documents. At the other end, we have un-
restricted RMCs that are wide and deep, and where tractable
query evaluation would require a fundamental breakthrough
in numerical evaluation. In between, we define RMC re-
strictions that remain narrow and shallow, yet trade full
tractability for succinctness, or remain fully tractable even if
they can be exponentially more succinct than existing PrXML
models. Also, we show there are fully tractable RMC restric-
tions that are wide and shallow, and therefore strictly more
expressive than PrXML. Moreover, we find wide and deep
models that preserve tractability under fixed-cost arithmetic.
To sum up, the contributions of this paper are as fol-

lows. (i) We first show how recursive Markov chains can be
turned into a representation system for probabilistic XML
that allows arbitrarily deep and wide documents, and that
most existing probabilistic XML models are restrictions of
RMCs (Section 3). (ii) We then propose restrictions of the
general RMC model for which MSO tractability (with re-
spect to data complexity) can be achieved. In particular,
we show in Section 4 that the so-called hierarchical Markov
chains are tractable under fixed-cost arithmetic, and tree-like
Markov chains are tractable in the usual bit-cost arithmetic.
The latter result subsumes early MSO tractability results
given in [7]. (iii) We explore the space of representation
systems within our tractable fragments, comparing their
expressiveness and succinctness (Section 5). The yardstick
particularly useful to differentiate among them is the ability
to represent succinctly wide documents, deep documents,
and probability spaces with worlds that have probabilities
double-exponentially close to 1. (iv) The tractability re-
sults mentioned above are for data complexity and MSO. In
Section 6, we complement them with combined complexity
results for our RMC-based models and three query languages:
tree-pattern queries, forward navigational XPath, and MSO.
Because of space constraints, some of the proofs can be

found in the appendix, some others could not be included.

2. PRELIMINARIES
XML documents (or documents for short) are ordered,

unranked, labeled trees. Given a document d, the set of
nodes and the set of child edges are denoted by V(d) and
C(d) respectively. We use ≺ to denote the strict total order
over nodes of a document, root(d) for the root of d, L for the
finite set of labels, and lbl(v) ∈ L for the label of a node v.
We do not distinguish between a tag and a value, they are
both labels. The notions of child, parent, leaf, descendant,
ancestor have their standard meaning.
Two documents d1 and d2 are isomorphic, denoted d1 ∼ d2,

if one can be obtained from the other by replacing nodes with
some other nodes while preserving labels and the order of the
nodes. Formally, d1 ∼ d2 if there is a bijection ϕ : V(d1)→
V(d2), such that for all v1, v2 ∈ V(d1), (i) lbl(v1) = lbl(ϕ(v1));
(ii) (v1, v2) ∈ C(d1) if and only if (ϕ(v1), ϕ(v2)) ∈ C(d2); and
(iii) v1 ≺ v2 if and only if ϕ(v1) ≺ ϕ(v2).

We define a probabilistic XML space (or px-space for short)
as a probability distribution over a set of non-isomorphic
documents, called the domain.
A probabilistic XML representation system, or probabilistic

XML model, is a pair (S, J·K) where S is a set of representa-
tions S, (e.g. p-documents, RMCs, as presented later) and
J·K, the possible-world semantics of S, is a function mapping
every element of S to a px-space. If there is no ambiguity
on the possible-word semantics, we simply write S.
A system S is deep if there exists S ∈ S such that for

all k > 1, there is a document in the domain of JSK whose
height (i.e., maximum distance from the root to a leaf) is at
least k; otherwise, it is shallow. A system S is wide if there
exists S ∈ S such that for all k > 1, there is a document in
the domain of JSK whose width (i.e., number of leaves) is at
least k; otherwise it is narrow. Assuming all representations
of a system S have a finite set of labels (which is the case of
all those discussed in this work), they have finite domain if
and only if S is both shallow and narrow.
Let S, S ′ be two systems. We say that S is translatable

to S ′, denoted S v S ′, if, for every S ∈ S, there exists
S′ ∈ S ′ such that the probability distributions given by
the px-spaces JSK and JS′K are the same (up to document
isomorphism). If there is a polynomial-time procedure to
obtain a representation in S ′ for every representation in S,
we say that S is efficiently translatable to S ′ and denote
S vpoly S ′. If S v S ′ and S ′ v S then we denote S ≡ S ′.
Similarly, if S vpoly S ′ and S ′ vpoly S, then S ≡poly S ′.
Given a representation S in a system, a query q over S

is a function mapping every document d in the domain of
JSK to a Boolean. We write d |= q for q(d) = true. The
quantitative probabilistic evaluation problem for a query q
and a representation S, is to determine the probability that q
maps documents in S to true: Pr(S |= q) =

∑
(d,p)∈JSK, d|=qp.

A query language L is a collection of queries. A system
S is tractable for L if for any q ∈ L there is a polynomial-
time algorithm that takes as input S ∈ S and outputs the
solution to the quantitative evaluation problem for q and S.
Following [11], ra-tractability is tractability in case of fixed-
cost rational arithmetic, i.e., all arithmetic operations over
rationals take unit time, no matter how large the numbers.
Monadic second-order logic over documents (MSO) is the

logic built up from unary predicates for the labels, the binary
descendant relation Descendant, the ordering relation ≺, free
unary predicate variables via Boolean operators and first
and second-order quantifiers ∃x,∃S. The semantics of MSO
is standard [22]. MSO is a natural logic for documents,
since any MSO formula can be converted into a bottom-up
tree automaton that accepts a document if and only if the
document satisfies the formula. It is more expressive than
other XML query languages such as tree-pattern queries with
Boolean operators [16] or XPath.
We want to reinterpret probabilistic models on words to

get distributions over documents. To this effect, we use a
standard encoding of a document d with labels in L as a
(well-formed) string over the language Tag(L), which consists
of the symbols 〈l〉 and 〈/l〉 for each l ∈ L.
We define the XML representation systems PrXMLmux,det

and PrXMLexp, whose elements are called p-documents [1].
A p-document is a document with two types of nodes. Dis-
tributional nodes are only used to define the probabilistic
process that generates random documents—they do not ac-
tually occur in the output of the process. Ordinary nodes

• •

• • •

D: directory

P

1

0.8

1

0.2

• • • • • •

•

P : person

N T1 1 0.5

1

0.5

Figure 1: Example RMC generating all documents
valid against the DTD of Example 4

have labels and may appear in the generated documents. We
require the leaves and the root to be ordinary nodes.
Formally, a p-document is an unranked, ordered, labeled

tree. Each node has a unique identifier v and a label µ(v) in
L∪{exp(Pr)}∪{mux(Pr)}∪{det}. We consider distributional
nodes that define discrete probability distributions Pr over
the subsets of their children. In the case of mux nodes, we
impose that all subsets have cardinality less than or equal
to 1, that is, we select either no children at all, or a single
child. A det node deterministically chooses all its children.
The semantics of a p-document P̂, denoted JP̂K, is the

px-space obtained from the following randomized three-step
process (see [1] for a more detailed presentation): (i) In-
dependently for each exp(Pr) node, we select a subset of
its children (according to the corresponding probability dis-
tribution Pr) and delete the other children and the entire
subtrees underneath. Independently for each mux(Pr) node,
we select either zero or one child (according to Pr) and delete
the other children and the entire subtrees underneath. We
do not delete any children of det nodes. The probability
of this run of the process is defined as the product of all
choices. (ii) We then remove each distributional node, con-
necting each ordinary node with its closest ordinary ancestor.
(iii) The resulting px-space is formed of arbitrary represen-
tatives of each isomorphism class of the documents obtained
after step (ii). The probability of a document is the sum
of probabilities of every run that generated an isomorphic
image of it. Note that because we consider all possible runs,
the order of the choice made in step (i) is irrelevant.
We denote classes of p-documents by PrXML with the

allowed types of distributional nodes as superscripts. We
recall the following results from [1]: PrXMLmux cannot repre-
sent all finite distributions of documents, yet PrXMLmux,det

can, and PrXMLmux,det vpoly PrXMLexp. Also, PrXMLexp is
tractable for MSO [7]. Two types of distributional nodes are
further considered in [1]: ind nodes (for independent) can be
expressed with mux and det nodes; cie nodes (for conjunc-
tion of independent events) make use of global Boolean event
variables to condition nodes. Evaluating any non-trivial
tree-pattern query over PrXMLcie is #P-hard in data com-
plexity [16]. Since we focus on tractable models, we do not
consider cie nodes in this work.

3. RECURSIVE MARKOV CHAINS
We now adapt recursive Markov chains from [11] to the

context of document generation, and study their relationship
with prior probabilistic XML models.

Definition 1. A recursive Markov chain A, is a tuple
A = (A0, · · · , Ak, µ), where µ labels each Ai with elements
from L ∪ {ε} and every component Ai is a graph Ai =
(Ni, Nen

i , N
ex
i , Bi, Yi, δi) that consists of:

(i) A set Ni of nodes, a subset of entry nodes Nen
i ⊆ Ni,

and a subset of exit nodes Nex
i ⊆ Ni;

(ii) A set Bi of boxes, and a mapping Yi : Bi → {1, . . . , k}
that assigns to every box (the index of) one of the com-
ponents, A1, . . . , Ak. To each box b ∈ Bi, we associate
the sets of call ports, Call(b) = {(b, en) | en ∈ Nen

Yi(b)}
and return ports, Return(b) = {(b, ex) | ex ∈ Nex

Yi(b)},
that indicate, respectively, the entries and the exits of
the component corresponding to b;

(iii) A transition relation δi, where transitions are of the
form (u, pu,v, v) and
(a) the source u is either a non-exit node u ∈ Ni \Nex

i ,
or a return port u = (b, ex) of a box b ∈ Bi,

(b) the destination v is either a non-entry node v ∈
Ni \Nen

i , or a call port u = (b, en) of a box b ∈ Bi,
(c) pu,v is the probability of transiting from u to v.
For each u that is neither a call port nor exit node we
have

∑
{v|(u,pu,v,v)∈δi}

pu,v = 1.
We distinguish one component in A, say A0, as the initial

component, and within that component an initial node a0 ∈
Nen

0 and a set of exit nodes F0 ⊆ Nex
0 . We further require

that no box anywhere in the RMC is mapped to A0.
RMCs can be depicted graphically as follows: The compo-

nents are represented as rectangles containing Markov chains
with inner rectangles corresponding to boxes. The name of
the component each box is mapped to is given inside the
box. In the following figures, the initial component is the
one at the top-left, and it has a single initial node and a
single final node. The name of a component is given above
the rectangle, along with its label.

Example 2. Figure 1 partially shows an RMC with four
components D, P , N , and T . For instance, the label of D is
µ(D) = directory. D either calls P with probability 0.8 or
exits with probability 0.2, and this choice can occur again
after returning from the call. The components N : name and
T : phone are not depicted; both have a single edge going
from the entrance to the exit with probability 1.
The transitions for D are: (a0, 1, u1), (u1, 0.2, t), also

(u1, 0.8, (P, en)), and ((P, ex), 1, u1), where t is the exit node,
u1 is the only node pointed to by a0, (P, en) is the call port
for box P , and (P, ex) is the return port for box P .
Intuitively, a run of an RMC generates a document d in a

top-down fashion where a call of a box (corresponding to a
component) labeled l inside another box (corresponding to a
component) labeled l′ generates a node l in d that is a child
of l′. If a box is labeled ε, then it generates nothing, though
calls within its component may still generate labels. We next
formalize this via an alternative description of RMCs.
A vertex of Ai is either a node in Ai, a call port, or a

return port. Let Vi denote the set of all vertices of Ai. Thus,
the transition relation δi is a set of probability-weighted
directed edges on Vi. Let V =

⋃
i
Vi, and N , B, Y , and δ be

the unions of the corresponding sets. We denote by qu,ex the
probability that starting with u one eventually reaches an
exit ex in the same component as u.

Definition 3. An RMC A defines a global (denumerable)
Markov chain MA = (St,∆) as follows:

The global states St ⊆ B∗×V × (Tag(L)∪{ε}) of MA are
triples of the form (β, u, α), where β is a (possibly empty)
sequence of boxes from B that represents the stack of pending
recursive calls, u is the current vertex of A, and α is a label.
The function ∆ defines probability-weighted directed edges

between global states ∆ : (St× St)→ [0, 1]:

(i) If (u, pu,v, v) ∈ δ then for every sequence of boxes β
and label α there is a ∆-transition from (β, u, α) to
(β, v, ε) with probability pu,v.

(ii) If (b, en) ∈ Call(b) and µ(AY (b)) = l ∈ L, then for every
sequence of boxes β and label α, there is a ∆-transition
from (β, (b, en), α) to (βb, en, 〈l〉) with probability 1.

(iii) If (b, ex) ∈ Return(b), and µ(AY (b)) = l ∈ L, then for
every β and α there is a ∆-transition from (βb, ex, α)
to (β, (b, ex), 〈/l〉) with probability 1.

The initial global state is st0 = (A0, a0, 〈µ(A0)〉) and the
final global states are those of the form (A0, qf , 〈/µ(A0)〉)
for each qf ∈ F0.
MA can be seen as an “unfolding” of A. This construction

indeed forms a Markov chain in the usual sense: The sum of
outgoing probabilities from each global state is 1.
The notions of path between two states of MA and state

reachability are standard. Since the choices at any two nodes
are independent of each other, the probability Pr(p) of a
path p is the product of all transition probabilities along p.
With every global state g = (β, (b, ex), α), we set LabOf(g) =
α. Given a path p, we let LabOf(p) = p0 . . . pn be the string
in Tag(L)∗ formed by concatenating each LabOf(pi), treating
ε as the empty string. Given two global states st, st′ the
probability of transitioning from st to st′ is defined as:

Pr(st, st′) =
∑

path p from st to st′
Pr(p).

The probability of a string α ∈ Tag(L)∗ is

Pr(α) =
∑

final global state st

(∑
path p from st0 to st
with LabOf(p)=α

Pr(p)
)
.

The total probability of all finite strings that reach a
final state may be strictly less than one: this can happen
because strings reach states from which it is impossible to
reach a final state, or because with non-zero probability the
computation of the Markov chain never returns to a global
state with no pending boxes. As shown in [11], one can
compute in PSPACE the probability that an RMC generates
a finite string. In the case that this is non-zero, we normalize
the probability of any string by this number, thus gaining
a probability space on strings. For the tractable classes of
RMCs we will study later in this work, the computation of
this probability is also tractable.
For a given RMC A, let us denote by L(A) the set of

strings that have non-zero probability. It is easy to see that
any α ∈ L(A) is a well-formed encoding of a document.
Consequently, the set of all documents corresponding to
L(A) together with the corresponding probabilities define
a px-space associated to A that we denote by JAK. The
corresponding probabilistic XML model is denoted RMC.

Example 4. Consider the following DTD fragment that
describes an XML phone directory, with a list of persons,
each having a name and a list of phone numbers:
<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

A simple RMC that generates all documents valid against
this DTD is given in Figure 1. Each component models
one element of the DTD. The probability of generating a
given document follows a decaying distribution for both the
number of persons, and the number of phones per person.

For example, the probability of generating a directory with
two persons, each of them having two phone numbers is
(0.8× (0.5× 0.5× 0.5))2 × 0.2 = 0.2%.

These δ-transitions of D induce the following global ∆-
transitions: (D, a0, 〈directory〉) 1→ (D,u1, ε), (D,u1, ε)

0.8→
(D, (P, en), ε), (D, (P, en), ε) 1→ (DP, en, 〈person〉), and for
α ∈ Tag(L)∪{ε}: (DP, ex, α) 1→ (D, (P, ex), 〈/person〉).

Existing probabilistic XML models such as PrXMLmux,det

can be efficiently translated to RMCs. Section 5 discusses
efficient translations of other PrXML models into RMC.

Proposition 5. PrXMLmux,det vpoly RMC.

It is known that verifying MSO properties of RMCs over
strings is in PSPACE (this follows from [10]). Results later
in the paper show that the same holds for verifying MSO
properties of random documents represented by RMCs.
Unfortunately, even for basic problems, RMCs are not

known to be tractable. Computing reachability probabilities
in RMCs is as difficult as the square-root sum problem, a
well-known problem in numerical computation [11]. SQRT-
SUM asks, given natural numbers k and d1, · · · , dn, whether∑

i

√
di > k. SQRT-SUM is known to be in PSPACE, but

its containment even in NP is unknown and has been a
long-standing open problem. In [11] it is shown even ap-
proximating the probability of termination of an RMC to
within a fixed rational is as hard as the square-root sum
problem. Hence tractable query evaluation for this model
would require a breakthrough in numerical computation.

4. TRACTABLE RMC FRAGMENTS
In this section, we propose restrictions of the RMC proba-

bilistic XML model for which some form of tractability of
MSO can be achieved. We first show ra-tractability for the
class of hierarchical RMCs [11], which are wide and shallow.
We then show full tractability for tree-like RMCs, which are
also wide and shallow. The latter generalizes an existing
result on tractability of the PrXMLmux,det model [7], which is
narrow and shallow and less expressive than tree-like MCs.
Some of the RMC restrictions introduced in this section are

defined using the so-called call graph of the RMC. Similarly
to call graphs of procedural programs, the call graph CGA
of an RMC A has a node i for each component Ai of A and
a directed edge from node i to node j if there are mappings
from boxes of Ai to the component Aj .

Hierarchical RMCs. An RMC A is hierarchical if CGA is
acyclic. We denote by HMC the probabilistic XML represen-
tation system given by hierarchical RMCs. By forbidding
recursion across components, HMC is shallow. However, it
can be wide, since it allows paths from return ports to call
ports within components.

Theorem 6. HMC is ra-tractable for MSO.

This is a non-trivial extension of a result from [11] which
states that computing transition probabilities in HMCs is
ra-tractable. The algorithm, detailed in the appendix, uses
the construction of a product automaton of a pushdown
automaton equivalent to the HMC and a streaming tree
automaton representing the MSO query. We even show a
stronger result: ra-tractability for the more expressive system
PLRMC of piecewise-linear RMCs introduced in [11].

width

depth

sharing
wide

narrow

deepshallow

yes

no

1-TLAMC [none]

1-TLMC

HSCFG

[none]

1-HMC

[none]

SCFG

TLAMC [none]

TLMC

AHMC

[none]

HMC

[none]

RMC

Figure 2: Space of models considered in this paper. Considered dimensions (left), 1-exit models (middle),
multi-exit models (right). Tractability of MSO queries: MODEL: tractable, MODEL: ra-tractable, MODEL:
SQRT-SUM is reducible to query evaluation for some fixed MSO query.

Tree-like Markov chains. How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).
The global Markov chain defined by a tree-like Markov

chain A is finite, and its size is linear in the size of A. A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for efficiently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.
Unordered models. The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ∈ RMC and L(A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ∈ L(A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate ≺. The complexity of the
quantitative evaluation problem for q and S ∈ S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.
Shallowness corresponds syntactically to being hierarchi-

cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-off between succinctness and tractability:
(i) Tractability degrades to ra-tractability by adding shar-

ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep affects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models. One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.

Proposition 10.
1. TLAMC ≡poly 1-TLAMC and TLMC ≡poly 1-TLMC.
2. Let S be one of AHMC, HMC or RMC. Then S ≡ 1-S

but S ≡poly 1-S does not hold.
In the appendix we give an efficient algorithm for trans-

forming multi-exit MCs to single-exit ones that preserves
acyclicity: the idea is roughly to replace one multi-exit com-
ponent with several copies, one for each exit, with the proba-
bility of going into the original component distributed among
the copies. There is no blow-up in the size of the structures,
the only issue is to be able to calculate the probability of
entering each copy — this can be done efficiently for TLMC
using the efficient model-checking algorithm for TLMC, but
cannot be done for the less tractable HMC models.
The proposition above explains the relationship of single-

exit and multi-exit versions of our models. 1-exit RMCs
are important due to their close relationship with SCFGs
(stochastic context-free grammars) [11], which have been
much studied in connection with computational linguistics
or machine learning. We now show how we can see SCFGs
as a probabilistic XML representation system, and how they
are related to RMC. We adjust the standard definition of
SCFGs to generate documents.

Definition 11. A stochastic context-free grammar over
alphabet L is a tuple G = (V,R, S0), where
(i) V = {S1, · · · , Sk} is a set of nonterminals with S0 the

starting nonterminal;
(ii) R is a set of production rules Si

p−→ α, where Si ∈ V ,
p is a rational in [0, 1] such that for every nonterminal
Si, it holds that

∑
(Si

pj−→αj)∈R

pj = 1. The strings α ∈

(V ∪ Tag(L))∗ are well-formed, i.e., they have the form
(a) 〈t〉Si1 · · ·Sik 〈/t〉, or (b) Si1 · · ·Sik (for k > 0).

We assume the starting nonterminal S0 is of the form (a).
A SCFG G generates a string language L(G) ⊆ (Tag(L))∗

and associates a probability p(τ) to every string τ in the
language, according to the following stochastic process. Start
with the starting nonterminal S0, pick a rule with left-hand
side S1 at random (according to the probabilities of the
rules) and replace S0 with the string on the right-hand
side of the rule. In general, in each step we have a string
σ ∈ (V ∪ Tag(L))∗; take the leftmost nonterminal Si in
the string σ (if there is any), pick a random rule with left-
hand side Si (according to the probabilities of the rules) and
replace this occurrence of Si in σ by the right-hand side of
the rule to obtain a new string σ′. The process stops only
when (and if) the current string σ has no nonterminals. The
probability p(τ) of a terminal string is the probability that
the process terminates with string τ . It is easy to see that the
language generated by a SCFG is a set of document-strings
and we denote by SCFG the corresponding system.
As shown in [11], there are linear transformations from

SCFGs to 1-exit RMCs and vice-versa. These results carry
over to SCFG as probabilistic XML representation systems.
That is, we can show:

SCFG ≡poly 1-RMC.

This extends to 1-AHMC ≡poly HSCFG, where HSCFG de-
notes the shallow (i.e. non-recursive) variant of SCFGs.

Tree-Like vs. Shared. While multi-exits do not always
increase succinctness, the situation is different for sharing.

1-HMC can express px-spaces with doubly exponentially
small probabilities of documents that are not computable in
polynomial time (a p-document from Example 6.1 in [7] can
be translated into such such a one-exit hierarchical Markov
chain, which is furthermore acyclic). At the same time,
TLMC expresses px-spaces where the probability of every
document is computable in polynomial time. The reason is
that any TLMC can be expanded in polynomial time into
a regular Markov chain, where reachability probabilities
correspond to probabilities of documents generated by the
original TLMC. Moreover, reachability probabilities in reg-
ular Markov chains can be computed by solving a system
of linear equations, hence in polynomial time. Therefore,
1-HMC is at least exponentially more succinct than TLMC,
while both models are of the same expressive power since
it is possible to expand a hierarchical Markov chain into a
tree-like Markov chain by duplicating components used more
than once as boxes. Similarly (this can be shown with the
same example), 1-AHMC is exponentially more succinct than
TLAMC. That is: models with sharing are more succinct than
the corresponding tree-like models.
The presence of sharing has a similar impact within PrXML.

We have introduced PrXMLmux,det and PrXMLexp in Section 2.
A natural generalization of these models consists in introduc-
ing sharing of nodes in the trees, leading to PrDAG models.
We now investigate the place of these models in the hierarchy
of RMC subclasses that we have introduced.
P-documents with sharing, PrDAG, are defined as rooted

directed acyclic graphs (DAGs) with the possibility of having
multiple edges between two given nodes and a total ordering
on the edges outgoing from a given node, that make use
of both ordinary and distributional nodes, as with regular
p-documents. The semantics of a p-document with sharing is
defined as the semantics of the regular p-document obtained
by repeatedly duplicating subtrees whose root has more than
one incoming edge until a tree is obtained. That is, for any
node that has n incoming edges in the DAG we introduce
n copies of it in the corresponding p-document, one per
edge. As with p-documents, we denote with, for example,
PrDAGmux,det the class of p-documents with sharing that use
only mux and det distributional nodes.
A partial form of sharing (allowing duplicated edges) has

been considered in [7]. It has been remarked, in partic-
ular, that this makes the probability of a possible world
potentially doubly exponentially small, which requires an
exponential size to be represented. That is, sharing intro-
duces a gap in succinctness here as well: it does not hold
that PrDAGexp vpoly PrXMLexp. The following shows that all
shallow and narrow models with sharing and no passing of
information bottom up are equally expressive and succinct.
Note that all of these occupy the back, bottom, left corner
in the middle cube of Figure 2. Translation between these
models is relatively straightforward and can be done in linear
time.

Proposition 12. PrDAGmux,det ≡poly PrDAGexp ≡poly
HSCFG.

PrXML vs. subclasses of RMC. We finally give a precise
characterization of the position of PrXMLmux,det in the hierar-
chy of models. Given that PrXMLmux,det models are shallow,
narrow, and tree-like, one might think that they occupy the
lowest point in the lattice, and are hence essentially the same
as TLAMC. Surprisingly, this is not the case:

Narrow and shallow models Wide models

Shallow
Deep

PrXMLmux,det

PrXMLexp 1-TLAMC
≡poly TLAMC

PrDAGexp ≡poly PrDAGmux,det

≡poly HSCFG ≡poly 1-AHMC

AHMC

1-TLMC
≡poly TLMC

1-HMC
HMC

1-RMC
≡poly SCFG

RMC

?

?

Figure 3: Translations between probabilistic XML representation systems.
“ ”: polynomial translation, “ ”: existence of a translation, “?”: no efficient translation known.

Theorem 13.
1. PrXMLmux,det vpoly 1-TLAMC.
2. It does not hold that 1-TLAMC vpoly PrXMLexp.

The key is that TLAMC processes can still pass a limited
amount of information over long distances in a tree, while
PrXML cannot. The diagram on the left of Figure 3 gives
a detailed picture of the narrow and shallow models, with
the tree-like ones at the top. An open problem is whether
PrXMLexp can be efficiently translated into PrXMLmux,det

(already stated as open in [1]) or into TLMC.
Figure 3 summarizes the expressive power and relative

succinctness of the various models introduced in this article.
The left-hand side shows if (polynomial-time) translations
exist between the narrow and shallow representation systems,
i.e., it zooms on the bottom-left edge of the cubes of Fig-
ure 2. The top-right of Figure 3 presents expressiveness and
conciseness results for shallow and wide models, i.e., those
of the top-left edge of the cubes. Finally, the bottom-right
of Figure 3 compares deep and wide models, the ones on the
back top-right vertex of the cubes. For readability, transla-
tions across narrow and wide models are not shown, but they
are straightforward: TLAMC, 1-AHMC, and AHMC can be
translated in polynomial time to, respectively, TLMC, 1-HMC
and HMC (and no translation exists in the other direction).
Apart from these and the open questions discussed above
(shown with a “?”), the figure is complete in the following
sense: there is a (solid) path between any two models if and
only if there is a (polynomial-time) translation.

6. COMBINED COMPLEXITY
In Section 4 we have discussed data complexity of query

evaluation for a very rich query language, MSO. We now
comment on the combined complexity of query evaluation.
We focus here only on the models that we have shown ra-
tractable. For the most general model, RMC, the best we
can say about the complexity of even simple queries (e.g.,
tree patterns) is that it is in PSPACE, via reduction to the
existential theory of the reals (by iterating over an exponen-
tial number of automata whose union is equivalent to the
query, and then application of the PSPACE algorithm of [11]
for computing reachability probabilities in RMCs).

Lowest combined complexity: tree-pattern queries. For
tree patterns, the complexity of querying any of our tractable
models is in FP#P (the class of computation problems that
can be solved in polynomial time using a #P oracle). Tree
patterns can be converted to a disjoint union of polynomial-
size deterministic tree automata (by guessing an ordering of

siblings), where each tree automaton is of linear size in the
pattern. #P-hardness of tree-pattern evaluation holds even
for PrXMLmux,det [16].

Highest Combined Complexity: MSO. For full MSO the
complexity of satisfiability over words is known to be non-
elementary [21]. Hence, determining whether an MSO query
has positive probability is non-elementary, in any of our wide
models (e.g., HMC, TLMC).
If we turn to shallow and narrow models, we note that the

combined complexity of MSO query evaluation is PSPACE-
complete for on PrXMLmux,det . Membership in PSPACE fol-
lows because each particular isomorphism type of a tree is of
size linear in the representation, and we can evaluate an MSO
query in PSPACE combined complexity over any fixed tree
[18]. Thus we can determine the probability of a given query
by simply generating every possible world d, recording the
probability p of generation, evaluating the query in PSPACE
on d, and then adding p to the running total if the query is
satisfied. PSPACE-hardness is clear because the evaluation
of MSO (indeed, even first-order logic) over a fixed tree is
PSPACE-hard [18]. The same PSPACE-completeness result
holds for any of our representation systems such that each
representation S has a domain consisting only of documents
of size polynomial in S. In particular, the same holds for
PrXMLexp and TLAMC.
For AHMC, representations S may generate documents at

most exponential in the size of S. Thus, MSO probability
evaluation is in EXPSPACE, again simply by iterating over
documents and updating the probability. A lower bound can
be obtained using techniques from [12] where it is shown
that the combined complexity of MSO evaluation over com-
pressed trees is NEXPTIME-hard. The result holds even
for the restricted fragment of existential MSO. By adapting
the argument of [12] and taking into account the fact that
the probability evaluation problem is essentially a counting
problem, we can show it is #EXP-hard:

Proposition 14. Given an existential MSO formula q
and S ∈ AHMC, computing Pr(q |= S) is #EXP-hard.

In between: Forward Navigational XPath. An interme-
diate language consists of forward navigational XPath (or
FNXPath) filters, where navigational indicates that data
joins are excluded [19], and forward that we only consider
the child and descendant axes. We refer to [19] for detailed
syntax and semantics.
We can consider each filter to define a Boolean query over

documents; the query checks whether the root of the docu-

ment satisfies the filter. It is known from [14] that FNXPath
can be evaluated in polynomial time on XML documents.
From this it follows that FNXPath can be evaluated in FP#P

on PrXMLmux,det models (the argument is similar to the one
given in [15] for computing the probability of a logical for-
mula). Hence, it is FP#P-complete. The same argument
shows that FNXPath is in FP#P for any formalism in which
representations generate only trees of polynomial size.
Because satisfiability of FNXPath is PSPACE-hard [5] even

on trees of fixed depth, the evaluation problem for FNXPath
is PSPACE-hard for any of our unbounded models. In addi-
tion, [12] shows that evaluation of FNXPath is PSPACE-hard
on compressed documents, which are subsumed by AHMC
and thus by HMC. Thus query evaluation for these for-
malisms is PSPACE-hard. We provide in the appendix an
algorithm for FNXPath that is in PSPACE with respect to
query complexity on AHMC.

Theorem 15. There is a query evaluation algorithm for
FNXPath on AHMC that runs in PSPACE in the query and
uses a number of arithmetic operations that is polynomial in
the model size.
The key to the algorithm is that we do not calculate the
probability of every tree, but only the probability of ev-
ery “tree-type”, where a type abstracts trees according to
which subexpressions of the the FNXPath expression it satis-
fies. The algorithm calculates the probability of the type by
traversing the AHMC top-down, calculating probabilities for
all compatible types of child subcomponents and combining
them using the transition probabilities.

PSPACE combined complexity is arguably a sign that the
tractability results in terms of data complexity of Section 4
apply in practice to non-trivial queries. The algorithm of
Theorem 15 subsumes the well-studied case of tree-pattern
queries, and applies to the most general narrow and shallow
probabilistic XML representation system presented here.

7. CONCLUSION
This work departs from the mainstream approach to prob-

abilistic XML models seen as XML documents with addi-
tional features and proposes new models based on variations
of Markov chains that are situated within a rich literature
on probabilistic computation. These new models go beyond
the state-of-the-art in their ability to represent deep or wide
documents, or worlds with probabilities double-exponentially
small. This shift also gives new insights into tractability and
expressiveness of the existing PrXML models.
The following models stand out in particular from the

picture given in Figure 2: (i) TLMC because of its tractability
in the usual bit cost arithmetic model together with its ability
to represent wide trees; (ii) AHMC, a narrow and shallow
model that is tractable in unit-cost arithmetic and that has
PSPACE combined complexity; (iii) HMC, a wide model that
is tractable in unit-cost arithmetic, and its generalization,
PLRMC, which is deep and also ra-tractable.

HMC can be seen as a probabilistic version of non-recursive
DTDs. An intriguing question is whether these probabilistic
schemas can be applied to obtain more fine-grained models
of collections of real-world documents which may not satisfy
any non-trivial traditional (i.e. deterministic) schema.

8. REFERENCES
[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.

On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5), 2009.

[2] S. P. Abney, D. A. McAllester, and F. Pereira. Relating
probabilistic grammars and automata. In ACL, 1999.

[3] R. Alur, M. Benedikt, K. Etessami, P. Godefroid,
T. W. Reps, and M. Yannakakis. Analysis of recursive
state machines. TOPLAS, 27(4), 2005.

[4] L. Antova, C. Koch, and D. Olteanu. “10106
worlds and

beyond: Efficient representation and processing of
incomplete information”. VLDB Journal, 18(5), 2009.

[5] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. JACM, 55(2),
2008.

[6] S. Cohen and B. Kimelfeld. Querying parse trees of
stochastic context-free grammars. In ICDT, 2010.

[7] S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree
automata on probabilistic XML. In PODS, 2009.

[8] J. Esparza, A. Kucera, and R. Mayr. Model checking
probabilistic pushdown automata. In LICS, 2004.

[9] K. Etessami, D. Wojtczak, and M. Yannakakis.
Quasi-birth-death processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown
systems. Technical Report 1249, U. Edinburgh, 2008.

[10] K. Etessami and M. Yannakakis. Algorithmic
verification of recursive probabilistic state machines. In
TACAS, 2005.

[11] K. Etessami and M. Yannakakis. Recursive Markov
chains, stochastic grammars, and monotone systems of
nonlinear equations. JACM, 56(1), 2009.

[12] M. Frick, M. Grohe, and C. Koch. Query evaluation on
compressed trees. In LICS, 2003.

[13] O. Gauwin, J. Niehren, and Y. Roos. Streaming tree
automata. Inf. Process. Lett., 109(1), 2008.

[14] G. Gottlob and C. Koch. Monadic Datalog and the
expressive power of Web information extraction
languages. JACM, 51(1), 2004.

[15] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity
of query reliability. In PODS, 1998.

[16] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB Journal,
18(5), 2009.

[17] B. Kimelfeld and Y. Sagiv. Matching twigs in
probabilistic XML. In VLDB, 2007.

[18] L. Libkin. Elements of Finite Model Theory. Springer,
2004.

[19] M. Marx. Semantic characterizations of navigational
XPath. SIGMOD Record, 34, 2005.

[20] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event
queries on correlated probabilistic streams. In
SIGMOD, 2008.

[21] L. Stockmeyer. The Complexity of Decision Problems
in Automata and Logic. PhD thesis, MIT, 1974.

[22] W. Thomas. Languages, automata, and logic. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages. Springer-Verlag, 1997.

APPENDIX
A. RELATED WORK
A unified view of existing probabilistic XML models, in

the form of p-documents, has been proposed in [1]. Trans-
lations between families of p-documents, depending on the
kind of distributional nodes allowed, are studied in detail
in [1]. Traditionally, probabilistic XML models have been
unordered, shallow, and narrow. The first efficient algorithm
for evaluating tree-pattern queries in PrXMLmux,det has been
proposed in [17]; this has been extended to PrXMLexp and
Boolean combinations of tree-pattern queries in [16], and
extended further to MSO queries in [7] where Cohen et al.
show how to run a deterministic bottom-up automaton on
an ordered PrXMLexp document. The same work introduces
a limited form of sharing in p-documents (the possibility of
re-using multiple times a given child), that is a restriction
of the PrDAGexp model. Recent work [6] uses the techniques
of probabilistic XML to compute the probability of a tree-
pattern query over the set of parse trees of a given string
in a stochastic context-free grammar. If the grammar has a
specific property, a generalization of Chomsky normal form,
it is possible to compute these probabilities in polynomial
time. We stress, however, that the problem studied in [6] is
fundamentally different from the work presented here: the
probabilistic XML model is not the SCFG, but the SCFG
together with an input string. And all possible worlds share
the same set of leaf nodes, since possible worlds are all parse
trees of this string.
Recursive Markov chains were introduced by Etessami

and Yannakakis in [11] as probabilistic versions of recursive
state machines [3], used for the static analysis of programs
and systems. An equivalent formalism, probabilistic push-
down systems, was introduced independently in [8]. Some
other stochastic formalisms from the literature (notably, tree-
structured quasi-birth-death processes) have been shown to
be equivalent to RMCs [9], while other still (quasi-birth-
death processes, probabilistic 1-counter automata) are a
restricted class of RMCs [9]. Stochastic (or probabilistic)
context-free grammars are another example of widely used
model (notably in natural language processing) that can be
seen as a particular case of RMCs, specifically, 1-exit RMCs.
While context-free grammars are as succinct as pushdown
automata, probabilistic context-free grammars, though they
generate the same probabilistic distributions as probabilistic
pushdown automata, are exponentially less succinct [2]. Al-
gorithms for computing reachability probabilities in recursive
Markov chains are presented in [11]. This is extended in [10]
to probabilities of verifying a given specification, through
the construction of a product automaton, similarly to the
construction we use to prove Theorem 6.

B. MATERIAL FOR SECTION 3
Proof of Proposition 5. Let P̂ ∈ PrXMLmux,det. We

construct the corresponding RMC A as follows. The RMC
contains one component Av for every node v of P̂. The
component A0 corresponds to the root of P̂. Consider cases.
(i) v is a regular (resp., det) node labeled a with m > 0 chil-
dren labeled a1, · · · , am. The corresponding component Av is
given in Figure 4 (left), where µ(Av) = a (resp., µ(Av) = ε).
(ii) v is a mux node with m children v1, · · · , vm and proba-
bilities p1, · · · , pm. This corresponds to the component A′v

in Figure 4, where µ(A′v) = ε.
This construction produces an RMC of a very restricted

form, called tree-like Markov chain (see Definition 7).

• • • • • •

Av : a or ε

Av1 Avm→ · · · →1 1 • •

• •

• •

A′v : ε

Av1

Avm

· · ·

p1

pm

1

1

Figure 4: Translation from PrXMLmux,det to RMC. Left
component Av for a PrXMLmux,det node a(v1, . . . , vm) or
det(v1, . . . , vm). Right component A′v for a PrXMLmux,det

node mux(v1, . . . , vm).

C. MATERIAL FOR SECTION 4
We show the ra-tractability of the class of piecewise-linear

RMCs [11], PLRMC.

Definition 16. An RMC A is piecewise-linear if in every
component Ai, for every path from an entry node to an
exit node, there is at most one box which is mapped to a
component in the same strongly connected subgraph of the
call graph CGA as Ai.

PLRMC is deep, since it allows for recursion (for instance,
the box within a component can be mapped to that same
component), and also wide, since within a component there
may be paths with several boxes from different strongly con-
nected subgraphs of the call graph. The notion of piecewise-
linearity is a generalization of the standard notion of linearity
of context-free grammars, which allows at most one nonter-
minal on the right-hand side of each grammar rule; when
adapted to RMCs, this constraint states that for every path
from an entry node to an exit node, there is at most one box.
It is easy to see that PLRMC also generalizes HMC.

Theorem 17 (Generalization of Theorem 6).
PLRMC is ra-tractable for MSO.
To prove this result, we first introduce an alternate repre-

sentation for RMCs in the form of probabilistic pushdown
automata [2]. We then show how to construct a product of
this automaton with a tree automaton encoding the MSO
formula, such that reachability of some state in the resulting
automaton corresponds to the probability of the query. This
is similar in spirit to what is done in [10] for model-checking
RMCs with respect to a Büchi automaton.

Definition 18. A probabilistic pushdown automaton (or
pPDA) is a tuple P = (Q,Γ, q0,∆, ν) that consists of a finite
set of control states Q, a finite stack alphabet Γ, initial state
q0 ∈ Q, a probabilistic transition relation ∆ with transitions
of the form:

(q, γ) p,push(γ′)−−−−−−→ q′, or (q, γ′) p,pop−−−→ q′, or (q, γ) p−→ q′,

where q, q′ ∈ Q, γ ∈ Γ ∪ {⊥}, γ′ ∈ Γ, and p ∈ [0, 1] is the
probability of the transition, and a functions ν mapping
symbols of Γ to labels in L ∪ {ε}. For any state (q, γ) with
outgoing transitions, transition probabilities sum up to 1.

Probabilistic pushdown automata are seen as a probabilis-
tic XML model pPDA in the following way. Intuitively, a run
of a pPDA generates a document d in a top-down fashion: if
ν(γ) = a, ν(γ′) = a′, and the top element of the stack is γ,
then a push of γ′ on top of γ, by means of the instruction
push(γ′), generates a node in d labeled a′ as a child of the
node labeled a. When the last child of a is generated, or
when a is a leaf, the automaton pops γ from the stack and
proceeds to generate siblings of a. If ν(γ) = ε, then neither
pushing nor popping γ affects document generation. We con-
sider the generation finished when a pop operation empties
the stack. A pPDA assigns probabilities to runs, and thus to
documents. We can also assign probabilities to runs that do
not terminate on an empty stack. Thus for any state q ∈ Q,
we can also talk about the probability of generating a partial
document (d, n) in state q: by this, we mean the probability
of generating a string ending in the closing tag of n in state
q, such that the completion of this string with closing tags
is the document d.
As shown in [11], RMCs and pPDAs are essentially equiva-

lent in the sense that there are linear translations from RMCs
to pPDAs and the other way around such that there is some
mapping from the states of the global Markov chain defined
by each representation, with the same transition probabilities
between states (see [11] for a more formal statement). This
equivalence very naturally extends to the probabilistic XML
models defined by these representations.

Proposition 19. RMC ≡poly pPDA.
It is well known that MSO queries can be converted to

bottom-up deterministic tree automata [22]. In contrast,
pPDAs work probabilistically, but generate input top-down.
To prove Theorem 17, it will be more useful to convert the
MSO query into an automaton of the same “form”—one that
traverses the input in pre-order. A deterministic stream-
ing tree automaton (DSTA) is an (accepting) pushdown
automaton on strings (Q,Tag(Σ),Γ, q0, F, δ) where the input
alphabet is the collection of begin and end tags over some
alphabet Σ, Γ is the stack alphabet, q0 ∈ Q is the initial
state, F ⊆ Q are the accepting states, δ is the transition
function, and
• on input 〈a〉 there are only push transitions;
• on input 〈/a〉 there are only pop transitions.

We run a DSTA on a document d by running it on its string
representation in the usual sense. We can also run the DSTA
on any prefix of this document string. By a run of a DSTA
on d up until node n ∈ d, we mean on the substring up until
the closing tag of n. We assume that our DSTAs have total
transition functions, and hence for every DSTA A, document
d and node n, there is a unique run of the automaton on d
up until n, and we can talk about the state of A when run
on (d, n). We use the following result from the literature on
nested word automata and streaming tree automata.

Fact 20. [13] Every bottom-up tree automaton on ordered
trees can be converted to an equivalent DSTA.
Given a pPDA A = (Q,Γ, q0,∆, ν) and a DSTA A′ =

(Q′, tag(Γ),Γ′, q′0, δ′) we can form the product A×A′, which
is a pPDA with:
(i) states Q×Q′;
(ii) stack alphabet Γ× Γ′;
(iii) initial state (q0, q

′
0);

(iv) for every transition (q1, γ) p,push(γ′)−−−−−−→ q2, and for every

state q′1 ∈ Q′ with transition (q′1, 〈γ′〉)
push(γ′′)−−−−−−→ q′2, a

transition ((q1, q
′
1), γ) p,push(γ′,γ′′)−−−−−−−−−→ (q2, q

′
2);

(v) for every transition (q1, γ) p,pop−−−→ q2, and for every state
q′1 ∈ Q′ with transition (q′1, 〈/γ〉)

pop−−→ q′2, a transition
((q1, q

′
1), γ) p,pop−−−→ (q2, q

′
2);

(vi) for every transition (q1, γ) p−→ q2, and for every state
q′ ∈ Q′, a transition ((q1, q

′
1), γ) p,pop−−−→ (q2, q

′
2);

(vii) labeling function ν′′ with ν′′(q, q′) = ν(q).
This product has the following important property:
Lemma 21. Let A be a pPDA and A′ a DSTA. The proba-

bility that A×A′ generates a partial document (d, n) in state
(q, q′) is the probability that A generates a partial document
(d, n) in state q and that the unique run of A′ on d until
n ends in state q′. In particular, determining the probabil-
ity that A generates a document accepted by A′ reduces to
calculating reachability probability of states in A×A′.

Proof. This is proven by a direct transformation of runs
in A×A′ to pairs of runs of A and A′, where the transfor-
mation preserves probabilities.

We now give the intuition of our proof of Theorem 17.
Given a piecewise-linear RMC M and an MSO formula F ,
we (i) construct (in linear time) a pPDA A equivalent to
M (Proposition 19), (ii) translate F into a MSO formula F ′
over the stack alphabet of A, (iii) convert F ′ into a DSTA A′

(Fact 20) and (iv) construct the product A×A′. It can be
shown that the product is still a piecewise-linear RMC. We
conclude by Lemma 21 and the ra-tractability of reachability
probability computation in piecewise-linear RMCs [11]. More
formally:

Proof of Theorem 17. Let F be an MSO formula over
documents labeled in L andM a piecewise-linear RMC. First
construct from M (in linear time) an essentially equivalent
pPDA (Q,Γ, q0,∆, ν) as described in [11]. We must now
rewrite F so that the automaton constructed from it can
directly be composed with this pPDA, even though some of
the push transitions of the automaton do not produce any
labels. To do this, we transform F into an MSO formula
over documents labeled in Γ in the following way:
• Every subformula ∀xϕ is replaced with ∀x¬(γ1(x)∨· · ·∨
γk(x)) → ϕ, where γ1 . . . γk ∈ Γ are all stack symbols
such that ν(γ) = ε.
• Every subformula ∃xϕ is replaced with ∃x¬(γ1(x) ∨
· · ·∨γk(x))∧ϕ where γ1 . . . γk ∈ Γ are all stack symbols
such that ν(γ) = ε.
• Every occurrence of a label predicate l(x) is replaced
with the formula γ1(x) ∨ · · · ∨ γk(x) where γ1 . . . γk ∈ Γ
are all stack symbols such that ν(γ) = l.

Observe that the probability that F satisfies a document
generated by M is equal to the probability that F ′ satisfies
a document generated by A = (Q,Γ, q0,∆, id) where id is
the identity function. Then we convert F ′ into a DSTA
A′. Lemma 21 shows that the probability that F satisfies
a document generated by M is the probability of reaching
the empty stack with a pop operation in A×A′ (we can see
this as the probability of reaching a state qf by adding a
transition (⊥, q) p−→ qf for every state q 6= q0). Let M ′ be an
RMC that is equivalent to A×A′.
Remark that if M is hierarchical, then M ′ is also hier-

archical (if Q can be partitioned into
⋃
i
Qi such that a

push transition always goes from a state of Qk to a state
of Qk + 1, then Q × Q′ can be stratified into

⋃
i
Qi × Q′,

with the same property). Similarly, it can be checked that
if M is piecewise-linear, then M ′ is also piecewise-linear.
Informally, piecewise linearity means that when the RMC
has recursion, then this recursion is linear. This property
is preserved through the equivalence to pPDAs. Further-
more, the product construction neither add non-linearity nor
recursion.
Since reachability probabilities are ra-tractable in piecewise-

linear RMCs, the probability that F satisfies M is com-
putable in PTIME assuming unit-cost rational arithmetic.
We also need to normalize by the probability of termination
of the RMC M , which is just another reachability probabil-
ity.

We now prove the tractability of tree-like Markov chains.

Proof of Theorem 8. We apply the same construction
as in the proof of Theorem 17. If M is tree-like then M ′ is
also tree-like. The tree-like property can be seen in pPDAs
as a condition that the push and pop transition graph is a for-
est of connected components of states, and this is preserved
by the product construction. Reachability probabilities in
tree-like Markov chains are just reachability probabilities in
regular Markov chains, and they are computable in polyno-
mial time.

D. MATERIAL FOR SECTION 5

1-exit vs. Multi-exit Models. We prove Proposition 10
with the help of the two following lemmas: item 1 is a
direct consequence of Lemma 22 and item 2 is obtained by
combining Lemmas 22 and 23.

Lemma 22. Let S be one of TLAMC, AHMC, TLMC, HMC,
PLRMC, RMC. Then S ≡ 1-S. Moreover, if reachability
probabilities can be computed in polynomial time in S (with
bit-cost arithmetic), then S ≡poly 1-S.

Proof. For S = RMC, we use a result from [2] that
shows that every pPDA can be (inefficiently) translated into
a SCFG that generates the same string language (recall that
pPDA ≡poly RMC).
The other cases are subclasses of PLRMC, for which reach-

ability probabilities are rational [11]. Let S ∈ S. Since any
RMC can be transformed into a 1-entry equivalent RMC
in polynomial time [11], we assume that all components of
S are 1-entry. Let Ai be a component of S with m exits.
We substitute Ai with m components A1

i , . . . , A
m
i , that are

1-exit copies of Ai where only the jth exit has been kept. We
also remove from Aji all nodes from which the exit node is
not reachable and renormalize the probabilities to obtain an
Markov chain in which the probability of reaching the exit
from the entry is 1, provided that all boxes terminate with
probability 1. This can be done in polynomial time. Then one
replaces every box b calling Ai with m boxes bj , one for each
Aji . Finally one substitutes the transition (v, p, (b, en)) with
m transitions (v, p · pj , (bj , en)), where pj is the probability
of reaching the jth exit of Ai starting from its entrance (we
assumed this is a rational probability). The resulting RMC
generates the same px-space, and the construction preserves
the hierarchical, tree-like, and acyclic properties.

Lemma 23. Consider the query q = ∃x c(x). For all
n > 0, there is an AHMC Hn of size O(n) such that Pr(q |=
Hn) = 1 − 2−2n . In contrast, there is no 1-RMC of size
polynomial in n with the same query probability.

Proof. A hierarchical acyclic Markov chain that has the
required property is given in Figure 5. The non-existence
of a 1-exit RMC of size polynomial in n with a reachability
probability doubly exponentially close to 1 (but not equal
to 1) was proved in [11], Lemma 29, and it directly yields
the second part of the lemma.

Piecewise-linearity. We compare the piecewise linearity
condition with the other classes. A direct consequence of
Theorem 8.11 and Theorem 3.2, Case (1) of [11] is that RMC
is strictly more expressive than PLRMC. The former model
can express irrational reachability probabilities, while the
latter cannot. In turn, PLRMC is more expressive than HMC
since HMC is not a deep model. Moreover it follows from [11]
that PLSCFG ≡poly 1-PLRMC.

E. MATERIAL FOR SECTION 6
We explain the algorithm behind Theorem 15 first in the

one-exit case. In this case, we can assume without loss of
generality that every component has at most two boxes in it,
since every one-exit machine can be rewritten in this form.
The closure of an FNXPath filter F , denoted cl(F), is the

set of its subformulas. An F -type is a subset of cl(F). A
node in a tree satisfies an F -type if it satisfies exactly the
formulas in the type. The idea of our algorithm will be to
work top-down on the components, guessing types for every
box.
We need the following properties of the closure of F : (i) it

consists only of FNXPath filters; (ii) it consists of only a
polynomial number of filters (in size of F). Most importantly,
it satisfies a “composition lemma”, given below. A 2-pointed
tree is a tree with two distinguished leaves. If p is a two-
pointed tree and t1, t2 are trees, p2[t1, t2] is the tree formed
from plugging in t1 in to the first port of p (that is, identifying
the root of t1 with the port) and t2 into the second port.
The composition lemma states:

Lemma 24. Suppose p is a 2-pointed tree with neither of
its ports equal to its root, and suppose t1 and t′1 are two trees
whose roots satisfy the same filters in cl(F), and similarly
for t2, t′2. Then for any filter in cl(F),
(p[t1, t2], root(p[t1, t2])) |= F ⇔ (p[t′1, t′2], root(p[t1, t2])) |= F

Proof. Simultaneous induction on the height of p and F .
For atomic expressions this is clear, while for Boolean opera-
tors it follows immediately by induction.
Suppose (p[t1, t2], root(p[t1, t2])) |= child[G]. There is a

child c of the root that witnesses this. If this child is
the root of t1, then we know (t1, root(t1)) |= G, and thus
the same holds for (t′1, root(t′1)) by assumption. But then
(p[t′1, t′2], root(p[t1, t2])) |= child[G], with the root of t′1 as the
witness. We argue symmetrically if c is the root of t2.

If c is not in t1 or t2, then we let p′ be the subtree of root
rooted at c, and we conclude that p′[t′1, t′2] satisfies G by
induction on height, and thus that p[t′1, t′2] satisfies F .

That is, for fixed p, the type of p[t1, t2] depends only on
the types of t1 and t2. We also need the following:

• • • •

•

• •

S: r

S0

C

1 1

1
1

• •

C: c

1

• • •

•

• • •

•

• • •

•

Sk (0 6 k < n): ε

Sk+1

Sk+1

Sk+1

1

1

1

1

1

1

1

• • •

•

• • •

Sn: ε

A

B

0.5

0.5

1

1

• •

A: a

1 • •

B: a

1

Figure 5: Acyclic hierarchical Markov chain of size O(n) such that ∃x c(x) has probability 1− 2−2n .

Lemma 25. Given a filter F , three F -types tp1, tp2 and
tp3 and a two-pointed tree p[x, y] one can check in PSPACE
whether there are trees t2 and t3 with the root of p[t2, t3]
satisfying tp1 in p[t2, t3], the root of t2 satisfying tp2 in t2,
and the root of t3 satisfying tp3 in t3.

Proof. We need to know if there is a tree q with distin-
guished nodes m2,m3 (given, e.g., as distinguished labels),
such that the subtree of the root minus the subtrees of m2
and m3 is isomorphic to p, and the nodes m1,m2, root(q)
satisfy the types tp1, tp2, tp3 within the appropriate trees.
Any isomorphism type of an ordered tree can be described

in FNXPath, hence this can be expressed as an FNXPath
expression of polynomial size, using an enhanced label alpha-
bet telling whether a particular node is m2 or m3. The result
now follows, because satisfiability of FNXPath on trees of
fixed depth d is in PSPACE in the size of the expression and
the depth [5].

Call a 4-tuple (tp1, tp2, tp3, p) consistent if the above holds.
Note that by Lemma 24, if (tp1, tp2, tp3, p) is consistent then
for every t2, t3 whose roots satisfy tp2, tp3, respectively, the
tree p[t2, t3] satisfies tp1 at its root. We are now ready for
the algorithm.

Proof of Theorem 15 (single-exit HAMCs). We fix
a single-exit HAMC M . We know that in every component,
there are only a polynomial number of paths from the entry
node to the exit node. We also assume that every component
has at most two boxes. An arbitrary AHMC can be normal-
ized to achieve this. By acyclicity and the single-exit property
each path hits each box at most once. Note that over a HMC,
the axis descendant can be (efficiently) translated away, since
the depth of the documents is bounded. Similarly, FNXPath
expressions can be rewritten to explicitly skip over ε-nodes,
using the bound on the depth of the tree. For example
child[G] is rewritten to

∨
i6h(child[ε]/)i/child[G].

Our algorithm Gen(tp, b) takes as input F -type tp and box
b of M , computing the probability that b generates a tree
satisfying tp at the root. Applying this to the root of the
top-level box, and iterating over every type tp that contains
F , will give us the final probability that we want.

Gen(tp, b) works as follows. Let b point to component C
that is associated with label l ∈ L, and b1, b2 be the boxes in
C. Let p1 . . . pn be all paths from the entry node to the exit
node in C, possibly going through both boxes. For each path
pi, let l[pi] be the two-pointed tree that has a root labeled L

and the path pi as a subforest, with ports corresponding to
any occurrence of b1 and b2 in pi.
The algorithm guesses types tp1 and tp2 and then re-

cursively calculates Gen(tp1, b1) and Gen(tp2, b2). It then
iterates over each path pi, and checks whether the 4-tuple
(tp1, tp2, tp3, l[pi]) is consistent; if they are multiples the prob-
abilities returned by Gen(tp1, b1) and Gen(tp2, b2) with the
product of probabilities of the edges in pi, adding this to
the running probability. It returns the sum total of these
probabilities over all pi.
The correctness of the algorithm follows directly from

Lemma 24. The algorithm runs in PSPACE in the query,
since we can implement it with a call stack that stores a
sequence of pairs, box and type, of height at most the height
of M . For any fixed query it will be ra-tractable, since
the number of arithmetic operations used is a polynomial
(depending on the query) in the AHMC.

Let us now extend this to multiple-exit HAMCs.

Proof of Theorem 15 (multiple-exit HAMCs).
We explain the extension to the general AHMC model of the
proof given in the main text. In this case, there may be
j boxes per component, where j is bounded by the size of
the AHMC. We thus need to deal with j-pointed trees; the
extension of Lemma 24 to j-pointed trees is straightforward.
In a given component, there may be exponentially many
paths p. However, each path is of size linear in the chain and
we only need to deal with one at a time (we can record the last
path we have visited using a polynomial amount of space). So
the algorithm Gen(tp1, b) will guess a path in the component
pointed to by b, in addition to choosing j types, where tpi is
chosen for box bi in the component, and will then make a
recursive call to Gen(tpi, bi) to compute the probability. Of
course, we also need to verify type consistency, which requires
a modification of Lemma 25 to the case where p is not of fixed
sized but is part of the input. The extension follows because
the FNXPath expression expressing the isomorphism type
of the path is of size linear the path.

