Aggregation and Ordering in Factorized Databases

Bakibayev, Kočiský, Olteanu, and Závodný University of Oxford

VLDB Sept 2, 2014
http://www.cs.ox.ac.uk/projects/FDB/

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Factorized Databases by Example

Orders			Pizzas		Items	
customer	day	pizza	pizza	item	item	price
Mario	Monday	Capricciosa	Capricciosa	base	base	6
Mario	Friday	Capricciosa	Capricciosa	ham	ham	1
Pietro	Friday	Hawaii	Capricciosa	mushrooms	mushrooms	1
Lucia	Friday	Hawaii	Hawaii	base	pineapple	2
			Hawaii	ham		
			Hawaii	pineapple		

Consider the natural join of the three relations above:

Orders \bowtie Pizzas \bowtie Items

customer	day	pizza	item	price
Mario	Monday	Capricciosa	base	6
Mario	Monday	Capricciosa	ham	1
Mario	Monday	Capricciosa	mushrooms	1
Mario	Friday	Capricciosa	base	6
Mario	Friday	Capricciosa	ham	1
Mario	Friday	Capricciosa	mushrooms	1

Factorized Databases by Example

Orders \bowtie Pizzas \bowtie Items

customer	day	pizza	item	price
Mario	Monday	Capricciosa	base	6
Mario	Monday	Capricciosa	ham	1
Mario	Monday	Capricciosa	mushrooms	1
Mario	Friday	Capricciosa	base	6
Mario	Friday	Capricciosa	ham	1
Mario	Friday	Capricciosa	mushrooms	1
\ldots	\ldots	\ldots	\ldots	\ldots

A flat relational algebra expression encoding the above query result is:

\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	\langle base \rangle	\times	$\langle 6\rangle$	\cup
\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	\langle ham \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	\langle mushrooms \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle base \rangle	\times	$\langle 6\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle ham \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle mushrooms \rangle	\times	$\langle 1\rangle$	$\cup \ldots$

It uses relational product $(\times$), union (\cup), and singleton relations (e.g., $\langle 1\rangle$).

- The attribute names are not shown to avoid clutter.

Factorized Databases by Example

The previous relational expression entails lots of redundancy due to the joins:

\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	\langle base \rangle	\times	$\langle 6\rangle$	\cup
\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	\langle ham \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Monday \rangle	\times	\langle Capricciosa \rangle	\times	2 mushrooms \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle base \rangle	\times	$\langle 6\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle ham \rangle	\times	$\langle 1\rangle$	\cup
\langle Mario \rangle	\times	\langle Friday \rangle	\times	\langle Capricciosa \rangle	\times	\langle mushrooms \rangle	\times	$\langle 1\rangle$	$\cup \ldots$

We can factorize the expression following the join structure, e.g.,:

```
<Capricciosa\rangle }\times(\langle\mathrm{ Monday }\rangle\times\langle\mathrm{ Mario }\rangle\cup\langle\mathrm{ Friday }\rangle\times\langle\mathrm{ Mario }\rangle
    \times (\langlebase\rangle}\times\langle6\rangle\cup\langleham\rangle\times\langle1\rangle\cup\langlemushrooms\rangle > <1\rangle)
UHawaii}\rangle\times\langle\mathrm{ Friday }\rangle\times(\langle\mathrm{ Lucia }\rangle\cup\langle\mathrm{ Pietro }\rangle
    \times(\langlebase \rangle}\times\langle6\rangle\cup\langleham\rangle\times\langle1\rangle\cup\langle\mathrm{ pineapple }\rangle\times\langle2\rangle
```


There are several algebraically equivalent factorized representations defined by distributivity of product over union and commutativity of product and union.

Properties of Factorized Representations

Factorized representations of results of queries with select, project, join, aggregate, groupby, and orderby operators:

- Very high compression rate
- Can be exponentially more succinct than the relations they encode.
- Arbitrarily better than generic compression schemes, e.g., bzip2
- Factorized representations of asymptotically-tight size bounds computable directly from input database and query

■ Querying in the compressed domain

- Factorizations are relational expressions
- We developed the FDB in-memory query engine for this purpose
- Constant-delay enumeration of represented tuples
- Tuple iteration as fast as listing them from equivalent flat relations

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Spot the Factorized Database!

Figure 2: The logical and physical properties of data storage in a traditional normalized relational schema compared with a clustered hierarchical schema used in an F1 database.

Excerpt from F1: A Distributed SQL Database That Scales. PVLDB'13.

- Google's DB supporting their lucrative AdWords business
- Database factorization increases data locality for common access patterns
- Tables pre-joined using a nesting structure defined by key-fkey constraints
- Data partitioned across servers into factorization fragments

Spot the Factorized Database!

(a) Training Data in Numeric Format (Design Matrix)

(b) Block Structure Representation of Design Matrix

Figure 3: (a) In relational domains, design matrices X have large blocks of repeating patterns (example from Figure 2). (b) Repeating patterns in X can be formalized by a block notation (see section 2.3) which stems directly from the relational structure of the original data. Machine learning methods have to make use of repeating patterns in X to scale to large relational datasets.

Excerpt from Scaling Factorization Machines to Relational Data. PVLDB'13.
■ Feature vectors for predictive modelling represented as very large design matrices ($=$ relations with high cardinality)

- Standard learning algorithms cannot scale on design matrix representation

■ Use repeating patterns in the design matrix as key to scalability

Spot the Factorized Database!

| $t_{1} \cdot S$ | $t_{1} \cdot N$ | $t_{1} \cdot M$ | $t_{2} \cdot S$ | $t_{2} \cdot N$ |
| :--- | :---: | :---: | :---: | :---: |$t_{2} \cdot M$.

Fig. 1. Two completed survey forms and a world-set relation representing the possible worlds with unique social security numbers.

Excerpt from $10^{10^{6}}$ Worlds and Beyond: Efficient Representation and Processing of Incomplete Information. ICDE'07.

Managing a large set of possibilities or choices:

- Configuration problems (space of valid solutions)
- Incomplete information (space of possible worlds)

Spot the Factorized Database!

98 5. INTENSIONAL QUERY EVALUATION

5.1.3 READ-ONCE FORMULAS

An important class of propositional formulas that play a special role in probabilistic databases are read-once formulas. We restrict our discussion to the case when all random variables X are Boolean variables.
Φ is called read-once if there is a formula Φ^{\prime} equivalent to Φ such that every variable occurs at most once in Φ^{\prime}. For example:

$$
\Phi=X_{1} Y_{1} \vee X_{1} Y_{2} \vee X_{2} Y_{3} \vee X_{2} Y_{4} \vee X_{2} Y_{5}
$$

is read-once because it is equivalent to the following formula:

$$
\Phi^{\prime}=X_{1}\left(Y_{1} \vee Y_{2}\right) \vee X_{2}\left(Y_{3} \vee Y_{4} \vee Y_{5}\right)
$$

Excerpt from Probabilistic Databases. Morgan \& Claypool. 2011.
Provenance and probabilistic data:

- Compact encoding for large provenance
- Factorization of provenance is used for efficient query evaluation in probabilistic databases

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Aggregating Factorized Data

We only present here COUNT and SUM aggregation functions.
$\operatorname{COUNT}(F)$ is the number of tuples in a factorization F :

- $\operatorname{COUNT}(\langle a\rangle)=1$.
$■ \operatorname{COUNT}\left(F_{1} \cup \cdots \cup F_{k}\right)=\operatorname{COUNT}\left(F_{1}\right)+\ldots+\operatorname{COUNT}\left(F_{k}\right)$.
■ $\operatorname{COUNT}\left(F_{1} \times \cdots \times F_{k}\right)=\operatorname{COUNT}\left(F_{1}\right) \cdot \ldots \cdot \operatorname{COUNT}\left(F_{k}\right)$.
$\operatorname{SUM}_{A}(F)$ is the sum of all values of attribute A in a factorization F :
- $\operatorname{SUM}_{A}(\langle a\rangle)=a$, if the singleton $\langle a\rangle$ has attribute A.
$■ \operatorname{SUM}_{A}\left(F_{1} \cup \cdots \cup F_{k}\right)=\operatorname{SUM}_{A}\left(F_{1}\right)+\ldots+\operatorname{SUM}_{A}\left(F_{k}\right)$.
$■ \operatorname{SUM}_{A}\left(F_{1} \times \cdots \times F_{k}\right)=\operatorname{SUM}_{A}\left(F_{1}\right) \cdot \operatorname{COUNT}\left(F_{2}\right) \cdot \ldots \cdot \operatorname{COUNT}\left(F_{k}\right)$, where wlog values for attribute A are in expression F_{1}.

Aggregation by Example

- Recall the natural join of Orders, Pizzas, and Items
- We would like to find the overall sales per customer
- Assume the factorization structure discussed before (leftmost below)

Examplea of possible evaluation plans:

1. First restructure for GROUP-BY, then aggregate

2. Intertwine restructuring for GROUP-BY and partial aggregation

Query Evaluation Step by Step

Let us consider the second evaluation plan:

The initial factorization with the structure highlighted above:

$$
\begin{aligned}
\langle\text { Capricciosa }\rangle & \times(\langle\text { Monday }\rangle \times\langle\text { Mario }\rangle \cup\langle\text { Friday }\rangle \times\langle\text { Mario }\rangle) \\
& \times(\langle\text { base }\rangle \times\langle 6\rangle \cup\langle\text { ham }\rangle \times\langle 1\rangle \cup\langle\text { mushrooms }\rangle \times\langle 1\rangle) \\
\cup\langle\text { Hawaii }\rangle & \times\langle\text { Friday }\rangle \times(\langle\text { Lucia }\rangle \cup\langle\text { Pietro }\rangle) \\
& \times(\langle\text { base }\rangle \times\langle 6\rangle \cup\langle\text { ham }\rangle \times\langle 1\rangle \cup\langle\text { pineapple }\rangle \times\langle 2\rangle)
\end{aligned}
$$

Query Evaluation Step by Step

Let us consider the second evaluation plan:

The factorization after partial aggregation with the structure highlighted above:

```
Capricciosa\rangle}\times(\langle\mathrm{ Monday }\rangle\times\langle\mathrm{ Mario }\rangle\cup\langle\mathrm{ Friday }\rangle\times\langle\mathrm{ Mario }\rangle
    \times\langle8\rangle
\cup Hawaii}\rangle\times\langle\mathrm{ Friday }\rangle\times(\langle\mathrm{ Lucia }\rangle\cup\langle\mathrm{ Pietro }\rangle
    * <9\rangle
```


Query Evaluation Step by Step

Let us consider the second evaluation plan:

The factorization after restructuring with the structure highlighted above:

```
Lucia}\rangle\times\langle\mathrm{ Hawaii }\rangle\times\langle\mathrm{ Friday }\rangle\times\langle9\rangle
Mario }\rangle\times\langle\mathrm{ Capricciosa }\rangle\times(\langle\mathrm{ Monday }\rangle\cup\langle\mathrm{ Friday }\rangle)\times\langle8\rangle
<Pietro\rangle}\times\langle\mathrm{ Hawaii }\rangle\times\langle\mathrm{ Friday }\rangle\times\langle9
```


Query Evaluation Step by Step

Let us consider the second evaluation plan:

The factorization after final aggregation with the structure highlighted above:

$$
\begin{aligned}
& \langle\text { Lucia }\rangle \times\langle 9\rangle \cup \\
& \langle\text { Mario }\rangle \times\langle 16\rangle \cup \\
& \langle\text { Pietro }\rangle \times\langle 9\rangle
\end{aligned}
$$

Thank you!

