Aggregation and Ordering in Factorized Databases

 $B_{akibayev}, \ K_{o\check{c}isk\check{y}}, \ Olteanu, \ \text{and} \ \ Z_{a\check{v}odn\check{y}}$ University of Oxford

VLDB Sept 2, 2014

http://www.cs.ox.ac.uk/projects/FDB/

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Factorized Databases by Example

Orders		Piz	zas	Items		
day	pizza	pizza	item	item	price	
Monday	Capricciosa	Capricciosa	base	base	6	
Friday	Capricciosa	Capricciosa	ham	ham	1	
Friday	Hawaii	Capricciosa	mushrooms	mushrooms	1	
Friday	Hawaii	Hawaii	base	pineapple	2	
		Hawaii Hawaii	ham pineapple			
	Orders day Monday Friday Friday Friday	Orders day pizza Monday Capricciosa Friday Capricciosa Friday Hawaii Friday Hawaii	Orders Piz day pizza pizza Monday Capricciosa Friday Capricciosa Friday Hawaii Friday Hawaii Hawaii Hawaii	OrdersPizzasdaypizzapizzaitemMondayCapricciosaCapricciosabaseFridayCapricciosaCapricciosahamFridayHawaiiCapricciosamushroomsFridayHawaiihamaiibaseHawaiiHawaiihamHawaiihamhamaii	OrdersPizzasItemsdaypizzapizzaitemitemMondayCapricciosaCapricciosabasebaseFridayCapricciosaCapricciosahamhamFridayHawaiiCapricciosamushroomsmushroomsFridayHawaiihawaiibasepineapple	

Consider the natural join of the three relations above:

$\mathrm{Orders} \bowtie \mathrm{Pizzas} \bowtie \mathrm{Items}$

customer	day	pizza	item	price
Mario	Monday	Capricciosa	base	6
Mario	Monday	Capricciosa	ham	1
Mario	Monday	Capricciosa	mushrooms	1
Mario	Friday	Capricciosa	base	6
Mario	Friday	Capricciosa	ham	1
Mario	Friday	Capricciosa	mushrooms	1

Factorized Databases by Example

customer	day	pizza	item	price
Mario	Monday	Capricciosa	base	6
Mario	Monday	Capricciosa	ham	1
Mario	Monday	Capricciosa	mushrooms	1
Mario	Friday	Capricciosa	base	6
Mario	Friday	Capricciosa	ham	1
Mario	Friday	Capricciosa	mushrooms	1

 $\mathrm{Orders} \bowtie \mathrm{Pizzas} \bowtie \mathrm{Items}$

A flat relational algebra expression encoding the above query result is:

$\langle Mario \rangle$	×	$\langle Monday \rangle$	×	$\langle Capricciosa \rangle$	×	$\langle base \rangle$	\times	$\langle 6 \rangle$	U
$\langle Mario angle$	×	$\langle Monday \rangle$	×	$\langle Capricciosa \rangle$	×	$\langle ham \rangle$	×	$\langle 1 \rangle$	U
$\langle Mario angle$	×	$\langle Monday \rangle$	×	$\langle Capricciosa \rangle$	×	$\langle mushrooms \rangle$	×	$\langle 1 \rangle$	U
$\langle Mario angle$	×	$\langle Friday \rangle$	×	$\langle Capricciosa \rangle$	×	$\langle base \rangle$	×	$\langle 6 \rangle$	U
$\langle Mario angle$	×	$\langle Friday \rangle$	×	$\langle Capricciosa \rangle$	×	$\langle ham \rangle$	×	$\langle 1 \rangle$	U
(<i>Mario</i>)	×	$\langle Friday \rangle$	×	(Capricciosa)	×	$\langle mushrooms \rangle$	×	$\langle 1 \rangle$	υ

It uses relational product (×), union (\cup), and singleton relations (e.g., $\langle 1 \rangle$).

The attribute names are not shown to avoid clutter.

Factorized Databases by Example

The previous relational expression entails lots of redundancy due to the joins:

$\langle Mario \rangle$	×	$\langle Monday \rangle$	\times	$\langle Capricciosa angle$	\times	$\langle base \rangle$	\times	$\langle 6 \rangle$	U
$\langle Mario \rangle$	×	$\langle Monday \rangle$	×	<i>(Capricciosa)</i>	×	$\langle ham \rangle$	×	$\langle 1 \rangle$	U
$\langle Mario angle$	\times	$\langle Monday \rangle$	×	<i>(Capricciosa)</i>	×	$\langle mushrooms \rangle$	×	$\langle 1 \rangle$	U
$\langle Mario \rangle$	×	(<i>Friday</i>)	×	<i>(Capricciosa)</i>	×	$\langle base \rangle$	×	$\langle 6 \rangle$	U
$\langle Mario \rangle$	×	(<i>Friday</i>)	×	<i>(Capricciosa)</i>	×	$\langle ham \rangle$	×	$\langle 1 \rangle$	U
(<i>Mario</i>)	×	(<i>Friday</i>)	×	<i>(Capricciosa)</i>	×	$\langle mushrooms \rangle$	×	$\langle 1 \rangle$	υ

We can factorize the expression following the join structure, e.g.,:

$$\begin{array}{ll} \langle \textit{Capricciosa} \times (\langle \textit{Monday} \rangle \times \langle \textit{Mario} \rangle \cup \langle \textit{Friday} \rangle \times \langle \textit{Mario} \rangle) & pizza \\ \times (\langle \textit{base} \rangle \times \langle 6 \rangle \cup \langle \textit{ham} \rangle \times \langle 1 \rangle \cup \langle \textit{mushrooms} \rangle \times \langle 1 \rangle) & \\ \cup \langle \textit{Hawaii} \rangle \times \langle \textit{Friday} \rangle \times (\langle \textit{Lucia} \rangle \cup \langle \textit{Pietro} \rangle) & | & | \\ \times (\langle \textit{base} \rangle \times \langle 6 \rangle \cup \langle \textit{ham} \rangle \times \langle 1 \rangle \cup \langle \textit{pineapple} \rangle \times \langle 2 \rangle) & \\ \end{array}$$

There are several *algebraically equivalent* factorized representations defined by distributivity of product over union and commutativity of product and union.

Properties of Factorized Representations

Factorized representations of results of queries with select, project, join, aggregate, groupby, and orderby operators:

Very high compression rate

- Can be exponentially more succinct than the relations they encode.
- Arbitrarily better than generic compression schemes, e.g., bzip2
- Factorized representations of asymptotically-tight size bounds computable directly from input database and query

Querying in the compressed domain

- Factorizations are relational expressions
- We developed the FDB in-memory query engine for this purpose

Constant-delay enumeration of represented tuples

Tuple iteration as fast as listing them from equivalent flat relations

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Figure 2: The logical and physical properties of data storage in a traditional normalized relational schema compared with a clustered hierarchical schema used in an F1 database.

Excerpt from F1: A Distributed SQL Database That Scales. PVLDB'13.

- Google's DB supporting their lucrative AdWords business
- Database factorization increases data locality for common access patterns
 - Tables pre-joined using a nesting structure defined by key-fkey constraints
- Data partitioned across servers into factorization fragments

(a) Training Data in Numeric Format (Design Matrix)

(b) Block Structure Representation of Design Matrix

Figure 3: (a) In relational domains, design matrices X have large blocks of repeating patterns (example from Figure 2). (b) Repeating patterns in X can be formalized by a block notation (see section 2.3) which stems directly from the relational structure of the original data. Machine learning methods have to make use of repeating patterns in X to scale to large relational datasets.

Excerpt from Scaling Factorization Machines to Relational Data. PVLDB'13.

- Feature vectors for predictive modelling represented as very large design matrices (= relations with high cardinality)
- Standard learning algorithms cannot scale on design matrix representation
- Use repeating patterns in the design matrix as key to scalability

Fig. 1. Two completed survey forms and a world-set relation representing the possible worlds with unique social security numbers.

Excerpt from 10^{10°} Worlds and Beyond: Efficient Representation and Processing of Incomplete Information. ICDE'07.

Managing a large set of possibilities or choices:

- Configuration problems (space of valid solutions)
- Incomplete information (space of possible worlds)

98 5. INTENSIONAL QUERY EVALUATION

5.1.3 READ-ONCE FORMULAS

An important class of propositional formulas that play a special role in probabilistic databases are read-once formulas. We restrict our discussion to the case when all random variables X are Boolean variables.

 Φ is called *read-once* if there is a formula Φ' equivalent to Φ such that every variable occurs at most once in Φ' . For example:

 $\Phi = X_1Y_1 \vee X_1Y_2 \vee X_2Y_3 \vee X_2Y_4 \vee X_2Y_5$

is read-once because it is equivalent to the following formula:

 $\Phi' = X_1(Y_1 \vee Y_2) \vee X_2(Y_3 \vee Y_4 \vee Y_5)$

Excerpt from Probabilistic Databases. Morgan & Claypool. 2011.

Provenance and probabilistic data:

- Compact encoding for large provenance
- Factorization of provenance is used for efficient query evaluation in probabilistic databases

Outline

What are Factorized Databases?

Applications

A Glimpse at Aggregating Factorized Data

Aggregating Factorized Data

We only present here COUNT and SUM aggregation functions.

COUNT(F) is the number of tuples in a factorization F:

• COUNT(
$$\langle a \rangle$$
) = 1.

- COUNT $(F_1 \cup \cdots \cup F_k)$ = COUNT (F_1) + ... + COUNT (F_k) .
- COUNT $(F_1 \times \cdots \times F_k)$ = COUNT $(F_1) \cdot \ldots \cdot$ COUNT (F_k) .

 $SUM_A(F)$ is the sum of all values of attribute A in a factorization F:

- $SUM_A(\langle a \rangle) = a$, if the singleton $\langle a \rangle$ has attribute A.
- $\operatorname{SUM}_A(F_1 \cup \cdots \cup F_k) = \operatorname{SUM}_A(F_1) + \ldots + \operatorname{SUM}_A(F_k).$
- $SUM_A(F_1 \times \cdots \times F_k) = SUM_A(F_1) \cdot COUNT(F_2) \cdot \ldots \cdot COUNT(F_k)$, where wlog values for attribute A are in expression F_1 .

Aggregation by Example

- Recall the natural join of Orders, Pizzas, and Items
- We would like to find the overall sales per customer
- Assume the factorization structure discussed before (leftmost below)

Examplea of possible evaluation plans:

2. Intertwine restructuring for GROUP-BY and partial aggregation

Let us consider the second evaluation plan:

The initial factorization with the structure highlighted above:

$$\begin{array}{l} \langle \textit{Capricciosa} \times (\langle \textit{Monday} \rangle \times \langle \textit{Mario} \rangle \cup \langle \textit{Friday} \rangle \times \langle \textit{Mario} \rangle) \\ \times (\langle \textit{base} \rangle \times \langle 6 \rangle \cup \langle \textit{ham} \rangle \times \langle 1 \rangle \cup \langle \textit{mushrooms} \rangle \times \langle 1 \rangle) \\ \cup \langle \textit{Hawaii} \rangle \times \langle \textit{Friday} \rangle \times (\langle \textit{Lucia} \rangle \cup \langle \textit{Pietro} \rangle) \\ \times (\langle \textit{base} \rangle \times \langle 6 \rangle \cup \langle \textit{ham} \rangle \times \langle 1 \rangle \cup \langle \textit{pineapple} \rangle \times \langle 2 \rangle) \end{array}$$

Let us consider the second evaluation plan:

The factorization after partial aggregation with the structure highlighted above:

```
 \begin{array}{l} \langle \textit{Capricciosa} \rangle \times (\langle \textit{Monday} \rangle \times \langle \textit{Mario} \rangle \cup \langle \textit{Friday} \rangle \times \langle \textit{Mario} \rangle) \\ \times \langle 8 \rangle \\ \cup \langle \textit{Hawaii} \rangle \times \langle \textit{Friday} \rangle \times (\langle \textit{Lucia} \rangle \cup \langle \textit{Pietro} \rangle) \\ \times \langle 9 \rangle \end{array}
```

Let us consider the second evaluation plan:

The factorization after restructuring with the structure highlighted above:

 $\begin{array}{l} \langle \textit{Lucia} \rangle \times \langle \textit{Hawaii} \rangle \times \langle \textit{Friday} \rangle \times \langle 9 \rangle \cup \\ \langle \textit{Mario} \rangle \times \langle \textit{Capricciosa} \rangle \times (\langle \textit{Monday} \rangle \cup \langle \textit{Friday} \rangle) \times \langle 8 \rangle \cup \\ \langle \textit{Pietro} \rangle \times \langle \textit{Hawaii} \rangle \times \langle \textit{Friday} \rangle \times \langle 9 \rangle \end{array}$

Let us consider the second evaluation plan:

The factorization after final aggregation with the structure highlighted above:

 $\langle Lucia
angle imes \langle 9
angle \cup$ $\langle Mario
angle imes \langle 16
angle \cup$ $\langle Pietro
angle imes \langle 9
angle$

Thank you!