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ABSTRACT

FDB is an in-memory query engine for factorised databases,
which are relational databases that use compact factorised
representations at the physical layer to reduce data redun-
dancy and boost query performance.

We demonstrate FDB using real data sets from IMDB,
DBLP, and the NELL repository of facts learned from Web
pages. The users can inspect factorisations as well as plans
used by FDB to compute factorised results of select-project-
join queries on factorised databases.

1. FACTORISED DATABASES

The thesis underlying factorised databases is that rela-
tional databases can admit compact representations by alge-
braic factorisation using distributivity of product over union.
This is similar in spirit to the relationship between logic
functions in disjunctive normal form and their equivalent
nested forms obtained by algebraic factorisation. In earlier
work [7] we give a complete characterisation of the com-
pactness of factorised results for select-project-join queries
on relational databases and show that the gap between the
sizes of query results and of their factorised representations
can be exponential. In particular, there are arbitrarily large
queries for which the query results have sizes exponential in
the query size yet their factorised representations only have
sizes bounded by the input database size. A similar expo-
nential gap holds between the times needed to compute from
the input relational database the query results and their
factorised representations. Furthermore, the succinctness
and performance gaps widen when we consider factorised
databases as input. Experiments with our in-memory engine
FDB for select-project-join queries on factorised databases
show that FDB can be up to six orders of magnitude faster
than relational engines such as PostgreSQL, SQLite, and a
home-bred in-memory relational engine, for a wide range of
queries on data sets with many-to-many relationships [3].

Factorised databases have applications beyond relational
query evaluation. Factorised provenance polynomials are

used as compact encoding of provenance [6] and for efficient
query evaluation in probabilistic databases [8]. Factorised
representations are a natural fit whenever we deal with a
large space of possibilities and can be used to represent, e.g.,
AND/OR trees used in design specification [5] and world-set
decompositions used for incomplete information [1]. They
can also be used to compactly represent the space of feasi-
ble solutions to configuration problems in constraint satis-
faction, where we need to connect a set of components so as
to meet an objective while respecting given constraints [2].

The focus of this demonstration is our query engine FDB.
The audience will experiment with FDB on several data sets
including the NELL knowledge base learned from a large
corpus of Web pages [4], will explore visually FDB evalua-
tion plans as well as factorised intermediate and final query
results, and will compare the time and space requirements
of FDB to those of PostgreSQL and SQLite. FDB will be
introduced to the audience by examples such as those in Sec-
tion 2. The emphasis of the demonstration will be on FDB’s
evaluation and optimisation techniques, in particular on (1)
the evaluation plans with novel operators to restructure fac-
torisations, and on (2) the interplay of the standard optimi-
sation objective of minimising the overall computation time
and of the new objective of computing small factorised rep-
resentations of query results.

2. FDB BY EXAMPLES

We introduce factorised databases and FDB by examples
using the NELL data set. The demonstration will feature
the examples from this section and further scenarios using
NELL as well as IMDB and DBLP data sets. We will also
show how FDB can manage solutions to crossword puzzles
that are gradually refined as clues are supplied.

Sports Scenario. The NELL data set contains a myriad
of small-size unary relations about players, teams, sports
leagues and stadiums, and binary relations such as PlaysFor
(players play for teams), CompetesIn (teams play in leagues),
LeagueStadium (leagues played on stadiums), BasedIn and
IsIn (teams and stadiums located in cities). We exemplify
with queries that join these relations to compute (Q1) play-
ers, teams and leagues that one can see playing on stadiums,
(Q2) teams and stadiums co-located in the same city, and
(Q3) players playing on stadiums in their home cities. The
NELL binary relations are in general many-to-many. This
makes the factorised results of our queries very compact
when compared to flat relational representations. In the
sequel, we discuss challenges in computing factorised results
of our queries on input relational or factorised databases.



PlaysFor

player team

Messi Barcelona
Villa Barcelona
Cech Chelsea
Torres Chelsea
van Persie Arsenal

CompetesIn

team league

Barcelona Primera
Barcelona Champions
Chelsea Premier
Chelsea Champions
Arsenal Premier

LeagueStadium

league stadium

Primera CampNou
Champions CampNou
Champions Wembley
Premier Stamford
Premier Wembley

BasedIn

team city

Barcelona Barcelona
Chelsea London
Arsenal London

IsIn

stadium city

CampNou Barcelona
Wembley London
Stamford London

Figure 1: A sample from the NELL database. A constantly evolving database is available at rtw.ml.cmu.edu.

T1: T2: T3: T4:

team

player league

stadium

league

team

player

stadium

city

team stadium

team

city

stadium

Q1 = PlaysFor ✶team CompetesIn ✶league LeagueStadium

Q2 = BasedIn ✶city IsIn

Figure 2: Factorisation trees T1 and T2 for query Q1

and T3 and T4 for query Q2 used in the examples.

Factorised Query Results. The result to Q1 on the sam-
ple database from Figure 1 is partially given below:

Q1 = PlaysFor ✶team CompetesIn ✶league LeagueStadium

player team league stadium
Messi Barcelona Primera CampNou
Messi Barcelona Champions CampNou
Messi Barcelona Champions Wembley
Villa Barcelona Primera CampNou
Villa Barcelona Champions CampNou

. . .

In the result of Q1, each player of each team is paired with
each league the team competes in and each stadium of that
league. We can obtain a more compact representation by
factoring out these repeating occurrences:

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)×

×
(

〈Primera〉 × 〈CampNou〉∪

〈Champions〉 × (〈CampNou〉 ∪ 〈Wembley〉)
)

∪

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)×

×
(

〈Premier〉 × (〈Stamford〉 ∪ 〈Wembley〉)
)

∪

〈Champions〉 × (〈CampNou〉 ∪ 〈Wembley〉)
)

∪

〈Arsenal〉 × 〈van Persie〉×

×
(

〈Premier〉 × (〈Stamford〉 ∪ 〈Wembley〉)
)

.

This factorisation has a regular nesting structure. For
each team, we represent the union of its players indepen-
dently of the union of its leagues with stadiums, and mul-
tiply them together. This nesting structure is captured by
the tree T1 in Figure 2, which is called a factorisation tree,
or f-tree for short. The f-tree T2 offers an alternative fac-
torisation structure, where we first group by league and only
then by teams with players and independently by stadiums:

〈Primera〉 × 〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉) × 〈CampNou〉∪

〈Champions〉 ×
(

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)∪

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)
)

×

× (〈CampNou〉 ∪ 〈Wembley〉)∪

〈Premier〉 ×
(

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉)∪

〈Arsenal〉 × 〈van Persie〉)
)

×

× (〈Stamford〉 ∪ 〈Wembley〉).

Which of these factorisations is preferable depends on
multiple factors such as the cost of subsequent workload

of queries on them and most notably their size. For the lat-
ter, it is not realistic to compute all possible factorisations
only to choose the smallest one. The choice of factorisation
structure (f-tree) is thus guided by measures computed from
the query and cardinality estimates available in the system
catalogue. In earlier work [7] we introduce a parameter s(T )
for f-trees T which characterises the asymptotic behaviour
of factorisation size with increasing database size. For exam-
ple, in our case s(T1) = s(T2) = 2, which means that both
factorisations are at most quadratic in the database size for
any database. An alternative approach is to estimate the
factorisation size using join selectivities and cardinality of
input relations [3]. FDB implements both measures.

The result of Q2 can be factorised over the f-tree T3 in
Figure 2 as follows:

〈Barcelona〉 × 〈Barcelona〉 × 〈CampNou〉∪

〈London〉 × (〈Chelsea〉 ∪ 〈Arsenal〉) × (〈Wembley〉 ∪ 〈Stamford〉).

This factorisation lists for each city the teams and the
stadiums located in that city: there are one team and one
stadium in Barcelona and two teams and two stadiums in
London. A less compact factorisation is over the f-tree T4 in
Figure 2: for each team, we list the cities of that team, and
for each team and city, we list stadiums in that city:

〈Barcelona〉 × 〈Barcelona〉 × 〈CampNou〉∪

〈Chelsea〉 × 〈London〉 × (〈Wembley〉 ∪ 〈Stamford〉)∪

〈Arsenal〉 × 〈London〉 × (〈Wembley〉 ∪ 〈Stamford〉).

This second factorisation does not exploit the join depen-
dency in the query result, i.e., that for each city, the possible
combinations of teams and stadiums in that city can be fac-
torised compactly as the product of all these teams and of
all these stadiums.
Queries on Factorised Databases. FDB can also evalu-
ate queries on factorised databases using so-called factorisa-
tion plans [3]. Besides selection, projection, and join opera-
tors, such plans may also use operators for restructuring fac-
torisations. In contrast to the relational case, the FDB’s join
operators are restricted; given an input factorised database
over an f-tree T , they can only be applied to nodes that
are either siblings or in an ancestor-descendant relationship
in T . The reason for this restriction is efficiency; both join
cases can be implemented efficiently using merge-sort join
and do not require restructuring. If none of the two con-
ditions hold for T , then T has to be restructured so that
one of the join cases becomes applicable. The restructur-
ing operators are thus essential in enabling joins. We next
illustrate joins and restructuring and then projections.

Let us continue our example and suppose that we would
like to limit the result of Q1 to those players based in the
same city as the stadium they play on. This can be done
by joining the result of Q1, which lists players, teams and
leagues playing on given stadiums, and the result of Q2,
which lists co-located teams and stadiums. This query is
Q3 = Q1 ✶team,stadium Q2. We next consider two plans for



T5: → T6: → T7: → T8: → T9: → T10: → T11:

team

player league

stadium

city

stadium

team

player stadium

league

stadium

city

team

player stadium

league city

team

player stadium

stadium

team

player

stadium

player

team

stadium

player

Figure 3: Factorisation plan for Q3. The f-tree T5 is obtained by joining T1 with T4 on team; then T6 by

swapping the nodes stadium with their parents; T7 by merging the nodes stadium; T8 by projection; T9 by

swapping stadium and team; T10 by swapping team and player; T11 by final projection.

T5: → T ′

6 : → T ′

7 : → T ′

8 : → T9:

team

player league

stadium

city

stadium

team

player stadium

league

city

stadium

stadium

team

player league city

stadium

stadium

team

player league city

stadium

team

player

Figure 4: Alternative factorisation plan for Q3. The f-tree T ′

6 is obtained from T5 by swapping the nodes

stadium and league; then T ′

7 by swapping stadium with team; T ′

8 by absorbing the lower node stadium into the

upper one; and T9 by projection. The plan then continues with T10 and T11 as in Figure 3.

Q3. They are not (asymptotically) optimal and only used
here to highlight FDB operations on factorisations.

If we assume that the f-tree of Q1’s result is T1 and the f-
tree of Q2’s result is T3, then to compute Q3, we would first
need to restructure the input factorisations such that the
joins can be performed. For the join on team, one possibility
is to restructure the result of Q2 such that it follows the
structure of the f-tree T4. This can be obtained by swapping

the parent node city with the child node team in T3 and
performing the corresponding operation on the factorisation
over T3. FDB has a swap operator to this effect. The new
factorisation is now over T4 and is given above.

The factorisation over T4 can now be joined with the fac-
torisation of Q1’s result over T1, as they are both grouped
by teams. We simply merge them together: for each com-
mon team, we collect the associated data from both input
factorisations. The resulting factorisation (shown partially)

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)

×
(

〈Primera〉 × 〈CampNou〉∪

〈Champions〉 × (〈CampNou〉 ∪ 〈Wembley〉)
)

× 〈Barcelona〉 × 〈CampNou〉 ∪ . . .

follows the f-tree T5 in Figure 3, which is obtained by merg-
ing the nodes team from T1 and T4. This join operator is
called the merge operator and can be employed whenever
the nodes to be joined are siblings or roots.

To execute the join on stadium, we must restructure again.
One possibility is to swap each of the two nodes stadium

in T5 with its parent, so that they become siblings (as in
T6). In the factorisation, this amounts to regrouping the
expressions under each team by stadium first. We can now
execute the join using a merge operator on the nodes stadium
(and obtain T7). In the factorisation, this means that for
each team we merge the expressions grouped by stadiums,
collecting the leagues and the city for each stadium:

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉)

× 〈CampNou〉 × (〈Primera〉 ∪ 〈Champions〉)

× 〈Barcelona〉 ∪ . . . ,

This completes the evaluation of Q3. If we are only inter-
ested in the players from the same city as the stadium where
they play, we further project on to {stadium,player}. The

nodes league and city may be dropped straight away from
T7, thereby obtaining the new f-tree T8 and the factorisation

〈Barcelona〉 × (〈Messi〉 ∪ 〈Villa〉) × 〈CampNou〉∪

〈Chelsea〉 × (〈Cech〉 ∪ 〈Torres〉) × (〈Wembley〉 ∪ 〈Stamford〉)∪

〈Arsenal〉 × 〈van Persie〉 × (〈Wembley〉 ∪ 〈Stamford〉).

The node team cannot be dropped immediately. If (hypo-
thetically) different teams had common players and played
on the same stadiums, by removing this node we could ob-
tain duplicate pairs of (player, stadium). In our scenario, we
know that a player can only play for a team, i.e., there is
a functional dependency from players to teams, and dupli-
cates cannot occur. In the absence of this dependency, we
must restructure T8 such that the node team becomes a leaf
of the f-tree and thus there are distinct combinations of sta-
diums and players. For this, we apply two swap operators
to first group by stadium (T9) and then by player (T10). We
now drop the node team (T11) and obtain the final result

〈CampNou〉 × (〈Messi〉 ∪ 〈Villa〉)∪

〈Wembley〉 × (〈Cech〉 ∪ 〈Torres〉 ∪ 〈van Persie〉)∪

〈Stamford〉 × (〈Cech〉 ∪ 〈Torres〉 ∪ 〈van Persie〉).

Query Optimisation. The sequence of transformations
from the input factorisation to the final factorised result can
be captured by the swap, merge (join), and project opera-
tors. This factorisation plan can be schematically described
in terms of transformations between f-trees, as shown in Fig-
ure 3. At each step of the plan, the structure given by the
f-tree together with the input data define completely the
factorisation of the intermediate result.

A query can have many factorisation plans. The space
of plans is partly defined by the order of joins and, novel
in FDB, by the different possible factorisation structures
for the intermediate and final results. This space is in-
herently exponential and choosing a good plan is the key
task of the FDB optimiser [3]. A good plan yields a small-
size factorisation of the result and also has a small cost for
the transformation of the input into the result factorisation.
The two objectives may be contradictory since in order to
achieve a minimal-size factorisation we may have to do more
restructuring work. FDB currently supports two optimisa-
tion strategies: an exhaustive search strategy and a greedy



heuristic one. The former needs exponential time, whereas
the latter only needs polynomial time in the size of the query.
Preliminary experiments suggest that our heuristic produces
plans very close to optimal ones while performing orders of
magnitude faster than the exhaustive search. The quality of
plans is assessed at compile time. For this, FDB computes
the asymptotic complexity of the plans and of the size of
their results, for any database. FDB can also use cardinal-
ity estimates and join selectivities, if available.

Let us consider the two plans for query Q3 given in Fig-
ures 3 and 4. After first performing the join on team, the
first plan restructures the factorisation such that the two
nodes stadium become siblings, and then performs the join
on stadium using the merge operator. An alternative plan
could still join on team first (yielding the f-tree T5) but then
swap one of the nodes stadium twice until it becomes the
root, and then perform the join on stadium using an absorb

operator. This join operator is only applicable if the nodes
to be joined are in a ancestor-descendant relationship, as
it is the case for the two nodes stadium in T ′

7 . The join
effectively merges the two nodes into the top one. In the
factorisation, this operator filters out all expressions rooted
at the lower node stadium where its value is different from
the value at the ancestor node stadium. The fragment of
this alternative second plan that differs from the first plan
is shown in Figure 4.

IMDB and DBLP Scenarios. The IMDB (Internet Movie
Database) data set consists of relations associating to each
movie the actors and actresses playing in the movie, its di-
rectors, its genres, and associated keywords. It contains
fewer but much larger relations than NELL (12M actors).
Typical queries join these relations on movie to relate, e.g.,
actors and actresses involved in the same movie. This sce-
nario will also illustrate queries with self-joins to relate ac-
tors that co-starred in movies with the same actress. We will
use DBLP data, which associates authors, venues, and dates
to publications, to answer questions about relationships of
authors similar to actors in the IMDB scenario.

Crossword Scenario. This scenario uses crosswords to
illustrate how FDB can manage the solutions to a set of
constraints as it is gradually refined. A crossword with cells
for letters arranged into a grid of intersecting words can be
represented by a relational schema: each cell is represented
by an attribute, each sequence of cells to be filled with a clue
(i.e., word) is represented by a relation. For each clue, the
corresponding relation contains the set of possible words to
be filled into the clue, each word corresponds to a tuple of
letters. The relations are joined whenever two clues intersect
in a cell; the join of all relations represents the set of all
possible solutions to the crossword, i.e., the set of possible
assignments of letters to all attributes or cells of the grid.

Initially, the relations corresponding to clues contain En-
glish words of correct length. Upon obtaining additional
information, such as revealing a letter or restricting a clue
to a smaller class of words (e.g., city names), the user can
apply further selections (equating an attribute to a constant
letter) or joins (joining clues with lists of city names) to the
solution set. Additionally, the user can ask for the current
possibilities for a particular cell or clue via queries.

FDB is suited for managing such a database of crossword
solutions that can be prohibitively large to store explicitly.
A good factorisation structure (f-tree) can be inferred from
the shape of the crossword grid alone.

3. USER INTERACTION WITH FDB

FDB System. FDB is an in-memory query engine imple-
mented in C++. It has a query parser, an optimiser, and an
evaluator. For cost estimation, it uses a system catalogue to
store cardinality estimates and join selectivities, and a mod-
ule for computing size bounds for factorised representations
using linear programs solved using the GLPK package v4.45.
Both factorised relations and f-trees are represented in mem-
ory as trees and can be serialised to (and read from) disk
using the left-to-right depth-first preorder traversal. FDB
can also perform rudimentary relational query evaluation of
select-project-join queries using a multi-way merge-sort join
followed by projections. Relational data can be read from
and stored into CSV files.
FDB User Interface. The interface allows users to specify
and execute select-project-join queries on factorised databa-
ses. For ease of demonstration, a set of predefined scenarios
(data sets and queries) are readily available, as detailed in
Section 2. Optionally, a choice of exhaustive or greedy op-
timisation strategy can be specified; the greedy strategy is
used by default. Factorisation plans can be serialised to
and read from disk, executed on a factorised database, and
visualised using LATEX as in Figures 3 and 4. Factorised re-
sults are visualised in tabular form or in XML format. For
each step in a factorisation plan, it is possible to inspect
its input and output factorisation trees and factorised rela-
tions. For the latter, the interface also displays their sizes,
i.e., number of data elements, and the sizes of the equiv-
alent flat relational representations, i.e., number of tuples
times the arity of the relation. This shows the succinctness
gap brought by factorisations. To demonstrate the time per-
formance gap between FDB and relational engines, we will
run on the same scenarios a home-bred in-memory relational
engine [3] as well as PostgreSQL and SQLite.
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query engine for factorised relational databases.
PVLDB, 5(12), 2012.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. H.
Jr., and T. Mitchell. Toward an architecture for
Never-Ending Language Learning. In AAAI, 2010.

[5] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete
objects — a data model for design and planning
applications. In SIGMOD, 1991.

[6] D. Olteanu and J. Závodný. On factorisation of
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