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Abstract
Joins are at the core of database systems, yet worst-case optimal join algorithms have been
developed only recently. At the outset of this effort is the observation that the standard join
plans are suboptimal as their intermediate results may be larger than the final result. To attain
worst-case optimality, new join algorithms are monolithic and thus avoid intermediate results.

The conceptual contribution of this paper is the observation that this monolithic recipe is
an artefact of the tabular data representation and not necessary for optimality. Our technical
contribution is an effective procedure that achieves optimality with multiway join-at-a-time query
plans by employing succinct representations of the intermediate results and a new join operator
called Joen that can work on such representations. We further study the optimality of join-at-a-
time query plans across four data representation systems of increasing succinctness.

1998 ACM Subject Classification H.2.4 Systems: Query processing
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1 Introduction

Joins are at the core of database systems, yet worst-case optimal join algorithms such as
LeapFrog TrieJoin (LFTJ) [16], NPRR [10], and FDB [13] have been developed only recently.
These algorithms exploit the observation that the standard join plans are suboptimal as their
intermediate results may be larger than the final result [2]. To attain worst-case optimality,
these algorithms are monolithic in that they avoid intermediate results [11].

The conceptual contribution of this paper is the observation that the aforementioned
monolithic recipe for join computation is an artefact of the tabular representation of inter-
mediate results and not necessary for optimality. Our technical contribution is a procedure
that achieves (worst-case) optimality with multiway join-at-a-time query plans that create
and work on succinct representations of the intermediate results. Such plans solve one join
variable at a time. They differ from standard query plans that join one relation at a time.

We consider four factorized representation systems for intermediate and final results of
join queries in relational databases and study the optimality of join-at-a-time query plans
for all of them. They encode relations as algebraic expressions with data values, Cartesian
product, and union. To factorize relations and avoid redundancy in their representation,
they use the distributivity of Cartesian product over union and a mechanism to define
repeating expressions and to use references to such definitions in place of their expressions.
The representations in T are tries that factor out data values occurring in several union
terms, while those in F may factor out arbitrary algebraic expressions. E consists of F-re-
presentations with definitions for (sub)tries of input data, while the representations in D
are factorizations with definitions for arbitrary factorizations.
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Figure 1 Relationships between the four representation systems and their width measures.
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Figure 2 Map of worst-case optimality for join processing across four representation systems.

Figure 1 depicts the syntactic relationship between the four representation systems:
T -representations are (a strict subset of) F-representations, which are E-representations,
which are D-representations. Each X -representation system has a width measure wX (Q)
to quantify the worst-case optimal size O(|D|wX (Q)) of the X -representation of the query
result Q(D) for a join query Q and databases D. This is the fractional edge cover num-
ber ρ∗(Q) for T -representations [2], the factorization width f(Q) for F-representations [12],
the e-width e(Q) for E-representations, and the fractional hypertree width fhtw(Q) [6] for
D-representations [13]. Figure 1 also depicts the relationship between these width measures.

The above tight bounds also hold for the time to compute the factorized query results
(data complexity, modulo log factors) as T -representations [10] and F/D-representations [13].

Figure 2 overviews the technical results of this paper, namely which of the representa-
tion systems support worst-case optimal join-at-a-time query plans. Optimality is achieved
whenever the intermediate results are D-representations regardless of the representation of
the final results, or when the intermediate results are E-representations but then the final
results can be T /F/E-representations and not D-representations. We show that the F-
representations [4] cannot attain optimality. This motivates E-representations, which are
slightly more succinct than F-representations and can attain optimality.

These results assume the input database given as T -representation, which is our proxy
for the standard tabular data representation. (We leave as future work the case where the
input is given as F/E/D-representation.) They rely on two complementary contributions.

(1) The query plans use a new join operator called Joen that works on factorized repre-
sentations and takes time linear in the sizes of its input and output (modulo log factors).

(2) The factorized intermediate results of the query plans have sizes that are asymptoti-
cally upper bounded by the size of an optimal factorization of the final result. We call such
plans output-bounded. The stricter notion of monotonically width-increasing query plans
requires that for each plan step its output size asymptotically upper bounds its input size.

Organization. Section 2 highlights aspects of our contribution with an example from the
literature [11] that has been originally used to show the suboptimality of standard query
plans. Section 3 defines the factorized representation systems. Section 4 introduces join-at-
a-time query plans, which are monotonically width-increasing (Section 5) and made up of
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(a) Relation R1(A,B). (b) Relation R2(A,C). (c) Relation R3(B,C).
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(d) After joining on A. (e) After joining on B. (f) After joining on C.

Figure 3 Join-at-a-time processing of the triangle query. First row: T -representations of relations
R1(A,B), R2(A,C), and R3(B,C) over the T -paths to their left. The labeled boxes are definitions
referenced from factorizations in the second row. Second row: E-representations of intermediate
results over E-trees and the T -representation for the final result over a T -path. A dotted edge
denotes a reference to an existing factorization fragment.

Joen steps (Section 6). Section 7 reviews related work. Section 8 highlights benefits of our
approach. Appendix contains the proofs of formal statements and further examples.

2 Revisiting the Triangle Query

We show how to compute the triangle query Q/ = R1(A,B), R2(A,C), R3(B,C) using a
query plan that first joins on A, then on B, and finally on C. The input database consists
of the three relations R1, R2, R3 (Figure 2 in [11]):

R1 = {(a0, b0), . . . , (a0, bm), (a1, b0), . . . , (am, b0)}
R2 = {(a0, c0), . . . , (a0, cm), (a1, c0), . . . , (am, c0)}
R3 = {(b0, c0), . . . , (b0, cm), (b1, c0), . . . , (bm, c0)}

Figure 3(a) depicts a T -representation of R1 that first groups by A and then by B.
Its nesting structure is given by the linear order A{B} of its variables, which we call a
T -path. The T -representation lists a union of all sorted distinct A-values, and under each
such value a it lists the union of all (sorted) B-values that occur together with a in R1. This
factorization of R1 exploits the distributivity law of Cartesian product over union to avoid
the repetition of a0 with each of b0 to bm. The T -representations of R2 and R3 are over the
T -paths A{C} and respectively B{C}, cf. Figures 3(b-c). Each of these T -representations
has 3m+2 values. The T -representation of the query result in Figure 3(f) has 6m+3 values.

We first compute the join on A to obtain the factorization J1 in Figure 3(d): We intersect
the two lists of A-values in the T -representations of R1 and R2 and for each value a in the
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intersection we keep references to the corresponding unions of B-values in R1 and of C-
values in R2. This is where our approach departs from the standard join evaluation: (1) We
do not materialize the pairs of values for B and C for each value a. (2) We keep references
to the unions of values for B and C from the input instead of copying them to J1.

To accommodate (1), we allow factorizations with symbolic (non-materialized) Cartesian
products of unions of values for B and C. The nesting structures of these factorizations are
not anymore given by T -paths, but by factorization trees or F-trees. An F-tree for J1 is
A{B,C} and encodes the conditional independence of variables B and C given variable A.

To accommodate (2), we label the factorization fragments corresponding to the sub-
tries corresponding to unions of B-values and C-values in the T -representations of R1 and
respectively R2, and we use references to them instead of their copies in J1. Whereas F-
representations avoid the materialization of Cartesian products, E-representations may also
use definitions of subtries in the input data. This referencing mechanism is denoted in the
nesting structure of J1 by dotted edges: An E-tree, such as the nesting structure of J1, is thus
an F-tree with dotted edges to T -paths. Figure 3(d) depicts J1 and its E-tree. Although
not exemplified in this section, the most general nesting structures are that for factorized
representations with arbitrary definitions: They are called D-trees and extend E-trees in
that they may have dotted edges to other D-trees and not only to T -paths.

To create J1, we need m + 1 computation steps to intersect the two (ordered) unions
of A-values. If we were to copy the unions of B-values and C-values and create an F-
representation instead, we would need additional 2(m + 1) + 2m steps. Both cases would
thus need linearly many computation steps. In contrast, T -representations of J1 must have
sizes quadratic inm, since for a0, m+1 different B-values would need to be paired withm+1
different C-values. This is where query plans with T -representations for intermediate results
become suboptimal: The T -representation of the intermediate result J1 has quadratic size,
whereas the T -representation of the final result of Q/ has linear size.

We next compute the join on B to obtain the factorization J2 in Figure 3(e): We mate-
rialize the intersection of the union of B-values under each A-value in J1 with the union of
B-values in R3, and we keep references to the unions of C-values. Since the variable C now
appears twice in the nesting structure of J2 due to both R2 and R3, we disambiguate its
occurrences using the index of their input relations. Whereas referencing was not necessary
to keep J1’s computation linear in m, it is now necessary for J2 since Cb0 occurs under each
A-value in J2 and materializing all its occurrences would require space and time quadratic
in m. Any F-representation of J2 would thus be of quadratic size and larger than the size
of the final result, whereas its E-representation stays linear. This shows the limitation of
F-representations over E-representations.

We finally compute the join on C in J2 to obtain the factorization of the query result in
Figure 3(f): Under each A-value a and B-value under a, we intersect the unions of C2-values
and of C3-values. The unions Cb0 and Ca0 are equal and their intersection requires m + 1
steps. The intersection for all other pairs of Cbi

and Caj
takes constant time and yields

c0. This last join step takes space and time linear in m. For our class of input relations,
we can thus compute the triangle query in time and space linear in m. For arbitrary input
relations, the triangle query can be computed in O(

√
|R1| · |R2| · |R3|), cf. Appendix A.

The nesting structures of the intermediate and final results of a join-at-a-time query
plan as well as of the definitions used in their factorizations are defined by hypertree de-
compositions of the query hypergraph. They dictate the class of the representations and
their asymptotic sizes. For instance, cyclic queries require T -paths and their results do not
factorize well with no asymptotic saving beyond tries. However, their non-cyclic subqueries
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may admit more succinct factorizations. The path query of length seven admits linear-size
D-representations for intermediate and final results, quadratic-size E-representations for in-
termediate and final results, cubic-size F-representations for the final result, and quartic-size
T -representations for the final result (Example B.3 in Section B.2).

3 Four Factorized Representation Systems

This section presents a unified framework for four factorized representations of results to
join queries. Except for the E-representation system, the development in this section has
been previously introduced in the literature [13]. Due to space limitation, technical material
on size measures for these systems is deferred to Appendix B.

We consider representations of relational data that are expressions in a relational algebra
subset with union, Cartesian product, data values, and definitions (or named views). We
call them factorized representations, since they use algebraic factorization based on the
distributivity of product over union to reduce redundancy in data representation.

I Definition 1 ([13]). A factorized representation is a list of expressions (D1, . . . , Dn) where
Di can contain references to Dj for j > i and is referenced at least once if i > 1. Such
expressions are relational algebra expressions over a schema Σ and of the following forms:

∅, representing the empty relation over Σ,
〈〉, representing the relation consisting of the nullary tuple, if Σ = ∅,
a, representing the relation with one tuple having one data value (a), if Σ = {A} and
the value a ∈ Dom(A),
(E1 ∪ · · · ∪Ek), representing the union of the relations represented by Ei, where each Ei
is an expression over Σ,
(E1 × · · · × Ek), representing the Cartesian product of the relations represented by Ei,
where each Ei is an expression over schema Σi such that Σ is the disjoint union of all Σi.
a reference �E to a definition of an expression E over Σ.

D-representations are factorized representations. F-representations areD-representations
without references. T -representations are F-representations where in each product E1 ×
· · · × Ek all but at most one expression Ei are data values. E-representations are D-
representations, where references are restricted to T -representations.

Without loss of generality, we consider factorized representations with alternating unions
and products; indeed, if one of the terms in a union (product) is again a union (product), we
can flatten it out into a single union (product) of terms. For any D-representation D con-
sisting of expressions {D1, . . . , Dn}, we can start with the root expression D1 and repeatedly
replace the references �Dj by the expressions Dj until we obtain a single expression without
references, which is an F-representation. The T -representations are tries of relations. They
are our proxy for the standard tabular representation of relations.

Figures 3(a)-(c), (f) show T -representations. Figures 3(d)-(e) show E-representations.
The definitions Bai

, Caj
, and Cbk

in these E-representations are for T -representations that
are unions of data values. Figure 4 shows a D-representation.

Although Definition 1 permits arbitrary factorized representations, we are interested in
this paper in factorized results of join queries over nesting structures defined by the join
hypergraph. Such nesting structures are orders on the query variables. Variable orders
serve three purposes. They define the nesting structure of the factorized query results and
thus the permitted factorizations. They guide our join algorithm: Query plans correspond to
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Loop4=R1(A,B), R2(B,C), R3(C,D), R4(A,D)
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Figure 4 D-representation of the result of query Loop4 on a class of database instances. While its
size is O(n), the size of T /F/E-representations of the query result would be O(n2). This is because
we would materialize the n D-values under each of the n B-values. The referencing capabilities of
E-representations are limited to T -representations from input relations, hence they cannot refer to
D-values that represent the intersection of lists of D-values from R3 and R4.

top-down traversals of variable orders, where for each variable we resolve all join conditions
on the occurrences of that variable before considering the next variable. They define the
size bounds and computation time for query results.

I Definition 2 ([13]). Given a join query Q and two variables A and B in Q, A depends on
B if they occur in the same relation symbol in Q. A variable order ∆ for Q is a pair of a
rooted forest with one node per variable in Q and a function key∆ mapping each variable A
to the subset of its ancestor variables in ∆ on which the variables in the subtree rooted at
A depend. When ∆ is clear from context, we write key(A) instead of key∆(A).

A variable order ∆ for Q satisfies the following constraints:

The variables of each relation symbol in Q lie along the same root-to-leaf path in ∆.
For every variable B that is a child of a variable A, key∆(B) ⊆ key∆(A) ∪ {A}.

We further define the key of an entire subtree or forest T of a variable order ∆ as the
union of keys of all variables in T : key(T ) =

⋃
A∈T key∆(A).

If two variables A and B are dependent on each other, then the choice for a value for
A may restrict the choice for a value for B. If they are not dependent, we can repre-
sent the values for A separately from those for B instead of explicitly representing their
Cartesian product. The succinctness of factorized representations lies in the exploitation of
(in)dependency information, which is kept for each variable in its key. For a variable A, a
tuple of values for the variables in key(A) is called context. In a factorized representation E
over a variable order ∆, the context ctx functionally determines the factorization fragment
EA rooted at A: ηA[ctx] = EA, where η is a function.

A constructive definition of a factorized representation E over a variable order ∆ of a
query result R is as follows. We define ∆(R) to be the set of expressions ηT [ctx] for all
subtrees or forests T in ∆ and all ctx ∈ πkey(T )(R) as follows (VA = πAσkey(A)=ctxR):

For any leaf A in ∆, ηA[ctx] =
⋃
a∈VA

a.
For any subtree ∆A = A{T}, η∆A

[ctx] =
⋃
a∈VA

a× �η{T}[πkey({T})(t× a)].
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For any forest {T1, . . . , Tk}, η{T1,...,Tk}[ctx] = �ηT1 [πkey(T1)ctx]× · · · × �ηTk
[πkey(Tk)ctx].

If ∆ is empty, then ∆(R) = {η∆[〈〉]}, where η∆[〈〉] is ∅ if R = ∅ and 〈〉 otherwise.

I Example 3. The factorization of the identity query R1 in Figure 3(a) is over a path variable
order A{B} since we first group by A-values and then by B-values. Here, key(B) = {A}
and both variables lie on the only path in the variable order since they are dependent. The
factorized join J1 in Figure 3(d), which is the join of R1 and R2 on A, is over the tree variable
order A{B,C}, where we first group by A and then under each A-value we branch out and
group by B in one branch and by C in the other branch. Here, key(B) = key(C) = {A}, A
and B lie along a path, and the same for A and C. The factorized join J2 in Figure 3(e) is over
the tree variable order A{B{C3}, C2}, where key(C3) = {B} and key(B) = key(C2) = {A}.
The variables A and C3 are not dependent on each other, yet they both depend on B and
lie on the same path with it.

The D-representation for the result of the query Loop4 in Figure 4 is over the variable
order A{B{C{D}}}, where key(A) = ∅, key(B) = {A}, key(C) = {A,B}, and key(D) =
{A,C}. Even though A and C are not in the same relation, A ∈ key(C) because A ∈ key(D)
and D is a child of C in the variable order. Then, B /∈ key(D) because D does not occur in
the same relation with B and its children do not depend on B (since D has no children).

The last variable order for the query LW4 in Figure 6 is the same path A{B{C{D}}},
yet key(D) = {A,B,C}. In this case, key(D) has all ancestors of D since D occurs with
each of them in a relation in LW4. �

The four representation systems correspond to various restrictions of variable orders.

I Definition 4. D-trees are the variable orders from Definition 2. F-trees are D-trees where
the key for each variable is the set of all of its ancestors. T -paths are F-trees restricted to
forests of paths. The E-trees are D-trees with the following restrictions: (1) If a variable A
does not have all ancestors as key, then the variable order rooted at A is a T -path. (2) The
variables in this T -path occur in the same relation symbol in the query.

The T -representation system is the set of T -representations over T -paths. For X ∈
{F , E ,D}, the X -representation system is the set of X -representations over X -trees.

D-trees are the most general variable orders considered in this paper. They are a different
syntax for the fractional hypertree decompositions of the query hypergraph (there is a one-
to-one mapping between D-trees and hypertree decompositions of the join hypergraph) [13].
In case not all ancestors of a variable A are in the key of A in a variable order ∆, then
in a D-representation over ∆ the same factorization fragments rooted at A-values may be
repeated for every tuple of values for variables that are ancestors of A and not in key(A).
Here is where references come in handy: We define such factorization fragments and refer
to them by their names instead of repeatedly copying them. To effectively use definitions,
we thus need the key information in variable orders.

The F-trees are the nesting structures of F-representations or factorized databases [4].
In contrast to D-trees, definitions cannot save repetitions of factorization fragments in F-
representations since a tuple t of values for the ancestor variables ofA functionally determines
the factorization fragment rooted at an A-value and in general a different fragment may occur
under each distinct tuple t.

The E-trees are more permissive than F-trees and less permissive than D-trees. They
state that definitions can be used in E-representations but only for T -representations of
(projections of) input relations and not for D-representations of arbitrary join queries.
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I Example 5. Figure 3 illustrates T -paths (a)-(c) and E-trees (d)-(e). Figure 6 shows E-
trees, while Figure 5 shows D-trees (all except the last one are also E-trees). We use dotted
edges to depict the T -path components in the E-trees. �

Each representation system has a width measure thay captures the tight bounds on
the size of representation for any join result, cf. Figure 1, discussion in Section 1, and
Appendix B.2.

4 Join-at-a-time Query Plans

We evaluate a join query by compiling it into a query plan, such that each step of the plan
executes all join conditions on the occurrences of one variable. The plan step is a multiway
join that takes an input factorization to an output factorization in one of our representation
systems. We show that this approach is worst-case optimal for certain combinations of
representation systems for intermediate and final results, and it is not optimal for all others.

For the positive results, we derive plans where each step satisfies two properties (for every
input database): (1) It takes time linear in the sizes of its input and output. (2) The size of
its output asymptotically upper bounds the size of its input. The first property is ensured by
a novel join algorithm called Joen, cf. Section 6. The second property is called monotonically
width-increasing, cf. Section 5. Worst-case optimality of query processing then follows by
taking query results of worst-case optimal sizes within different representation systems.

For the negative results, we exhibit examples of queries for which there are no output-
bounded query plans. These positive and negative findings are summarized in Figure 2.

We next define our notion of query plans and give properties that are essential for their
optimality. For a query Q, a variable order ∆in for the input factorization, and a variable
order ∆out of m variables for factorized query result, a query plan for Q is a sequence of
variable orders from ∆in to ∆out. To define these intermediate variable orders, we take any
topological order τ of the variables in ∆out. Then, the i-th step in the plan would be a
multiway join on the i-th variable in τ ; if there is no join condition on the i-th variable,
then the i-th step is trivial as it does nothing. A query plan is thus uniquely defined by
∆in, ∆out, and τ . To make this intuition more precise, we need additional notions. Given
a variable order ∆ and any variable A in ∆, let depth∆(A) be the depth of A in ∆, where
the root of ∆ has depth 0 and the children of a variable at depth i have depth i+ 1.

I Definition 6. Given a variable A in a variable order ∆, we define the assignment order ω
on the occurrences (A(j))j∈[s] of A in ∆ as follows (∀j1, j2 ∈ [s]):

A(j1) <ω A
(j2) ⇔ depth∆(A(j1)) < depth∆(A(j2)) ∨ depth∆(A(j1)) = depth∆(A(j2)) ∧ j1 < j2.

An assignment order for the occurrences of a variable A corresponds to the order in which
we find assignments of (unions of) values for these occurrences in a top-down traversal of the
input factorization. The variable order of the result of the multijoin on A is called packing.

I Definition 7. Given a variable order ∆ and a variable A with occurrences (A(j))j∈[s] in
∆, the packing of ∆ on A is the variable order ∆′ that is ∆ where: As becomes A; the
subtrees of (A(j))j∈[s] become the subtrees of A; and (A(j))j∈[s−1] are removed.

We also say that A is packed at ∆′. We next define a query plan as a sequence of packing
steps and later show how to compute the keys in the variable order after a packing step.

I Definition 8. Given a join query Q, a database D over the T -path ∆in, a variable order
∆out of m variables for the query result Q(D), and a topological order τ of ∆out. A plan
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∆0 = ∆in ∆1: Joen(A) ∆2: Joen(B) ∆3: Joen(C) ∆4 = ∆out: Joen(D)

A1

B1

B2

C2

C3

D3

A4

D4

A

B1 D4

B2

C2

C3

D3

A

B D4

C2

C3

D3

A

B D4

C

D3

A

B

C

D

key(A) = ∅

key(B) = {A}

key(C) = {A,B}

key(D) = {A,C}

Figure 5 Query plan with D-trees for Loop4 = R1(A,B), R2(B,C), R3(C,D), R4(A,D).

∆0 = ∆in ∆1: Joen(A) ∆2: Joen(B) ∆3: Joen(C) ∆4 = ∆out: Joen(D)
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Figure 6 Query plan with E-trees for LW4=R1(A,B,C), R2(A,B,D), R3(A,C,D), R4(B,C,D).

for Q is a sequence of variable orders ∆0 = ∆in, . . . ,∆m = ∆out such that ∀i ∈ [m] : ∆i is
the packing of ∆i−1 on the i-th variable in τ .

The plans in Definition 8 use a total order on the variables to be joined and resolve them
one variable at a time. Further plans that use partial orders on the variables are possible,
but we leave their investigation to future work.

I Example 9. Figures 5 and 6 show plans for a loop query of length four Loop4 and for the
Loomis-Whitney query of length four LW4. For both queries, we pack the variables in the
same order: A,B,C,D. The assignment orders for Loop4 are: (A1, A4), (B2, B1), (C3, C2),
and (D4, D3) in ∆0 to ∆3. The assignment orders for LW4 are: (A1, A2, A3), (B4, B1, B2),
(C3, C1, C4), and (D2, D3, D4) in in ∆0 to ∆3. For the triangle query in Figure 3, the
assignment orders are: (A1, A2), (B3, B1), and (C2, C3) in the variable orders in Figures 3:
(a)-(c), (d), and respectively (e). �

For any variable order ∆i that is a packing of ∆i−1 on the i-th variable A in a query plan
(∆0, . . . ,∆m), the key key∆i

(X) of a variable X is key∆m
(X) if X is A and key∆i−1(X)

otherwise. More generally, our query plans enjoy two important properties: (1) preservation
of variable keys across the plan steps and (2) one-lookahead path of variable occurrences.

I Proposition 10. In a plan ∆0, . . . ,∆m over m variables, for any variable A it holds that:

1. [Key preservation] ∀i ∈ [m] : key∆i−1(A) ⊆ key∆i
(A).

In particular, if A is the variable packed at ∆i, then ∀j ∈ [m] : key∆j
(A) = key∆m

(A).

2. [One-lookahead path] Assume A is the variable packed at ∆i. If any two of its occurrences
have the same depth in ∆i, then they are siblings or roots in ∆i.

The key preservation property holds since packing is the only change between consecutive
steps in a plan, and, when a variable is packed, its key becomes the key from the final plan
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step and contains the union of the keys of its occurrences, since the result of the multiway join
on these occurrences now depends on all variables that the individual occurrences depended
on. The key for any other variable stays the same.

The one-lookahead path property says that, if we would have a virtual root of all variable
orders in ∆i, then the occurrences of variable A are along one root-to-leaf path in ∆i or
children of variables on that path. This holds by virtue of our choice for the initial variable
order (we consider without loss of generality that whenever we are given a variable order
∆, the order of the attributes in each input T -representation is compatible with ∆) and
our construction of the intermediate variable orders: The first variable to join is root in
input variable orders, and after joining on a variable A, the next variable to join has its
occurrences as children of previously joined variables or as root in variable orders. Our join
algorithm Joen relies on this property.

I Example 11. Consider the plan for query Loop4 in Figure 5 consisting of variable orders
that are D-trees. Once packed: variable A keeps key∆i

(A) = ∅ for 1 ≤ i ≤ 4; variable B
keeps key∆i

(B) = {A} for 2 ≤ i ≤ 4; variable C keeps key∆i
(C) = {A,B} for 3 ≤ i ≤ 4; and

variableD has key∆4(D) = {A,C}. At packing time, the key of each of A, B, andD becomes
precisely the union of the keys of its occurrences. For variable C, however, key∆2(C3) = ∅
and key∆2(C2) = {B} at packing time, yet key∆3(C) = {A,B} ⊃ (key∆2(C3)∪ key∆2(C2)).
This is because after packing, C is placed above D, whose key contains A.

We verify the one-lookahead path property for Loop4: A1 and A2 are root in ∆0; B2 and
B1 are in unconnected components of ∆1 with B2 root, and the same for C3 and C2 in ∆2
with C3 root; D3 lies along the path from A to D3 and D4 is a child of A in ∆3.

For LW4 in Figure 6: A1, A2, A3 are all root in ∆0; B1 and B2 are siblings while B4 is
root in a different component of ∆1; C1 and C4 are siblings and have A as ancestor, C3 is
a child of A and C4 is a child of B along the path from A to C1 in ∆2; finally, D2 and D3
are children of variables along the path from A to D4 in ∆3 and D3 and D4 are siblings. �

5 Output-Bounded and Monotonically Width-Increasing Query Plans

To attain worst-case optimality, our query plans have to satisfy the following constraint:
The sizes of the intermediate results are asymptotically upper bounded by the size of the
final result. This is captured by the notion of output-bounded query plans:

I Definition 12. A query plan (∆0, . . . ,∆m) is ouput-bounded for the X -representation
system with width measure wX if ∀i ∈ [m] : wX (∆i−1) ≤ wX (∆m).

This constraint is not satisfied by T /F-representations of intermediate and final results;
the case of the T -representation system follows immediately from the literature [2].

I Proposition 13. The triangle query has no query plan that is output-bounded for the T /F-
representation systems. This also holds for F-representations of the intermediate results and
T -representations of the final result.

This implies that we cannot attain worst-case optimality of join-at-a-time query pro-
cessing using T /F-representations. In contrast, any join query admits query plans that are
output-bounded for the D/E-representation systems in a stricter sense:

I Definition 14. A query plan (∆0, . . . ,∆m) is monotonically width-increasing for the X -
representation system with width measure wX if ∀i ∈ [m] : wX (∆i−1) ≤ wX (∆i).
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We consider two refinements of this property. First, the input database is given as a T -
representation, so ∆0 is a T -path and wX (∆0) = 1 regardless of the representation system
X . Second, we may allow for a different representation system for ∆m and thus for the final
query result. This accommodates the common case of one representation system for both the
input database and the query result, e.g., the T -representation system, and a more succinct
representation system for the intermediate results, e.g., the E-representation system.

In contrast to the F-representation system, the slightly more succinct E-representation
system (and thus also the exponentially more succinct D-representation system) admits
monotonically width-increasing query plans.

I Theorem 15. Every join query has a query plan that is monotonically width-increasing
for the E/D-representation systems. This also holds for: E-representations of the interme-
diate results and T /F-representations of the final result; and for D-representations of the
intermediate results and T /F/E-representations of the final result.

Theorem 15 leaves out one negative case. Let the path query

P7 = R1(A,B), R2(B,C), R3(C,D), R4(D,E), R5(E,F ), R6(F,G), R7(G,H).

I Proposition 16. The Path7 query has no query plan that is output-bounded for E-represen-
tations of the intermediate results and D-representations of the final result.

I Example 17. For the plan for query Loop4 in Figure 5 consisting of D-trees we have:
fhtw(∆0) = fhtw(∆1) = fhtw(∆2) = 1 < fhtw(∆3) = fhtw(∆4) = fhtw(Loop4) = 2.

For the plan for query LW4 in Figure 6 consisting of E-trees we have: e(∆0) = e(∆1) =
e(∆2) = e(∆3) = 1 < e(∆4) = ρ∗(LW4) = f(LW4) = e(LW4) = fhtw(LW4) = 4/3. The same
plan and size bounds would be obtained by considering D-trees and the same topological
order of the variables in ∆4. �

6 Joen: Worst-Case Optimal Multiway Join Algorithm

In this section we introduce Joen, an efficient algorithm for executing a multiway join of all
occurrences of a variable or, equivalently, for packing variable orders on a given variable.
This is the computational unit of the query plans defined in Section 4. We focus on E/D-
representation systems that support output-bounded query plans and show that for both
representation systems Joen takes time linear in its input and output. We first discuss the
case of E-representations and then extend the discussion to D-representations.

6.1 JoenE : Joen on E-representations
Figure 7 depicts the JoenE algorithm for computing the join on a variable A. It takes as
input a factorization E over an E-tree ∆in, an assignment order ω of the variable occur-
rences (A(j))j∈[s] of A, which is the order in which we encounter their value assignments
as we traverse E top down, and an accumulator µ for these assignments. Its output is a
factorization over an E-tree ∆out that is a packing of ∆in on A.

JoenE is defined by induction on the structure of E. Consider first that E is a union.
Special treatment is necessary in case the variable of E, say A(j), is in ω (according to ∆in),
otherwise we return the union of results of JoenE on each union term of E. If the variable
is in ω, then we record the mapping µ[A(j)] = E. If A(j) is last in ω, i.e., j = s, this
means that µ has assignments for every variable occurrence (A(j))j∈[s] of A and we can add
to the output the intersection of these assignments. If A(j) is in ω but not last, then we
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JoenE (E-representation E, assignment order ω = (A(j))j∈[s], mappings µ : ω → E)
switch E:⋃

l∈[k] El : if var(E) ∈ ω then {
µ[var(E)] = E

if var(E) = last(ω) then return intersect(ω, µ) else return 〈〉
}
return

⋃
l∈[k] JoenE(El, ω, µ)∏

l∈[k] El : foreach l ∈ [k] do {
if schema(El) ∩ ω 6= ∅ then newE l = JoenE(El, ω, µ) else newE l = El

if newE l = ∅ then return ∅
}
return

∏
l∈[k] newEj

intersect (assignment order ω = (A(j))j∈[s], mappings µ : ω → E)
Assume notation: ∀j ∈ [s],∃nj such that µ[A(j)] =

⋃
lj∈[nj ] a

(j)
lj
× E(j)

lj

result = ∅
foreach a ∈

⋂
j∈[s][a

(j)
1 , . . . , a

(j)
nj ] do {

foreach j ∈ [s] do let lj ∈ [nj ] be such that a = a
(j)
lj

result = result ∪ a×
∏
j∈[s]

↑E
(j)
lj

}
return result

Figure 7 JoenE computes a multiway join on a given variable with occurrences (A(j))j∈[s] and
assignment order ω ordered following the traversal of the input E-representation E. While traversing
E, µ collects assignments of (A(j))j∈[s] to fragments of E rooted at unions. Once all occurrences
get assignments, their intersection is added to the output.

return the nullary relation that acts as identity for the Cartesian product. Now consider
that E is a product. We recurse in those product terms of E that may have assignments
for (A(j))j∈[s] and keep the other terms untouched (an output D-representation would use
references to these terms). If JoenE returns the empty set for any of these terms, e.g., when
the intersection of assignments at a higher recursion depth is empty, then we return the
empty set as well since the product of the empty set with anything is the empty set.

The intersection of the assignments for (A(j))j∈[s] can be done efficiently using the unary
leapfrog join [16] applied to the unions (µ[A(j)])j∈[s] represented as ordered arrays. For the
purpose of the intersection, we disregard the factorization fragments hanging off the root
values in these assignments. Given s such arrays (Lj)j∈[s], where Nmin = minj∈[s]{|Lj |}
and Nmax = maxj∈[s]{|Lj |} are the sizes of the smallest and respectively largest array, their
intersection takes time O(Nmin log(Nmax/Nmin)), i.e., it takes time linear in the size of the
smallest array in our complexity model. From each value a in the intersection, we can now
refer back to (instead of copying) all factorization fragments that hang off a in the input E.
Using references instead of extensive copies of input factorizations is key to size monotonicity
and improved time complexity of E-representations over F-representations.

JoenE relies on the one-lookahead path property for the variable orders in query plans
from Proposition 10(2). We assume without loss of generality that for each Cartesian product
in E, the order of its children is compatible with the assignment order ω of occurrences of
variable A. The implication of this property is that for the assignment order ω = (A(j))j∈[s],
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JoenD (D-representation E, assignment order ω = (A(j))j∈[s], keys = key(A))
Step 1: Keep definitions and contexts for variables in keys

E1 = {(ηX [πkeys(ctx)] = U) | (ηX [ctx] = U) ∈ E,X ∈ keys}
Step 2: Aggregate definitions that have the same context and variable

E2 = {(ηX [ctx] =
⋃

(ηX [ctx]=U)∈E1
U) | (ηX [ctx] = _) ∈ E1}

Step 3: Add definitions of A’s occurrences (A(j))j∈[s]

E2 = E2 ∪ {(ηA(j) [ctx] = U) ∈ E | j ∈ [s]}
Step 4: Compute the multiway join using JoenE

E3 = JoenE(E2, (A(j))j∈[s], µ = ∅)
Step 5: Remove definitions for A’s occurrences (A(j))j∈[s] and add those for A

return E \ {(ηA(j) [ctx] = u) ∈ E | j ∈ [s]} ∪ {(ηA[ctx] = u) ∈ E3}

Figure 8 JoenD computes a multiway join on a given variable A with occurrences (A(j))j∈[s]
and assignment order ω ordered following the traversal of the input D-representation E. It first
projects E onto an E-representation E2 over variables in key(A) and (A(j))j∈[s], then calls JoenE
on E2 to compute the definitions for A.

there is a one-to-many relationship between the number of assignments of A(j1) versus A(j2)

for 1 ≤ j1 < j2 ≤ s. This also means that the number of possible total assignments of
A’s occurrences is at most linear in the size of E. Furthermore, we only need to visit each
assignment of ω exactly once and all assignments can be encountered in one pass over E.

I Example 18. Consider the join on variable C in Section 2 that maps between the E-
representations from Figures 3(e) and (f). As we descend below a0, we find the assignment
Ca0 for C2. We eventually reach the assignment Cb0 for C3, which is the last occurrence of
C3 in the assignment order. The intersection of the arrays Ca0 and Cb0 takes time linear
in their sizes since they are equal. We place their intersection under b0 in the output and
discard them. The next assignment for C3 is Cb1 . We trigger a new intersection, now
between Ca0 and Cb1 . This takes constant time, since the latter array has only one value c0.
We continue until we exhaust all assignments of C3 under a0 and then move to a1, etc. �

6.2 JoenD: Joen on D-representations

Figure 8 depicts the JoenD algorithm for computing the join on a variable A with variable
occurrences (A(j))j∈[s]. Its input is a D-representation E presented as a dictionary of defini-
tions of the form ηX [ctx] = U , which state that the variable X is mapped to a union (sorted
array) U of values in the context ctx. The context is a tuple of values for all variables in
key(X), i.e., the possible values of X in E are uniquely determined by the tuple of values
of variables that are ancestors in ∆ and on which X depends. A dictionary of definitions is
an alternative, more textual presentation of a graphical factorized representation. We can
translate in linear time between the two (modulo log factors).

The main challenge of JoenD, in addition to JoenE ’s, is to avoid performing unnecessary
intersections with an assignment for an occurrence of A. To see how this problem may
arise, consider that the key of A(j1) does not include all ancestors in the input D-tree ∆.
Then, the same union of values for A(j1) is reachable in E via all possible tuples of values
for excluded ancestors, yet we might only need one intersection with that assignment. This
can be the case if a second occurrence A(j2) of A is root in a separate branch in ∆, so we
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would only need to intersect the assignments of the two variable occurrences once for every
distinct tuple of values of variables key(A(j1)); we give a concrete example in Appendix E.2.

If JoenD is a step in a query plan, then the key of A is as in the last variable order
of the plan, cf. Section 4. This is a superset of the keys of A’s occurrences: key(A) ⊇⋃
j∈[s] key∆(A(j)). Let key(A) = {K1, . . . ,Kp)}. Due to the one-lookahead property (cf.

Proposition 10), K1 to Kp lie along the same path in ∆ and (A(j))j∈[s] hang off that path.
Without loss of generality, assume their top-down order is K1 to Kp.

Given the input D-representation E, we construct the functions FK1 , . . . ,FKp
represent-

ing the projection of E onto a T -path over {K1, . . . ,Kp} as follows. The dictionary entry
ηKl

maps each combination of values of variables in key(Kl) to a union of values for Kl. For
FKl

, we (i) project away from every combination of values in key(Kl) all values that are not
for variables K1, . . . ,Kl−1, and (ii) merge the definitions that now have the same context.
For instance, given the definitions ηK2 [b1, c1] = L1 and ηK2 [b2, c1] = L2 and assuming we
project away the values for B but keep the values for C, we obtain FK2 [c1] = L1 ∪ L2.

We now construct an E-representation E2 as follows. We first construct a factorization E1
over the T -path from K1 to Kp. It becomes an E-tree ∆e and satisfying the one-lookahead
property (cf. Proposition 10) once we add the definitions for (A(j))j∈[s] having values for
some of K1 to Kp as context.

We next run JoenE on E2 to compute the multiway join on (A(j))j∈[s] and obtain an F-
representation E3 over the T -path from K1 over Kp to A. We collect from E3 the definitions
ηA for variable A by taking each possible tuple of values for K1, . . . ,Kp, as the context of a
definition for a union of values for A. We construct the output D-representation as E, where
we remove all definitions ηA(j) for occurrences of A and add instead the new definitions ηA.
An optional final step is to clean empty definitions arising from empty intersections (not in
the pseudocode, same as in JoenE).

6.3 Summing Up
We can now state our main result on query plans with Joen.

I Theorem 19. Given a step in a join query plan, where the input is a D-representation IN
over D-tree ∆ and A is the variable packed at ∆, JoenD computes a D-representation OUT
of the join result over a D-tree that is the packing of ∆ on A in time O(|IN|+ |OUT|).

Theorem 19 readily applies to less succinct specializations of D-representations such as
E-representations, F-representations, and T -representations.

To state our main result, we recall the tight bounds on the sizes of factorized representa-
tions of join results: Given a join query Q, for any database D, the join result Q(D) admits:
a T -representation of size Θ(|D|ρ∗(Q)) [2]; an F-representation of size Θ(|D|f(Q)) [12]; an
E-representation of size Θ(|D|e(Q)); and a D-representation of size Θ(|D|fhtw(Q)) [13].

An immediate corollary of the previous result, of the time complexity of Joen, and of the
monotonically width-increasing property of query plans for E/D-representations is that the
E/D-representation systems support worst-case optimal join-at-a-time query processing.

I Corollary 20 (Th. 19, 15). Given a join query Q and any T -representation D.
There is a query plan with D-representations as intermediate results that computes a

D-representation of the query result in time O(|D|fhtw(Q)).
There is a query plan with E/D-representations as intermediate results that computes

the query result: as an E-representation in time O(|D|e(Q)); as an F-representation in time
O(|D|f(Q)); and as a T -representation in time O(|D|ρ∗(Q)).
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7 Related Work

We classify the join algorithms into join, query, or relation at a time.
Our approach falls into the first category. It builds on prior work on: (1) tight size

bounds for T -representations of results to join queries [2] and for F/D-representations of
results to conjunctive queries [13]; and (2) the worst-case optimal query-at-a-time join al-
gorithms NPRR [10] and LeapFrog TrieJoin (LFTJ) [16] for T -representations of join re-
sults and FDB [13] for F/D-representations of join results. FDB defaults to LFTJ for T -
representations. Our query algorithm is a modular, join-at-a-time version of FDB. Whereas
FDB explores the space of variable mappings depth-first, our approach explores this space
breadth-first. That is, given a variable order, FDB searches a value mapping for the first
variable and then for the second variable and so on. When all variables have mappings,
FDB backtracks. In contrast, our approach first computes the possible mappings of the first
variable, then those of the second variable and so on.

Standard query plans with joins at inner nodes and relations at leaves are prime exam-
ples in the relation-at-a-time category. In this setting, Yannakakis algorithm [17] for acyclic
queries has been recently adapted to produce worst-case optimal query plans [7]. It remains
an open question whether the result for acyclic queries can be adapted to the representation
systems discussed in this paper. For cyclic queries, relation-at-a-time worst-case optimality
is not possible for any of the considered four representation systems, cf. the triangle query
for T /F-representations, and LW4 query for E/D-representations. If we first join three of
the four relations in the Loomis-Whitney query of length four from Figure 6, we obtain
intermediate results whose fractional edge cover number (and indeed, the other wdiths dis-
cussed in this paper) equals 3/2, whereas the fractional edge cover number (and the other
widths) for the query result is 4/3.

In a distributed setting, there are relation-at-a-time [9] and query-at-a-time [5] join pro-
cessing approaches with worst-case optimal communication cost. State-of-the-art monolithic
approaches shuffle the data across the servers and run LFTJ or classical (suboptimal) query
engines locally at each server.

8 Conclusion

Our work studies worst-case optimal join-at-a-time processing across four factorized repre-
sentation systems. The three key aspects of our approach, namely factorized representations,
worst-case optimality, and join-at-a-time processing, are useful in a variety of settings.

The asymptotic size gap between the various factorized representations, as depicted in
Figure 1, translates in practice to orders-of-magnitude performance improvement for join
processing [4] and subsequent aggregates [3] and machine learning [14].

The recent FAQ generalization of FDB to the Boolean and sum-product semirings [8] can
be immediately applied to our work as well. The FAQ framework captures frequently asked
questions across Computer Science, including counting (quantified) conjunctive queries, in-
ference in probabilistic graphical models, matrix multiplication, and constraint satisfaction.

By enabling join-at-a-time computation, we increase the modularity of worst-case op-
timal join algorithms and narrow the gap between the theory of worst-case optimal join
algorithms and the standard commercial relational engines that use query plans with inter-
mediate results. Furthermore, modularity is prerequisite for distributed join-at-a-time query
processing, which is the norm in commercial systems [15]. Joen may be useful to develop
novel policies for distributed query processing [1] having worst-case optimality guarantees.
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A Additional Material for Section 2

Worst-case Optimality for Triangle Query
We generalize the example in the introduction to arbitrary relations R1, R2, and R3 and
show that Joen needs time O(

√
|R1| · |R2| · |R3|), which is worst-case optimal [2]. Our proof

is inspired by techniques introduced for showing worst-case optimality for a generalization
of NPRR and LFTJ [11]. We show this for a linear query plan that executes the three join
conditions on A, B, and C in sequence; it can be shown similarly for any other possible
linear plan that is a permutation of this one.

The result of Joen on A is the E-representation J1, the result of Joen on B is the E-
representation J2, and the final result J3 is a T -representation obtained by executing Joen on
C. The variable orders of the three factorized representations are as shown in Figure 3(d-f).

To compute J1, Joen intersects the ordered lists of A-values in the T -representations of
R1 and R2 in time

min(|πA1(R1)|, |πA2(R2)|) ≤
√
|πA1(R1)| · |πA2(R2)| ≤

√
|R1| · |R2|.

The first inequality above uses the inequality min(x, y) ≤ √x · y for x, y ≥ 0. Each of the A-
values in the intersection inherits the pointers to their unions of B-values and C-values from
the input T -representations. This saves time linear in the sizes of R1 and R2 by avoiding to
copy these unions from the input to J1; even in case we would copy these unions, the overall
time stays below the worst-case optimal time for the entire triangle query. The structure of
J1 is given by the E-tree in Figure 3(d), where the dotted edges mean that we use references
to connect A-values to their corresponding B and C-values.

For the join condition on B, we follow the branch of each A-value in J1 and intersect the
B1-values in its union with the list of B2-values in S. Let LA = πA1(R1) ∩ πA2(R2) be the
list of A-values in J1. The number of steps to compute J2 is then1:∑

a∈LA

min(|πB1σA1=a(R1)|, |πB3(R3)|) ≤
∑
a∈LA

√
|πB1σA1=a(R1)| · |πB3(R3)| =

√
|πB3(R3)| ·

∑
a∈LA

√
|πB1σA1=a(R1)| ≤

√
|πB3(R3)| ·

√∑
a∈LA

|πB1σA1=a(R1)| ·
√∑
a∈LA

1

≤
√
|πB3(R3)| ·

√
|πB1(R1)| ·

√
|πA2(R2)| ≤

√
|R1| · |R2| · |R3|.

For the second inequality, we use the Cauchy-Schwarz inequality:( ∑
a∈LA

xa · ya
)2 ≤ ( ∑

a∈LA

x2
a

)
·
( ∑
a∈LA

y2
a

)
, where ya = 1 in our case.

To compute J2, we do not need to copy the unions of C3-values from the T -representation
of R3 for each matching B-value. Instead, we have references from J2 to these unions in R3
similarly to the unions of C2-values in R2; the E-tree of J2 is given in Figure 3(e). Using
references instead of copying the unions is necessary for worst-case optimality: If we would
copy in J2 the unions of C-values from the T -representations of R3 and R2, then the size
of J2 would be quadratic in the input size! This can be already seen for the introductory
example: If we would copy Cb0 under each A-value in J2, then the size of J2 would become

1 An alternative upper bound (that is smaller) is:∑
a∈LA

min(|πB1σA1=a(R1)|, |πB3(R3)|) ≤
∑

a∈LA
|πB1σA1=a(R1)| ≤ |R1|.
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at least (m + 1)2 while each input relation is of size linear in m, since each value ai would
have all of cj values underneath.

Finally, we compute J3 by computing the join on C: Under each A-value a, we intersect
the union of C2-values with each union of C3-values under each B-value b under a. Let LaB
be the list of B-values under the A-value a in J2. The number of computation steps is then:∑

a∈LA

∑
b∈La

B

min(|πCσB3=b(R3)|, |πC2σA2=a(R2)|).

The inner sum can be expanded similarly to the case for J2:∑
b∈La

B

min(|πC3σB3=b(R3)|, |πC2σA2=a(R2)|) ≤
∑
b∈La

B

√
|πC3σB3=b(R3)| · |πC2σA2=a(R2)|

=
√
|πC2σA2=a(R2)| ·

∑
b∈La

B

√
|πC3σB3=b(R3)|

≤
√
|πC2σA2=a(R2)| ·

√∑
b∈La

B

|πC3σB3=b(R3)| ·
√∑
b∈La

B

1

≤
√
|πC2σA2=a(R2)| ·

√
|πC3(R3)| ·

√
|πB1σA1=a(R1)|.

We can now plug this into the first sum and obtain:∑
a∈LA

(
√
|πC2σA2=a(R2)| ·

√
|πC3(R3)| ·

√
|πB1σA1=a(R1)|)

=
√
|πC3(R3)| ·

∑
a∈LA

(
√
|πC2σA2=a(R2)| ·

√
|πB1σA1=a(R1)|)

≤
√
|πC3(R3)| ·

√∑
a∈LA

|πC2σA2=a(R2)| ·
√∑
a∈LA

|πB1σA1=a(R1)|

≤
√
|πC3(R3)| ·

√
|πC2(R2)| ·

√
|πB1(R1)| ≤

√
|R3| · |R2| · |R1|.

This shows that Joen can compute the triangle query worst-case optimally and one join
condition at a time. To recall, this is not the case for the relational query plans since the
first join can already lead to a quadratic time complexity! The key ingredient exploited by
Joen to achieve worst-case optimality is the factorized representation of the intermediate
join results, which ensures that the join J1 on A has size linear in the input size; the
E-representation using references to previously computed representations ensures that the
subsequent join on B stays within the required optimal bounds.

B Additional Material for Section 3

B.1 Preliminaries

Databases. A schema Σ is a set of attributes. We consider databases D of n relations
R1, . . . , Rn, whose schemas have attributes denoted by capital letters. Attribute values are
denoted by lowercase letters. We assume that all attribute domains are totally ordered (we
order a domain arbitrarily if there is no natural total order). We denote by the size |Ri| of
relation Ri the number of tuples in Ri. Let N = maxi∈[n](|Ri|). The size |D| of a database
D is the sum of the sizes of its relations.

Queries. We consider equi-join queries, e.g., the triangle query Q/ in Section 2. When
referring to distinct occurrences of a variable in a query, we index them using the index of
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their relation symbol. For instance, the occurrence of variable A is denoted by A1 in relation
symbol R1 and by A2 in R2 (this notation disallows trivial join conditions on variables within
the same relation symbol). For a variable A, rel(A) denotes the set of relation symbols that
have occurrences of A. The size |Q| of a query Q is the number n of its relations.

I Definition 21. Given a join query Q over relations R1, . . . , Rn and a set of variables X,
the X-restriction of Q is the join query QX that is Q where all variables not in X are
removed and where each relation Ri is replaced by RXi = πX(Ri) for i ∈ [n].

For example, the {A,B}-restriction of the triangle query R1(A,B), R2(A,C), R3(B,C) is
RX1 (A,B), RX2 (A), RX3 (B).

Complexity assumptions. We ignore factors logarithmic in the size of the database. We
consider data complexity, where the query is fixed, and measure the complexity as a function
of the database size and ignore factors depending on the query size.

Notation. Given a natural number m, by [m] we denote the set {1, . . . ,m}.

B.2 Size Measures and Relative Succinctness
For a join query Q and a variable order ∆ for Q, the factorized result of Q over ∆ is unique
up to commutativity of product and union. There may be however several possible variable
orders for Q and they define factorized representations of different sizes. We next review
size measures for factorized representations in our four representation systems. They are
defined on the query hypergraph: For Q, the hypergraph H(Q) = (V,E) has one node in the
set V per query variable in Q and one hyperedge in the set E per relation in Q. Figure 9(a)
depicts the hypergraph of the triangle query.

An edge cover is a subset of (hyper)edges of H(Q) such that each node appears in at least
one edge. Edge cover can be formulated as an integer programming problem by assigning
to each edge Ri a weight xi that can be 1 if Ri is part of the cover and 0 otherwise. The
size of an edge cover upper bounds the size of the query result, since the Cartesian product
of the relations in the cover includes the query result:

|Q(D)| ≤ |R1|x1 · . . . · |Rn|xn ≤ N
∑n

i=1
xi .

By minimizing the size of the edge cover, we can obtain a more accurate upper bound on
the size of the query result. Atserias, Grohe, and Marx (henceforth AGM) showed that
this bound becomes tight for fractional weights [2]. Minimizing the sum of the weights thus
becomes the objective of a linear program instead of an integer program.

I Definition 22 ([2]). Given a join query Q over a database D = (R1, . . . , Rn), the fractional
edge cover number ρ∗(Q) is the cost of an optimal solution to the linear program with
variables {xi}ni=1:

minimize
∑n
i=1 xi

subject to
∑

Ri∈rel(A)

xi ≥ 1 for each query variable A

xi ≥ 0 for each 1 ≤ i ≤ n. �

Figure 9(b) gives the linear program for the fractional edge cover of the triangle query Q/.
An optimal solution is ρ∗(Q/) = 3/2 with x1 = x2 = x3 = 1/2. Consequently, the result of
the triangle query has O(N3/2) tuples (recall that by N we denote the size of the largest
relation). In this paper, for ease of presentation of our results, we assume that all relations
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R1 R2

R3

A

B C

minimize x1 + x2 + x3

subject to
A : x1 + x2 ≥ 1
B : x1 + x3 ≥ 1
C : x2 + x3 ≥ 1

(a) Hypergraph. (b) Linear program.

Figure 9 Hypergraph for the triangle query Q/ and the inequalities for query variables in the
linear program for computing the tight size bound on the query result.

are of the same size N . At the end of the section, we discuss how our setting naturally
adapts to the general case of relations with arbitrary sizes. Moreover, the AGM bound is
tight. For instance, for the triangle query Q/, there exist classes of databases for which the
result size is at least Ω(N3/2).

The factorization width, denoted by f(Q), is the fractional edge cover number of a
subquery of Q [13]. For an F-representation over an F-tree ∆ of a join query Q, the
number of values of a variable A, denoted sA, is dependent on the number of possible tuples
of values of its ancestors, whose set is key(A), and is independent of the number of values
for variables that are not on the same branch. A tight bound on sA is then given by the
fractional edge cover number of the join query that is a (key(A) ∪ {A})-restriction of Q.
Then, an upper bound on the size of the F-representation over a specific ∆ is the maximum
over all variables in ∆ of the number of values of A:

f(∆) = max{ρ∗(Qkey(A)∪{A})|A is variable in ∆}

The factorization width f(Q) is then the minimum over all possible F-trees of the previous
upper bound:

f(Q) = min{f(∆)|∆ is an F-tree of Q}

The e-width e(Q) and the fractional hypertree width fhtw(Q) [13] are defined similarly to
the factorization width f(Q), with the difference that the key of a variable may not be the
set of all ancestors as for F-trees. In other words, we iterate over E-trees and respectively
D-trees instead of only over their strict subset of F-trees:

e(Q) = min{f(∆)|∆ is an E-tree of Q}, fhtw(Q) = min{f(∆)|∆ is a D-tree of Q}.

We present the relationships between the representation systems and their widths in
Figure 1. There are queries for which ρ∗(Q) = |Q| while f(Q) = 1, e.g., hierarchical queries
Q where each relation symbol has a variable not appearing in join conditions. For path
queries Q, fhtw(Q) = 1 while f(Q) = logd|Q|e [13]. The relation between e(Q) and f(Q) is
new:

I Proposition 23. Given a join query Q, it holds that f(Q) ≥ e(Q) ≥ f(Q)− 1.

The above widths give asymptotically tight bounds on factorization sizes in the four repre-
sentation systems (recall that we assume data complexity and all relations of size N).

I Proposition 24. Given a join query Q, for any database D of size N , the join result Q(D)
admits: a T -representation of size Θ(Nρ∗(Q)) [2]; an F-representation of size Θ(Nf(Q)) [12];
an E-representation of size Θ(Ne(Q)); and a D-representation of size Θ(N fhtw(Q)) [13].
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(a) F-tree (b) E-tree (c) D-tree
key(A) {B,D} {B} ∅
key(B) {D} {D} {A}
key(C) {B,D} {B,D} {B}
key(D) ∅ ∅ {C}
key(E) {D,F} {D,F} {D}
key(F ) {D} {D} {E}
key(G) {D,F} {D,F} {F}
key(H) {D,F,G} {G} {G}

Figure 10 Variable orders F-tree, E-tree, and D-tree for query Path7 in Section B.3.
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(a) F-tree. (b) E-tree. (c) D-tree. (d) F-tree. (e) E-tree. (f) D-tree.

Figure 11 Example of variable orders for queries Q2 and Q3 in Section B.3.

Our definitions of widths assume for simplicity that all relations have the same size N .
Our results carry over to definitions that take individual relation sizes into account. All we
need is change Definition 22 to include relation sizes in the objective of the linear program [2])
as follows. Take a join query Q over a database D = (R1, . . . , Rn) and a fractional edge
cover (x1, . . . , xn). The fractional edge cover number becomes

ρ∗(Q) =
n∑
i=1

xilog |Ri|.

Our definitions for f(∆), f(Q), e(Q), and fhtw(Q) remain the same but they rely now on
this revisited notion of ρ∗(Q). Then, in Proposition 24, for every representation system
X ∈ {T ,F , E ,D} and corresponding width measure wX ∈ {ρ∗, f, e, fhtw}, the join result
Q(D) admits an X -representation of size Θ(2wX (Q)).

B.3 Examples of Width Measures for Acyclic and Cyclic Queries
We illustrate the size measures for the following Path7 query:

Q = R1(A,B), R2(B,C), R3(C,D), R4(D,E), R5(E,F ), R6(F,G), R7(G,H).
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For T -representations, ρ∗(Q) = 4 where we set x1 = x3 = x5 = x7 = 1 to satisfy:

A : x1 ≥ 1, B : x1 + x2 ≥ 1, C : x2 + x3 ≥ 1, D : x3 + x4 ≥ 1,
E : x4 + x5 ≥ 1, F : x5 + x6 ≥ 1, G : x6 + x7 ≥ 1, H : x7 ≥ 1.

For F-representations, f(Q) = 3. Figure 10(a) gives an optimal F-tree that matches this
parameter, where:

ρ∗(Q{A,B,D}) = 2, ρ∗(Q{C,B,D}) = 2, ρ∗(Q{E,F,D}) = 2, ρ∗(Q{H,G,F,D}) = 3.

Since for F-trees each variable has all ancestors in its key, it suffices to only look at its
leaves to compute f(Q). For E-representations, e(Q) = 2 as witnessed by the E-tree in
Figure 10(b). In contrast to the previous F-tree, the keys for A and H are only their
parents (their edges are dotted), and ρ∗(Q{H}∪key(H)) = 1 as opposed to 3 for the previous
F-tree. For D-representations, fhtw(Q) = 1 since Q is acyclic. A D-tree would be the path
from A to H, cf. Figure 10(c).

The previous query is acyclic. We next discuss the width measures for two cyclic queries.

• We show f(Q2) > e(Q2) for the cyclic query Q2 = Q1, R8(A,D), R9(B,D).

For T -representations of Q2’s result, ρ∗(Q2) = 4. This is obtained using the same
variables assignments as for Q1 in the program:

A : x1 + x8 ≥ 1, B : x1 + x2 + x9 ≥ 1,
C : x2 + x3 ≥ 1, D : x3 + x4 + x8 + x9 ≥ 1,
E : x4 + x5 ≥ 1, F : x5 + x6 ≥ 1,
G : x6 + x7 ≥ 1, H : x7 ≥ 1.

For F-representations of Q2’s result, f(Q2) = 3. This is obtained using the F-tree in
Figure 11(a). The path ending in A has the f-width 3/2 (the f-width of the query defining
the leaf values), which does not affect the maximum f-width that is attained for the path
ending in H.

For E-representations of Q2’s result, e(Q2) = 2. This is obtained using the E-tree in
Figure 11(b); the maximum e-width is attained for the paths ending in C or E.

For D-representations of Q2’s result, fhtw(Q2) = 2. This is obtained using the D-tree in
Figure 11(c).

• We show e(Q3) > fhtw(Q3) for the cyclic query Q3 = Q1, R10(A,C).

For T -representations of Q3’s result, ρ∗(Q3) = 4. This is obtained using the same weight
assignments as for Q1 in the program:

A : x1 + x10 ≥ 1, B : x1 + x2 ≥ 1, C : x2 + x3 + x10 ≥ 1, D : x3 + x4 ≥ 1,
E : x4 + x5 ≥ 1, F : x5 + x6 ≥ 1, G : x6 + x7 ≥ 1, H : x7 ≥ 1.

For F-representations of Q3’s result, f(Q3) = 3. This is obtained for the F-tree in
Figure 11(d); the paths ending in F or H has the maximum f-wdith of 3.

For E-representations of Q3’s result, e(Q3) = 3. This is obtained for the E-tree in
Figure 11(e); the path ending in F has the maximum e-width of 3.

For D-representations of Q3’s result, fhtw(Q3) = 3/2. This is obtained for the D-tree in
Figure 11(f); the path ending in A has the maximum fractional hypertree width of 3/2.
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B.4 Proofs

Additional notation. Given a variable order ∆ and a variable A, by anc∆(A) we denote
the set of variables on the path from the root to A.

Proof of Proposition 23
We prove that given a join query Q, it holds that f(Q) ≥ e(Q) ≥ f(Q)− 1.

Since every E-tree is also an F-tree, f(Q) ≥ e(Q) follows immediately from the defini-
tions.

Assume towards a contradiction that there exists a query Q for which e(Q) < f(Q)− 1.
Take the E-tree ∆ that witnesses the e-width i.e., e(Q) = f(∆). Transform the E-tree ∆
into an F-tree ∆′ by setting key∆′(A) = anc∆′(A) for all variables. Consequently, for each
leaf A in ∆′, the linear program for computing ρ∗(Qkey∆′ (A)∪{A}) contains:
• for each ancestor B ∈ anc∆′(A) such that key∆(B) = anc∆(B), precisely the same in-
equality as for computing ρ∗(Qkey∆(B)∪{B});
• for each ancestor C ∈ anc∆′(A) such that key∆(C) contains only the ancestors of C that
occur in the same relation R with C, the inequality xR ≥ 1 (we recall that the definition of
the E-trees implies the existence of an unique such relation R).

Consequently, f(∆′) ≤ f(∆) + 1, thus f(∆′) ≤ e(Q) + 1, thus f(∆′) < f(Q). By defi-
nition, there does not exist an F-tree having f(∆′) < f(Q), hence we have a contradiction.
In conclusion, f(Q) ≥ e(Q) ≥ f(Q)− 1.

Proof of Proposition 24
We prove that given a join query Q, for every database D of size N , the join result Q(D)
admits an E-representation of size Θ(Ne(Q)). Similar results have been already proven for
T -representations [2], F-representations [12], and D-representations [13].

The upper bound follows directly from the definitions in Section B.2. As for the lower
bound, if follows from the same definitions and the techniques used in [13] (Section 7.4) to
prove the similar result for D-representations. More precisely, their result of interest is that
given a fixed query Q, there exist arbitrarily large databases D such that the number of
A-values in the representation of Q(D) is at least |D|ρ∗(Qkey(A)∪{A}). Our E-trees are nothing
else than a particular case of the D-trees considered there.

C Additional Material for Section 4

Proof of Proposition 10
Throughout this section, we assume a plan ∆0, . . . ,∆m over m variables.

Moreover, we assume without loss of generality that we have a virtual root root of
the variable order such that the actual roots of the variable order become children of this
virtual root. We may denote by root the lowest common ancestor (lca) of an actual root of
the factorization and any other variable.

Part 1 of Proposition 10. For any variable (occurrence) A it holds that: ∀i ∈ [m] :
key∆i−1(A) ⊆ key∆i

(A).
Take a variable A from ∆i−1.
If A is a not yet packed variable, then its key consists only of its ancestors with whom it

occurs in the same relation. If A remains not yet packed in ∆i, then key∆i−1(A) = key∆i
(A).
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Moreover, if A is packed in ∆i, the variables with whom it occurs in the same relation are
part of the key of A in ∆i.

Next, we consider the case where A is packed in ∆i−1 and assume towards a contradiction
that key∆i−1(A) 6⊆ key∆i

(A) i.e., there exists a variable B ∈ key∆i−1(A) such that B /∈
key∆i

(A). There are two cases for B being in key∆i−1(A):
(1) A and B occur in a same relation, or
(2) there is no relation containing A and B at the same time, but there exists a child C

of A such that B ∈ key∆i−1(C) (cf. Definition 2).
If (1) holds, then B ∈ key∆i

(A) that contradicts the hypothesis. Assuming that (2)
holds, we identify two cases for which B ∈ key∆i−1(C) and we now reiterate the reasoning
by considering two cases (2.1) and (2.2) (where the inner 1 and 2 are as above), and so on.
However, since there is a fixed number of descendants of A in ∆i−1, then after a fixed number
of iterations we do not have any other child C to consider case (2) anymore, hence the only
case is (1). This implies a contradiction, hence we conclude that key∆i−1(A) ⊆ key∆i

(A).

Before proving Part 2, we show an auxiliary result.

I Lemma 25. For all ∆i−1 (i ∈ [m]), if A is the variable to pack to obtain ∆i, then for all
pairs of occurrences of A in ∆i−1, it holds that at least one of them is a child of their lowest
common ancestor in ∆i−1. �

Proof. Take without loss of generality A(1) and A(2) as a pair of occurrences of A in ∆i−1.
Suppose towards a contradiction that the lowest common ancestor of A(1) and A(2) in ∆i−1
has among its children two different variables B and C such that A(1) and A(2) are their
descendants, respectively, and B ∈ key∆i−1(A(1)) and C ∈ key∆i−1(A(2)).

According to the first part of Proposition 10, in ∆i we need to have key∆i−1(A(1)) ∪
key∆i−1(A(2)) ⊆ key∆i

(A), which implies that B and C should be on the same root-to-leaf
path in ∆i. Since B and C are already packed in ∆i−1, we infer that they occurred in ∆i−1
on the same root-to-leaf path, which contradicts the hypothesis. �

Part 2 of Proposition 10. We have to prove that for any variable A it holds that if any
two occurrences of A have the same depth in ∆i for i ∈ [m], then they are siblings.

Lemma 25 implies that for all ∆i−1 (i ∈ [m]), assuming that A is the variable to pack to
obtain ∆i, all occurrences of A in ∆i−1 are children of variables from the same root-to-leaf
path in ∆i−1. This directly implies the Part 2 of Proposition 10.

D Additional Material for Section 5

Proof of Proposition 13
We prove that the triangle query has no query plan that is output-bounded for the T /F-
representation systems, and that this also holds for F-representations of the intermediate
results and T -representations of the final result.

We recall the triangle query Q/ = R1(A,B), R2(A,C), R3(B,C) introduced in Section 2.
Since all variables are pairwise dependent, a valid variable order for the result of Q/ has a
single path and each node has all its ancestors in its key. Consequently, all widths are equal:

ρ∗(Q/) = f(Q/) = e(Q/) = fhtw(Q/) = 3/2.

Take without loss of generality the plan with join sequence A,B,C.
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(a) Hypergraph of the intermediate (b) Intermediate F-tree
variable order after joining on A. after joining on B.

Figure 12 Examples from the proof of Proposition 13 showing that the triangle query is not
output-bounded for T /F-representations.

• If we use T -representations as intermediate results, after the join on A we have an
intermediate variable order with a fractional edge cover of 2, obtained after solving the
following linear program with positive variables (we depict in Figure 12(a) the corresponding
hypergraph):

A : x1 + x2 ≥ 1, B1 : x1 ≥ 1, C2 : x2 ≥ 1.

Since 2 > 3/2 = ρ∗(Q/), the query plan is not output-bounded.

• If we use F-representations as intermediate results, after the join on B we have an
intermediate variable order as in Figure 12(b), where each variable has all its ancestors in
its key. The intermediate F-tree has a factorization width of 2, obtained after solving the
following linear program with positive variables (corresponding to the left branch of the
F-tree):

A : x1 + x2 ≥ 1, B : x1 + x3 ≥ 1, C3 : x3 ≥ 1.

Since 2 > 3/2 = f(Q/) = ρ∗(Q/), the query plan is not output-bounded (for both T /F-
representations of the query result)

For both cases, all other permutations of the join sequence lead to the same conclusion.

Proof of Theorem 15
We prove that every join query has a query plan that is monotonically width-increasing for
the E/D-representation systems.

Take a query plan (∆0, . . . ,∆m) cf. Definition 8 such that either all ∆i’s are D-trees or
all ∆i’s are E-trees. To prove that for all i ∈ [m], it holds that f(∆i−1) ≤ f(∆i), we need
to first show an important auxiliary result.

I Lemma 26. For every i ∈ [m], for every not yet packed variable A in ∆i, for every
occurrence j ∈ [s] of A, there exists a relation whose schema contains key∆i

(A(j)) ∪ {A(j)},
if either all ∆i’s are D-trees or all ∆i’s are E-trees. �

Proof. The initial ∆0 is a T -path, and for each of the s occurrences A(j) (for j ∈ [s]) of a
variable A in ∆0, the set key∆0(A(j)) contains the set of ancestors that occur in the same
relation.

Since we assume D-trees and E-trees, during our query plans the aforementioned char-
acterization of the keys changes only for the variables that are packed. More precisely, if ∆i

is the packing of ∆i−1 on A, then key∆i
(A) becomes key∆m

(A) (cf. Proposition 10).
If A is not yet packed in ∆i−1, for every occurrence j ∈ [s] it holds that key∆i−1(A(j)) =

key∆i
(A(j)) (which moreover is precisely the set of ancestors of A(j) that occur in a same

relation). �
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Now we prove that for all i ∈ [m], it holds that f(∆i−1) ≤ f(∆i). We show that for every
variable (occurrence) A in ∆i it holds that ρ∗(Qkey∆i−1

(A)∪{A}) ≤ ρ∗(Qkey∆i
(A)∪{A}) by

considering three cases:
(i) A was already packed in ∆i−1, for which by Proposition 10 we know that key∆i−1(A) =

key∆i
(A) = key∆m

(A). Consequently,

ρ∗(Qkey∆i−1
(A)∪{A}) = ρ∗(Qkey∆i

(A)∪{A}).

(ii) A is the variable such that ∆i is the packing of ∆i−1 on A. For each of its occurrences
A(j) in ∆i−1 (for j ∈ [s]), by Lemma 26 it holds that there exists a relation R such that all
variables in key∆i−1(A(j)) appear in the schema of R, and consequently

ρ∗(Qkey∆i−1
(A(j))∪{A(j)}) = 1 ≤ ρ∗(Qkey∆i

(A)∪{A}),

since the value of the parameter ρ∗ cannot be smaller than 1 by definition.
(iii) A remains not yet packed in ∆i. By Lemma 26, for each of its s occurrences,

there exists a relation R such that all variables in key∆i−1(A(j)) appear in the schema of
R, and moreover all variables in key∆i

(A(j)) appear in the schema of R. Consequently,
ρ∗(Qkey∆i−1

(A(j))∪{A(j)}) = ρ∗(Qkey∆i
(A(j))∪{A(j)}) = 1 for each occurrence j ∈ [s].

In conclusion, for every variable (occurrence) A in ∆i we have ρ∗(Qkey∆i−1
(A)∪{A}) ≤

ρ∗(Qkey∆i
(A)∪{A}), which implies that f(∆i−1) ≤ f(∆i).

From the first part of the theorem, and the relationships between the four representation
systems and their width measures (cf. Figure 1), we infer that there are also monotoni-
cally width-increasing plans for : E-representations of the intermediate results and T /F-
representations of the final result; and for D-representations of the intermediate results and
T /F/E-representations of the final result.

Proof of Proposition 16
We prove that the Path7 query (Example B.3) has no query plan that is output-bounded
for E-representations of the intermediate results and D-representations of the final result.

Since the query is acyclic, we have fhtw(Path7) = 1. Any plan for Path7 consisting only
of E-trees cannot avoid an intermediate variable order with e-width of 2 (since an optimal
E-tree for Path7 has an e-width of 2 cf. Example B.3).

E Additional Material for Section 6

E.1 Omitted Proofs
Proof of Theorem 19
The theorem to prove is: Given a step in a query plan, where the input is a D-representation
IN over D-tree ∆ and A is the variable packed at ∆, Joen computes a D-representation OUT
of the join result over a D-tree that is a packing of ∆ on A in time O(|IN|+ |OUT|). �

First, we analyze the complexity of Step 4, because proving this step is enough to infer
that the result holds when we restrict ourselves to E-representations. Afterwards, we analyze
Step 1, 2, 3, and 5 to conclude the linear time behavior for general D-representations.

The Joen algorithm (cf. Figure 7) does precisely one pass on the input E-representation
IN. Next, we analyze the number of computation steps that Joen needs to create the output
E-representation OUT.
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To this purpose, we first characterize the number of data values of a given variable after
packing it with Joen (Lemma 27) and the number of computation steps needed for a Joen
application (Lemma 28).

Before analyzing the Joen complexity, we recall a notation introduced in Section 6.2: by
ηKp

[k1, . . . , kp−1] we denote the list of Kp-values under the Kp−1-value kp−1, . . ., under the
K1-value k1.

I Lemma 27. Given a factorization over ∆i−1 and the variable A such that the packing
of ∆i−1 on A yields the variable order ∆i, with key∆i

(A) = {K1, . . . ,Kp}, the number of
A-values in the factorization over ∆i is:∑

k1∈ηK1

. . .
∑

kp∈ηKp [k1,...,kp−1]

= |ηA[k1, . . . , kp]|.

Proof. The number follows from Lemma 7.5 in [13], which characterizes the number of data
values in a factorization. �

Next, we analyze the number of computation steps for a Joen application.

I Lemma 28. Given a factorization over ∆i−1 and the variable A such that the packing of
∆i−1 on A yields the variable order ∆i, with key∆i

(A) = {K1, . . . ,Kp}, the number of Joen
computation steps is:∑

k1∈ηK1

. . .
∑

kp∈ηKp [k1,...,kp−1]

min{|ηA1 [k1
1, . . . , k

1
l1 ]|, . . . , |ηAs [kl1, . . . , klls ]|},

where for j ∈ [s], by {kj1, . . . , k
j
lj
} we denote the subset of {k1, . . . , kp} restricted to the

values corresponding to variables from key∆i−1(A(j)). �

Proof. For every combination of values k1, . . . , kp, we need to intersect the s lists of A(j)-
values (j ∈ [s]) from the initial factorization over ∆i−1.

We infer that every list of A(j)-values depends on a subset of {k1, . . . , kp} (that we denote
{kj1, . . . , k

j
lj
}) because of the key preservation property. Moreover, since all the lists of A(j)-

values are ordered, the number of computation steps needed to intersect them is equal to
the minimal length of all these lists.

We measure only the intersection time because every A-value from the result factor-
ization over ∆i inherits the pointers to the children of A1, . . . , As, respectively, hence no
computation is performed below the intersected lists. �

Lemma 27 and 28 show that creating the Joen result takes time linear in the size of the
output, which is sufficient to say that Step 3 takes the desired amount of time (hence the
Theorem holds when restricted to E-representations).

Before proving that the time bound holds also for Step 1, 2, and 4 to conclude the proof
of Theorem 19, we prove an auxiliary property of linear programs.

I Lemma 29. Given a linear program over a set X of positive variables and an arbitrary
number of inequalities

∑
y∈Y y ≥ 1 over subsets Y ⊆ X and whose goal is to minimize∑

x∈X x. The optimal solution of the program is an upper bound for the optimal solution
of any program obtained by removing some of the inequalities. �

Proof. Let m be the number of inequalities and s be the optimal solution of the linear
program. Assume w.l.o.g. that we remove the last m− k inequalities and we keep the first
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(a) R1(A1, B1). (b) R2(B2, C2). (c) R3(C3, D3). (d) R4(A4, D4).

Figure 13 Input database for the Loop4 query.

k inequalities. Take the subset of variables that appear in the first k inequalities and give
them the same values as in the optimal solution of the initial linear program. Hence, (i)
all first k inequalities are satisfied (in other words the solution to the initial problem is still
a solution for the new program), and (ii) their sum is bounded by s. The part (ii) holds
because all variables are assigned to positive numbers. �

In Step 1, projecting away all values that are not for variables in the key can be done
in one pass over the database. Then, in Step 2, merging the definitions that now have the
same context is also in linear time in the input (modulo a log factor): we concatenate the
definitions that have the same context, we sort the result, and then remove duplicates. The
size of the output of Step 3 is asymptotically bounded by the size of the Joen output due to
Lemma 29 and the fact that the linear program for the leaf A of the Joen output contains
precisely the same inequalities as in the linear program for the leaf Kp in the Joen input
and an additional inequality for A. Consequently, the time to produce it is also bounded by
the size of the final result. As for Step 5, everything can be done in a single (bottom-up)
pass (in particular the cleanup step as in [13] and as recalled in Section 6.1).

E.2 Example of Joen on D-representations
I Example 30. Take the query Loop4 defined as follows:

R1(A,B), R2(B,C), R3(C,D), R4(A,D).

We recall that we depicted the query plan consisting of D-trees in Figure 5. We depict the
input database in Figure 13. Take the variable order A{B{C{D}}}, where key(B) = {A},
key(C) = {A,B}, and key(D) = {A,C}. We recall that A ∈ key(C) although A and C do
not occur in a same relation because A ∈ key(D) and D is a child of C in the variable order.

Assume that we have already done the joins on A, B and C, and now we want to join
on D. Before joining on D, the keys for each of its occurrences consist of their ancestors in
the variable order that appear in a same input relation. More precisely, key(D3) = {C} and
key(D4) = {A}. The current D-representation is:

ηA={a1, a2}, ηB [a1]={b1, b2}, ηB [a2]={b2, b3},
ηC [a1, b1]={c1, c2, c3}, ηC [a1, b2]={c2, c5}, ηC [a2, b2]={c2, c5}, ηC [a2, b3]={c3, c4, c5},
ηD4 [a1]={d1}, ηD4 [a2]={d4, d5}, ηD3 [c1]={d2, d3}, ηD3 [c2]={d1, d2, d4},
ηD3 [c3]={d1, d3, d5}, ηD3 [c4]={d4, d5}, ηD3 [c5]={d2}.
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There are two definitions with the same mapping {c2, c5}, which is the result of the
intersection of the list of C’s under b2 in R2 with the list of C’s in R3. This list is stored
twice i.e., for every A-value paired with b2 in the intermediate result because A ∈ key(C) as
dictated by the final variable order.

Step 1 and 2. We project away the values for the variable B (which is not in key(D)) and
aggregate the definitions that have the same context and variable:

FA = {a1, a2}, FC [a1] = {c1, c2, c3, c5}, FC [a2] = {c2, c3, c4, c5}.

Step 3. We construct a factorization over the E-tree consisting of the path A{C} and
keeping pointers to the original lists of D3’s and D4’s, respectively.

Step 4. We run the Joen algorithm (cf. Figure 7), which returns a factorization over the
E-tree A{C{D}} (where each variable has all its ancestors in its key). In particular for D
we construct:

ηD[a1, c1] = ∅, ηD[a1, c2] = {d1}, ηD[a1, c3] = {d1}, ηD[a1, c5] = ∅
ηD[a2, c2] = {d4}, ηD[a2, c3] = {d5}, ηD[a2, c4] = {d4, d5}, ηD[a2, c5] = ∅

Step 5. We remove all definitions ηD3 and ηD4 , and we add instead the non-empty ηD from
the previous step. We also remove the values c1 and c5 since they only appear in definitions
with empty unions. We thus obtain:

ηA = {a1, a2}, ηB [a1] = {b1, b2}, ηB [a2] = {b2, b3},
ηC [a1, b1] = {c2, c3}, ηC [a1, b2] = {c2}, ηC [a2, b2] = {c2}, ηC [a2, b3] = {c3, c4},
ηD[a1, c2] = {d1}, ηD[a1, c3] = {d1},
ηD[a2, c2] = {d4}, ηD[a2, c3] = {d5}, ηD[a2, c4] = {d4, d5} �
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