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ABSTRACT
Many applications from various disciplines are now required to
analyze fast evolving big data in real time. Various approaches
for incremental processing of queries have been proposed over the
years. Traditional approaches rely on updating the results of a query
when updates are streamed rather than re-computing these queries,
and therefore, higher execution performance is expected. However,
they do not perform well for large databases that are updated at
high frequencies. Therefore, new algorithms and approaches have
been proposed in the literature to address these challenges by, for
instance, reducing the complexity of processing updates. Moreover,
many of these algorithms are now leveraging distributed streaming
platforms such as Spark Streaming and Flink. In this tutorial, we
briefly discuss legacy approaches for incremental query processing,
and then give an overview of the new challenges introduced due to
processing big data streams. We then discuss in detail the recently
proposed algorithms that address some of these challenges. We
emphasize the characteristics and algorithmic analysis of various
proposed approaches and conclude by discussing future research
directions.
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1 INTRODUCTION
In a broad range of domains, such as Real Time Business Intelli-
gence and Complex Event Processing, contemporary applications
require the timely dynamic processing of complex analytical queries
on continuously arriving data. Here, dynamic processing refers to
updating the query result, preferably in real-time, when the under-
lying data is updated. Implementing such applications remains a
difficult task, and involves resolving two orthogonal challenges:

• Designing a suitable dynamic query processing algorithm
that determines how the application’s query results are to
be updated upon data changes, taking into account that
previous results are already available and re-computation
should be avoided to ensure timeliness.
• Designing an implementation and deployment of the se-
lected dynamic query processing algorithm that accounts
for desiderata such as high throughput, low latency, and
the ability to process large data sets. Current approaches
mostly rely on distributed computing frameworks such as
MapReduce, Flink, Spark, or Storm, to achieve this.

Fortunately, in recent years, there has been a flurry of research
on both challenges that provide novel insights in how to resolve
them. We briefly survey these next.

Algorithmical insights. Avoiding the re-computation whenever
an update is received has long been approached using Incremental
View Maintenance (IVM) techniques [6, 9]. IVM materializes the
output of a query and then maintains that output under updates.
Unfortunately, traditional IVM is not efficient for large databases
that are updated at a high frequency. Therefore, new approaches
have recently been proposed, whose objective is to reduce the
complexity of processing updates and/or to reduce the required
memory footprint.

Specifically, research in dynamic query processing has recently
received a big boost with: (1) the introduction of Higher-Order IVM
(HIVM) [13, 14, 19]; (2) the identification of lower bounds and worst-
case optimal algorithms for processing updates [3, 4, 12]; (3) the
practical formulations of worst-case-optimal IVM that implement
and extend these algorithms [10, 11, 20]; and (4) the introduction
of the notion of differential dataflow for computations that require
recursive or iterative processing [16, 17]. These approaches often
rely on materializing a succinct representation of a query’s output
to maintain it more efficiently, and therefore present a fundamental
breakthrough with traditional IVM techniques.
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Big Data Frameworks support for dynamic query process-
ing. Big data frameworks such as MapReduce [7] and Spark [24]
are inherently batch-oriented. Early approaches for implementing
dynamic query processing in these frameworks has focused on
incremental processing of MapReduce tasks [5, 21, 23]. These are,
however, based on traditional IVM techniques and suffer from high
latency of MapReduce and its open source implementation Hadoop.
More recent versions of distributed compute frameworks such as
Apache Spark [25], Apache Flink [1], and Twitter Storm [22] /
Heron [15] allow stream-based computations instead of batch-based
computations. Out of the box, these frameworks mostly provide
primitives for avoiding re-computation over sliding windows, based
on traditional IVM. In addition, they present low-level programming
primitives by which developers can express their own dynamic
query processing algorithms. More recently, there are proposals
to automatically incrementalize queries on distributed big data
frameworks. Examples of these approaches include the distributed
implementation of HIVM [18] and differential dataflow [17], as well
as Spark Sructured Streaming [2].

2 TUTORIAL STRUCTURE
The tutorial runs for 3 hours and is divided into the following four
parts:
Part I: Introduction, desiderata, and traditional IVM
We start the tutorial by giving an introduction to dynamic query pro-
cessing and show examples thatmotivate the need for efficient incre-
mental query processing. We give a high-level historical overview
of traditional approaches (known as First Order IVM) that have
been employed by conventional database systems to maintain query
outputs. We present the strong and weak points of traditional ap-
proaches and then discuss new challenges introduced by streaming
large data at high frequencies.
Part II: RecentAlgorithmicAdvances inDynamicQueryPro-
cessing
In the second part of the tutorial, we survey new efficient ap-
proaches and algorithms for dynamic query processing. We discuss
the following research works: (1) Higher-Order IVM [13, 14, 19]; (2)
Complexity lower bounds for dynamic query processing [3, 4, 12];
(3) Dynamic Yannakakis [10, 11]; (4) Factorized IVM [20]; (5) Space-
time tradeoffs [12]; and (6) Beyond conjunctive queries: relations
over application-dependent rings [8, 13, 20].
Part III: Dynamic Query Processing in Big Data Frameworks
Incremental processing of queries has been studied for queries ex-
ecuted by MapReduce [5, 21, 23] and by other distributed stream-
ing platforms such as Spark Streaming [2, 25], Flink [1], and
Storm [22]/Heron [15]. However, these systems rely on their users
to specify how the queries are maintained or employ traditional in-
cremental viewmaintenance approaches. Additionally, new parallel
approaches that are executed in distributed environments [18] or
that extend incremental processing [17] are introduced. We discuss
all the mentioned approaches and platforms while highlighting the
contributions that each one of them has made.
Part IV: Outlook
Finally we conclude by summarizing the existing research solutions
and highlighting the open problems that are yet to be studied.
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