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Provenance Polynomials

Unifying framework (Green et al.) that captures the semantics of
◮ incomplete information and uncertain databases,

◮ query evaluation under set/bag semantics,

◮ annotation propagation for why- and how-provenance.

In provenance polynomials, we denote provenance of

◮ input tuples by variables,

◮ a join of tuples by a product of their provenance,

◮ a union of tuples by a sum of their provenance.

Example Database

Order

id item

o1 01 Printer

o2 02 Plotter

o3 03 Ink

o4 04 Printer

o5 05 Ink

Store

location item

s1 Depot1 Printer

s2 Depot1 Plotter

s3 Depot2 Printer

s4 StoreA Ink

Emp

operator location

e1 Joe Depot1

e2 Bob Depot1

e3 Dan Depot2

e4 Dan StoreA

Example Query

Order 1item Store 1location Emp

id item location operator

o1s1e1 01 Printer Depot1 Joe

o1s1e2 01 Printer Depot1 Bob

o1s3e3 01 Printer Depot2 Dan

o2s2e1 02 Plotter Depot1 Joe

. . . . . .

Provenance Polynomial of the Query Result

Φ1 =o1s1e1 + o1s1e2 + o1s3e3 + o2s2e1 + o2s2e2+

o3s4e4 + o4s1e1 + o4s1e2 + o4s3e3 + o5s4e4.

Special cases:

◮ Boolean semiring (B,∨,∧)

◮ Each variable encodes the presence of its input tuple.
◮ Used in incomplete information and probabilistic databases.

◮ Semiring over natural numbers (N,+, •)

◮ Each variable encodes tuple multiplicity.
◮ Used in bag semantics of positive queries.

◮ If the variables encode the tuples themselves, the provenance

polynomial encodes the whole query result.

Factorisation of Provenance Polynomials

Algebraic factorisation of Φ1:

Φ2 = (o1 + o4)(s1(e1 + e2) + s3e3) + o2s2(e1 + e2) + (o3 + o5)s4e4.

expresses explicitly how groups of input tuples combine and thus

shows the nested structure of the query result and its provenance.

◮ Factorisations can be more informative and exponentially

more succinct than flat representations.

◮ The monomials can be extracted from the factorisation with

polynomial delay.

Challenge: Queries with Factorised Polynomials of Bounded Size

Classification of queries based on

◮ the minimal size of the factorised polynomials of query results for any input database

◮ result polynomials with factorisations of bounded readability for any input database

◮ Polynomial Φ is read-k if each variable occurs at most k times in Φ.
◮ Polynomial Φ has readability k if k is the smallest number such that there is a

read-k polynomial equivalent to Φ.

Examples: The readability of

◮ the query [Store 1location Emp] is one for any database.

◮ In our example, the factorised polynomial is (s1 + s2)(e1 + e2) + s3e3 + s4e4.
◮ For each location, we get a product of sums of distinct variables.

◮ the query [Order 1item Store 1location Emp] is dependent on the input database size.

Challenge: Efficient Computation of Factorised Polynomials

◮ Compute factorisations of low/minimal readability for any polynomial.

◮ Minimality may be with respect to a restricted class of factorisations.

◮ For a query and a database, compute the factorised polynomial of the query result

◮ without first computing the flat polynomial of the query result.

Challenge: Querying Factorised Relations and Polynomials

◮ Assume that variables in polynomials carry the input tuples.

◮ Evaluate queries directly on factorised polynomials.

Example: Equivalent factorisations of the result of [Order 1item Store 1location Emp]:

Φ9 = (o1 + o2)(s1(e1 + e2) + s2(e3 + e4)) + (o3 + o4)(s3(e1 + e2) + s4(e3 + e4)),

Φ10 = ((o1 + o2)s1 + (o3 + o4)s3)(e1 + e2) + ((o1 + o2)s2 + (o3 + o4)s4)(e3 + e4).

◮ Here, variables oi(ej) are annotated with tuples from Order (Emp)

◮ Φ9(Φ10) is suitable for joining on Order (Emp) without unfolding

Challenge: Approximation by Factorised Polynomials

Given a polynomial Φ, find lower and upper bounds ΦL,ΦU with lower readability.

◮ Definition of lower and upper bounds depends on the semiring.

◮ In the Boolean semiring: ΦL |= Φ |= ΦU

◮ In the semiring over natural numbers: ΦL ≤ Φ ≤ ΦU

◮ For all semirings: Drop (add) monomials for lower (upper) bounds

Lower bound for Φ1 : ΦL = (o1 + o4)(s1(e1 + e2) + s3e3) + (o3 + o5)s4e4

Upper bound for Φ1 : ΦU = (o1 + o2 + o4)((s1 + s2)(e1 + e2) + s3e3) + (o3 + o5)s4e4.

◮ Search for closest bounds in a given class C of well factorisable polynomials.

◮ C could be the class of polynomials with readability one.

Query approximation:

◮ Approximate a query Q by lower and upper bound queries QL and QU.

◮ For any database, the polynomials ΦL and ΦU of QL and QU are lower and upper

bounds for the polynomial Φ of Q and have lower readability.

Results: Queries with Factorisations of Bounded Size

◮ We introduce factorisation trees which

◮ are statically derived from a query Q,
◮ are independent of the input database,
◮ define a factorisation of the polynomial of Q(D), for any

database D.

Characterisation of Conjunctive Queries

◮ For any query Q, there is a rational number f (Q) such that

for any database D, Q(D) has a factorised polynomial

◮ with readability O(|D|f (Q)),
◮ with size at most |D|f (Q)+1.

Moreover, f (Q) is the smallest such number when

restricted to factorisations defined by factorisation trees.

◮ A query satisfies f (Q) = 0 iff it is hierarchical. Then the

polynomial of any Q(D) has a factorisation

◮ with bounded readability,
◮ with size linear in the sizes of input database and query.

For hierarchical queries w/o self-joins it is also known that

◮ in probabilistic databases, their exact probability can be

computed in polynomial time,
◮ in the finite cursor machine model, they can be

evaluated in just one pass over the database.

Results: Efficient Computation of Factorisations

◮ For any Q and D, we compute a factorisation of readability

O(|D|f (Q)) and size at most |D|f (Q)+1 in time O(|D|f (Q)+1)

◮ .. without computing the flat polynomial!

Results: Approximation by Factorised Polynomials

Approximation by polynomials of readability one, over the

Boolean semiring.

◮ Equivalent syntactic and model-theoretic characterisations

of lower and upper bounds.

◮ Algorithms to enumerate bounds with polynomial delay.
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