
1 / 20

A Dichotomy

for Non-Repeating Queries with Negation

in Probabilistic Databases

1 / 20

A Dichotomy

for Non-Repeating Queries with Negation

in Probabilistic Databases

Robert Fink and Dan Olteanu

PODS, June 24, 2014

Robert Fink and Dan Olteanu

PODS June 24, 2014

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

2 / 20

Outline

Problem Setting

Relational algebra query language fragment 1RA−

Included: Equi-joins, selections, projections, difference

Excluded: Repeating relation symbols (self-joins), unions

Tuple-independent probabilistic model

Each tuple associated with a fresh Boolean random variable x .

P(x) is the probability that the tuple exists in the database.

Simplest probabilistic model in the literature.

Beyond this model, query tractability is quickly lost.

Used by real-world large-scale probabilistic repositories,

e.g., Google Knowledge Vault.

Query Evaluation Problem: For a fixed 1RA− query Q:

Given a tuple-independent probabilistic database D and a tuple t ∈ Q(D),

compute its marginal probability.

3 / 20

The Main Result

Data complexity of any 1RA− query Q on tuple-independent databases:

Polynomial time if Q is hierarchical and

#P-hard otherwise.

This result strictly extends a 2004 result by Dalvi and Suciu:

We added the relational algebra difference operator
I and moved from conjunctive queries without self-joins to 1RA.

Same syntactic characterization of tractable queries.
I The hierarchical property can be recognized in LOGSPACE.

The reason for tractability is however different.

4 / 20

The Main Result

Data complexity of any 1RA− query Q on tuple-independent databases:

Polynomial time if Q is hierarchical and

#P-hard otherwise.

This result strictly extends a 2004 result by Dalvi and Suciu:

We added the relational algebra difference operator
I and moved from conjunctive queries without self-joins to 1RA.

Same syntactic characterization of tractable queries.
I The hierarchical property can be recognized in LOGSPACE.

The reason for tractability is however different.

4 / 20

Hierarchical 1RA− Queries

Let [C] be the equivalence class of attribute C in query Q as defined by the

transitivity of equi-join conditions and difference operators.

E.g., C and D are in the same class due to join X (C) 1C=D Y (D) or

difference X (C)−C↔D Y (D) under attribute mapping C ↔ D.

(Boolean∗) 1RA− query Q is hierarchical if

For every pair of distinct attribute equivalence classes [A] and [B],

there is no triple of relation symbols R, S , and T in Q such that

R [A][¬B] has attributes in [A] and not in [B],

S [A][B] has attributes in both [A] and [B], and

T [¬A][B] has attributes in [B] and not in [A].

∗ For non-Boolean queries, we need not check for equivalence classes with

attributes in the query result.

5 / 20

Hierarchical 1RA− Queries

Let [C] be the equivalence class of attribute C in query Q as defined by the

transitivity of equi-join conditions and difference operators.

E.g., C and D are in the same class due to join X (C) 1C=D Y (D) or

difference X (C)−C↔D Y (D) under attribute mapping C ↔ D.

(Boolean∗) 1RA− query Q is hierarchical if

For every pair of distinct attribute equivalence classes [A] and [B],

there is no triple of relation symbols R, S , and T in Q such that

R [A][¬B] has attributes in [A] and not in [B],

S [A][B] has attributes in both [A] and [B], and

T [¬A][B] has attributes in [B] and not in [A].

∗ For non-Boolean queries, we need not check for equivalence classes with

attributes in the query result.

5 / 20

Examples

Examples of hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[(
M(A)× N(B)

)
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]

Examples of non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]

6 / 20

Examples

Examples of hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[(
M(A)× N(B)

)
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
Examples of non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]

6 / 20

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

7 / 20

Outline

Hardness Proof Idea

Reduction from #P-hard model counting problem for positive 2DNF:

Given a non-hierarchical 1RA query Q and

A positive bipartite DNF formula Ψ,

Construct a tuple-independent database D with
I size polynomial in the number of variables and clauses in Ψ, and
I tuples annotated with variables in Ψ such that Ψ annotates Q(D).

Then #Ψ = 2n · PQ(D), where
I PQ(D) is the probability of Q(D),
I 1/2 is the probability of each variable in Ψ, and
I n is the number of variables in Ψ.

8 / 20

Example of Hardness Reduction

Input formula and query:

Ψ = x1y1 ∨ x1y2,

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct database such that Ψ annotates Q’s (nullary) result:

Column Φ holds annotations over variables in Ψ.
I Special annotations: > (true), ⊥ (false)

Variables used as constants for the attribute B in T and S .

S(a, b, φ): Clause a has variable b exactly when φ is true.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
1 y2 ⊥
2 x1 >
2 y1 ⊥
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

1 y2 ⊥
2 x1 ¬x1

2 y1 ⊥
2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

Query Q is already hard when T is the only uncertain input relation!

9 / 20

Example of Hardness Reduction

Input formula and query:

Ψ = x1y1 ∨ x1y2,

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct database such that Ψ annotates Q’s (nullary) result:

Column Φ holds annotations over variables in Ψ.
I Special annotations: > (true), ⊥ (false)

Variables used as constants for the attribute B in T and S .

S(a, b, φ): Clause a has variable b exactly when φ is true.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
1 y2 ⊥
2 x1 >
2 y1 ⊥
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

1 y2 ⊥
2 x1 ¬x1

2 y1 ⊥
2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

Query Q is already hard when T is the only uncertain input relation!
9 / 20

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be consider separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

.

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

P1.1 is the only hard pattern to consider w/o the difference operator!

10 / 20

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be consider separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

.

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

P1.1 is the only hard pattern to consider w/o the difference operator!

10 / 20

Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern Px.y:

There is a total mapping from Px.y to Q’s parse tree that
I is identity on inner nodes 1 and −,
I preserves ancestor-descendant relationships,
I maps leaves A,AB, B to relations R [A][¬B], S [A][B],T [¬A][B].

−

A 1

B AB

Pattern P5.3

π∅

1

X (A) −

R(A) πA

1

T (B) S(A, B)

Query Q

The match preserves the annotation of the query pattern:

Q and Px.y have the same annotation for any input database.

11 / 20

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

12 / 20

Outline

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of the query annotation Ψ.

Compile Ψ into poly-size OBDD(Ψ).

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− queries w/o difference: Annotations are read-once.
I Read-once annotations admit linear-size OBBDs.

1RA− queries: Annotations are not read-once.
I They admit OBBDs of size linear in the database size

but exponential in the query size.

13 / 20

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of the query annotation Ψ.

Compile Ψ into poly-size OBDD(Ψ).

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− queries w/o difference: Annotations are read-once.
I Read-once annotations admit linear-size OBBDs.

1RA− queries: Annotations are not read-once.
I They admit OBBDs of size linear in the database size

but exponential in the query size.

13 / 20

The Inner Workings

From hierarchical 1RA− to RC-hierarchical ∃-consistent RC∃:

Translate query Q into an equivalent disjunction of disjunction-free
existential relational calculus queries Q1 ∨ · · · ∨ Qk .

I k can be very large for queries with projection under difference!

RC-hierarchical:
For each ∃X (Q ′), every relation symbol in Q ′ has variable X .

I Each of the disjuncts gives rise to a poly-size OBDD.

∃-consistent:
The nesting order of the quantifiers is the same in Q1, · · · ,Qk .

I All OBDDs have compatible variable orders and

their disjunction is a poly-size OBDD.

The OBDD width grows exponentially with k,

its height stays linear in the size of the database.

I Width = maximum number of edges crossing the section between any two

consecutive levels.

14 / 20

Query Evaluation Example

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1

2 r2

T

B Φ

1 t1

2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R 1 T

A B Φ

1 1 r1t1

1 2 r1t2

2 1 r2t1

2 2 r2t2

R 1 T − U 1 V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The annotation of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.

15 / 20

Query Evaluation Example

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1

2 r2

T

B Φ

1 t1

2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R 1 T

A B Φ

1 1 r1t1

1 2 r1t2

2 1 r2t1

2 2 r2t2

R 1 T − U 1 V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The annotation of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.

15 / 20

Query Evaluation Example (2)

Translate Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
into RC∃:

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

Both Q1 and Q2 are RC-hierarchical.

Q1 ∨ Q2 is ∃-consistent: Same order ∃A∃B for Q1 and Q2.

Query annotation:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

Both Ψ1 and Ψ2 admit linear-size OBDDs.

The two OBDDs have compatible orders and their disjunction is an OBDD

whose width is the product of the widths of the two OBDDs.

16 / 20

Query Evaluation Example (3)

Compile query annotation into OBDD:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

r1

r2

¬u1

¬u2

t1

t2

>⊥

∨

r1

r2

t1

t2

¬v1

¬v2

>⊥

=

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥

17 / 20

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

18 / 20

Outline

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

18 / 20

Outline

Dichotomies Beyond 1RA−

Some known dichotomies

Conjunctive queries w/o self-joins [Dalvi & Suciu 2004]

Unions of conjunctive queries [Dalvi & Suciu 2010]

Quantified relational algebra queries [F. & O. & Rath 2011]

Full relational algebra

It is undecidable whether the union of two equivalent relational algebra

queries, one hard and one tractable, is tractable.

Non-repeating relational algebra = 1RA− + union.

Hierarchical property not enough.

π∅[(R(A) 1 S1(A,B) ∪ T (B) 1 S2(A,B))− S(A,B)] is hard, though it is

equivalent to a union of two hierarchical 1RA− queries.

Non-repeating relational calculus

S(x , y) ∧ ¬R(x) is tractable, S(x , y) ∧ (R(x) ∨ T (y)) is hard.
I Both are non-repeatable, yet not expressible in 1RA−.

Possible (though expensive) approach:
I Translate to RC∃ and check RC-hierarchical and ∃-consistency.

19 / 20

Thank you!

20 / 20

	 The Dichotomy
	 The Interesting but Hard Queries
	 The Easy Queries
	 Leftovers

