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Problem Setting

Relational algebra query language fragment 1RA−

Included: Equi-joins, selections, projections, difference

Excluded: Repeating relation symbols (self-joins), unions

Tuple-independent probabilistic model

Each tuple associated with a fresh Boolean random variable x .

P(x) is the probability that the tuple exists in the database.

Simplest probabilistic model in the literature.

Beyond this model, query tractability is quickly lost.

Used by real-world large-scale probabilistic repositories,

e.g., Google Knowledge Vault.

Query Evaluation Problem: For a fixed 1RA− query Q:

Given a tuple-independent probabilistic database D and a tuple t ∈ Q(D),

compute its marginal probability.
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The Main Result

Data complexity of any 1RA− query Q on tuple-independent databases:

Polynomial time if Q is hierarchical and

#P-hard otherwise.

This result strictly extends a 2004 result by Dalvi and Suciu:

We added the relational algebra difference operator
I and moved from conjunctive queries without self-joins to 1RA.

Same syntactic characterization of tractable queries.
I The hierarchical property can be recognized in LOGSPACE.

The reason for tractability is however different.
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Hierarchical 1RA− Queries

Let [C ] be the equivalence class of attribute C in query Q as defined by the

transitivity of equi-join conditions and difference operators.

E.g., C and D are in the same class due to join X (C) 1C=D Y (D) or

difference X (C)−C↔D Y (D) under attribute mapping C ↔ D.

(Boolean∗) 1RA− query Q is hierarchical if

For every pair of distinct attribute equivalence classes [A] and [B],

there is no triple of relation symbols R, S , and T in Q such that

R [A][¬B] has attributes in [A] and not in [B],

S [A][B] has attributes in both [A] and [B], and

T [¬A][B] has attributes in [B] and not in [A].

∗ For non-Boolean queries, we need not check for equivalence classes with

attributes in the query result.
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Examples

Examples of hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[(
M(A)× N(B)

)
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]

Examples of non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]
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Hardness Proof Idea

Reduction from #P-hard model counting problem for positive 2DNF:

Given a non-hierarchical 1RA query Q and

A positive bipartite DNF formula Ψ,

Construct a tuple-independent database D with
I size polynomial in the number of variables and clauses in Ψ, and
I tuples annotated with variables in Ψ such that Ψ annotates Q(D).

Then #Ψ = 2n · PQ(D), where
I PQ(D) is the probability of Q(D),
I 1/2 is the probability of each variable in Ψ, and
I n is the number of variables in Ψ.
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Example of Hardness Reduction

Input formula and query:

Ψ = x1y1 ∨ x1y2,

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct database such that Ψ annotates Q’s (nullary) result:

Column Φ holds annotations over variables in Ψ.
I Special annotations: > (true), ⊥ (false)

Variables used as constants for the attribute B in T and S .

S(a, b, φ): Clause a has variable b exactly when φ is true.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
1 y2 ⊥
2 x1 >
2 y1 ⊥
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

1 y2 ⊥
2 x1 ¬x1

2 y1 ⊥
2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

Query Q is already hard when T is the only uncertain input relation!
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Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be consider separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

. . . . . . . . . . . .

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

P1.1 is the only hard pattern to consider w/o the difference operator!
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Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern Px.y:

There is a total mapping from Px.y to Q’s parse tree that
I is identity on inner nodes 1 and −,
I preserves ancestor-descendant relationships,
I maps leaves A,AB, B to relations R [A][¬B], S [A][B],T [¬A][B].

−

A 1

B AB

Pattern P5.3

π∅

1

X (A) −

R(A) πA

1

T (B) S(A, B)

Query Q

The match preserves the annotation of the query pattern:

Q and Px.y have the same annotation for any input database.
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Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of the query annotation Ψ.

Compile Ψ into poly-size OBDD(Ψ).

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− queries w/o difference: Annotations are read-once.
I Read-once annotations admit linear-size OBBDs.

1RA− queries: Annotations are not read-once.
I They admit OBBDs of size linear in the database size

but exponential in the query size.
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The Inner Workings

From hierarchical 1RA− to RC-hierarchical ∃-consistent RC∃:

Translate query Q into an equivalent disjunction of disjunction-free
existential relational calculus queries Q1 ∨ · · · ∨ Qk .

I k can be very large for queries with projection under difference!

RC-hierarchical:
For each ∃X (Q ′), every relation symbol in Q ′ has variable X .

I Each of the disjuncts gives rise to a poly-size OBDD.

∃-consistent:
The nesting order of the quantifiers is the same in Q1, · · · ,Qk .

I All OBDDs have compatible variable orders and

their disjunction is a poly-size OBDD.

The OBDD width grows exponentially with k,

its height stays linear in the size of the database.

I Width = maximum number of edges crossing the section between any two

consecutive levels.
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Query Evaluation Example

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1

2 r2

T

B Φ

1 t1

2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R 1 T

A B Φ

1 1 r1t1

1 2 r1t2

2 1 r2t1

2 2 r2t2

R 1 T − U 1 V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The annotation of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.
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Query Evaluation Example (2)

Translate Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
into RC∃:

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

Both Q1 and Q2 are RC-hierarchical.

Q1 ∨ Q2 is ∃-consistent: Same order ∃A∃B for Q1 and Q2.

Query annotation:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

Both Ψ1 and Ψ2 admit linear-size OBDDs.

The two OBDDs have compatible orders and their disjunction is an OBDD

whose width is the product of the widths of the two OBDDs.
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Query Evaluation Example (3)

Compile query annotation into OBDD:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

r1

r2

¬u1

¬u2

t1

t2

>⊥

∨

r1

r2

t1

t2

¬v1

¬v2

>⊥

=

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥
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Dichotomies Beyond 1RA−

Some known dichotomies

Conjunctive queries w/o self-joins [Dalvi & Suciu 2004]

Unions of conjunctive queries [Dalvi & Suciu 2010]

Quantified relational algebra queries [F. & O. & Rath 2011]

Full relational algebra

It is undecidable whether the union of two equivalent relational algebra

queries, one hard and one tractable, is tractable.

Non-repeating relational algebra = 1RA− + union.

Hierarchical property not enough.

π∅[(R(A) 1 S1(A,B) ∪ T (B) 1 S2(A,B))− S(A,B)] is hard, though it is

equivalent to a union of two hierarchical 1RA− queries.

Non-repeating relational calculus

S(x , y) ∧ ¬R(x) is tractable, S(x , y) ∧ (R(x) ∨ T (y)) is hard.
I Both are non-repeatable, yet not expressible in 1RA−.

Possible (though expensive) approach:
I Translate to RC∃ and check RC-hierarchical and ∃-consistency.
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Thank you!
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