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SPROUT2 — Structured Queries over Unstructured Data

Challenges
◮ Inherently uncertain Web data: NELL, Google Squared

◮ Scalable evaluation of any relational algebra query on

expressive uncertain databases of Web data

Contributions

◮ Database wrappers for Web data

◮ Probabilistic databases from Google Squared, NELL
◮ Deterministic databases from Google Fusion

◮ Scalable query processing for any relational algebra query

◮ Exact/Approximate evaluation for tractable/hard queries
◮ Done by the SPROUT query engine (part of MayBMS)

◮ Graphical user interface in SPROUT2’s for selecting data

sources, composing queries, and browsing results

Uncertain Data on the Web

◮ Traditional databases: Data must adhere to rigid structure

and must be complete and trustworthy.

◮ Internet applications witness an unprecedented shift to-

wards unstructured and user-generated content.

◮ Example scenario: Business Intelligence

◮ Extract valuable business information from sources such

as twitter feeds, blogs, or email messages.
◮ Join those data with offline databases, e.g. on products
◮ .. to obtain early feedback about a product’s quality.
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Query Answering in SPROUT

Query evaluation in two steps (logically distinct but possibly intertwined):

1. Compute the tuples in the query result together with their lineage

The lineage of a result tuple t is a propositional formula over the tuples in the input database and says

which input tuples must be present in order for the query to return t .

2. Compute the probabilities of result tuples by incremental lineage compilation:
Independent or (Φ and Ψ are syntactically independent) P(Φ ∨ Ψ) = 1 − (1 − P(Φ))(1 − P(Ψ))

Independent and (Φ and Ψ are syntactically independent) P(Φ ∧ Ψ) = P(Φ) · P(Ψ)

Shannon expansion (x is a variable in Φ) P(Φ) = P(x)P(Φ|x) + P(¬x)P(Φ|¬x)

Example: Relational division query ”Which supplier stocks all products?”

Supplier S

Supplier Product E

1 1 x1

1 2 x2

1 7 x3

2 1 x4

2 5 x5

Product P

Product E

1 y1

2 y2

Supplier of all products: S ÷ P

Supplier E

1 (x1 ∨ x2 ∨ x3)(y1 → x1)(y2 → x2)

2 (x4 ∨ x5)(y1 → x4)(¬y2)

(x4 ∨ x5)(y1 → x4)(¬y2)

∧

¬y2 (x4 ∨ x5)(y1 → x4)

∨

y1x4 ¬y1(x4 ∨ x5)
P((x4 ∨ x5)(y1 → x4)(¬y2)) = P(¬y2)[P(y1)P(x4) + P(¬y1)[1 − (1 − P(x4))(1 − P(x5))]

Novel Techniques for Exact and Approximate Probability Computation

◮ Incremental decomposition of lineage into d-trees using the above three rules

◮ After each decomposition step, compute rough lower and upper bounds on the

probabilities of the residual formulas at the leafs of the decomposition tree

◮ Approach 1: Lower bound is the largest probability of a clause in Φ; Upper bound is the sum of

probabilities of all clauses in Φ.

◮ Approach 2: Compute read-once formulas, whose probabilities represent lower and upper bounds.

◮ Using the bounds at the leaves, compute lower and upper bounds for the whole lineage

◮ Stop when the desired precision is reached or the time budget is exhausted

◮ Underlying idea: Leaves deeper in the d-tree contribute little to the overall probability

mass, hence a good approximation can be found quickly

Complete decomposition

◮ Corresponds to exact probability computation

◮ Can be done in polynomial time for tractable query & data instances

◮ relational algebra queries without repeating symbols and with read-once lineage
◮ a class of conjunctive queries with inequality (<, 6=) joins

Partial decomposition

◮ Corresponds to approximate probability computation with error guarantees

◮ Applicable for hard query and data instances

Example: Efficient computation of bounds that are read-once formulas

◮ Left: original formula; middle: lower bound; right: upper bound

◮ Lower/Upper bounds obtained by setting the marked literals to false/true
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(x1y1 ∨ ¬x2y2)[x1(y1 ∨ y3) ∨ x3(y4 ∨ y5)] Lower bound (x1y1 ∨ ¬x2y2)x3(y4 ∨ y5) Upper bound x1y1 ∨ ¬x2y2

SPROUT2: Selecting Web or Offline Data Sources

SPROUT2: Composing Queries over Selected Sources

SPROUT2: Browsing Ranked Query Results

Publicly-available Prototype

◮ SPROUT is implemented as an extension of PostgreSQL

8.4 backend

◮ Public version downloadable with MayBMS from CVS at

maybms.sourceforge.net
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