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ABSTRACT
Graph data is ubiquitous: Social networks, Semantic Web,
pointer analysis in software engineering, and biological and
chemical networks all rely on a graph representation of data.
This paper makes the case for a native storage layer for
graph data, rather than relying on relational or columnar
stores. We propose a lightweight storage manager for graph
data called G-Store. It exploits the structure of the graph for
placement of data in pages that is optimized for a wide range
of access patterns found in graph queries. Our placement
approach partitions the data into pages using a multilevel
partitioning algorithm and arranges the pages on disk to
minimize the distance on disk between adjacent vertices.

Initial experiments show that G-Store can outperform ex-
isting graph database solutions by orders of magnitude. We
believe that these results justify a promising avenue of re-
search into storage-aware graph databases. We discuss some
of these research directions.

1. INTRODUCTION
Have you ever wondered what the shortest co-author path

to your scientific hero is? Or, what would be a minimal chain
of people to introduce you to the head of department at that
university you always dreamed of going to. Biologists want
to know which genes affect the development of your arm,
software engineers want to analyse dependencies between
code fragments or whole business processes.

All these problems operate on directed graphs of tens of
millions of vertices and edges, and need to traverse paths of
arbitrary length, e.g., the citation edges, the part-of hierar-
chy of the human anatomy, or the dependency graph of a
piece of software.

The importance of graph data has led to a revived inter-
est in graph databases, with particular focus on (1) graph
data models and query languages [3], (2) fast reachability
indices [38, 7, 43], in particular for integration in relational
or columnar databases, and (3) algorithms and indices for
specific graph queries such as shortest path [40], subgraph
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isomorphism [15], and frequent subgraph discovery [21, 44].
Current graph databases that come with their own storage
manager [17, 25, 41, 42, 24] are based either on B+-trees
or on column-stores, optimized for queries using only vertex
properties and direct edge traversals. Neither approach is
well suited for graph traversals where we need to pose con-
ditions on the traversed path. Such traversals are common
in analysis queries as in the introductory examples and often
expressed by a form of regular path expressions [4, 27, 10].
The evaluation of regular path expressions over graph data
is also needed for ad-hoc RDFS reasoning [27].

This paper introduces G-Store, a lightweight disk-based
storage manager, that complements the existing disk-based
or main-memory indices for graph data and large distributed
solutions such as Google’s Pregel [23]. We target ubiquitous
and cheap hard disk drives for external storage of graphs
where disk access, in particular random disk access, is or-
ders of magnitude worse than memory access. To achieve
good performance, G-Store maximizes sequential access to
data for graph traversals by storing adjacent vertices close
together on disk. Thus it can exploit locality of related ver-
tices for graph traversal.

The contributions of this paper are as follows:
• A placement strategy for vertices and edges of any di-

rected, labeled graph into disk pages that minimizes
the time for neighborhood and graph traversal queries.
It distributes the vertices over a sequence of pages on
disk such that the number of adjacent vertices in dif-
ferent pages and the distance between pages with ad-
jacent vertices are minimized.
• A novel heuristic, multilevel storage algorithm that ap-

proximates the above optimal placement strategy.
• A programming interface that supports vertex, neigh-

borhood, reachability, shortest and regular path queries,
depth-, breadth-, and page-first traversals.
• A lightweight storage manager (about 10k lines of C++-

code) that implements the above features and is avail-
able from http://g-store.sourceforge.net. It is
lightweight with no dependencies or needed infrastruc-
ture beyond standard system libraries to allow easy
integration with existing graph analysis solutions.
• An initial experimental analysis that demonstrates that

graph queries can significantly benefit from G-Store’s
storage layout and support for graph traversals.

G-Store illustrates the efficacy of a storage layer intimately
optimized to the graph structure. We highlight several promis-
ing directions of research towards a storage-aware graph
database, including cost-based optimization of queries.



1.1 Application scenarios
RDF, and ontologies in general, are a major reason be-

hind the renewed interest in graph databases. Vertices and
edges of RDF graphs are labeled with URIs or literals. There
are many RDF properties as subClassOf that have a tran-
sitive semantics. Even for non-transitive properties (e.g.,
citations or friendship in a social network) we are often in-
terested in whether there is a path of only such edges be-
tween two vertices. A number of RDF query languages have
been proposed to express path traversals [4, 2, 27] includ-
ing a W3C working draft for extending SPARQL [35]. None
of the leading RDF stores [1, 25, 11, 41] addresses general
path traversals. In recent work on columnar versus relational
storage for RDF data [1, 36], only queries involving bounded
path traversals (i.e., vertex selection and queries with a fixed
number of joins) have been considered. SPARQ2L [4] de-
scribes algorithms and indices for path traversals, but relies
on Berkeley DB’s B+-trees and is limited to fairly small
graphs. G-Store is no full-fledged RDF database, but it is
designed to support a wide range of path traversals and out-
performs existing solutions for complex analysis queries.

Social networks have become a linchpin for most future
consumer-oriented IT systems. Analyzing social networks
involves reachability, shortest path and similar graph algo-
rithms [39, 37] that can be implemented efficiently on top
of G-Store. Previous approaches have focused on parallel
systems and on replicating partitions of the graph data [30].

In business process modeling (BPM), directed graphs
of activities, events and decision points are used to describe
the work flow in a process such as a loan application. In
[5] a query language for BPM graphs allowing both fixed
graph pattern and reachability queries is proposed, but no
system aspects are discussed. For analyzing and verification
of business process models expressive graph traversals cor-
responding to regular path queries are needed [14], e.g., “In
every process execution (path) from an implemented compo-
nent activity to an integrate component activity there must
be a perform test component activity.” With ever growing
process models [14] and thousands of such models managed
by a single company [5], efficient support by the storage
layer for the employed graph traversal queries, as offered by
G-Store, becomes essential. Graph traversal queries are also
used in other areas of software engineering, e.g., for pointer
analysis [8] or analyzing object graphs [5].

Biological and chemical networks are growing rapidly
and contain “complex interconnected structures” [13]. An-
alyzing such networks is a complex and computationally
extensive tasks beyond the abilities of G-Store. However,
this analysis involves expressive, conditional path traversals,
e.g., in genomics [13], for analyzing protein interaction net-
works [9] or molecular pathways [26]. They are also needed
for querying biological ontologies such as the GeneOntology
[31]. G-Store complements specialized analysis algorithms
with fast evaluation of conditional path traversals.

2. G-STORE ARCHITECTURE
The basic architecture of G-Store has two layers: the data

access layer and the storage layout layer, cf. Fig. 1. The
data access layer consists of the page layout API, the buffer
manager, and a library of primitive graph access patterns.
The layout API consists of iterators for vertices and edges
in a page and for pages on disk, as well as methods to access
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Figure 1: G-Store architecture

vertices or pages based on page and vertex identifiers.
Page layout. For each vertex, its properties and two

sorted lists are stored in each page. The lists hold adjacent
vertices from the same page (“internal edges”) and from dif-
ferent pages (“external edges”) respectively. Internal and
external edges are represented as offsets within a page and
by global vertex identifiers respectively, where such iden-
tifiers are made up of page identifiers and offsets. Every
page consists of a fixed size region, followed by a variable
size data region, followed by a header region. Free space
accumulates between the latter two regions. The fixed size
region stores information on the contents of a page. The
data region stores the properties and edges of vertices.

The buffer manager is standard: All page requests go
through the buffer manager, which allocates a pool of a fixed
number of pages and uses a LRU algorithm for page eviction.

The library of access patterns is specific to graph data.
Some of the basic methods are to retrieve vertices based on
vertex identifiers, values for particular vertex properties, and
neighbor vertices. A further class of methods is provided for
retrieving shortest or any paths between two vertices such
that the vertices along the paths follow conditions given in
form of regular expressions, where the alphabet symbols are
values of vertex properties. In addition, there are meth-
ods to traverse the graph, perform local computations at
each vertex, and possibly collect vertices that satisfy given
conditions. Graph traversal can be performed depth-first,
breadth-first, or page-first. Page-first is a novel traversal or-
der that explores as many vertices as possible in the buffered
pages before loading new pages into the buffer.

To test the usability of the G-Store API, we implemented
a query engine prototype for graph queries on top of G-Store.

The storage layout layer reads in chunks of graph data and
writes them out to disk pages. At its core lies a multilevel
storage algorithm that places vertices and edges into pages
such that graph traversals are optimized.

3. STORAGE LAYOUT ALGORITHM
Accessing data stored on a hard disk drive takes orders of

magnitude longer than accessing data stored in main mem-
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Figure 2: Placements and costs (|page| = 4, |vertex| = 1)

ory. The primary purpose of a storage manager for graph
data is the strategic placement of data on disk so that the
time needed for graph-specific access patterns is minimized.
G-Store’s storage algorithm has been designed to store ver-
tices as close as possible to their edges and their neighbor
vertices, that is, in the same page or in pages adjacent by
their disk addresses.

3.1 Optimal Vertex Placement
It is usually not possible to place each vertex together with

its neighbors in the same page or in adjacent pages. An op-
timal placement is then one in which as many vertices as
possible are stored as close as possible on disk. For our pur-
pose, finding an optimal placement entails both partitioning
a graph into pages and ordering such pages on disk.

Given a directed graph G = (V,E), the page ordering
problem is a variation of the minimum linear arrangement
problem [16], which finds a bijective function φ : V → [0..|V |)
that minimizes

∑
(v,u)∈E |φ(v) − φ(u)|. In our setting, φ is

not necessarily injective, since several vertices can be stored
in the same page.

The graph partitioning problem is to divide V into k dis-
joint subsets, called partitions, such that no partition con-
tains more than |V |/k vertices and the number of adjacent
vertices in different partitions is minimal. In the weighted
variant of this problem used in our setting, each vertex is
weighted and each partition may not exceed a given weight
threshold, but parameter k is not known a priori.

Both problems are NP-hard [12]. Several heuristic algo-
rithms have been proposed that achieve near optimal so-
lutions for the linear arrangement problem, e.g., spectral
sequencing [18], multilevel-based algorithms [20, 32], divide-
and-conquer algorithms [6], and simulated annealing [29,
28]. The graph partitioning problem has traditionally been
approached with recursive bisection. In the mid-90s, Karypis
and Kumar [19] proposed a multilevel algorithm that achieved
a k-way partitioning in one run. A survey of graph partition-
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Figure 3: Multilevel storage layout algorithm

ing problems and heuristic algorithms can be found in [34].
Unfortunately, such partitioning algorithms have been de-
signed for a relatively small constant number of partitions,
which make them impracticable in our setting.

We define an optimal placement based on concomitant
minimization of three distinct costs:

(1) C1 is the sum of the differences between the page in-
dexes of every pair of adjacent vertices.

(2) C2 is the number of edges across pages.
(3) C3 is the number of pairs of linked pages.
Minimizing the cost C1 captures the page ordering prob-

lem, whereas minimizing the costs C2 and C3 captures dis-
tinct aspects of the partitioning problem. Fig. 2 shows three
different placements of the same graph to disk pages. The
graph is undirected and every edge may be viewed as two
symmetric directed edges. The page arrangements of each
of the three placements are represented schematically in the
bottom right of the figure together with the three costs. For
instance, under placement (c) we obtain five pages numbered
0 to 4. The weights of the edges between pages represent
the number of edges between vertices placed in them.

Fig. 2 also shows that costs C2 and C3, although per-
taining to the same overall graph partitioning problem, are
distinct: When going from placement (a) to either (b) or
(c), cost C2 decreases while cost C3 increases.

3.2 Multilevel Storage
G-Store approaches the placement problem through a mul-

tilevel storage algorithm that yields for any input graph an
approximate solution to the following optimization problem:

min [α C1 + β C2 + γ C3],

where α, β, and γ are parameters used to control the influ-
ence of each minimization goal on the overall optimization.

The algorithm proceeds as follows. It first coarsens the
graph by iteratively collapsing connected subgraphs into com-
pound vertices. The size of a compound vertex is an aggre-
gate of the sizes of the vertices and the number of edges in
the represented subgraph. The weight of an edge between
two compound vertices is the number of edges from vertices
of the original graph collapsed into the first compound vertex
to those collapsed into the second. The absorption strategy



G-Store ML RND

Shortest Path Reachability S. Path Reachability

16 MB 80 MB 80 MB 80 MB 80 MB

Query Data Page Time Time Time Length Time Time Length

4 kB 35.04 30.26 1.40 7,862 80.27 1.29 9,984

id 1168745 S 16 kB 21.12 12.33 1.64 9,786 51.76 2.56 19,936

→ 65 kB 12.07 8.07 1.25 2,383 25.55 1.81 14,543

id 751350 4 kB 90.41 76.19 4.38 14,835 354.23 17.64 13,287

M 16 kB 61.92 52.41 4.84 18,253 292.53 12.83 15,078

Shortest path 65 kB 142.24 30.14 4.83 9,253 208.21 8.58 16,108

has length 264 4 kB 383.49 353.98 67.28 7,766 1,614.63 1,117.89 893

L 16 kB 421.53 241.67 49.32 2,676 1,550.66 1,065.90 4,225

65 kB 445.52 141.48 45.30 6,097 1,550.11 925.57 6,156

4 kB 48.29 38.07 2.27 16,107 87.15 1.30 10,000

id 1110891 S 16 kB 28.44 14.69 1.64 9,723 44.24 2.51 19,863

→ 65 kB 14.30 9.38 1.52 8,477 18.94 1.76 14,542

id 704315 4 kB 111.68 105.16 13.60 26,157 435.70 57.62 24,392

M 16 kB 72.61 65.79 6.00 17,328 355.16 23.59 25,835

Shortest path 65 kB 136.42 39.12 10.31 10,722 242.41 23.18 26,046

has length 357 4 kB 484.57 463.57 184.51 861 2,125.09 1,377.93 452

L 16 kB 544.73 318.63 92.88 11,072 2,022.65 895.72 7,967

65 kB 581.78 178.44 39.29 28,710 2,022.45 781.57 8,295

(a) Shortest path and reachability

G-Store ML RND

Query Data Page 16 MB 80 MB 80 MB

Start at 4 kB 118.75 100.84 205.76

id 1430793 S 16 kB 85.07 59.40 128.28

65 kB 60.53 42.60 70.15

Finds 1,957,027 4 kB 240.82 220.34 848.56

vertices M 16 kB 171.64 131.70 695.62

65 kB 360.25 90.13 503.45

Longest 4 kB 920.57 844.51 3,868.39

shortest path L 16 kB 961.24 596.89 3,905.88

has length 717 65 kB 1,077.71 331.66 3,913.28

Start at 4 kB 113.48 97.71 194.26

id 1331368 S 16 kB 81.21 55.09 118.72

65 kB 56.18 37.87 66.90

Finds 1,957,027 4 kB 241.35 221.99 822.39

vertices M 16 kB 177.65 134.13 670.63

65 kB 310.40 88.32 478.54

Longest 4 kB 905.94 831.35 3,796.16

shortest path L 16 kB 935.93 587.89 3,886.54

has length 759 65 kB 1,051.66 324.08 3,937.26

(b) Shortest path to each reachable vertex

Figure 4: Comparison of execution time (in seconds) versus random page placement

is a variant of heavy edge matching [19], a greedy heuristic
commonly used in multilevel partitioning algorithms: Heavy
edge matching visits the vertices in random order and col-
lapses each not-yet-visited vertex with its adjacent vertex
connected by a maximum weight edge. This is repeated un-
til the number of remaining vertices is below a given thresh-
old. For G-Store we adapt this algorithm to allow for a large
number of partitions and to reduce the number of iterations
for handling of high degree vertex with a large number of
very low degree neighbors. We achieve this by introducing
θ, a limit to the maximum size of a compound vertex, and
allowing the number κ of vertices to be collapsed in one step
to vary (rather than fixing it to two). During the matching
algorithm κ and θ are modified as follows:
• Initialization: κ := 2, θ := block size.
• Iteration: If the ratio of low degree vertices with high

degree neighbors reaches a certain threshold, increase
θ up to 32 · block size. If θ is already at that limit,
also increase κ.

Coarsening continues until each connected component is
completely collapsed into a single compound vertex. The
goal of the coarsening phase is to create compound vertices
that can later be grouped into ordered partitions with low
costs C2 and C3. So far, we construct bottom-up an ordered
tree of compound vertices, each tree level corresponding to
one iteration of the coarsening algorithm. Compound ver-
tices can be seen as blocks whose sizes may exceed the size
of a disk page, and tree levels as their possible orderings.

In the next phase, called uncoarsening, we traverse this
tree top-down level-by-level and (i) assign partition num-
bers to each compound vertex, (ii) possibly swap partition
numbers of groups of compound vertices, and (iii) possibly
move a compound vertex from one partition to another. The
assignment of partition numbers follows a Dewey number-
ing scheme, that is, if a vertex has a Dewey number α, its
children are assigned in order α.1 to α.n. The swapping
of partition numbers is used to decrease cost C1. Vertex
moving is employed to decrease costs C2 and C3.

During top-down traversal, we may stop the uncoarsening
at a certain compound vertex if it is small enough to fit in a
page. After uncoarsening is done, a final run over the pages
seeks to merge less populated pages and also map the Dewey
numbers to an interval of natural numbers such that their

total order is preserved. Finally, the pages can be written
contiguously on disk in this order.

Fig. 3 is an illustration of the algorithm. At the top, the
input graph together with the schema definition is used to
create a main memory representation of the input graph or
fragments thereof. The figure shows the initial graph and the
graphs after two consecutive coarsening steps. The coarsen-
ing phase produces the graph G2 consisting of a single com-
pound vertex. In the uncoarsening phase, we assign numbers
to compound vertices, and obtain three pages which are then
mapped to disk.

4. INITIAL EXPERIMENTAL EVALUATION
We have performed initial experiments to confirm G-Store’s
potential to speed up typical graph queries. For this, we
have implemented an evaluator of (1) vertex selection queries
(retrieve all vertices with a given label or id), (2) graph pat-
tern queries (conjunctive queries), (3) reachability queries,
(4) regular path queries, and (5) shortest path queries (and
variants thereof).

We used an undirected, connected, real-world road net-
work graph [22] with 2 M vertices, 5.5 M edges, and a diam-
eter of 850. We created three datasets (S, M, and L) from
the graph with an increasing number of properties at the ver-
tices, and hence increasing raw sizes: 72 MB, 177 MB, and
1.04 GB, respectively. The parameter values for G-Store’s
placement optimization problem were (α, β, γ) = (.125, 1, 8).

We used an Intel Core Duo 2.53 GHz dual core processor
with 3 GB main memory and a 320GB/5400 rpm SATA
hard drive. Due to lack of space, we present only a subset of
our experimental findings in this paper. More information
on G-Store, including experiments with regular path queries
on the Yago RDF repository, is available from the project
website. We report wall-clock times and memory usage. All
queries output the results to a standard buffered filestream.
Comparison with random page placement. Fig. 4(a)
shows the performance for reachability and shortest path
queries on a page layout created with G-Store’s multilevel al-
gorithm (G-Store ML) and on a random page layout (RND).
For RND, we randomly allocated vertices to consecutive
pages, while keeping pages as full as possible. On the disk,
RND used approx. 10% less space than the raw format due
to better data compression on pages. G-Store ML used ap-



prox. 10% more space than the raw format, since most pages
were not full.

An increase in page size and buffer memory yields an im-
provement in performance of a factor up to six. For small
page sizes, an increase of the buffer pool from 16 to 80 MB
only shows a small performance increase.

For both shortest path and reachability, G-Store’s storage
algorithm brings a speedup of roughly 20 times when com-
pared with random storage. We also report the length of
the found path for reachability queries. Even where G-Store
finds a path that is significantly longer than that found by
RND, it still only needs a fraction of the time, which demon-
strates its effective use of the locality of related nodes.

Fig. 4(b) shows a performance increase of up to an or-
der of magnitude when searching for shortest paths from a
given vertex to each reachable vertex (also called shortest
path tree queries). Such queries are common in social net-
work analysis: e.g., the shortest path in her network to each
person she needs to get involved with in her next project.
In this scenario, longest shortest paths are a measure of how
“central” a person is.

Comparison with Neo4j. Neo4j [24] is an open-source
graph database. It provides a Java interface that lets users
create and access a graph representation on disk.

Fig. 5 gives a performance comparison between G-Store
and Neo4j 1.1 for four types of queries: (1) selecting a vertex
with a given id, (2) using DFS to compute from a given
vertex all paths of length at most 15, (3) computing the
shortest path between two vertices with given ids, and (4)
computing the shortest paths from a given vertex to every
other vertex in the graph (shortest path tree). Except for
(2), all queries are natively supported by the Neo4j API; we
implemented (2) on top of Neo4j.

We used the Apache Lucene index 2.9.2, as recommended
by Neo4j. This is a high-performance text search engine li-
brary written in Java. Without this index, query evaluation
with Neo4j took about 30 and 90 seconds longer for each
query on dataset S and M, respectively. G-Store does not
use such an index and therefore needs to scan the whole
graph to find vertices with given ids.

Compared to the size of the raw data files, storing the
road network graph using Neo4j needed 3.5 and 5.5 times
more space without and with the index, respectively.

In our experiments, Neo4j needed at least 256 MB or
512 MB of heap space to execute some graph queries, al-
though the raw size of dataset M was 177 MB. G-Store with
an 80 MB buffer pool needs an order of magnitude less time
for depth first search and shortest path tree queries than
Neo4j with index and 512 MB of heap memory. For shortest
path queries the same holds if comparable buffer pool and
heap size are used. For vertex selection queries, the presence
of the Lucene index gives Neo4j an advantage over G-Store,
as they can be solved by a single look-up in that index.

We have also benchmarked the graph queries used in the
previous experiments on PostgreSQL 8.3.4, a row-store re-
lational database. Except of graph queries expressible as
classical conjunctive queries, all other queries require addi-
tional constructs. We have tried several variants, including
SQL constructs for transitivity, PL/pgSQL, and recursive
common table expressions with or without a limit on the
maximum depth. We do not report timing here, since we
aborted the execution of any of the shortest path queries
after several hours.

G-Store ML 65 kB Neo4j 1.1 and Lucene Index 2.9.2 Neo4j without Index

Query Data 16 MB 80 MB 128 MB 256 MB 512 MB

S 1.20 1.20 0.13 0.13 0.13

M 4.07 4.12 0.13 0.13 0.13

S 1.23 1.22 0.13 0.13 0.13

M 4.11 4.09 0.13 0.13 0.13

S 1.20 1.21 0.13 0.13 0.13

M 4.03 4.08 0.13 0.13 0.13

S 15.11 13.85 139.46 130.40 130.92

M 19.34 19.19 145.83 130.35 129.12

S 92.94 88.70 773.17 748.61 752.08

M 87.36 84.77 757.67 742.25 739.41

S 15.66 16.36 155.17 148.68 156.92

M 19.31 20.00 153.50 145.92 148.65

id 831121 S 15.43 11.19 98.87 65.99 38.26

→ id 1573723 M 199.74 43.49 100.03 61.32 42.53

id 1475007 S 13.63 9.74 134.97 76.11 45.74

→ id 672199 M 197.88 38.89 135.74 79.68 50.26

id 957154 S 14.98 11.05 ** 157.12 78.12

→ id 119863 M 196.05 39.46 ** 147.43 83.95

S 40.68 31.87 ** ** 370.38

M 358.36 92.70 ** ** 523.45

S 37.38 29.70 ** ** 339.07

M 389.94 89.96 ** ** 375.82

S 56.44 32.10 ** ** 344.04

M 335.37 96.76 ** ** 398.03
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Figure 5: Comparison of execution time (in seconds)
versus Neo4j with index

5. CONCLUSION AND FUTURE WORK
G-Store makes the case for a storage layout aware of the

structure in the input graph data. It employs a multilevel
algorithm to generate a page layout for the input graph data
such that adjacent vertices are stored close together on disk
and the I/O cost for traversing edges is close to minimal.
We verify experimentally the benefits of this approach: The
time needed to answer common types of graph queries can be
orders of magnitude less for G-Store compared to a compact
but random layout, and even compared to a mature graph
database such as Neo4j.

We see several promising avenues of research.
1. Storage-aware query optimization. Query optimization

can benefit from a storage-aware cost model that takes into
account the distribution of vertices and their neighbors over
pages, such as the average amount of pages for neighbor-
hoods of radius k, or the maximum number of pages to tra-
verse in order to find the shortest paths from vertices with a
given property value. Such statistics can be useful estimates
for the average I/O cost involved in the evaluation of graph
traversal primitives. The query optimizer can then choose
a query plan that favors the evaluation of graph traversals
with a low I/O cost.

2. Query compilation and optimization for G-Store access
primitives. Once a high-level query plan is derived, it is
useful to investigate the gains of compiling that plan into a
low-level program using G-Stores graph traversal primitives
and optimizing that program, e.g., by folding a sequence
of simple graph traversals into a single, conditional graph
traversal. In general a few conditional graph traversal oper-
ations outperform in terms of I/O cost a larger sequence of
simpler graph traversals in G-Store.

3. Secondary indices. In some of the application domains
considered, vertex property values are in the majority unique
and meaningful identifiers (e.g., URIs in RDF graphs). In
these cases, G-Store already provides a primary index for
the data. Additional layers of secondary indices for vertex
property values could benefit query evaluation, and increase



the optimization search space.
4. Updates. G-Store cannot support update facilities yet.

Updates, in particular insertion of new edges, can affect prior
optimized placement of vertices and require re-optimization.
A promising approach is to draw on incremental graph parti-
tioning methods [33] and adapt diffusion-based repartition-
ers that minimize the redistribution of vertices.

5. Edge compression. Interval lists are a staple for the
compact representation of graphs and are used in many
reachability indices [38]. A key challenge when using in-
terval lists is to find an order (or labeling) of the vertices,
such that the number of intervals each vertex needs in order
to reference its adjacent vertices is minimized.
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ABSTRACT
Wikipedia is one of the most extensive artefacts of human
knowledge. Through Yago this knowledge has become avail-
able for automatic analysis and exploration. It is just one
example of an increasing range of large graph datasets from
social networks over business process models to biological
and chemical networks. To support the analysis and ex-
ploration of such graphs, expressive graph traversal queries
such as regular and shortest path queries are needed.

In this demonstration, we illustrate a novel lightweight
storage manager for graph data, that is optimized specifi-
cally for such traversals. We show visually along the exam-
ple of Yago how it distributes vertices over pages, such that
related vertices are placed close together (as neighbors in
a village). We pose a few analysis queries (with surprising
results) and show how the locality of related vertices is used
during the evaluation of such queries in G-Store to minimize
I/O (the number of visited pages). This is achieved by visu-
alizing access and eviction of pages from the buffer manager
side-by-side with the traversed vertices.

1. INTRODUCTION
Do you know how climate change relates to Aristotle?

What the Battle of Issus in 333 B.C. and Silvio Berlusconi
have in common? Turns out there are connections between
them. How do we know? From analyzing the graph of rela-
tions extracted from Wikipedia. You could do this game for
almost any (reasonably famous) entity on Wikipedia.

But to actually do this analysis, you have to be able to pro-
cess complex path traversal queries on large graphs such as
Yago [1], the RDF graph containing millions of entities and
relations extracted from Wikipedia. Complex graph traver-
sals where we search for (shortest) paths between nodes and
possibly pose additional conditions on these paths are at the
heart of many graph analysis problems from business process
modeling and verification, over protein interaction networks
to social network analysis.

G-Store is a lightweight storage manager for graph data
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that organizes vertices on disk in villages: related vertices
are treated as neighbors in a village and stored as close to-
gether as possible, ideally in the same page. G-Store is avail-
able from http://g-store.sourceforge.net.

2. DEMO DESCRIPTION
In this demonstration, we illustrate how G-Store’s storage

layout algorithm organizes vertices from Yago and how it ex-
ploits the locality of related vertices for efficient evaluation of
shortest and regular path queries. We use a significant part
of Yago [1] omitting literal nodes not useful for human analy-
sis. The resulting graph contains over 3 M entities connected
by 4.5 M edges. Yago is well suited for this demonstration
as it contains mostly familiar entities and relations.

The demonstration is divided in two parts: We start with
(1), a visual exploration of how the vertices from Yago are
stored on disk by the G-Store layout algorithm. We first
give a visual overview of the distribution to disk pages and
then explore the detailed storage from an interesting start
vertex, e.g., “Aristotle”. For that start vertex, we illustrate
how the neighboring vertices are stored close by, either in
the same or in nearby pages.

This locality of related vertices is exploited by G-Store for
efficient graph traversals. We illustrate this in part (2) of
the demonstration for shortest and regular path queries:

What is the shortest path between “Aristotle” and “Al-
dous Huxley”? To evaluate this query, G-Store performs a
graph traversal starting from“Aristotle”. We visualize in the
demonstration how during this traversal pages are loaded,
buffered, and finally evicted as more and more nodes in the
graph are explored. This makes the central premise of G-
Store visible: Placing related vertices in close proximity on
the disk minimizes the necessary I/O for graph traversals.

Who forms the academic descendants of “Albert Einstein”?
Or, formulated as a regular path query, retrieve all nodes
reachable from “Albert Einstein” via only “hasAcademicAd-
visor” edges. For this query we again visualize the buffer
manager as G-Store traverses the graph. We conclude this
demonstration with a live mini-benchmark of G-Store on
such regular path queries against a storage layout that does
not take the graph structure into consideration to give an
impression of the achieved performance gain.
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