
MayBMS: A Probabilistic Database Management System

Jiewen Huang1,2, Lyublena Antova2, Christoph Koch2, and Dan Olteanu1

1Computing Laboratory, Oxford University, Oxford, OX1 3QD, UK
{jiewen.huang,dan.olteanu}@comlab.ox.ac.uk

2Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
{lantova,koch}@cs.cornell.edu

ABSTRACT
MayBMS is a state-of-the-art probabilistic database man-
agement system which leverages the strengths of previous
database research for achieving scalability. As a proof of
concept for its ease of use, we have built on top of MayBMS
a Web-based application that offers NBA-related informa-
tion based on what-if analysis of team dynamics using data
available at www.nba.com.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems – Query Processing

General Terms: Algorithms, Languages, Performance

Keywords: Query Processing, Probabilistic Databases

1. INTRODUCTION
Database systems for uncertain and probabilistic data pro-

mise to have many applications. Query processing on uncer-
tain data occurs in the contexts of data warehousing, data
integration, and Web data extraction. Data cleaning can be
fruitfully approached as a problem of taming uncertainty in
the data. Decision support and diagnosis systems employ
hypothetical (what-if) queries. Scientific databases, which
store outcomes of scientific experiments, frequently contain
uncertain data such as incomplete observations or imprecise
measurements. Sensor and RFID data are inherently uncer-
tain. Applications in the contexts of fighting crime, tracking
moving objects, surveillance, and plagiarism detection essen-
tially rely on techniques for processing and managing large
uncertain datasets. Beyond that, many further potential ap-
plications of probabilistic databases exist and will manifest
themselves once such systems become available.

The MayBMS system (note: MayBMS is read as “maybe-
MS”, like DBMS) is a complete probabilistic database man-
agement system that leverages robust relational database
technology. The MayBMS system has been under develop-
ment since 2005 and has undergone several transformations.
MayBMS has been released and is available for download at

http://maybms.sourceforge.net.

A fundamental design choice that sets MayBMS apart
from existing research prototypes such as Trio and MystiQ
is that MayBMS is an extension of the open-source Post-
greSQL server backend , and not a front-end application of

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

PostgreSQL. Our backend is easily accessible through mul-
tiple APIs (inherited from PostgreSQL), and has efficient
internal operators for processing probabilistic data.

Several demonstration scenarios (data cleaning using con-
straints, human resources management, and analysis of so-
cial networks) are available at the MayBMS website. To
demonstrate how easily applications can be built on top of
MayBMS, we used PHP to construct a website that offers
NBA1-related information based on what-if analysis of team
dynamics (player fitness, skill management) using data avail-
able at www.nba.com. We show for instance how such an
application can predict the players’ fitness by simulating ran-
dom walks on stochastic matrices encoding the transitions
in player’s fitness based on severity of recent injuries.

2. SYSTEM OVERVIEW
MayBMS stores probabilistic data in U-relational databa-

ses, a succinct and complete representation system for large
sets of possible worlds [1]. Queries are expressed in an ex-
tension of SQL with specialized constructs for probability
computation and what-if analysis [4]. In addition, MayBMS
uses several state-of-the-art exact and approximate confi-
dence computation techniques [2, 3, 5].

2.1 U-Relational Databases
A U-relational database consists of a set of U-relations.

U-relations are standard relations extended with condition
and probability columns to encode correlations between the
uncertain values and probability distribution for the set of
possible worlds [1]. The condition columns store variables
from a finite set of independent random variables and their
assignments; the probability columns store the probabilities
of the variable assignments occurring in the same tuple. A
U-relation can have several such condition (and probability)
columns. Attribute-level uncertainty is achieved through
vertical decompositions, and an additional (system) column
is used for storing tuple ids and undoing the vertical decom-
position on demand.

2.2 The MayBMS Query Language
The MayBMS query language extends SQL with uncertain-

ty-aware constructs [4]. Its features include genericity, com-
positionality, and a well-understood relationship to existing
query languages. An important subset of its constructs is
presented next.

1NBA stands for National Basketball Association.

In the sequel, U-relations without condition and proba-
bility columns, which correspond to standard relations, are
called typed-certain (t-certain) tables. The MayBMS query
language has constructs that map (i) uncertain tables to t-
certain tables, such as confidence computation constructs,
(ii) uncertain to uncertain and t-certain to t-certain tables,
such as full SQL, and (iii) t-certain to uncertain tables, such
as constructs that extend the hypothesis space and create
new possible worlds. Some restrictions are in place to as-
sure that query evaluation is feasible. In particular, we do
not support the standard SQL aggregates such as sum or
count on uncertain relations (but we do support expecta-
tions of aggregates). This can be easily justified: in general,
these aggregates will produce exponentially many different
numerical results in the various possible worlds, and there
is no way of representing exactly these results in an efficient
manner. In addition to standard SQL, MayBMS supports
the following uncertainty-aware constructs:

1. conf, aconf, tconf, and possible: These constructs
map uncertain tables to t-certain tables consisting of tuples
possible in some of the worlds represented by the input, with
or without their exact or approximate confidences.

The construct conf returns the exact confidence of each
distinct tuple, while aconf(ǫ, δ) computes an (ǫ, δ)-approxi-
mation of this confidence, i.e., the probability that the com-
puted value p̂ deviates from the correct probability p by
more than ǫ · p is less than δ. Syntactically, the confidence
computation constructs conf and aconf are treated like SQL
aggregates. By using aggregation syntax and not supporting
select distinct on uncertain relations, we avoid the need
for conditions beyond the special conjunctions that can be
stored with each tuple in U-relations.

The construct tconf computes the marginal probability
of each tuple in isolation from the other (possibly dupli-
cate) tuples. The construct possible can be added to se-

lect statements and its effect is to filter out the tuples with
probability zero and eliminate the duplicates. It can thus
be reformulated using tconf.

2. repair-key and pick-tuples: These constructs map
t-certain tables to uncertain tables. Conceptually, repair-

key takes a set of attributes ~K and a relation R as arguments

and nondeterministically chooses a maximal repair of key ~K

in R, that is, it removes a minimal set of tuples from R such
that the key constraint is no longer violated. The repair-

key operation accepts an optional argument that allows us
to assign nonuniform probabilities to the possible choices.

The construct pick-tuples creates a probabilistic relation
representing all the possible subsets of the input table.

Note that repair-key and pick-tuples are queries, rather
than update statements. They have the following syntax:

• repair key <attributes> in <t-certain-query>

[weight by <expression>]

• pick tuples from <t-certain-query>

[independently] [with probability <expression>]

The parameter [independently] ensures that the output
probabilistic relation is tuple-independent.

3. argmax: The aggregate argmax(arg,value) outputs all
the arg values in a group (specified by the group-by clause)
whose tuples have a maximum value within that group.

4. esum and ecount: Although the standard SQL ag-
gregates are forbidden on uncertain relations, MayBMS sup-
ports aggregate operations on uncertain relations such as

esum and ecount, which compute expected sums and counts
across groups of tuples. While it may seem that these aggre-
gates are at least as hard as confidence computation (which
is #P-hard), this is in fact not so. These aggregates can be
efficiently computed using linearity of expectation.

Uncertain queries can be constructed from t-certain queries
(queries that produce t-certain tables), select-from -where

queries over uncertain tables, the multiset union of uncer-
tain queries (using SQL union), and repair-key and pick-

tuples statements. The select-from-where queries may
use any t-certain subqueries in the conditions, plus uncer-
tain subqueries in IN-conditions that occur positively.

2.3 Query Processing
MayBMS evaluates queries on top of U-relations.
Positive relational algebra: The answers to positive

relational algebra queries (without confidences) can be com-
puted using a parsimonious translation of such queries into
(again) positive relational algebra queries that are then eval-
uated in standard relational way on U-relations [1].

Approximate confidence computation: The approx-
imation algorithm used by MayBMS is a combination of the
Karp-Luby unbiased estimator for DNF counting in a mod-
ified version adapted to confidence computation in proba-
bilistic databases, and the Dagum-Karp-Luby-Ross optimal
algorithm for Monte Carlo estimation [2]. The latter is based
on sequential analysis and determines the number of invo-
cations of the Karp-Luby estimator needed to achieve the
required bound by running the estimator a small number of
times to estimate its mean and variance.

Exact confidence computation: Our exact algorithm
for confidence computation is described in [3]. Given a
DNF (of which each clause is a conjunctive local condition),
the algorithm employs a combination of variable elimination
and decomposition of the DNF into independent subsets of
clauses (i.e., subsets that do not share variables), with cost-
estimation heuristics for choosing whether to use the former
(and for which variable) or the latter. Outside a narrow
range of variable-to-clause count ratios, it outperforms the
approximation techniques [3]. For tractable queries on prob-
abilistic databases, MayBMS uses the SPROUT codebase
[5] for scalable query processing by reduction of confidence
computation to a sequence of SQL-like aggregations.

Updates, concurrency control, and recovery: As a
consequence of our choice of a purely relational representa-
tion system, these issues cause surprisingly little difficulty.
U-relations are represented relationally and updates are just
modifications of these tables that can be expressed using the
standard SQL update operations.

2.4 Implementation
MayBMS is built entirely inside PostgreSQL. The major

changes lie in the system catalog, parser, and executor. U-
relations are implemented by storing the variables and their
possible assignments as pairs of integers, and probabilities as
floating-point numbers. The system catalog can distinguish
between U-relations and standard relational tables. Confi-
dence computation and other aggregates such as esum and
ecount are registered in the system catalog and implemented
as operators in the PostgreSQL executor. The constructs
repair-key, pick-tuples, and possible are implemented
by rewriting to SQL.

Fitness stochastic matrix
For player Bryant

F SE SL
F 0.8 0.05 0.15
SE 0.1 0.6 0.3
SL 0.8 0.0 0.2

FT (FitnessTransition)

Player Init Final P

Bryant F F 0.8
Bryant F SE 0.05
Bryant F SL 0.15
Bryant SE F 0.1
Bryant SE SE 0.6
Bryant SE SL 0.3
Bryant SL F 0.8
Bryant SL SL 0.2

Other players

U-relation R2 (1-step random walk on FT)

Player Init Final condition P

Bryant F F x 7→ 1 0.8
Bryant F SE x 7→ 2 0.05
Bryant F SL x 7→ 3 0.15

Bryant SE F y 7→ 1 0.1
Bryant SE SE y 7→ 2 0.6
Bryant SE SL y 7→ 3 0.3

Bryant SL F z 7→ 1 0.8
Bryant SL SL z 7→ 2 0.2

Other players

Figure 1: Random walk on a stochastic matrix.

3. HUMAN RESOURCE MANAGEMENT
We have developed several applications on top of MayBMS.

They are available at the MayBMS website. We next dis-
cuss an implemented application for risk management in the
human resources space, in the context of basketball.

Using PHP, we have built on top of MayBMS a web-based
application that offers NBA-related decision support func-
tionality based on what-if analysis of team dynamics such as
player fitness and skill management. The application uses
data available at www.nba.com.
Team management. In the pre-season period, the man-
ager intends to attract new players to strengthen the team.
An important question is whether the skills status of the
team can be improved. For this, we compute for each skill
(such as defense, three-point, and free shooting) the prob-
ability that someone with that skill will be playing in the
team given the current status of the players (injured, top-
form). In a scenario of financial crisis, the team budget is
reduced and the manager intends to lay off some players with
high salaries but at the same time without compromising the
competitiveness of the team significantly. For instance, we
may want to keep the availability of skill shooting at least
90% and of passing at least 95%. The manager needs to
know whether this is possible and who can be laid off.
Performance prediction. Coaches would like to predict
the performance of players, for example how many points a
player will score in the next game. Based on the player’s
recent performance, one can build a simple model to calcu-
late this: if we associate higher weights to the more recent
performance of the players, their predicted performance can
be expressed in terms of the weighted points.
Fitness prediction. Suppose there is a must-win match
three days later and some of the key players of the team
have been recently plagued by injuries. The report from the
team doctor shows that the players are likely to get injured
and the time for comeback varies depending on the recovery
progress. We can model the fitness of each player using a
stochastic matrix that states the probabilities for one-day
transitions between states such as fit (F), seriously injured

(SE), and slightly injured (SL). Asking for the three-day
fitness of a player can be performed as a random walk of
length three on this matrix. Random walks can be encoded
as queries using repair-key and confidence computation on
top of relational encodings of stochastic matrices. Figure 1
gives a stochastic matrix, its relational encoding FT, and
the U-relation R2 representing a 1-step random walk on FT.
The 3-step random walk on FT is achieved by the following
query statements, where the initial state of each player is
considered given in a (certain) table States (Player, State).

create table FT2 as
select R1.Player, R1.Init, R2.Final, conf() as p from
(repair key Player, Init in FT weight by p) R1,
(repair key Player, Init in FT weight by p) R2, States S
where R1.Player = S.Player and R1.Init = S.State
and R1.Final = R2.Init and R1.Player = R2.Player
group by R1.Player, R1.Init, R2.Final;

select R1.Player, R2.Final as State, conf() as p from
(repair key Player, Init in FT2 weight by p) R1,
(repair key Player, Init in FT weight by p) R2
where R1.Final = R2.Init and R1.Player = R2.Player
group by R1.player, R2.Final;

A 1-step random walk on FT is performed by nondeter-
ministically choosing from each Init state of each player a
possible Final state using the repair-key construct. We en-
code it as a U-relation (see R2) that only adds to FT a
condition column over independent random variables x, y,
and z, which are used to express the correlations created by
repair-key: for each Init value, the possible Final values are
mutually exclusive, and the choices of Init values are pair-
wise independent. A 2-step random walk is expressed as a
join of two 1-step walks, whereby the Final state of the first
walk becomes the Init state of the second. The probability
that each player has a certain state is computed using the
conf() construct. The table FT2 encodes the stochastic ma-
trix representing the product of the initial stochastic matrix
with itself. For a 3-step random walk, we join the outcome
of the previous 2-step walk with a 1-step walk.

Acknowledgements. This material is based upon work
supported by the National Science Foundation under grant
number IIS-0812272, the U.S. Department of Homeland Se-
curity under Grant Award Number 2006-CS-001-000001, and
by New York State Science Technology and Academic Re-
search under agreement number C050061. Any opinions,
findings, conclusions or recommendations expressed are those
of the authors(s) and do not necessarily reflect the views of
the funding agencies. Jiewen Huang is supported by a one-
year scholarship from Cornell University.

4. REFERENCES
[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast

and Simple Relational Processing of Uncertain Data”.
In Proc. ICDE, 2008.

[2] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. “An
Optimal Algorithm for Monte Carlo Estimation”. SIAM
J. Comput., 29(5):1484–1496, 2000.

[3] C. Koch and D. Olteanu. “Conditioning Probabilistic
Databases”. In Proc. VLDB, 2008.

[4] C. Koch, D. Olteanu, L. Antova, and J. Huang.
MayBMS: A Probabilistic Database System. User
Manual. http://maybms.sourceforge.net/manual/,2009.

[5] D. Olteanu, J. Huang, and C. Koch. “SPROUT: Lazy
vs. Eager Query Plans for Tuple-Independent
Probabilistic Databases”. In Proc. ICDE, 2009.

