
Bridging the Gap Between Intensional and Extensional
Query Evaluation in Probabilistic Databases

Abhay Jha
University of Washington
abhaykj@cs.washington.edu

Dan Olteanu
University of Oxford

dan.olteanu@comlab.ox.ac.uk

Dan Suciu
University of Washington

suciu@cs.washington.edu

ABSTRACT
There are two broad approaches to query evaluation over prob-
abilistic databases: (1) Intensional Methods proceed by manipu-
lating expressions over symbolic events associated with uncertain
tuples. This approach is very general and can be applied to any
query, but requires an expensive postprocessing phase, which in-
volves some general-purpose probabilistic inference. (2) Exten-
sional Methods, on the other hand, evaluate the query by translat-
ing operations over symbolic events to a query plan; extensional
methods scale well, but they are restricted to safe queries.

In this paper, we bridge this gap by proposing an approach that
can translate the evaluation of any query into extensional opera-
tors, followed by some post-processing that requires probabilistic
inference. Our approach uses characteristics of the data to adapt
smoothly between the two evaluation strategies. If the query is safe
or becomes safe because of the data instance, then the evaluation
is completely extensional and inside the database. If the query/data
combination departs from the ideal setting of a safe query, then
some intensional processing is performed, whose complexity de-
pends only on the distance from the ideal setting.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]: Re-
lation Systems; H.2.4 [DatabaseManagement]: [Systems Query
processing]; G.3 [Mathematics of Computing]: [Probability and
Statistics]

General Terms
Algorithms, Management, Theory

Keywords
probabilistic databases, query processing

1. INTRODUCTION
The problem of query evaluation on probabilistic databases spans

an increasing amount of interest in the database research commu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010 March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

nity due to its applications to scientific data management, data clean-
ing, data integration, and sensor networks. This problem is known
to be notoriously hard. A fundamental result concerning its com-
plexity is the dichotomy for conjunctive queries without self-joins
on so-called tuple-independent probabilistic databases: A query is
either tractable, that is, it can be evaluated in polynomial time data
complexity, or it is #P-hard [8]. The former queries are called safe
(or hierarchical), whereas the latter are unsafe.

A safe query can be evaluated by using an extensional query
plan. This is a regular relational plan, where every operator per-
forms some simple manipulation of the probabilities, e.g. using
multiplication or aggregation [8, 18]. However, such plans can
only exist for safe queries: every unsafe query can be shown to
be #P hard, and therefore is unlikely to admit any efficient evalua-
tion algorithm. The common practice to evaluating unsafe queries
is to use intensional probabilistic inference techniques. In this ap-
proach one first computes the lineage for each tuple in the query’s
output: this is a symbolic expression, usually a DNF formula, over
symbolic events associated with the tuples in the input database.
Second, a general purpose probabilistic inference algorithm is run
on every lineage expression to compute that tuple’s probability, e.g.
sampling [21], or inference on graphical models [25], or variable
elimination (DPLL) [16].

Thus, there is a significant efficiency gap between safe queries
and unsafe queries. The query processor has to make a decision
whether the query is safe, and then it can be evaluated using an ex-
tensional plan, or unsafe, in which case a much slower intensional
method is used.

In this paper we propose a new method that fills in the gap be-
tween safe and unsafe queries. Our starting observation is that, even
an unsafe query becomes safe if certain functional dependencies
hold, or some of the tuples are actually deterministic: we say that
the query is safe on that particular database instance. In general,
we give a new safety criterion for each relational operator based
on its input relation instances, that guarantees its output is an in-
dependent relation. For a query plan to be safe, every operator
must be safe. When this holds, then our method simply evaluates
the query plan extensionally as in [8]. If these properties fail, then
we identify a set of offending tuples, to which we add a lineage
variable. Our approach is to evaluate the query plan using a mixed
extensional/intensional semantics. We process the query plan using
extensional operators that use both lineage and probability, unlike
in [8] where they only work with probabilities. The output of query
plan is a lineage expression of new kind, in that it mixes symbols
(for the offending tuples) with probabilities (computed from the
non-offending tuples), and we call it a partial lineage. In a final
processing step, we compute the probabilities of the output tuples
by doing probabilistic inference on the partial lineage expressions.

Thus, our approach combines the best aspects of both exten-
sional and intensional evaluation, and bridges the gap between the
two. In the worst case, when all input tuples to an operator are
“offending”, our approach falls back to the intensional approach:
compute the full lineage expression. In the best case, when there
are no offending tuples, the output of the query plan consists di-
rectly of probabilities, like in a safe plan. The common case is
somewhere in between, where some processing is done extension-
ally, while some intensional evaluation needs to be performed on
the offending tuples. We show both analytically and experimen-
tally that our approach combines indeed the best of the two worlds,
and obtains orders of magnitude performance improvements when
compared with generic inference techniques.

The main contributions of this paper are as follows:

• We define a data safe query plan, which is a query plan
P that can be evaluated using extensional semantics on a
database instance D; in contrast, the standard definition of
a safe plan is one where the extensional semantics is correct
on any instance D. When a query plan P is not data safe for
an instanceD, then we define a set of “offending tuples”, that
describes the distance of this instance from the ideal setting,
where the plan would have been data safe (Sec. 3).

• We propose a new method for evaluating queries over prob-
abilistic databases that consists of evaluating safe plans con-
ditioned on the presence/absence of offending tuples (Intro-
duced in Sec. 4.1, and detailed in Sec. 5).

• We introduce the notion of partial lineage. This is a mixed
symbolic/numeric expression that allows us to combine ex-
tensional query evaluation with intensional symbolic process-
ing. The partial lineage has symbols only for the offending
tuples in the data: all the other tuples are treated extension-
ally (Introduced in Sec. 4.2, and detailed in Sec. 5).

• We propose a new representation of lineage expression called
AND-OR networks that generalize the factor graphs in [25]
and are a special case of Bayesian Networks, and we pro-
vide some theoretical results justifying their effectiveness on
partial lineage (Introduced in Sec. 4.3 and detailed in Sec. 5).

• We evaluate empirically our approach. We have implemented
the query evaluation method as a Java frontend on top of
SQL Server 2005. Our experiments show that when the data
is nearly safe, our approach can vastly outperform existing
approaches, while at the same time, when the data is un-
safe, it transitions smoothly and still compares just as well.
Our approach performs thus just as well with the best known
approaches in the three corner cases: completely determin-
istic data, safe query, and completely symbolic evaluation,
while at the same time transitions smoothly in a mixed set-
ting (Sec. 6).

We refer the reader to the full version[14] of this paper for the
missing proofs.

2. BACKGROUND
A probabilistic relation R = (R, ρ) represents a probability

distribution over all subsets of R, also called instances, given by
ρ : 2R → [0, 1] s.t.

∑
ω⊆R ρ(ω) = 1. Given k probabilistic rela-

tions (R1, ρ1), . . . , (Rk, ρk), a probabilistic database is the prod-
uct space D = (R, ρ), where R = (R1, . . . , Rk) and ∀1 ≤ i ≤
k, ωi ⊆ Ri : ρ(ω1, . . . , ωk) = ρ1(ω1) · . . . · ρk(ωk).

We say that a probabilistic relation is independent if its tuples are
pairwise independent, that is, the presence of a tuple does not con-
strain the presence or absence of any other tuple in an instance of
that probabilistic relation. In that case, the relation can be given by
a pair (R, p), where p : R→ [0, 1], and represents the probabilistic
relationR = (R, ρ), where for any ω ⊆ R :

ρ(ω) =
∏
t∈ω

p(t)
∏

t∈(R−ω)

(1− p(t)) (1)

In this paper, we assume that the input database consists of k inde-
pendent relations. The application of relational operators can lead,
however, to intermediate relations that are no longer independent.

Consider a relational operator ℘. When the operator is applied to
a probabilistic database, it returns a probabilistic relation, defined
formally as follows:

DEFINITION 2.1 (POSSIBLE WORLDS SEMANTICS). Let℘ be
a relational operator and D = (R, ρ) a probabilistic database.
Then ℘(D) = (℘R, ρ′) where for any ω ⊆ ℘R:

ρ′(ω) =
∑

Ω⊆R,℘Ω=ω

ρ(Ω)

The evaluation of a Boolean query q on a probabilistic database
D is defined by Pr(q), which is the sum of probabilities of those
instances of D that satisfy q. In this paper we study efficient tech-
niques for evaluating Pr(q). We consider Boolean conjunctive
queries made up using three relational operators: selections σ, pro-
jections π, and eq-joins 1. We leave out self-joins since queries
with self-joins are known to be very difficult [9] and the existing al-
gorithm cannot be translated into a database plan. Furthermore, we
consider connected queries; Otherwise, a query q can be expressed
as the relational product q = q1q2 of two unconnected queries q1
and q2, in which case Pr(q) = Pr(q1)Pr(q2).

3. DATA SAFETY
Suppose the input relations to an operator are independent. Then,

we define the extensional semantics of the relational operators as
follows:

σe(R, p) = (σR, p) (2)
πe(R, p) = (πR, pπ) (3)

(R1, p1) 1
e (R2, p2) = (R1 1 R2, p1) (4)

where pπ(t) = 1−
∏
πt′=t(1−p(t

′)) for t ∈ πR ; p1(t1 1 t2) =
p1(t1)p2(t2) for t1 ∈ R1 , t2 ∈ R2. We drop the superscript
e when it is clear from the context. Extensional operators can be
computed efficiently, and they return what looks like a representa-
tion of an independent relation.

Suppose we take the output of an extensional operator, and inter-
pret it as an independent probabilistic relation, using Eq. (1). If this
probabilistic relation is the same as the possible worlds semantics
(Definition 2.1), then we say that the operator is data-safe:

DEFINITION 3.1. Let P be a query plan and D a probabilistic
database instance. A relational operator in P is called data safe if
its extensional semantics is equal to the possible worlds semantics.
The plan P is called data safe if each of its operators is data safe.

Note that the definition of data-safety depends both on the rela-
tional plan P and on the instance D. We give below necessary and
sufficient conditions for data-safety.

PROPOSITION 3.2. The selection and projection operators are
always data-safe. A join operator (R, p) 1eA=B (S, q) is data-safe

iff for any tuple t ∈ R, if p(t) < 1 then |σB=t.A(S)| ≤ 1, and for
any tuple t ∈ S, if q(t) < 1 then |σA=t.B(R)| ≤ 1.

PROOF. We only prove here the only if part for joins. Assume
w.l.o.g. that R(x, y) and S(y, z) are binary relations, and the join
is a natural join. Consider a tuple (a, b) ∈ R s.t. p(a, b) < 1 and
(a, c1), (a, c2) ∈ S. Let (U, r) = (R, p) 1 (S, q), then

Pr(U(a, b, c1) ∧ U(a, b, c2)) = p(a, b)q(b, c1)q(b, c2)

while

Pr(U(a, b, c1))Pr(U(a, b, c2)) = p2(a, b)q(b, c1)q(b, c2)

But p(a, b)q(b, c1)q(b, c2) 6= p2(a, b)q(b, c1)q(b, c2) unless p(a, b)
is 1 or 0, a contradiction. Therefore, the tuples U(a, b, c1) and
U(a, b, c2) are not independent. Hence proved.

We note that data-safe joins are 1-1 joins.
Previous work has mostly focused on the notion of safety [8]:

DEFINITION 3.3. A query plan P is called a safe plan if it is
data safe for any input database D. A query that has a safe plan is
called a safe query.

It follows from our discussion that a query plan is safe iff all
its joins are 1-1. For example, consider the Boolean query q =
R(x, y), S(x, z). The query plan π∅(R 1 S) is not safe, because
the join is not 1-1. Suppose, however, that the two independent
probabilistic relations R(x, y) and S(x, z) are such that x is a key,
both in R and in S. Then the plan above is data-safe, because the
join happens to be 1-1. On the other hand, the plan π∅(πx(R) 1

πx(S)) is safe on any input database, because its join is always 1-1.
Finally, we define the set of offending tuples:

DEFINITION 3.4. Consider a probabilistic database instance
D and a query plan P . Let ℘ be an operator in P . A set T of input
tuples to ℘ is called set of offending tuples if ℘ becomes data-safe
after removing the tuples in T .

Given a fixed query plan P , operators ℘ and data instance D, a
set of offending tuples can be computed efficiently, using standard
SQL. For example, consider the plan P = π∅(R(x, y) 1 S(x, z))
for the query mentioned above. The inputs to the join operator are
the two independent probabilistic relations (R, p) and (S, q). The
set of offending tuples T for this operator can be computed as:

T = {(a, b) ∈ R | s.t. |{(a, c) ∈ S | q(a, c) < 1.0}| ≥ 2}
∪ {(a, c) ∈ S | s.t. |{(a, b) ∈ T | p(a, b) < 1.0}| ≥ 2}

Note that the set of offending tuples do not necessarily come from
the database instance; they could also be intermediate tuples gen-
erated during the query plan. So many tuples in the database in-
stance, that make the query unsafe, may actually correspond to just
one offending tuple for the query plan. Note that a safe plan has no
offending tuples and as we will see later, the output of any plan is
an expression with symbols from only the offending tuples. Hence
the number of offending tuples is a measure of how safe/unsafe a
plan really is for a given database instance.
In this paper our focus is on how to use a plan P and set of of-
fending tuples for all its operators in order to evaluate the query
efficiently. In probabilistic databases, query evaluation is signifi-
cantly more expensive than query optimization, and this is our main
focus here. We do not address the problem of finding the plan P
and computing the offending tuples T . As suggested here, T can be
computed using standard SQL, while P can be obtained using stan-
dard optimization algorithm, by searching a space of query plans:
both problems are outside the scope of this paper.

A safe query can be evaluated efficiently, by using the exten-
sional versions of the relational operators. By contrast, as shown
in [8], every unsafe query is #P-hard, which means that no algo-
rithm exists that can evaluate it efficiently on every database. The
state of the art for evaluating unsafe queries is by computing their
lineage.

DEFINITION 3.5. Let q be a Boolean conjunctive query q and
D = (R, ρ) a probabilistic database. The lineage of q is a DNF
formula F (q,D) obtained by grounding q with tuples from D.

Example 3.6 Let q = R(x, y), S(y, z) andR = S = {(1, 1), (1, 2),
(2, 1), (2, 2)}. Then, F (q,D) = r11s11 ∨ r11s12 ∨ r12s21 ∨
r12s22 ∨ r21s11 ∨ r21s12 ∨ r22s21 ∨ r22s22, where rij and sij
are random variables corresponding to tuples (i, j) in R and S re-
spectively.

In probabilistic database systems [2, 1, 4], if the query is unsafe
then the system first computes its lineage, then uses some general-
purpose probabilistic inference method for computing the probabil-
ity of the lineage; it is known that the probability of a query, Pr(q)
is the same as the probability of its lineage expression.

4. OVERVIEW OF OUR APPROACH
We develop three techniques that exploit the data in order to

compute unsafe queries more efficiently. We give here an overview
of the techniques and introduce them formally in Sec. 5.3.

4.1 Combining Safe Plans with Conditioning
The first technique that we introduce consists of combining safe

plans with conditioning. We illustrate this technique on the query
qu : −R(x), S(x, y), T (y), which is known to be an unsafe query,
because none of the joins R 1 S or S 1 T is 1-1. The complexity
of this query is #P-hard.

Consider a probabilistic database instance where S satisfies the
functional dependency x→ y. In this case the plan πy(R 1 S) 1

T is data-safe, because on this particular instance both joins are 1-1.
Thus, if the functional dependency holds in S, then we can compute
the query very efficiently using only extensional operators.

Consider now the case when most, but not all tuples in S(x, y)
satisfy the functional dependency x → y. In this case the plan
above is no longer data-safe, and we cannot use it to compute the
query. We use a new approach instead. To describe it, suppose first
that a single value a ∈ πx(S) violates the functional dependency:
that is, we assume that the functional dependency x → y holds on
the relation σx 6=a(S). Then:

Pr(qu) = Pr(qu|¬R(a))(1− Pr(R(a)))

+ Pr(qu|R(a)) · Pr(R(a))

To compute the conditional probability Pr(qu|¬R(a)), we modify
the probabilistic relation R by removing R(a), then evaluate qu:
by Proposition 3.2 the plan πy(R 1 S) 1 T is still data-safe on
this database, since now the offending tuples in S do not join with
anything in R. To compute Pr(qu|R(a)), modify R by setting
Pr(R(a)) = 1. By Proposition 3.2 the join operator R 1 S is still
data-safe, since no condition needs to be checked for tuples whose
probability is 1.

In general, call a set of tuples a1, . . . , ak in R offending tuples
if these are all the tuples that lead to violations of the functional
dependency x→ y in S; in other words, σx 6∈{a1,...,ak}(S) satisfies
the functional dependency. Then, we compute Pr(q) by evaluating
the safe plan πy(R 1 S) 1 T on 2k probabilistic relations. Thus,
we have shown how, by using conditionals on a set of k values in

R, we can reduce the evaluation problem of qu to computing 2k

safe plans.
However, evaluating 2k safe plans is not practical, except for

very small values of k. While, in general, no algorithm can escape
the fact that qu is #P-hard, in practice one can compute the lin-
eage of qu first, then apply some optimized probabilistic inference
method on the resulting DNF formula and obtain a much better
performance than evaluating 2k safe plans. We describe next the
second step of our approach, which ensures that our algorithm falls
back on a lineage-based inference when the data is unfavorable for
safe plans.

4.2 Partial Lineage
The key observation is that in all 2k probabilistic instances we

need to evaluate the same safe plan. We exploit this by introducing
a partial lineage, which, in essence, keeps track of the 2k distinct
probabilistic databases. Informally, a partial lineage is a lineage
expression over k propositional variables and probabilities (num-
bers). Each number stands for an independent, and anonymous
propositional variable. We illustrate this on our running example.
Assume that two values a1, a2 in R violate the functional depen-
dency in S. Then, when computing the join R 1 S we compute
the lineage by using only the variables r1, r2, corresponding to the
tuples a1 and a2 in R: for all others, we compute their probabili-
ties using the equations for the extensional operators. For example,
assume the following probabilistic instance:

R = {(a1, 0.1), (a2, 0.2), (a3, 0.3), (a4, 0.4)}
S = {(a1, b1, 0.11), (a1, b2, 0.12), (a2, b1, 0.13),

(a2, b2, 0.14), (a3, b1, 0.15), (a4, b1, 0.16)}
T = {(b1, 0.21), (b2, 0.22)}

The numbers indicate the tuple probabilities. Note that here both a1

and a2 violate the functional dependency x → y in S; in contrast,
a3 and a4 satisfy the dependency. Then, the following illustrates
the first two steps for computing the plan πy(R 1 S) 1 T :

R 1 S = {(a1, b1, 0.11r1), (a1, b2, 0.12r1),

(a2, b1, 0.13r2), (a2, b2, 0.14r2),

(a3, b1, 0.045), (a4, b1, 0.064)}
πy(R 1 S) = {(b1, 0.11r1 ∨ 0.13r2 ∨ 0.10612),

(b2, 0.12r1 ∨ 0.14r2)}

The partial lineage expressions above combine Boolean vari-
ables r1, r2 with numbers. The interpretation is that every number
stands for a separate Boolean variable, which is independent from
everything else: the number gives the probability of this anony-
mous Boolean variable. For example, the first lineage expression
0.11r1 stands for s1r1 where s1 is a propositional variable with
probability 0.11. The key idea in the partial lineage is that we do
not need the symbol s1 any further, and instead replace it with its
probability 0.11. The safe plan manipulates probability numbers
directly. For example, when joining a3 and (a3, b1), their prob-
abilities are multiplied 0.3 · 0.15 = 0.045. Similarly, after we
perform the projection/duplicate-elimination operation πy , the par-
tial lineage 0.11r1 ∨ 0.13r2 ∨ 0.10612 has an intensional compo-
nent 0.11r1 ∨ 0.13r2, and an extensional component 0.10612 =
1− (1− 0.045)∗(1− 0.064).

Continuing the evaluation of the query plan in this way we arrive
at a partial lineage expression for the entire query; on this we run
any general purpose probabilistic inference algorithm.

π−y(π−xR 1y π−zS) π−x,y,z(R 1y S)

r11 r12 r21 r22 s11 s12 s21 s22

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨

∧ ∧

∨

Figure 1: AND/OR-factor graphs for q = R(x, y), S(y, z) in
Example 3.6.

It is interesting to compare this approach with the standard ap-
proach of computing the full lineage first, then running an inference
algorithm. The partial lineage is always a strict subset of the full
lineage, because it only uses a subset of Boolean variables used by
the full lineage, namely the offending tuples. Hence, the final step,
performing a probabilistic inference on the final lineage expression,
is no harder for partial lineage than for full lineage. On the other
hand, when the set of offending tuples is small, then the safe plan
ends up manipulating mostly numbers (i.e. probabilities). In the
best case, there are no offending tuples at all, and in that case our
approach consists entirely of a safe plan.

4.3 Complexity of Query Evaluation
In this section we give some theoretical results comparing the

complexity of different approaches to query evaluation proposed
so far, and then explain how our algorithm compares with them.
We are only interested in data complexity here and hence assume
query size to be bounded.

4.3.1 Lineage
The intensional approaches to query evaluation compute the prob-

ability of the query lineage represented by DNF formulas. The
techniques used here are similar to those for SAT and #SAT prob-
lems and generally involve using some heuristic to eliminate the
variables and simplify the formulae. There are some classes of
formulae such as symmetric and read-once functions [24] that can
be solved efficiently. The most effective methods rely on finding
a good variable order; however, finding the best order is itself an
intractable problem, and there are no guarantees that one can find
such a good order based on the data.

The approaches that provide some theoretical guarantees on the
performance [12, 10, 17] have their running time exponential in the
treewidth of the lineage. We next define treewidth.

A hypergraph is a pair H = (V,E), where V is the set of ver-
tices and E ⊆ 2V is a set of subsets of V . With each dnf-formulae
F =

∨n
i=1

∧k
j=1 aij , we associate the hypergraphH(F) = (V,E),

where V is the set of vars in F and

E = {{ai1, . . . , aik}|1 ≤ i ≤ n}

A tree decomposition for a hypergraphH = (V,E) is a pair (X,T),
where X = X1, ..., Xn is a family of subsets of V , and T is a tree
whose nodes are the subsetsXi, satisfying the following properties

1.
⋃
Xi = V

2. ∀e ∈ E, ∃Xi s.t. e ⊆ Xi

3. For each v ∈ V , the set {Xi|v ∈ Xi} forms a connected
component in T .

The width of tree decomposition is max{|Xi| − 1|Xi ∈ X}. The
treewidth tw(H) of a hypergraph H is the minimum width among
all possible tree decompositions of H . The treewidth 1 tw(F) of
a DNF formula F is the treewidth of the associated hypergraph
1The treewidth notion here is the treewidth of the primal graph.

H(F). The complexity of lineage-based approaches is exponential
in the treewidth of the lineage. We first prove that queries with
lineage of bounded treewidth correspond precisely to a strict subset
of safe queries.

DEFINITION 4.1. A query q is called strictly hierarchical if q
can be written as R1(x̄1), . . . , Rm(x̄m) s.t. x̄1 ⊆ . . . ⊆ x̄m.

THEOREM 4.2. The following are equivalent: (1) q is a strictly
hierarchical query and (2) there exists a constant c such that for
any database instance D, tw(F (q,D)) < c.

Thus, only a subset of the safe or hierarchical queries have lin-
eage of bounded treewidth. For example, the queryR(x, y), S(x, z)
is safe, but it is not strictly hierarchical, hence its lineage does not
have a bounded treewidth. Moreover, it is important to observe how
the treewidth grows. A cartesian product occurring in a subquery
makes the treewidth of the query at least the size of one of the two
sets. So any query with many-many join will have high treewidth
lineage.

Hence the class of intensional methods based on lineage treewidth
cannot even compute safe queries in PTIME. One can however use
the hierarchical structure of safe queries to efficiently factorize the
lineage into a tractable form, called one-occurrence form [17], for
which probability computation can be performed in linear time.
But this approach does not generalize to unsafe queries and this
motivates the need for a general model that would be in PTIME for
safe queries.

4.3.2 Factor Graphs
[25] propose modeling queries as AND/OR- factor graphs, where

there are two kinds of factors: AND and OR. An AND factor
is true iff its inputs are both true, and an OR factor is false iff
both its inputs are false, just like conventional gates. Their model
takes as input not a query, but a query plan. So the same query
may be expressed as two graphs. Figure 1 shows how this ap-
proach would model the query in Example 3.6 for two different
plans. AND/OR-factor graphs are a special case of Bayesian Net-
works, and the inference in any Bayesian Network G is carried out
by moralizing the graph(connect all the parents of every node)G
to convert it into a markov network M(G). This would lead to
networks of very high treewidth, but [25] exploit decomposability
[22] to reduce the factors in G to size 3 factors: call this graph
D(G). Figure 2 illustrates the construction of M(G) and D(G).
Hence the complexity of their approach depends on the treewidth
of the graph M(D(G)) obtained by moralizing the graph with
decomposed factors. This model has the advantage that for safe
plans tw(M(D(G))) = 2, and hence this approach is superior to
lineage-based approaches in that respect. It is known that in general
tw(G) ≤ tw(M(D(G))) ≤ tw(M(G)) [22].

4.3.3 Our Approach: Partial Lineage
To allow the partial lineage approach to take full advantage of

these techniques, we use AND-OR networks (Sec. 5.1), which are
a generalization of the AND-OR factor graphs, to represent partial
lineage. Given a query plan P , letGf be the AND-OR factor graph
representing it and Gn be the AND-OR network representing the
partial lineage. Then our approach is exponential in tw(Gn). This
is analogous to the factor graphs approach whose complexity de-
pends on tw(M(D(Gf))). We can show that

Treewidth can alternatively be defined on the incidence graph, but
assuming bounded query size, the two widths are related by a con-
stant factor.

D(G) M(D(G))

M(G)

G

Figure 2: Decomposing a factor G into small factors D(G) and
moralizing these graphs into M(G) and M(D(G)).

.3

.8

.5

.5 n
∪

.4

.6

.3

.8

.5

.5

.4

.6

N
N ′

u

v

w w

u
y u

v

w

y

Figure 3: And-Or networksN and N ′; N ′ is obtained by aug-
mentingN .

PROPOSITION 4.3. Gn is a minor of Gf .

Using the fact that treewidth of a minor is at most the treewidth
of the graph, we get that the treewidth of the AND-OR Network
modeling the partial lineage is less than that of the AND-OR factor
graph i.e. tw(Gn) ≤ tw(Gf). Since tw(Gf) ≤ tw(M(D(Gf))),

COROLLARY 4.4. tw(Gn) ≤ tw(M(D(Gf))).

As we discussed, the inference algorithm in [25] is exponential
in tw(M(D(Gf))). Hence we see that our approach is at least as
good as in complexity as the other approaches, if not better.
To summarize, representing lineage as a DNF formula is a poor
choice since we lose information about its structure and many infer-
ence algorithms on the lineage won’t even evaluate the safe queries
in PTIME. Representing them as factor graphs is better in that re-
spect, and hence we employ a similar approach in representing par-
tial lineage and indeed our approach has just as good worst-case
guarantee as these approaches.

5. QUERY EVALUATION WITH PARTIAL
LINEAGE

We describe here our approach to query evaluation using par-
tial lineage. First, we introduce And-Or networks, which are our
optimized representation of lineage expressions. They are a spe-
cial case of Bayesian networks, which represent exactly the kind
of dependencies introduced by relational operators. We then de-
fine pL-relations, which extend the independent relational model
using And-Or networks, so that they can model the intermediate
relations generated during query evaluation on independent rela-
tions. Finally, we show how to execute relational operators over
pL-relations and conclude the section by performing the theoreti-
cal analysis outlined in Sec. 4.3.

5.1 And-Or Networks
An And-Or network N = (V,E, P, Lab) can be represented

as a directed acyclic graph G = (V,E), where Lab : V →

{And,Or, Leaf}, and P : E ∪ VL → [0, 1] with VL = {v |
v ∈ V, @w ∈ V s.t. (w, v) ∈ E}. We call the nodes in VL as the
leaves of G. Lab(Vi) = Leaf iff it is a leaf in G. Every node
in V is treated as a random Boolean variable. Let x be a Boolean
assignment over V . We use xv to denote x(v),v ∈ V and xW
to denote x|W , W ⊆ V . For every node v ∈ V , we define
a conditional probability distribution, conditioned on its parents
par(v) = {w | (w, v) ∈ E} as

φ(xv = 1|xpar(v)) =

1−

∏
w∈par(v) (1− xwP (w, v)) , v is Or∏

w∈par(v) xwP (w, v), v is And
P (v), v is leaf

The And-Or Network N represents a joint probability distribu-
tion over V , where

N (x) =
∏
v∈V

φ(xv|xpar(v))

For the sake of simplicity we useN to denote the distribution. Note
that And-Or Networkds are a special case of Bayesian Networks
and hence represents a valid probability distribution. As we will
see, Or nodes represent the dependency introduced by projection,
while And nodes represent join.

The marginal probability N 0(y) where y is a Boolean assign-
ment to W ⊆ V , is given by

N 0(y) =
∑

x,xW=y

N (x)

Given a networkN , we denote V,E by V (N), E(N) respectively.

Example 5.1 Figure 3 shows an And-Or Network N on vertices
u, v, w. Note that u, v are the leaves, and assume w to be an Or
node. We did not denote nodes as And/Or on the graph. The prob-
ability values P for leaves and edges are written beside them. Con-
sider any assignment x to the nodes ofN , then

N (x) = φ(xw|xu, xv)φ(xu)φ(xv)

Let x = {0, 1, 0} on {u, v, w}, thenN (x) = (1− 0 · 0.5)(1− 1 ·
0.5) · (1− .3) · .8 = .28.

Augmenting an And-Or Network: Given N = (V,E, P, Lab)

and a new node w /∈ V , we grow the And-Or Network by connect-
ing w to few or none of the nodes in V as its parents. We represent
this operation by N ′ = N

n
∪ (w,E′, P ′, lab) = (V ∪ {w}, E ∪

E′, P ∪P ′, Lab∪ {(w, lab)}), where E′ ⊆ V ×{w}. If E′ = ∅,
then lab has to be leaf and P ′ : {w} → [0, 1]; else lab is And/Or
and P ′ : E′ → [0, 1]. It should be easy to see that N ′ is also a
valid And-Or Network. We can similarly extend it to add not just
one vertex w, but a set of vertices W all of the same label lab as
N

n
∪ (W,E′, P ′, lab).

Figure 3 shows the network N ′ obtained by augmenting N with a
node y with u,w as its parents.

5.2 Relations with Partial Lineage
We define some shorthand notation before this section. We use

z ∈ 2S to denote that z : S → {0, 1}. PI(ω, p(t)) stands for the
independent probability distribution

∏
t∈ω p(t)

∏
t/∈ω(1 − p(t)),

assuming R is clear from the context; otherwise we will write it as
PRI (ω, p(t)). As we have already learnt from proposition 3.2, the
independent relation model is not enough to represent the interme-
diate distributions resulting from relational operators. We define
pL-relation because as we will see, this can succinctly represent

the intermediate distributions and is still closed with respect to re-
lational operators. In particular, independent relations can be mod-
eled with just one node And-Or Network.

DEFINITION 5.2. A pL-relation R = (R, p, l,N), where p :
R → [0, 1], l : R → V (N), and N is an And-Or network ;
represents a probability distribution ρ over all subsets ω of R as

ρ(ω) =
∑

z∈2V (N)

N (z)PI(ω, zl(t)p(t)) (5)

We often use t ∈ R to mean t ∈ R. Given N , R can be repre-
sented tabularly by appending columns l, p to R. Its easy to show
that ρ is a probability distribution, as will be clear from the follow-
ing discussion.

Example 5.3 Consider the case whereN has just one node ε with
P (ε) = 1. So N (z) = 1 if zε = 1 else 0. Now consider the
pL-relationR given by

A l p
1 ε .6
2 ε .3
3 ε .5

Then ρ(ω) = PI(ω, p(t)), the probability distribution of the inde-
pendent relation (R, p). To represent any independent relation as a
pL-relation, we just need to set l(t) = ε for all tuples t.

Example 5.4 Let N be the one given by figure 3. Now consider
R as given by

A l p
1 u 1
2 v 1
3 w 1

Note that ∀t p(t) = 1 and hence zl(t)p(t) = zl(t). PI(ω, zl(t)) =
0 if ∃t ∈ ω s.t. zl(t) = 0 and vice-versa if t /∈ ω and zl(t) =
0. Hence the summation in Eq. (5) has only one non-zero term,
corresponding to the assignment z0 s.t. z0

l(t) = 1t∈ω . Therefore
ρ(ω) = N (z0). Hence in this case the relation just represents the
And-Or NetworkN .

Between these two extremes, that is, And-Or networks and inde-
pendent relations, the pL-relations represent a combination of many
independent relations each weighted according to the probability
distribution of an And-Or network.

Mixture of Independent Relations.
A mixture of independent relations is a convex combination of

many independent relations. A mixture

{(wi, (R, pi)) | wi ∈ R,
∑
i

wi = 1, pi : R→ [0, 1]}

defines a probability distribution ρ, where

ρ(ω) =
∑
i

wiPI(ω, pi(t)) (6)

From Eq. (5), one can see that the pL-relation R can be expressed
as the mixture {(N (z), (R, pz)) | z ∈ 2V (N), pz(t) = zl(t)p(t)}.
Given any pL-relation, we call this the standard mixture as it fol-
lows from the definition naturally.

Example 5.5 Let N be the network in Fig. 3, and consider the
pL-relationR given by

A l p
1 w 1
2 ε .3
3 ε 0.6

The standard mixture is

{(N (z), (R, pz)) | z ∈ 2{u,v,w}, pz(t) = zl(t)p(t)}.

R can also be expressed as another mixture{
(φ(zu)φ(zv), (R, pz))|z ∈ 2{u,v}

}
, where

pz(t) =

{
zl(t)p(t), t 6= 1

φ(zw = 1|zu, zv), t = 1

Since p(1) is 1, the lineage variable w and the tuple 1 represent
the same event. So instead of summing over w = 0, 1 in the prob-
ability expression for N , we move the factor φ(zw = 1|zu, zv)
to the probability value of tuple 1, and get rid of w from N . The
resulting distribution is still the same.

Our earlier example demonstrates another way of representing pL-
relations as mixtures.

PROPOSITION 5.6. Given a pL-relation R = (R, p, l,N), let
S ⊆ R be a set of tuples s.t. ∀t ∈ S, p(t) = 1. Define VS =
{l(t) | t ∈ S}, and let N ′ be the And-Or Network obtained by
removing the nodes VS fromN . Then{

(N ′(z), (R, pz)) | z ∈ 2V (N)\VS
}
, where

pz(t) =

{
zl(t)p(t), t /∈ S
φ(zl(t) = 1|zpar(l(t))), t ∈ S

is a valid mixture representingR. We denote it by mixture(R, S).

5.3 Relational Operators over pL-relations
In this section, we will describe the select-project-join operators

over pL-relations. There can be more than one way of doing this;
we have defined them in a way so that i)for independent relations,
they are the same as extensional operators and ii)in general exploit
extensional operators as far as possible. We will also show that
each operator obeys the possible world semantics. For this, we will
use the existing query evaluation results for independent relations.
Since a pL-relation is a mixture of independent relations, the result
of any operator can be shown to be the same mixture where the op-
erator has been applied to each independent relation in the mixture
individually. Formally

PROPOSITION 5.7. Consider any unary relational operator ℘
and R = (R, p, l,N) a pL-relation. Let {(N (z), (R, pz)) | z ∈
2V (N)} be the standard mixture. Assuming ℘(R, pz) is also an
independent relation ∀z ∈ 2V (N), then

{(N (z), ℘(R, pz)) | z ∈ 2V (N)} = ℘R.

This can be extended similarly for binary operators too.
Hence one way of showing thatR′ = ℘R is to first show that ℘ is
safe for all (R, pz), and then show that the mixture {(N(z), ℘(R, pz))

|z ∈ 2V (N)} is equal to R′. We discuss below the case of selec-
tion, projection, and join.

5.3.1 Selection
Given a pL-relationR = (R, p, l,N), and A ⊆ attribs(R), let
R′ = (σA=aR, p, l,N).
First of all note that selection on independent relations is always
safe; σ(R, p) = (σR, p) and then
{(N(z), (σA=aR, pz))|z ∈ 2V (N)} is actually the standard mix-
ture of R′. Hence by proposition 5.7 R′ = σA=aR. Therefore
selection is performed, just like in independent relations, by simple
relational selection operator.

5.3.2 Projection
Given a pL-relationR = (R, p, l,N), and A ⊂ attribs(R), we

want to compute πAR. For the sake of simplicity, we describe this
operation in two stages.
Independent Project : This is just like the independent project op-
eration for independent relations, except that here we project only
on tuples with same lineage l. Let A′ = A ∪ {l}. We compute
Ri = (πA′R, p

i, li,N) ; where for any a = πA′t, li(a) = l(t),
pi(a) = 1−

∏
πA′ t=a

(1− p(t))

Example 5.8 Figure 4 has two Independent Projection operations,
listed as IndProj. The first one is inconsequential, as there are no
candidate tuples for independent project. But consider the second
IndProj operator that projects the tuples (i, .125, ε), 2 ≤ i ≤ n− 1
on l to (pn, ε). Note that independent project does not changeN .

Deduplication : Now we describe how to calculate πARi, by re-
moving duplicate tuples. Define

Pj = {(a, a′) | πAa′ = a, a′ ∈ R′}
S = {a | #{a′|Pj(a, a′)} > 1}

Let ld(a) = li(a) if a /∈ S else h({(li(a′), pi(a′))|Pj(a, a′)}),
where h is a hash function. E = {(ld(a), li(a′)) | Pj(a, a′), a ∈ S}
and Q(ld(a), li(a′)) = pi(a′). Let V = {ld(a) | a ∈ S}. Define
an And-Or networkM = N

n
∪ (V,E,Q,Or).

Then πAR = Rd = (πAR, p
d, ld,M), where

pd(a) =

{
pi(a) ifa /∈ S
1 otherwise.

Deduplication replaces duplicate tuples with a unique tuple. The
probability of the new tuples is 1, while the new lineage is just com-
puted by hashing the lineage,probability of duplicate tuples. The
existing And-Or Network is then augmented with this new lineage
by connecting it to the lineages of the duplicate tuples. In case of
no duplicate tuples, nothing is done.

Example 5.9 Figure 4 illustrates Deduplication, written as Dedup,
on two relations. In the first case for example, the duplicate tuples
with B = n are reduced to a new tuples with a new lineage y
produced by hashing. N is then augmented with y as an Or node,
where x, ε, the lineage of duplicate tuples, are set as parents of y.

THEOREM 5.10. Rd = πAR.

PROOF. Projection is also always safe, hence it suffices to show
that V = (N (z), (πA(R, pz))) = (N (z), (πAR, p

′
z)) is a mixture

forRd, where

p′z(a) = 1−
∏

πAt=a

(1− pz(t)) (7)

= 1−
∏

πAt=a

(1− zl(t)p(t)) (8)

1
2

n

.5

.5

.5

A p l

Cond

N = ε

A p
1

l

..
2 .5

..
n .5

1 x

N =
1
.5
ε

x

A p l
1

2 2
..
n n

.5

.5

.5

B

1 n .5

1pL

A B p l
1 1 .5
2

1

2 .25
x

..
n n .25
1 n .5 x

B p l
1
2

..
n
n

.5

.25

..

.25

.5

..

IndProj
B p l
1 .5 x
2 .25

..
n 1 y

Dedup

B p l
1
2

..
n

.5

.5

.5

.. ..

N =
1

x
y

.5

.25

B p l
1
2
..
n

.25 x
.125
.. ..

IndProj
p l

ε

y.5

Dedup
p l

z

N =

1

.5

ε

.5
ε

x y
.25

z

1

.25 .5
pn

ε
ε

ε

ε

ε

ε
ε

ε
ε

ε

ε

x
ε

ε
x

ε

R

S

T

ε

ε

ε 1pL

ε

.5 y

.25 x

pn

.5

pn = 1− (1− .125)n−2

Figure 4: Evaluating q : −R(x)S(x, y)T (y). Pr(q) is given by N 0(z = 1). P values for leaves and edges in N are written besides
them.

Let Sc = πAR \ S. Consider V1 = mixture(Rd, S), we will
show that V1 is in fact V . Note that all the new lineage variables
are added to tuples in S and their probabilities are 1; hence V1 =
{(N (z), (πAR, p

′′))}, where

p′′(a) =

{
pi(a) a ∈ Sc

φ(zld(a) = 1|zpar(ld(a))) a ∈ S (9)

But we have

φ(zld(a) = 1|zpar(ld(a))) =
∏

πAt=a

(1− zli(a)pi(t)) (10)

zkpi(t) = 1−
∏

πAt=a,l
i(a)=k

(1− zkp(t)) (11)

where k = li(a) (12)

Eq. (11) can be verified by setting z(k) = 0, 1 on both sides. Eq.
(8), (9), (10), (11) show that p′z = p′′, and hence proved.

5.3.3 Join
Before we join two pL-relations, we need to go through an op-

eration conditioning, which as the name suggests conditions on a
tuple in the relation.

Conditioning.
This operation takes a pL-relation R and a tuple tu ∈ R and

returns another pL-relation

Cond(R, tu) = (R, p′, l′,N
n
∪ (w, ∅, p(tu), leaf), where

p′(t) =

{
p(t) t 6= tu

1 t = tu
, l′(t) =

{
l(t) t 6= tu

w t = tu

Example 5.11 Conditioning, written as Cond, is the first operation
done in figure 4. R is conditioned on the tuple (1, 0.5, ε). All
conditioning does is change the probability of the tuple to 1, assign
to it a new lineage x, and then add x as a leaf in the And-Or network
N with P (x) = 0.5.

LEMMA 5.12. Cond(R, tu) and R represent the same distri-
bution.

PROOF. Let ρc, ρ denote the probability distributions correspond-
ing to Cond(R, tu) andR. Then for any world ω ⊆ R

ρc(ω) =
∑

z∈2V (N)

N (z)Itu∈ωp(tu)P
R\{tu}
I (ω, zl(t)p(t))

+ N (z)Itu/∈ω(1− p(tu))P
R\{tu}
I (ω, zl(t)p(t))

=
∑

z∈2V (N)

N (z)PRI (ω, zl(t)p(t))

= ρ(ω)

So, in short, the usefulness of conditioning lies in the fact that it
makes the tuple deterministic in the table i.e. sets p′(tu) = 1.
As we know, deterministic tuples never count as offending tuples;
hence one way of making offending tuples non-offending is to just
condition on them. We’ll now define join for pL-relations, using
operators similar to the ones for join of independent relations. We
will again face similar problems as for independent relations i.e
the resulting relation may not be safe i.e. obey possible worlds
semantics. But then we will show that after conditioning on the
right set of tuples, the join is safe.

DEFINITION 5.13. Define

R1 1pL R2 = (R1 1 R2, p
12, l12,N 12)

where the new variables are defined below. Let

S = {(t1, t2) | l1(t1) 6= ε ∧ l2(t2) 6= ε ∧ t1 ∈ R1 ∧ t2 ∈ R2}

and g be a hash function, then

l12(t1 1 t2) =

 g ({li(ti), pi(ti), i = 1, 2}) (t1, t2) ∈ S
l1(t1) l2(t2) = ε
l2(t2) l1(t1) = ε

p12(t1 1 t2) =

{
p1(t1)p2(t2) (t1, t2) /∈ S

1 (t1, t2) ∈ S

Let

V = {l12(t1 1 t2) | (t1, t2) ∈ S}
E = {(l12(t1 1 t2), l1(t1)), (l12(t1 1 t2), l2(t2)) | (t1, t2) ∈ S}
Q(l12(t1 1 t2), li(ti)) = pi(ti) i = 1, 2

N 12 = (N1]N2)
n
∪ (V,E,Q,And).

1pL is very much like the independent join operation unless both
of the joining tuples have non-trivial lineage i.e not ε; in which case
we assign a new lineage using hashing and the new probability is
1. Fig 4 has two examples of 1pL operations; none of the joins
introduce any new lineage variables.
Now we define cSet, which essentially are the set of offending
tuples present in each relation.

DEFINITION 5.14. Define

cSet(R1,R2) = {t ∈ R1 | p1(t) < 1 ∧#{{t} 1 R2} > 1}

As we would expect, conditioning on this set makes the join safe.

PROPOSITION 5.15. R1 1pL R2 = R1 1 R2 if cSet(R1,R2)
= cSet(R2,R1) = ∅.

PROOF. (Sketch) From Proposition 3.2, it is easy to see that c−
Set = ∅ implies the join is safe, and hence we again only need to
show that V = (N (z), (R1z 1 R2z, p

′
z)), where p′z(t1 1 t2) =

p1z(t1)p2z(t2), is a mixture forR1 1pL R2. Let

S′ = {t1 1 t2 | (t1, t2) ∈ S}

We can show that V is the same asmixture(R1 1pL R2, S
′). The

proof is very similar to that of theorem 5.10 ; S’ captures exactly
the set of tuples with new lineage and they all have probability 1.
Afterwards its just a routine verification.

Now observe that cSet(Cond(R1, cSet(R1,R2)),R2) = ∅. This
implies that

THEOREM 5.16. LetR′1 = Cond(R1, cSet(R1,R2)) andR′2 =
Cond(R2, cSet(R2,R1)) ; then
R′1 1pL R′2 = R′1 1 R′2
This tells us that to compute the join of any two pL-relations, it suf-
fices to first condition them on their cSets and then do the join as
stated in definition 5.13 Now that we know all operations, Figure 4
walks through our approach on the motivating example in Sec. 4.1,
where only one tuple in S violates the FD. To compute R 1 S,
we first condition on the tuple R(1) since there are two tuples in S
with A = 1. Then we perform 1pL. Projection is carried out by
first Independent Project(IndProj) and then Deduplication(Dedup).
For the next join, no conditioning is needed as its a 1-1 join. The
final probability is given byN 0(z = 1).

Inference over an And-Or Network.

THEOREM 5.17. LetN be an And-Or network andG = (V (G),
E(G)) be the directed graph representation of it. Let G be the
undirected graph obtained by ignoring the direction of edges in
G. Then given a tree decomposition of G and any W ⊆ V (G),
x : W → {0, 1}, the marginal probability N 0(x) can be com-
puted in time O(|G|16tw(G)).

The proof/algorithm for theorem 5.17 is very involved, so we re-
fer the reader to our technical report[14] for that. [3] has already
shown that tree-decomposition for graphs of bounded treewidth can
be found in linear time.

5.4 Analysis and Comparisons
In this section we complete the theoretical analysis, that we started

in Sec. 4.3. First we prove that only strictly hierarchical queries
have lineage of bounded treewidth.

PROOF OF THEOREM 4.2. We state the following well-known
facts without proof.

FACT 5.18. tw(Km×n) = min(m,n)

FACT 5.19. The treewidth of a graph is at least as big as the
treewidth of any of its subgraph.

Let Sg(x) for any variable x of q be the set of subgoals of q which
contain the variable x. We first prove that tw(F (q,D)) < k for
any strictly hierarchical query q with k subgoals by induction on k.

k = 1 : In this case H(F (q,D)) has no edges, and hence has
treewidth 0.
k > 1 : By definition 4.1, one can order the variables of q so that
x ≺ y if Sg(x) ⊂ Sg(y). Let x̄ be the variables at the top of
hierarchy i.e. ∀y ∈ V ars(q), x ∈ x̄ Sg(y) ⊂ Sg(x) if y /∈ x̄ else
Sg(x) = Sg(y). Then consider a subgoal R(x̄) containing only
x̄ as variables. There has to be a subgoal like this by definition
of x̄. Let (Xā, Tā) be the tree-decomposition of F (q′[ā/x̄], D),
ā ∈ dom(x̄) where q′ is q with subgoal R(x̄) removed. Note that
for ā, b̄ ∈ dom(x̄), ā 6= b̄, Xā ∩ Xb̄ = ∅. Consider

⋃
(X ′ā, Tā),

where X ′ā = {x ∪ {R(ā)}|x ∈ Xā}. Its easy to see that it rep-
resents a tree-decomposition for F (q,D), and its width is at most
k − 1 by IH.

Now consider q which is not a strictly hierarchical query. Then
let R(x, z̄, z̄1) and S(y, z̄, z̄2) be two subgoals of q s.t. x /∈ z̄ ∪ z̄2

and y /∈ z̄ ∪ z̄1 and z̄1 ∩ z̄2 = ∅. If z̄ = ∅, then the hypergraph
for F (R(x, z̄1)S(y, z̄2), D) is just Km×n, where m = |R(x, z̄1)|
and n = |S(y, z̄2)|. The proof follows from facts 5.18. If z 6= ∅,
then consider F (R(x, ā, z̄1)S(y, ā, z̄2), D) and use 5.19 and the
argument above again.

Now we show that our And-Or Network is actually a minor of the
AND-OR factor graph constructed in [25].

PROOF OF PROPOSITION 4.3. (Sketch) Recall that H is a mi-
nor of G if a graph isomorphic to H can be obtained from G by
contracting some edges, deleting some edges, and deleting some
isolated vertices. Lets consider the the three operations one by one.
For selection, we only keep the nodes selected, and get rid of the
unselected nodes from the graph. A factor graph would make a
unary factor out of every node and give non-zero weight to only the
selected ones; hence our graph is a minor of the factor graph. For
projection, a factor graph would connect the new node(output) rep-
resenting projected tuple to all the tuples(input nodes) that project
to that node. Our network is distinct in two ways (i) we only retain
a subset of the input nodes; those that result from the independent
project. So we get rid of some input nodes (ii) the output node may
be same as an existing node in the network, because of hashing.
Again this operation leads to a minor of the factor graph. The join
operation follows similarly as well.

Actually, the treewidth of the And-Or Network would be exactly
the same as treewidth of the AND/OR-factor graph(i.e. original
directed G and not M(D(G)); the complexity of factor graph in-
ference depends on tw(M(D(G))))if it were not for hashing. Note
that whenever we create new And/Or nodes, we do so by hashing
its parents. This may reduce the treewidth of the graph. For ex-
ample take the query q : −R(x)S(x, y)T (y), where R = T =
{ai, pi | 1 ≤ i ≤ n}, S = {(ai, aj , 1) | 1 ≤ i, j ≤ n}, and S
is deterministic. This is actually in PTIME. But the treewidth of
the factor graph is n. This is because the graph can’t capture the
fact that S is deterministic. Now consider what happens when we
project R 1x S on y. R 1 S = {(ai, aj , xi, pi) | 1 ≤ i, j ≤ n},
where we have added the lineage xi to tuples (ai, _). Indepen-
dent Project does nothing ; but after deduplication the result is

Name Query Join Order (left-deep plans)
P1/S1 q(h) : −R1(h, x), S1(h, x, y), R2(h, y) R1, S1, R2

P2 q(h) : −R1(h, x), S1(h, x, y), S2(h, y, z), R2(h, z) R1, S1, S2, R2

P3 q(h) : −R1(h, x), S1(h, x, y), S2(h, y, z), S3(h, z, u), R2(h, u) R,S1, S2, S3, T

S2 q(h) : −R1(h, x), T1(h, x, y, z), R2(h, y), R3(h, z) R1, T1, R2, R3

S3 q(h) : −R1(h, x), T2(h, x, y, z, u), R2(h, y), R3(h, z), R4(h, u) R1, T2, R2, R3, R4

Table 1: Queries and query plans used in experiments.

{(aj , y, 1) | 1 ≤ j ≤ n}, where y = h ({(xi, pi) | 1 ≤ i ≤ n}),
h is some hash function. Note that all the tuples have the same
lineage. After the next join with T , the result is {(aj , y, pi) |
1 ≤ j ≤ n}.All these tuples having the same lineage will be useful
as independent project would aggregate them all to (z, 1). At last
the And-Or network left would be a tree connecting z to y and y
to all xi, 1 ≤ i ≤ n. This shows how hashing can actually make
intractable problems tractable at times. Note that in the earlier ex-
ample S did not have to be deterministic; even if all its tuples had
the same probability, the result would still hold.

6. EXPERIMENTS
Our experiments show that when the query is almost safe, that

is there are only a few offending tuples in the dataset, our system
has two orders of magnitude time improvements over MayBMS, a
state-of-the-art DBMS for probabilistic data. We also verified that
as the query plans move from data safety towards increasing data
unsafety, our system transits smoothly with a small slope, while it
remains at all times competitive with MayBMS.

6.1 Dataset and Queries
Following Proposition 3.2, two parameters are essential to de-

termining the data safety condition: the fraction of offending tu-
ples, i.e., of those tuples violating functional dependencies (FFD),
and the fraction of non-deterministic tuples (FDT). Both param-
eters control how safe the given data instance is: this is because
offending tuples are always non-deterministic, by making tuples
deterministic we remove them from the set of offending tuples.

To generate the data, we consider the parametersN ,m, fanout,
and rf , rd ∈ [0, 1]. The parameter N gives the size of the final
query answer; this is equivalent to executing a boolean query N
times on different data instances; m controls the size of complete
(not partial) lineage. The parameter fanout determines the density
of the data, where higher density means higher treewidth.

The tables used in the experiments are as follows:

• Four tables R1, . . . , R4 with the same attributes H and A.
We set dom(H) = [N], dom(A) = [m] and generate Ri =
{(h, a) | h ∈ dom(H), a ∈ dom(A)}, 1 ≤ i ≤ 4. The
probability of each tuple is set to 1 with probability 1 − rd,
otherwise a random number in (0, 1).

• Three tables Si(H,A,B) (1 ≤ i ≤ 3). The tuples are cre-
ated as follows: for each h ∈ [N], a ∈ [m] with probability
1 − rf , we choose at random b ∈ [m] and add (h, a, b) to
Si; otherwise we choose at random a number f from 2 to
fanout and then randomly select b1, . . . , bf ∈ [m] and add
(h, a, bj), j ≤ f to Si. For the sake of uniformity we want
|σH=hSi| to be m and hence the above process is stopped as
soon as for any h, we have added m tuples with H = h and
we start with h+ 1. Every tuple is non-deterministic here.

• Two tables Ti(H,A,B,C) (1 ≤ i ≤ 2). We use the previ-
ous construction of Si to generate T ′i (H,B,C), then gener-

ate Ti(H,A,B,C), where for each h ∈ [N], a ∈ [m], we
choose b, c from πB,CσH=hT

′
i just as we chose b from [m]

in the case of Si. This process controls the FD violations
of B → C and A → B,C. Here again the tuples are all
non-deterministic.

The rationale for this data generation is that it ensures that at
most rf fraction of tuples are offending, i.e., violate the functional
dependencies. The tables Ri have rd fraction of tuples determinis-
tic. If rf = 0 or rd = 0, then the query is safe. The construction
above ensures that the size of each relation is exactly N∗m.

We experiment with Path queries and Star queries. They are
listed in Table 1, along with the join-ordering used for their plan.

6.2 Setup
The experiments were run on a Windows Server 2003 machine

with Quad Core 2.0GHz and 8GB of RAM. Our implementation
was done in Java, wherein the program sends a batch of SQL state-
ments to an SQL Server 2005 database, which in turn writes the
resulting output AND-OR network relationally to a temporary ta-
ble to be read by the same program. A temporary table L contains
the description of the network. Each node v is represented by the
set of tuples (v, w, p), where w iterates over the parents of v and
p = P ((w, v)). We use ε at place of missing parents. After the ex-
ecution of SQL commands, the program has an AND-OR network
on which it does exact inference.

The competitor, MayBMS, is implemented in C as an extension
of the PostgreSQL 8.3 backend. We only considered the MayBMS
exact evaluation technique for arbitrary conjunctive queries on c-
table-like probabilistic data models, which is detailed in [16]. More
specific MayBMS evaluation techniques for safe queries were not
considered, for they cannot be employed for our unsafe queries.

In the following, we report wall-clock execution times of queries
run from a JDBC link with a warm cache obtained by running a
query once and then reporting the second running time.

6.3 Scalability
This experiment demonstrates that when the query is almost safe,

our approach scales very well when compared to MayBMS.
We generated the tables with parametersN = 100,m = 10000,

rf = 0.01, rd = 1, fanout = 4. This means that we are evalu-
ating the queries on 100 different instances, each with 10,000 con-
juncts over tables of size 1M and we report the average execution
time per query. There is only 1% of offending tuples. Every tuple
is uncertain (has probability less than 1). Figure 5 shows the ex-
ecution time of our system(Partial Lineage) versus MayBMS. As
the lineage becomes more complex, the difference in running time
increases. Our execution times are better by an order of magnitude
in this setting, which is to be expected as the query plan is almost
data safe in this case; MayBMS though cannot recognize and take
advantage of this.

6.4 Varying the number of offending tuples
We now measure the influence of the number of offending tuples

Figure 5: Behaviour for 1% offending tuples.

 0

 1000

 2000

 3000

 4000

 5000

 0 0.2 0.4 0.6 0.8 1

tim
e(

m
s)

fraction of tuples violating FD

Path queries

P1 - PL
P2 - PL

P1 - MayBMS
P2 - MayBMS

 0

 1000

 2000

 3000

 4000

 5000

 0 0.2 0.4 0.6 0.8 1

tim
e(

m
s)

fraction of tuples violating FD

Star queries

S1 - PL
S1 - MayBMS

S2 - PL
S2 - MayBMS

Figure 6: Varying the number of offending tuples.

on query execution time. Here the parameters chosen are N = 10,
m = 1000, rd = 1, fanout = 3. The parameter rf varies from 0

 0

 1000

 2000

 3000

 4000

 5000

 0 0.2 0.4 0.6 0.8 1

tim
e(

m
s)

fraction of non-deterministic tuples

Path Queries

P1 - PL
P2 - PL

P1 - MayBMS
P2 - MayBMS

 0

 1000

 2000

 3000

 4000

 5000

 0 0.2 0.4 0.6 0.8 1
tim

e(
m

s)

fraction of non-deterministic tuples

Star queries

S1 - PL
S2 - PL

S1 - MayBMS

Figure 7: Varying the number of deterministic tuples.

to 1 and rd is 1 to make sure that the FDT factor does not influence
the execution time. We have chosen a smaller scale for this problem
because as rf gets bigger, the problem gets increasingly intractable
and execution times shoot up considerably. Here again, we run the
query on 10 different instances and report the average running time.

Figure 6 plots the execution time when varying rf . As we in-
crease rf , the data becomes denser and the treewidth increases.
As shown in the figure, the execution time shoots up considerably
at one point; this is the moment when the treewidth has increased
to the the point where exact computation is no more feasible or a
phase transition has occurred. The realm of exact computation with
our method lies only up to this point, and beyond this one must re-
sort to approximate computations. It can be observed, though, that
in the tractable region the slope is not very high. This shows that
if it were not for the treewidth, our method would have gracefully
scaled as the query plans move from data safety to increasing un-
safety. The line representing MayBMS follows that of our method,
though an additional clear overhead is visible: This may be due to
the considered heuristic for variable elimination [16], or additional
implementation overhead. MayBMS shoots up earlier and the slope
increases faster too.

6.5 Varying the number of deterministic tu-
ples

We use the same settings as for the previous experiment, where
in addition rf = 1 and rd varies from 0 to 1. Every tuple is thus
offending. For rd = 1, the queries become very hard to compute
and both systems fail. We focus instead on the cases where rd is
small, making the problem tractable. We observe that our system
performs very well for low values of rd, as illustrated in Figure 7.
For the query S2, MayBMS could not execute any instance in the
chosen y-range, hence it does not appear in the plot.

7. RELATED WORK
The problem of query evaluation on probabilistic databases has

been well studied in recent years and many different approaches
have been proposed. For exact extensional evaluation, [8] showed
that safe queries can be evaluated completely extensionally by re-
ducing inference to safe plans using standard database operators.
[18] later showed that safe queries can be evaluated using rela-
tional plans with any join ordering, and not only those orderings
required by safe plans. Intensional approaches can evaluate any
conjunctive query by using general-purpose inference techniques
on query lineage [2], or specialized compilation techniques [16,
17]. [25] construct a Bayesian Network, instead of lineage, and
evaluate the answer probability of tuples by doing inference over
these networks.

Exact evaluation is not always feasible for unsafe queries, and
hence many approximation strategies have also been proposed based
on sampling [21, 13] or compilation [19]. There are other approx-
imate inference approaches in graphical models[15, 6, 26] that can
also be leveraged. Note that these approximation strategies can be
used on the And-Or Networks as well. Our method basically re-
duces the original problem into an inference problem of smaller
scale. This means it takes less time to sample the data and more
samples mean better approximation.

8. CONCLUSION AND FUTURE WORK
This paper proposes a novel approach to query evaluation on

probabilistic databases that combines intensional and extensional
approaches: It can perform extensional evaluation inside the database
even for #P-hard unsafe queries and, if necessary, completes it with
intensional computation outside the database. In contrast, existing
methods either evaluate extensionally safe queries only, or perform
the entire probability computation intensionally. We also study the
parametrized complexity of our algorithm and give the best theo-
retical guarantees proposed so far for this problem.

We leave many questions unanswered. It is open how to choose
a query plan, that minimizes (i) the size or (ii) the treewidth of out-
put network of the output network. Answering (ii) is crucial, since
our algorithm being exponential in treewidth is very sensitive to it.
We do not know the query complexity of finding the optimal query
plan, i.e., one that has minimum treewidth. For the queries consid-
ered in this paper, the plans are the same as the optimal query plans
in the traditional sense, but it is not clear whether this is true in
general. We also need to extend the approach to self-joins and eval-
uate queries over more complicated models. In the latter case, we
may not be able to do many computations extensionally, and hence
this raises the question whether the second stage symbolic evalu-
ation that we currently do outside the database can be converted
to database operators. This is particularly advantageous when the
scale of the data is huge and treewidth is very small.
Acknowledgements. Abhay Jha and Dan Suciu were partially
funded by NSF IIS-0513877. Dan Olteanu acknowledges the fi-
nancial support of the FP7 European Research Council grant agree-
ment FOX number FP7-ICT-233599.

9. REFERENCES[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple
relational processing of uncertain data. In ICDE, pages 983–992,
2008.

[2] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs:
Databases with uncertainty and lineage. In VLDB, pages 953–964,
2006.

[3] H. L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. In STOC ’93: Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing,
pages 226–234, New York, NY, USA, 1993. ACM.

[4] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu.
Mystiq: a system for finding more answers by using probabilities. In
SIGMOD Conference, pages 891–893, 2005.

[5] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1999.

[6] P. Dagum and M. Luby. An optimal approximation algorithm for
bayesian inference. Artif. Intell., 93(1-2):1–27, 1997.

[7] N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In PODS, pages 1–12, New York, NY,
USA, 2007. ACM Press.

[8] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, pages 864–875, 2004.

[9] N. N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on
probabilistic structures. In PODS, pages 293–302, 2007.

[10] E. Fischer, J. A. Makowsky, and E. V. Ravve. Counting truth
assignments of formulas of bounded tree-width or clique-width.
Discrete Applied Mathematics, 156(4):511–529, 2008.

[11] J. Huang, L. Antova, C. Koch, and D. Olteanu. “MayBMS: A
Probabilistic Database Management System”. In Proc. SIGMOD,
2009.

[12] J. Huang and A. Darwiche. Using dpll for efficient obdd
construction. In SAT, 2004.

[13] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas. Mcdb: a monte carlo approach to managing uncertain data. In
SIGMOD Conference, pages 687–700, 2008.

[14] A. Jha, D. Olteanu, and D. Suciu. Bridging the gap between
intensional and extensional query evaluation in probabilistic
databases. Technical Report, UW-CSE-10-01-01, 2010.

[15] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction
to variational methods for graphical models. Machine Learning,
37(2):183–233, 1999.

[16] C. Koch and D. Olteanu. Conditioning probabilistic databases.
PVLDB, 1(1):313–325, 2008.

[17] D. Olteanu and J. Huang. Using obdds for efficient query evaluation
on probabilistic databases. In SUM, pages 326–340, 2008.

[18] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query
plans for tuple-independent probabilistic databases. In ICDE, pages
640–651, 2009.

[19] D. Olteanu, J. Huang, and C. Koch. Approximate confidence
computation on probabilistic databases. In ICDE, 2010.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[21] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, pages 886–895, 2007.

[22] I. Rish. Efficient reasoning in graphical models. PhD thesis, UCI,
1999. Chair-Dechter, Rina.

[23] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage for
confidence computation in uncertain and probabilistic databases. In
ICDE, pages 1023–1032, 2008.

[24] M. Sauerhoff, I. Wegener, and R. Werchner. Optimal ordered binary
decision diagrams for read-once formulas. Discrete Applied
Mathematics, 103(1-3):237–258, 2000.

[25] P. Sen and A. Deshpande. Representing and querying correlated
tuples in probabilistic databases. In In ICDE, 2007.

[26] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief
propagation. In NIPS, pages 689–695, 2000.

