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Key Features of DAGger

◮ It considers the possible worlds semantics for uncertain data

◮ natural semantics for incomplete and probabilistic databases.
◮ the input is a probability distribution over a set of possible worlds,

whereby each world defines a set of input objects.
◮ the output is equivalent to clustering within each world and defines

probability distributions for objects belonging to clusters.

◮ It allows for arbitrary correlations, which are:

◮ used in results to queries in probabilistic databases,
◮ obtained by structuring text using Conditional Random Fields,
◮ enforced by experts and learned from data in Bayesian Networks and

Markov Logic Networks.

If correlations are ignored, the output can be arbitrarily off from the

true clustering result.

◮ It can compute exact and approximate probabilities with error

guarantees for the clustering output.

State-of-the-art techniques (e.g. UK-means, UKmedoids, MMVar):

◮ do not support the possible worlds semantics,

◮ lack support for correlations and assume probabilistic independence,

◮ use deterministic cluster medoids or expected means, and

◮ can only compute clustering based on expected distances.

In many cases, the output is a hard clustering that assigns each object to one

cluster, like in deterministic k-medoids or k-means.

DAGger’s Approach

◮ The uncertainty and correlations in the input data are represented

symbolically in a language of probabilistic events.

◮ Clustering events are captured within the same formalism.

◮ This formalism supports a wide range of tasks:

◮ probability computation for clustering events,
◮ sensitivity analysis and explanation of clustering output,
◮ different clustering algorithms, e.g., k-medoids, Markov clustering.

◮ All clustering events are represented within one event network:

◮ Common expressions are represented only once.
◮ Yields a highly repetitive and interconnected structure due to the

combinatorial nature of clustering.
◮ For k-medoids and Markov clustering, the events have the same

structure at each step, and at any iteration step are expressions over the

events at the previous clustering iteration.

◮ Compute the probability of all events by bulk-compiling an entire event

network into one decision tree.

◮ Only the current root-to-leaf path of this decision tree is kept at any one

time, while exploring it depth-first.
◮ Anytime approximation with error guarantees can be achieved by

exploring small fragments of the decision tree.

k-Medoids Clustering of Certain Data

1. ( Initialisation) Initially choose an object as medoid for each cluster.

◮ Given: objects o1, . . . ,on, and clusters C1, . . . ,Ck .

2. ( Assignment) Assign object to the cluster of the closest medoid.

◮ “closest” defined using any distance metric, e.g., Euclidean distance,

Manhattan distance or Minkowski distance.

3. ( Update) Choose new medoid for each cluster.

4. Repeat phases 2 and 3 for a number of iterations, or until fixpoint reached.

Language of Probabilistic Events

◮ Propositional events over independent Boolean random variables.

◮ Construct that can succinctly express real values conditioned on

propositional formulas:

◮ Φ⊗ v expresses that the value v ∈R is conditioned by the formula Φ ∈ B:

if Φ then v else 0.

◮ Sums of if-then-else expressions: Φ1 ⊗ v1 + . . .+Φn ⊗ vn

◮ Comparisons of such sums: Φ1 ⊗ v1 + . . .+Φn ⊗ vn ≤ Ψ1 ⊗ w1 + . . .+Ψm ⊗ wm

This language allows for succinct encoding – independently of the number of

possible variable assignments – of sums of distances from an object to any

other object in a cluster, conditioned on the uncertainty of these objects.

k-Medoids Clustering of Uncertain Data

Our approach is a realisation of k-medoids clustering on uncertain data.

◮ It is equivalent to performing k-medoids clustering in each possible world of

the input, yet avoids the explicit enumeration of possible worlds.

◮ The probability that an object belongs to a cluster is the sum of probabilities

of those worlds in which this event occurs.

◮ Each object belongs to each cluster or is medoid with a certain probability.

Examples of clustering queries:

◮ membership: does a given object belong to a given cluster?

◮ medoid: is a given object the medoid of a given cluster?

◮ co-occurrence: are given objects clustered together?

Membership event φt
[

oi ∈ Cj

]

for object oi and cluster Cj at step t ≥ 1:

φt
[

oi ∈ Cj

]

= φ [oi ] ∧
∨

1≤a≤n

(

φt−1
[

cj = oa

]

∧ (
∧

1≤b≤n,b 6=a

(d(oi ,ob) < d(oi ,oa) →

¬(
∨

1≤l 6=j≤k

φt−1 [cl = ob])))
)

Medoid event φt
[

cj = oi

]

for object oi and cluster Cj at step t > 1:

∆t
(

oi ,Cj

)

=
n
∑

a=1

[

φt
[

oa ∈ Cj

]

⊗ d(oi ,oa)
]

φt
[

cj = oi

]

= φt
[

oi ∈ Cj

]

∧
∧

1≤a≤n
a 6=i

φt
[

oa ∈ Cj

]

→
(

∆t
(

oi ,Cj

)

< ∆t
(

oa,Cj

))

Legend:

◮ φ [oi ] is the event that object oi exists. For certain data, this event is true.

◮ d(·, ·) is the distance function between objects.

◮ ∆t
(

oi ,Cj

)

is the total distance-sum of oi to the objects in Cj at step t .

Exact and Approximate Probability Computation

x0 x1 x27

φ[o0] φ[o1] φ[o26]

φ [c0 = o0] φ [c1 = o0] φ [c1 = o26]

φ [o0 ∈ C0] φ [o0 ∈ C1] φ [o26 ∈ C1]

φ[o25 is warn] φ[o26 is warn]

Partial example of an event

network with five layers en-

coding, highly interconnected

events for clusters C0 and C1.

◮ Compilation of event network into decision tree using Shannon expansion:

Φ = x ∧Φ|x ∨ ¬x ∧Φ|¬x This means that: P(Φ) = Px · P(Φ|x) + (1− Px) ·P(Φ|¬x)

◮ If Φ is the network, then the restrictions Φ|x and Φ|¬x are obtained by

masking in Φ those nodes that become true or false.

◮ Repeated application of Shannon expansion eventually masks nodes in the

network and adds the probability of the variable assignments (x or ¬x) to the

probability mass of these nodes.

◮ Approximate probability computation strategies decide how to invest

(eagerly, lazily, or hybrid) the error budget while exploring the decision tree.

Experimental Evaluation with k-Medoids Clustering of Uncertain Data

◮ naive means k-medoids in each possible world.

◮ types of correlations considered: positive, mutex (block-independent

disjoint); conditional independence.
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