
Uncertain Data Models

Christoph Koch
EPFL

Dan Olteanu
University of Oxford

SYNOMYMS

data models for incomplete information, probabilistic data models, representa-
tion systems

DEFINITION

An uncertain data model is a system for representing incomplete or uncertain
data. An uncertain database asserts that a database is in one of multiple alter-
native states (possible worlds), each being a standard database. A probability
distribution can be assigned to the set of possible worlds.

A detailed account of relational uncertain data models and their evolution, as
well as related computational aspects is given in a recent research monograph [1].

SCIENTIFIC FUNDAMENTALS

Basic terminology and possible worlds semantics

An uncertain data model or representation system is an abstraction and method
for representing uncertain or incomplete data in a database system.

This article focuses on uncertain relational data models, that is, data models
that aim to represent relational databases consisting of finite relations that hold
data tuples, with the additional challenge that the data to be represented is only
incompletely determined. This incompleteness or uncertainty may manifest
itself by unknown or alternative field values or tuples, for instance.

An uncertain database can be captured by possible worlds semantics: An
uncertain relational database can be thought of as a (possibly uncountably
infinite) set of possible worlds, each possible world a classical relational database,
which all adhere to the same schema.

Possible worlds semantics is an intuitive thought model, but an impractical
representation system; infinite sets of worlds cannot be explicitly stored, and
even finite sets of worlds can often be stored much more compactly than by
naive enumeration.

1

Expressive power of representation systems

A representation system is a method and data structure for physically storing
an uncertain or probabilistic database as an actual finite data object called a
representation, a bit sequence (or another “classical” data object that we are
comfortable handling, such as a relational table) that can be stored on a physical
storage device, with finite resource needs. The representation must completely
and unambiguously specify the uncertain database.

By a family of uncertain databases, we understand the set of all uncertain
databases satisfying a given common set of (schema) constraints. A represen-
tation system is called complete for a family of uncertain databases if it assigns
a representation to each element of the family.

This is more subtle than it may seem. Even if unlimited storage is available,
there are only countably many possible distinct bit sequences, so in general we
can only hope to find representation systems for countably infinite families; but
since there are uncountably many countable families, these representable fami-
lies are extremely rare. For instance, consider the family of uncertain relational
databases with real-typed fields. There are uncountably many real numbers,
so there are uncountably many uncertain relational databases with real-typed
fields, and there cannot be a complete representation system for them. There are
countably many integers, but uncountably many sets of integers, so there cannot
be a complete representation system for relational databases with integer-typed
fields either. On the other hand, consider the family of uncertain databases

{{{〈x, y〉}︸ ︷︷ ︸
world

| y ∈ R}

︸ ︷︷ ︸
uncertain database

| x ∈ R}

︸ ︷︷ ︸
family

,

i.e., for each x ∈ R, the set of possible worlds consisting of a singleton binary
relation containing a pair of x and one other real number y. This is an un-
countable family of uncertain databases; each uncertain database in this family
is an uncountable set of possible worlds; yet there is a complete representation
system – the previous sentence.

On the other hand, there are complete representation systems for all fam-
ilies of uncertain databases captured by finite sets of possible worlds – naive
enumeration of the possible worlds is one of them.

Given the difficulty of creating complete representation systems for uncertain
databases, studying the expressive power of incomplete representation systems
is worthwhile. One key notion in this context is that of a strong representation
system. A representation system ρ is called strong for a given query language
L if, for each uncertain database (set of possible worlds) I representable by ρ,
and each query Q ∈ L, the set of possible worlds {Q(I) | I ∈ I} is representable
by ρ. Strength is a nontrivial property of representation systems that in general
needs to be proven; when ρ is not strong for L, it may still be strong for a
sublanguage of L.

2

Conditional tables

Conditional tables (c-tables) are a representation system for uncertain relational
databases which is notable for its versatility and for the seminal role it has played
in the development of uncertain data models.

Syntactically, a c-table is a relational table extended as follows. Given a set
V of typed variables (i.e., it is known for each variable which domain it ranges
over, be it integers, strings, Booleans, or other), a c-table is a (multi-)set of
items

〈t1, . . . , tk | φ〉

where the ti is either a constant or a variable from V (in each case its type is
consistent with the schema of the table) and φ is a Boolean combination (using
∧, ∨, and ¬) of atomic formulae s ≤ t, where s, t are either variables from V
or constants. (Obviously, comparison operations =, 6=, and < are just syntactic
sugar.) A c-table database is a structure 〈R1, . . . , Rl; Ψ〉 consisting of a number
of c-tables R1, . . . , Rl (according to schema) and a global condition Ψ (of the
same format as the per-tuple conditions).

The semantics of a c-table database is best formalised by possible worlds
semantics. Let θ be a function that maps each variable of V to an element
of its domain and each constant to itself. For Boolean conditions, let θ(s ≤
t) := θ(s) ≤ θ(t) and let θ commute with ∧, ∨, and ¬. For c-table Ri, let

θ(Ri):={〈θ(t1), . . . , θ(tarity(Ri))〉 | 〈t1, . . . , tarity(Ri) | φ〉 ∈ Ri, θ(φ) is true}

For c-table database 〈R1, . . . , Rl; Ψ〉, its set of possible worlds is

{〈θ(R1), . . . , θ(Rl)〉 | θ, θ(Ψ) is true}.

Example: Consider the c-table database

R1 A
x x ≤ y
2 x ≤ 0

R2 B
y y ≤ x Ψ = 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1

over schema R1(A : int), R2(B : int) where V = {x, y}. Due to the global
condition only admitting values 0, 1 for x and y, there are four possible worlds:

• θ = {x 7→ 0, y 7→ 0} : R1 = {0, 2}, R2 = {0}

• θ = {x 7→ 0, y 7→ 1} : R1 = {0, 2}, R2 = ∅

• θ = {x 7→ 1, y 7→ 0} : R1 = ∅, R2 = {0}

• θ = {x 7→ 1, y 7→ 1} : R1 = {1}, R2 = {1}

In the literature, c-table databases are just called c-tables, even if they con-
sist of multiple tables. We will do the same from now on.

C-tables have a number of interesting properties. Most importantly, they are
a strong representation system for positive relational algebra. That is, although

3

they are not complete representation systems, they are closed under evaluation
of relational algebra queries even though they can represent (some) uncountable
families of possible worlds.

The proof is not difficult. Relational projection and union on c-tables are
like on relational tables but also copy the input conditions to the result. (Under
set semantics, multiple tuples agreeing on the data columns but differing on the
conditions are collapsed into a single tuple with a disjunction of conditions.)
Selections add the selection condition to the condition of each tuple:

σψ(Ri) = {〈~t | φ ∧ ψ〉 | 〈~t | φ〉 ∈ Ri}.

The relational product operation pairs two c-table tuples just like in the classical
product operation; the condition of the new tuples is the conjunction (∧) of the
conditions of the input tuples:

Ri ×Rj = {〈~ti,~tj | φi ∧ φj〉 | 〈~ti | φi〉 ∈ Ri, 〈~tj | φj〉 ∈ Rj}

Naive tables are c-tables without conditions (or viewed differently, in which
all conditions are set to true). Syntactically, naive tables differ from relational
databases in that variables may occur in fields. Superficially, naive tables re-
semble relational databases with SQL NULL values, but the semantics is sub-
stantially different and query evaluation on naive tables is more complex. In
naive tables, if a variable is re-used in multiple places, all possible worlds will
have the same concrete value in all these places; such a constraint cannot be
expressed using SQL NULL values. Note that for naive tables, query evaluation
is co-NP-hard for data complexity (fixed queries, variable data) already for very
limited query languages, such as select-project-join queries.

Of course, SQL tables with NULL values are a representation system for un-
certain databases of their own, and given their wide adoption, they deserve men-
tion here. However, there are many subtleties in how the SQL standard treats
NULL values and how it weakens SQL query semantics to avoid NP-hardness,
which are beyond the scope of this article. Because of these limitations, SQL
tables with NULL values are not a strong representation system for positive re-
lational algebra under its classical semantics. To understand this, note that we
could build any naive table using a positive relational algebra view from a naive
table in which no variable occurs twice. So the limitation to single occurrences
of variables is not sufficient to avoid NP-hard query evaluation. Instead, SQL
semantics is forgetful of valuations of NULL values and makes decisions locally
to break dependencies that would otherwise cause complexity. For example,
consider the query

select * from (select A as A1, A as A2 from R) as V where A1 = A2

Assume that this query is run on a singleton relation R with a NULL value.
Then SQL will produce an empty result, locally deciding that it knows neither
A1 nor A2 and conservatively evaluating the query condition to false, even
though a strong representation system would evaluate the condition to true and

4

produce a result tuple. (By definition, a strong representation system produces a
representation of the query evaluated in each possible world individually. Here,
A1 and A2 have the same value in all possible worlds.)

Probabilistic c-tables and graphical models

A probabilistic database is an uncertain database with a probability distribution
over the set of possible worlds. To avoid mathematical subtleties, we subse-
quently assume discrete (countable) sets I of possible worlds. Then, a probabil-
ity distribution is a function p : I→ R such that, for each possible world I ∈ I,
p(I) > 0 and

∑
I∈I p(I) = 1.

Given that probabilistic databases are uncertain databases with additional
structure (the probability distribution), what was said about uncertain databases
above applies to probabilistic databases in analogy.

We can represent a probabilistic database by a pair of a representation sys-
tem for the uncertain database that uses a set of variables V and obtains each
possible world by a valuation of these variables (as was the case for c-tables) plus
a suitable representation of the joint probability distribution of these variables,
interpreted as random variables.

Such a joint distribution of the random variables V = 〈v1, . . . , vn〉 can be
represented by a mapping p : Dom(v1)× . . .×Dom(vn)→ R, and if the domains
Dom(vi) are finite, it can be stored as a (large) relational table. Of course, such
a naive representation consumes much space, and often more succinct decompo-
sitions are possible, in the sense of relational decomposition (factorisation with
respect to the product operation × of relational algebra) or, as a strict general-
isation of this idea, Bayesian Networks and probabilistic graphical models.

We have thus described a representation system for probabilistic databases
as a pair of

1. a method for succinctly capturing the data inside a possible world, by
a function that maps a valuation of the random variables to a classical
relational database, and

2. a representation of the joint probability distribution of the random vari-
ables.

These two constituent parts are essentially orthogonal, and only linked through
the names of the random variables.

This is a convenient separation of concerns analogous to the separation of
data from queries in databases. It is possible to amalgamate these two parts
more closely, but in general this will be at the cost of both clarity and suc-
cinctness of representation. Two forms of amalgamation are possible. The first,
evolving from the database tradition, is to annotate tuples with probabilities,
integrating the second part into the first. This direction is studied in more detail
in the next section. The other form of amalgamation is by integrating the first
part into the second, typically implemented as probabilistic graphical models in
which the names of random variables carry inline data values or even structure.

5

A particular amalgamation may appear convenient for a particular applica-
tion; moreover, in the context of graphical models, before recent work on lifted
inference, query, data, and distribution were never separated.

One special case of (probabilistic) c-tables, called U-relations, is worth not-
ing, since the formalism allows to evaluate positive relational algebra using pure
relational algebra only, without condition parsers or advanced plug-ins. U-
relations are (probabilistic) c-tables in which (random) variables are Boolean,
the global condition is true, variables occur only in the conditions, not in the
data fields, and per-tuple conditions are conjunctions over atomic conditions
testing whether a variable is true. Thus, a conjunction of k atomic conditions
can be represented by k additional columns to a table, holding variable names.
On such a representation, positive relational algebra can be answered by a trans-
form to another, a little more complex positive relational algebra query that is
aware of the relational encoding of conditions, and an uncertain or probabilistic
database system can be built on top of a classical relational database system
simply by adding a query rewriting front-end. Despite the restrictions on the
model, U-relations are not just a strong representation system for positive re-
lational algebra but a complete representation system for finite sets of possible
worlds.

From weaker representation systems to lineage

Depending on how uncertain data is initially obtained, certain independence
properties may hold that lend themselves to particularly simple and readable
representations. Two such models shall be mentioned here, both for probabilistic
databases that represent finite sets of possible worlds.

Tuple-independent databases are relational databases in which each tuple,
independently, either is or is not in the database, with a certain probability.
Given the simple scenario, it is natural to associate a tuple’s probability directly
with the tuple, and store it in an additional probability column of the table. This
representation system thus does not need explicit variables. It is also a succinct
representation system – a tuple-independent database with n tuples represents
2n possible worlds. The probability of a possible world is the product(∏

tuple ~t chosen

p(~t)
)
∗

∏
tuple ~t not chosen

(1− p(~t)).

A block-independent-disjoint table (BID table) is a table in which there
are multiple groups (blocks) of tuples. Within each block, tuples are mutually
exclusive and are associated with probabilities that sum up to one within the
block. Tuple choices within blocks are independent across blocks. A possible
world consists of one tuple pick from each block. The probability of the possible
world is the product of the in-block probabilities of the picked tuples.

It is not hard to see how the independence properties of these two models
can arise in practice; for instance, independent tuples may arise in information
retrieval systems; BID tables can be the result of OCR algorithms that can do

6

better than make a best guess, but are able to suggest local alternatives in case
a text snippet cannot be recognized with certainty.

Both models are succinct, but neither is a strong representation system for
a significant query language (with joins). This leaves two options, either to run
monolithic query evaluation algorithms which may not make use of the compo-
sitionally of the query language on such input representations, or to abandon
the representation in favor of a stronger one for query evaluation.

Assume we load a tuple-independent database into a probabilistic c-table,
assigning each tuple its own new independent random variable. Then a tuple-
independent table R becomes a c-table R as follows (the representation of the
joint distribution of the independent variables xi, xi 7→ pi, is not shown below).

R sch(R) p
~t1 p1
...
~tn pn

R sch(R) φ
~t1 x1 = true
...
~tn xn = true

Now we can evaluate positive relational algebra as discussed earlier. What is
significant to observe is that as we perform query operations, tuples and their
conditions change, but the random variables remain the same and independent
and the representation of the distribution does not need to be modified. As
more dependencies are introduced, they get reflected in the per-tuple conditions.
(Even though we seem to create new statistical dependencies, they only get
reflected in the data, where they do not cause a substantial loss of succinctness.)
For instance, a join of two relations will result in pairs whose conditions are the
conjunctions of the conditions of the constituent tuples. Each original input
tuple was associated with its unique variable, and this information does not
get lost along the way, allowing us to interpret a tuple’s condition, fairly, as its
lineage.

KEY APPLICATIONS

Applications of uncertain data models include information retrieval, sensor data
management, natural language processing, statistical data management, and
data analytics.

CROSS REFERENCES

Query Processing over Uncertain Data; Graphical Models; Probabilistic Rela-
tional Models

7

Recommended Reading

[1] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

8

