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ABSTRACT
This paper introduces a principled incremental view main-
tenance (IVM) mechanism for in-database computation de-
scribed by rings. We exemplify our approach by introducing
the covariance matrix ring that we use for learning linear re-
gression models over arbitrary equi-join queries.

Our approach is a higher-order IVM algorithm that ex-
ploits the factorized structure of joins and aggregates to
avoid redundant computation and improve performance. We
implemented it in DBToaster, which uses program synthesis
to generate high-performance maintenance code. We exper-
imentally show that it can outperform first-order and fully
recursive higher-order IVM as well as recomputation by or-
ders of magnitude while using less memory.

1. INTRODUCTION
Many of today’s applications require real-time analytics

over dynamic datasets, from online retailers to sensor net-
works, retail planning and forecasting [25, 4, 6]. These appli-
cations typically have long-lived analysis queries that enable
data analysts to promptly react to fast-changing events. Al-
though collected datasets can be large in size, in most cases,
datasets evolve through small changes. This observation
motivates incremental data analysis whose aim is to achieve
efficient maintenance of analytical models for such small-size
updates [14, 23].

In modern data analysis, datasets are not just dynamic
in nature but also large. There is an increasing need to
analyze data acquired from many different sources, for in-
stance, to enable prediction models with higher accuracy or
at a more granular level [27]. Data practitioners build such
models over a common relation representing a join of the
collected data sources. However, this can increase the load
by several orders of magnitude due to the blowup in the
tabular representation of the join result. A more succinct,
factorized representation exploits multi-valued dependencies
in the join result to eliminate a high degree of redundancy
in both computation and data representation [34].

Motivated by the need to run complex analytics over joins
of data sources, both industry and academia have developed
systems that offer a tighter integration of databases and
machine learning [26, 36, 19, 35]. Several data systems also
integrate with statistical packages like R to enable in-situ
data processing using domain-specialized routines [42, 11].

In this paper, we study incremental computation of in-
database analytics described by rings such as the covariance
matrix ring that can be used for learning regression models.
We exploit dependencies among variables of join queries to
factorize the computation of ring operations over joins and
contain the effects of data explosion in join results [34, 39].

We next highlight key observations behind our work by
means of an example.

Running Example. Consider a database with three re-
lations [39]: House(z, s, p) records house prices p and living
areas (in squared meters) s within locations given by zip-
codes z; Tax(s, t) relates city tax bands t with house living
areas s; Shop(z, h) list shops with zipcode z and opening
hours h (our experiments consider an extended real dataset).

We first explain how to compute the factorized natural
join of the three relations using the order on the query vari-
ables from Figure 1(left) [34]: We first intersect Shop and
House on zipcode z, then for each qualifying zipcode we
branch and compute the available opening hours h sepa-
rately from areas s, tax bands t, and prices p. This branch-
ing exploits the conditional independence in the join result:
given z, h is independent of s, t, and p. Similarly, given
s, t is independent of p and of z. This factorization avoids
the explosion in the flat representation of the join result by
not explicitly pairing the opening hours h with house living
areas s for each zipcode z, and each tax band with each
price for each s. Figure 1(middle) gives a schematic pre-
sentation of the factorized join that uses Cartesian products
and unions to encode the independence among variables and
respectively the possible value assignments of variables.

We can use a slightly extended approach to compute ag-
gregates over factorized joins [8]. For instance, to compute
the number of tuples in the join result (COUNT or SUM(1)), we
follow the above approach where each visited value is inter-
preted as 1, unions as summation, and Cartesian products
as multiplication. The count can then be accumulated as
we progress with the factorized join.

Furthermore, we can learn any ordinary least squares re-
gression model over the factorized join using batch gradient
descent [39]. For instance, the following model

f(xz, xh, xs, xt) = θ0 + θz · xz + θh · xh + θs · xs + θt · xt
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Figure 1: (left) Variable order ω of the natural join of the three relations House(z, s, p), Tax(s, t), Shop(z,
h); (middle) Factorized join over ω; (right) View tree over ω and payload ring P.

with parameters θ0, θz, θh, θs, θt predicts the price p given
the other variables as input features (for simplicity, we as-
sume the features are continuous or already one-hot en-
coded; all values are numeric). The gradient vector of the
square loss function with respect to the model parameters
requires the computation of a covariance matrix that con-
sists of sum aggregates of the form SUM(1) and SUM(a · b) for
every pair (a, b) ∈ {z, h, s, t, p}2. We can share the compu-
tation across the aggregates and compute at each node in
the factorized join a triple of aggregates (C,S,Q), where
C is the count of tuples in the relation represented by the
subtree rooted at that node, S is a vector with one linear
sum of values per query variable within that subtree, and Q
is a matrix of any product of two linear sums of values of
query variables within that subtree.

We observe that all of the above computations follow the
same structure, which is given by the variable order. Vari-
able orders play the role of query plans here as they dictate
the order of the joins in the query. Different variable orders
may lead to different complexities in the above processing
examples. We can capture all of the above computations
using the abstraction of a so-called view tree that follows
the structure of the variable order, cf. Figure 1(right). Each
node n in this tree has a map V@n

rels[vars] whose keys are
tuples of values for variables vars from relations rels and
payloads can be tuples of aggregates; we show in Section 3
how to formalize the payload operations using sum ], prod-
uct �, and ⊕z marginalization of variable z in specific rings.
For instance, the top map is defined by the product of the
payloads of the maps at its two children and a new map
IP [z] for each z-value as map key, followed by a sum that
marginalizes over z. The new map is specific to the ring P
and lifts values that are assignments of variables in the key
to elements of the ring.

To compute the COUNT aggregate over the factorized join,
the payload at a node would be the number of tuples in the
view’s result, � arithmetic multiplication, and ] addition.
To compute the covariance matrix, the payload is a triple of
aggregates (C,S,Q) with slightly more involved definitions
of the ring operations (Section 3).

Incremental view maintenance (IVM) of any computation
within a ring P over factorized joins can now be phrased
naturally within our framework. Whereas for non-incremen-
tal computation we only materialize the top view in the
tree, for IVM we materialize all views. An update (tuple

insert or delete) to a relation R triggers changes to all views
at nodes from the leaf R to the root of the view tree: To
such a view V we now add δV , which is computed using
classical delta rules. For instance, an update δShop triggers
the computation of the following delta views:

δV@h
Shop[z] = ⊕h(IP [h]� δShop[z, h])

δV@z
Shop,Tax,House[ ] = ⊕z(IP [z]� δV@h

Shop[z]� V
@s
Tax,House[z])

Our approach is an instance of higher-order delta-based IVM,
since an update may trigger maintenance of several views.
Higher-order IVM naturally follows from our factorized com-
putation approach, which relies on variable orders.

The benefit of factorized IVM lies in efficiency. For our
variable order, if each relation has size N , then there are
databases for which the relational join result has size Θ(N3)
yet the factorized join can be computed in time and has size
Θ(N). The time complexity remains O(N) for computing
sum aggregates over the factorized join and O(m2N) for
computing the covariance matrix, where the additional fac-
tor O(m2) is due to the quadratically many aggregates in
the number m of query variables.

Under updates to relations Shop and/or House, the time
complexity for IVM becomes O(1) for scalar aggregate pay-
loads and O(m2) for the covariance matrix, so independent
of the database size! Under updates to Tax, the time com-
plexity for IVM stays linear, yet a finer analysis shows that
the other views on the path to the root are only updated for
those z-values that appear with the s-value in the update.
Updates to Tax can be supported in O(1) by a different vari-
able order (where s and z are swapped and h and t remain
children of z and s respectively), but then updates to Shop

require linear-time support in worst case! An insight of this
paper is a characterization of which relation updates can be
supported in constant time within the same workload.

If we turn to the space complexity of our approach, we
note that by decomposing the input join query into sub-
queries (the views), we essentially factorize its materializa-
tion and thereby reduce its size dramatically. The number
of views to materialize depends linearly on the number of
join variables and, at least for acyclic join queries, the size
of each view is asymptotically upper bounded by the size
of the factorized join result. For cyclic queries, such as the
triangle query, we may materialize larger views to support
constant-time updates to some relations.



The contributions of this paper are as follows:
• We introduce a higher-order incremental view maintenance

(IVM) mechanism for aggregate computation over arbi-
trary equi-join queries. It relies on an order of the query
variables to create a tree of interrelated, factorized views
that decompose the query and aggregates.

• Our IVM mechanism can support various aggregate data
rings. In particular, we introduce a ring that captures
covariance matrices over factorized joins, which is used
for learning linear regression models.

• Its complexity is captured by a new parameter called the
dynamic factorization width, which draws on connections
to widths for join queries.

• We implemented it in DBToaster, which uses recursive
delta processing and program synthesis to generate high-
performance maintenance code. The code represents an
in-memory standalone stream processor.

• We benchmarked it against first-order and fully recursive
higher-order IVM and recomputation. The experimental
results show that our approach can outperform its com-
petitors by orders of magnitude while using less memory.

2. PRELIMINARIES
Queries. We consider (equi-)join queries and families

of SUM aggregates over them. Views are query definitions
where we also allow to aggregate away variables in the query.
The set of variables of a query or view Q is denoted by σ(Q).
The set of free variables of a query Q is denoted by free(Q)
and consists of all variables that appear in the schema of the
relation representing the result of Q; for equi-join queries,
this is the set of all variables in the query.

We let D be the domain of values for query variables; for
simplicity, we assume all variables have the same domain.

Size bounds. For a join query Q, its hypergraph H(Q)
has one node per variable in Q and one hyperedge per rela-
tion in Q. Figures 1(left) depicts a query hypergraph.

An edge cover is a subset of (hyper)edges of H(Q) such
that each node appears in at least one edge. Edge cover
can be formulated as an integer programming problem by
assigning to each edge Ri a weight wRi that can be 1 if Ri
is part of the cover and 0 otherwise. The size of an edge
cover upper bounds the size of the query result, since the
Cartesian product of the relations in the cover includes the
query result: |Q(D)| ≤ |R1|wR1 · . . . · |Rn|wRn , where the
database D is (R1, . . . , Rn). By minimizing the size of the
edge cover, we can obtain a lower upper bound on the size
of the query result. This bound becomes tight for fractional
weights [7]. Minimizing the sum of the weights thus becomes
the objective of a linear program.

Definition 1 ([7]). Given a join query Q over a database
(R1, . . . , Rn), the fractional edge cover number ρ∗(Q) is the
cost of an optimal solution to the linear program with vari-
ables (wRi)i∈[n] representing weights of (Ri)i∈[n]:

minimize
∏
i∈[n]

|Ri|wRi

subject to
∑

R is relation of x

wR ≥ 1 for each variable x

∀i ∈ [n] : ωRi ≥ 0.

R1 R3

R2

x

y z

minimize
∏
i∈[3] |Ri|

wRi

subject to
x : wR1 + wR3 ≥ 1
y : wR1 + wR2 ≥ 1
z : wR2 + wR3 ≥ 1

Figure 2: (left) Hypergraph for the triangle query
Q/; (right) Linear program for computing the tight
size bound on the query result.

Figure 2 gives the hypergraph of the triangle query

Q/(x, y, z) = R1(x, y), R2(y, z), R3(x, z) (1)

and its linear program. By taking wRi = 1/2 and |Ri| = N

(i ∈ [3]), we get the optimal solution ρ∗(Q/) = N3/2. Conse-

quently, the result of the triangle query has O(N3/2) tuples.
This bound is tight in the sense that there exist classes of
databases for which the result size is at least Ω(N3/2). For
the acyclic queryQ in Section 1, we set the weights 1 for each
of the three relations and thus ρ∗(Q) = N3 if all relations
have size N .

Cardinality constraints can be used to lower the size bounds
of query results. For instance, if the number of distinct
x-values in R1(x, y) is k � N , then we can refine Q/ as
R1(x, y), R2(y, z), R3(x, z), X(x) with the new size bound
ρ∗(Q/) = N · k, where wR2 = 1 and wX = 1.

Join selectivities can also be incorporated to obtain a size
estimate (in contrast to an upper bound). For instance, as-
sume the selectivity of the join on x between R1 and R3

is very low: sel(x) = |R1(x,y),R3(x,z)|
|R1|·|R3|

= k
N

. Then, we con-

sider a relation R4(x, y, z) = R1(x, y), R3(x, z) whose size
estimate is k ·N and use this as a cardinality constraint to
obtain an estimate of k ·N for Q/’s size since the size of the
join of R2 and R4 cannot exceed the size of R4.

Factorized computation. The result of a join query ex-
hibits multi-valued dependencies that can be exploited for
succinct, so-called factorized representation, and to reduce
the time complexity to compute it and subsequent aggre-
gates on it. This is captured by variable orders, which are
akin to query plans in that they provide a relative order on
the joins of the given query.

Definition 2 ([34]). Given a join query Q and two variables
x and y in Q, x depends on y if they occur in the same
relation symbol in Q. A variable order ω for Q is a pair of a
rooted forest with one node per variable in Q and a function
key mapping each variable x to the subset of its ancestor
variables in ω on which the variables in the subtree rooted at
x depend. It satisfies the following constraints:

• The variables of each relation symbol in Q lie along the
same root-to-leaf path in ω.

• For every variable y that is a child of a variable x,
key(y) ⊆ key(x) ∪ {x}.

We let Ω(Q) denote the possible variable orders of Q.

Figure 1(left) gives a variable order for the natural join
query from Section 1, where key(h) = {z}, key(t) = {s},
key(p) = {z, s}, key(s) = {z}, and key(z) = ∅. For the
triangle query Q/, any permutation of the variables x, y, z
is a path variable order. For the variable order x−y− z, we
have key(z) = {x, y}, key(y) = {x}, and key(x) = ∅.



Given a database D, the grounding of the variable order
ω for query Q wrt D is a factorized representation of the
query result Q(D). This can be computed as exemplified in
Figure 1(middle) for our running example.

If two variables x and y depend on each other, then the
choice for a value for x may restrict the choice for a value
for y. If they are not dependent, we can represent the val-
ues for x separately from those for y instead of explicitly
representing their Cartesian product.

Similarly to ρ∗(Q), the factorization width fw(Q) governs
the sizes of the factorized results of a join query Q [34]. In a
factorized join over a variable order ω, the values of a vari-
able x depend on the tuples of values of its key(x) variables
and are independent of the values for other variables. A
tight bound on this number is then given by the size of a
join query that covers the variables in key(x)∪ {x}. We de-
note this restriction of Q by Qkey(x)∪{x}. An upper bound
on the size of the factorization is then given by the maxi-
mum over all variables in ω of their number of values. This
can be improved by going over all possible variable orders
of Q and taking the minimum upper bound. This is the
factorization width of the query.

Definition 3. Given a join query Q, the factorization width
of Q is fw(Q) = minω∈Ω(Q) maxv∈vars(Q) ρ

∗(Qkey(x)∪{x}).

Example 1. For acyclic queriesQ over relationsR1, . . . , Rn,
fw(Q) = maxi∈[n](|Ri|) while ρ∗(Q) can be as much as∏
i∈[n] |Ri| as in our running example. Here are examples of

restrictions of our natural join Q in Section 1: key(t)∪{t} =
{s, t} is covered by the query restriction Q{s,t} that is the
relation Tax; key(s) ∪ {s} = {s, z} is covered by the query
restriction Q{s,z} that is the relation House. For the triangle
query Q/ and variable order x−y−z: key(z)∪{z} = {x, y, z}
is covered by Q/, while key(y) ∪ {y} = {x, y} is covered by
relation R. 2

For any join query Q, its factorization width is the frac-
tional hypertree width [34], a parameter that captures tracta-
bility for a host of computational problems [5].

Proposition 1. Given a join query Q, for every database
D, the result Q(D) admits

• a flat representation of size O(ρ∗(Q)) [7];

• a factorized representation of size O(fw(Q)) [34].

There are classes of databases D for which the above size
bounds are tight. The flat and factorized representations of
Q(D) can be computed worst-case optimally [29, 34].

A further result relevant here is that aggregates defined
by arithmetic expressions over data values with operations
summation and multiplication can be computed in one pass
over factorized joins [8], as exemplified in Section 1.

3. FACTORIZED RING COMPUTATION
In this section, we introduce our framework for factorized

computation over data rings. The main data structure used
in our framework is a view that maps tuples to elements from
a ring. The view is thus a map, where the keys are tuples
from relations and the values, or the payload, carry useful
computation. We accommodate the computation and the
incremental maintenance of SUM aggregates or covariance
matrices over joins in our framework by using hierarchies of
interrelated views, also called view trees.

Definition 4. Let P be a ring (P,+, ∗,0,1). A view V[key]
over P is a set of mappings from tuples of values for vari-
ables in key to elements in P. Let V,V1,V2 be views over the
same ring P. We define the following operations on views:

• join: V[key] = V1[key1]� V2[key2]

Condition: key = key1 ∪ key2.

V[key] = v ← V1[key1] = v1,V2[key2] = v2, v = v1 ∗ v2.

• union: V[key] = V1[key1] ] V2[key2]

Condition: key = key1 = key2.

V[key] = v ← (v = V1[key1] + V2[key2]);

(v = V1[key1], !V2[key2] = v2);

(v = V2[key2], !V1[key1] = v1).

• marginalization: V[key] = ⊕xV1[key1]

Condition: x ∈ key1, key = key1 − {x}.

V[key] =
∑

v1 ← V1[key1] = v1.

For each ring P, we define a special view IP [x] that lifts
the domain values of any variable x to elements in the ring.
These built-in views are necessary when marginalizing vari-
ables and casting the compute result as ring elements. Later
in this section we define several rings and their lift view.

View Trees. We next define query plans for a given input
join query Q. They mirror the tree structure of a variable
order for Q and define at each node in this tree a view, which
is a query over its children. The root of the tree corresponds
to the entire query and the plan decomposes it into smaller
queries in the spirit of (hyper)tree decompositions of join
queries. We call such plans view trees.

Figure 3 gives an algorithm that constructs a view tree
τ(ω) from a variable order ω of a given query Q. It is con-
sidered that all views are over the same ring P. To construct
complete query plans, the input variable order is extended
by placing relation symbols at leaves under their lowest vari-
able (as children or further below). The views are then de-
fined on top of them. The base case is that of a relation
symbol: We construct a view that is the relation itself. At
an inner node x, we construct a view that is the marginaliza-
tion over x of the natural join of the views at its children and
of the lift view for x: we first join on x and then we aggre-
gate it away. The schema of the view is given by the keys of
x in the variable order ω. We use the notation V@x

rels[key(x )]
to state that the view V is (recursively) defined over rela-
tion symbols rels and corresponds to variable x in ω; for a
view that is a relation symbol R, we may use the simplified
notation R[σ(R)] without rels and x, since they are just R.

Example 2. Figure 1 gives a variable order and a view tree
for our example query. 2

Our algorithm constructs one view per variable in the vari-
able order ω. A wide relation (with many variables/columns)
leads to long branches in ω with variables that are only lo-
cal to this relation. This is, for instance, the case of our
retailer dataset used in Section 6. Such long branches cre-
ate long chains of views, with each view marginalizing a
variable over the previous view in the chain. For practical
reasons, we compose such long chains into a single view that
marginalizes several variables at the same time.



τ (variable order ω)

switch ω:

R V@R
R [σ(R)]

x

ω1 . . . ωk

V@x
rels[key(x )]

τ(ω1) . . . τ(ωk)

where

∀i ∈ [k] : let V@ωi
relsi

[key(ωi)] be root of τ(ωi)

rels =
⋃
i∈[k] relsi

V@x
rels[key(x )] = ⊕x(IP [x]�i∈[k] V

@ωi
relsi

[key(ωi)])

Figure 3: Algorithm for creating a view tree τ(ω)
from a variable order ω with views over ring P.

Example 3. Consider an extension of our running example
where House has two more variables, d1 and d2, all placed
along a path under p in the variable order in Figure 1. Let
H[z, s, p, d1, d2] = V@House

House [z, s, p, d1, d2]). The views for d1

and d2 are defined by:

V@d1
House[z, s, p] = ⊕d1(IP [d1]� V@d2

House[z, s, p, d1])

V@d2
House[z, s, p, d1] = ⊕d2(IP [d2]�H[z, s, p, d1, d2]).

We can compose the two views into one equivalent view:
V@d1

House[z, s, p] = ⊕d1(IP [d1]�⊕d2(IP [d2]�H[z, s, p, d1, d2])).

Payload Rings. We next give examples of aggregate
rings that can be used in our framework.

Count (#) ring. For COUNT aggregates over a view tree,
the payload is from the ring of integer numbers (Z,+, ∗,0,1)
with the lift view I#[x] = v ← D(x), v = 1, where D is a
unary relation representing the value domain.

Sum (+) ring. For SUM aggregates over variables with
values from R, the payload is from the ring of real numbers
(R,+, ∗,0,1) with the lift view I+[x] = v ← D(x), v = x.

Average (µ) ring. Ring-based payloads can also rep-
resent compound types like tuples of aggregates. For AVG

aggregates over variables with values from R, the payload
stores count and sum aggregates using elements from the
ring (Z× R,+, ∗, 〈0, 0〉, 〈1, 0〉), where + is vector-wise addi-
tion and ∗ is defined as 〈c1, s1〉 ∗ 〈c2, s2〉 = 〈c1 ∗ c2, c2 ∗ s1 +
c1 ∗ s2〉. The lift view is Iµ[x] = v ← D(x), v = 〈1, x〉.

Covariance matrix (�) ring. This payload ring is used
for learning linear regression models. Consider a training
dataset that consists of n training examples with m fea-
tures arranged into a design matrix X of size (n ×m) and
and output vector y of size (n × 1). The goal of linear re-
gression is to learn the model parameters θ = [θ1 . . . θm]T

best satisfying Xθ = y. The gradient vector of the square
loss function with respect to the model parameters requires
the computation of a covariance matrix XTX that quanti-
fies the degree of correlation for each pair of features. Our
goal is to compute XTX when X is the result of a join
of database relations. Previous work [39] shows that com-
puting a covariance matrix over a factorized join is possible
using a triple of regression aggregates (C,S,Q) computed
at each node in the factorized join, where C is the count
of tuples in the relation represented by the subtree rooted
at that node, S is a vector with one linear sum of values
per query variable within that subtree, and Q is a matrix of

any product of two linear sums of values of query variables
within that subtree.

We introduce a ring that captures the covariance matrix
computation using regression aggregates.

Definition 5. Let A denote a set of triples {(C,S,Q) ∈
(Z,Rm,Rm×m),m ∈ N}. Then, for a = (Ca,Sa,Qa) ∈
(Z,Rm1 ,Rm1×m1), b = (Cb,Sb,Qb) ∈ (Z,Rm2 ,Rm2×m2),
m = max(m1,m2), define +A : A×A → A as:

a+A b = (Ca + Cb, S
pad
a +Rm Spadb , Qpad

a +Rm×m
Qpad
b )

where Spadi and Qpad
i , i ∈ {a, b}, are zero-padded up to the

sizes (m× 1) and (m×m). Define ∗A : A×A → A as:

(Ca,Sa,Qa) ∗A (Cb,Sb,Qb) = (C,S,Q), where

C = Ca · Cb, S =

[
Cb · Sa
Ca · Sb

]
, Q =

[
Cb ·Qa Sa · S T

b

Sb · S T
a Ca ·Qb

]
.

Let [ ]0×a be an empty matrix of size (0 × a), define 0 as
(0, [ ]0×1, [ ]0×0) and 1 as (1, [ ]0×1, [ ]0×0).

The algebra (A,+A, ∗A,0,1) forms a ring called the co-
variance matrix ring denoted by �.

The lift view is I�[x] = v ← D(x), v = 〈1, x, x2〉.
To understand the intuition behind this ring, consider the

covariance matrix computation over a join result expressed
as a matrix X. Then, C corresponds to the total number of
tuples in X, S contains the sum over each variable, and Q
is the covariance matrix XTX. Consider now two matrices
X1 and X2 for disjoint partitions of the join result, and
their regression aggregates (C1,S1,Q1) and (C2,S2,Q2).

Then, X =

[
X1

X2

]
, the aggregates for X are:

C = C1 + C2

S = sum(X) = sum(X1) + sum(X2) = S1 + S2

Q = XTX = XT
1X1 +XT

2X2 = Q1 +Q2

where sum returns a vector with the sum of each column.
Now consider X1 and X2 for two vertical partitions whose
product is the join result. Then, X has X1 duplicated C2

times andX2 duplicated C1 times, hence the rescaling of the
sum and quadratic aggregates in the definition of ∗A. The
product of X1 and X2 also forms new interactions between
features from different datasets, captured via the product of
their linear aggregates.

Example 4. Consider the computation of the covariance
matrix on top of the join query from Example 1. At each
node in the view tree, the view maps keys to a triple of ag-
gregates; the leaf views map tuples to 1 from the covariance
matrix ring. The view V@p[z, s] maps each p-value to an
aggregate 〈1, p, p2〉 and sums up those with the same (z, s)-
value. For a fixed z-value, the view V@s[z] first lifts each
s-value into 〈1, s, s2〉 and then multiplies it with the aggre-
gates computed over t and p, followed by marginalization
of z. The regression aggregate in V@s[z] for a fixed z-value
has the covariance matrix of size (3× 3) for the variables in
{t, p, s}. Similarly, the root view multiplies these regression
aggregates with those computed over h and z, followed by
marginalization of z. The regression aggregate at the root
consists of three parts: the constant aggregate that is the
tuple count, linear aggregates that are sums over variables,
and quadratic aggregates that are sums of products of each
pair of variables. 2



δ (view tree τ , relation symbol R)

switch τ :

V@R
R [σ(R)] δV@R

R [σ(R)]

V@x
rels [key ]

τ1 . . . τk

δV@x
rels [key ]

τ1 . . . δ(τj , R) . . . τk
where

∀i ∈ [k] : let V@τi
relsi

[keyi ] be root of τi
let wlog j be such that R ∈ relsj

δV@x
rels [key ] = ⊕A(IP [x]� δV@τj

relsj
[keyj ]

�i∈[k],i 6=j V
@τi
relsi

[keyi ])

Figure 4: Algorithm for creating a delta view tree
δ(τ,R) for a given view tree τ over ring P to accom-
modate updates to a relation symbol R.

4. FACTORIZED HIGHER-ORDER IVM
In this section, we introduce incremental view mainte-

nance in our factorized ring computation framework. In
contrast to re-evaluation, incremental computation requires
materialization and maintenance of views in the view tree.
An update to a relation R triggers changes in all views from
the leaf R to the root of the view tree.

Delta Views. For each view V affected by the update,
a delta view δV defines the change in the view contents. If
the view V is a relation symbol R, then δV = δR if there
are updates to R and δV = ∅ otherwise. If the view is
defined using operations on other views, we derive δV using
the following set of derivation rules:

δ(V1 ] V2) = δV1 ] δV2

δ(V1 � V2) = (δV1 � V2) ] (V1 � δV2) ] (δV1 � δV2)

δ(⊕x(V)) = ⊕x(δV)

The correctness of the rules follows from the associativity
of ] and the distributivity of � over ], and ⊕x can be
thought of as the repeated application of ]. The obtained
deltas are subject to standard simplifications: If V1 is not
defined over the updated relation R, then its delta view
δV1 is empty, and then we propagate this information using
identities ∅ ] V2 = V2 and ∅ � V2 = ∅.

Delta Trees. Under updates to a relation symbol, a view
tree becomes a delta tree, where the affected views become
delta views. The algorithm in Figure 4 traverses the view
tree τ top-down and replaces views with delta views on the
path from the root to the updated relation symbol R.

Example 5. Consider the query in Example 1 and an up-
date δTax. The update triggers delta computation at each
view from the leaf Tax to the root of the view tree:

δV@t
Tax[s] = ⊕t(IP [t]� δTax[s, t])

δV@s
Tax,House[z] = ⊕s(IP [s]� δV@t

Tax[s]� V
@p
House[z, s])

δV@z
Shop,Tax,House[ ] = ⊕z(IP [z]� V

@h
Shop[z]� δV@s

Tax,House[z])

We may also maintain each affected view:

Tax[s, t] = Tax[s, t] ] δTax[s, t]

V
@t
Tax[s] = V

@t
Tax[s] ] δV@t

Tax[s]

V
@s
Tax,House[z] = V

@s
Tax,House[z] ] δV@s

Tax,House[z]

V
@z
Shop,Tax,House[ ] = V

@z
Shop,Tax,House[ ] ] δV@z

Shop,Tax,House[ ]

An update to Tax binds s and t, so the computation of
δV@t

Tax[s] is done in constant time. δV@s
Tax,House[z] requires to

iterate over all possible z-values for a fixed s-value and has
linear time maintenance cost. 2

In case of a sequence of updates to distinct relation sym-
bols, we obtain a chain of delta trees derived from the same
input view tree to reflect the order of updates. Update se-
quences can also happen when inserting into a relation R
that has several occurrences (i.e., relation symbols) in the
query such as for self-joins. The relation symbols represent-
ing R are at different leaves, and we thus have changes along
multiple leaf-to-root paths in the delta tree.

Our approach is a higher-order IVM as one update may
trigger maintenance of several views. In contrast to the
fully-recursive incremental view maintenance scheme [23],
which also creates a hierarchy of views that support each
other’s maintenance, our approach relies on variable orders
to decompose the query into views and factorize its compu-
tation and maintenance.

5. DYNAMIC FACTORIZATION WIDTH
As in the non-incremental case, different variable orders

may lead to wildly different performance of our IVM ap-
proach. In this section, we settle the question of which vari-
able orders can best support IVM under updates to a given
set of relations and thereby pinpoint the complexity of main-
taining query results under updates. This is captured by a
novel notion called dynamic factorization width, which is a
refinement of the factorization width recalled in Section 2.

We first recall the complexities in the non-incremental
case. There, we only materialize the root view of a view tree
over a variable order with the smallest factorization width,
and we thus have the time data complexity O(fw(Q)) for
computing factorized joins [34] and aggregates over them [8,
5]; for covariance matrices over factorized joins, there is an
additional O(m2) factor, since the sizes of these matrices can
be quadratic in the number m of variables (features) [39].
The space complexity is O(1) or O(m2) to store the aggre-
gate or covariance matrix in addition to the database (mod-
ulo logarithmic factors in the data size for data iterators).

We next discuss the IVM case.
Let Q be any join query. For any variable order ω ∈ Ω(Q),

let τ(ω) be the view tree inferred from ω. This view tree has
exactly one leaf for each relation symbol in Q.

We consider updates to relations whose relation symbols
in Q form a set U ; a relation may have several relation sym-
bols if it is involved in self-joins in Q, in which case all of
them are in U . For a relation symbol R ∈ U , let Υτ(ω)(R)
be the set of views that are ancestors of the leaf R in τ(ω),
i.e., it consists of all the views (recursively) defined using R.

The time needed to compute the delta for a view Vx
rels[key]

is upper bounded by that of a join query Qrels
key∪{x}−σ(R) over

relations in rels that cover x and the variables in key but
excluding the variables in R. The reason for the exclusion
is that a single-tuple update to R binds the variables in R



to constants. The overall time to compute the deltas of all
views in Υτ(ω)(R) is then

T (ω,R) =
∑

Vx
rels

[key]∈Υτ(ω)(R)

ρ∗(Qrels
key∪{x}−σ(R)).

We are now ready to define the dynamic factorization
width that captures the time complexity of incremental main-
tenance of Q under updates to relations in U .

Definition 6. Given a join query Q and a set of relation
symbols U in Q. Then, the dynamic factorization width of
Q and U is dfw(Q,U) = minω∈Ω(Q) maxR∈U T (ω,R).

Theorem 1. Given a query Q with m variables, database
D, a payload ring P, and a set of relations U in D. The
time complexity of incrementally maintaining the result of
Q over the ring P under single-tuple updates to relations in
U is O(dfw(Q,U) · TP), where TP is O(1) for the sum ring
and O(m2) for the covariance matrix ring.

Example 6. For our query Q in Section 1 and database
D, the (static) factorization width is fw(Q) = O(|Tax| +
|House| + |Shop|). Under single-tuple updates to relations
in a set U1 ⊆ {Shop,House}, the dynamic factorization
width is dfw(Q,U1) = 1 since there are no free variables
of the views over Shop or House in the variable order in
Figure 1. This means that we can maintain the result of
a sum aggregate over Q in O(1) time under U1 updates.
The same holds for U2 ⊆ {Tax,House}, i.e., dfw(Q,U2) = 1,
as supported by the variable order s{t; z{h; p}}. However,
dfw(Q,U3) = O(|D|) for U3 = {Tax,House,Shop} since
there is no variable order without free variables above all
three relations and some variable orders have one free vari-
able above at least one of the three relations. Under the vari-
able order in Figure 1, dfw(Q,U3) = min(|Shop|, |House|).

The triangle query Q/ in Equation (1) has the (static)

factorization width fw(Q/) =
√
|R1| · |R2| · |R3|. For any

relation Ri, i ∈ [3], dfw(Q, {Ri}) = 1 as supported by a
path variable order that has the variables in Ri as pre-
fix. We can thus maintain an aggregate over the triangle
query in O(1) under single-tuple updates to exactly one of
its three relations. For updates to at least two relations U4,
dfw(Q,U4) = O(|D|). For instance, assume a variable order
x − y − z. We need to cover: no variable under updates to
R1; one of the variables x or y under updates to R2 or R3

respectively (the case for other permutations of this variable
order is analog). Maintenance has thus lower time cost than
recomputation. 2

We next analyze the space complexity S(Q) of our ap-
proach. This is the sum of the sizes of the views in a view
tree. The space needed by the keys of a view Vx

rels[key] is
given by the fractional edge cover of a join query built using
relation symbols rels to cover the variables in key. To obtain
the minimum size, we go over all variable orders of Q:

S(Q) = min
ω∈Ω(Q)

∑
Vx
rels

[key]∈τ(ω)

ρ∗(Qrels
key).

Theorem 2. Given a query Q with m variables, database
D, a payload ring P. The space complexity required by
the materialization of a view tree for Q over the ring P is
O(S(Q) ·TP), where TP is O(1) for the sum ring and O(m2)
for the covariance matrix ring.

There are three differences between the formula S(Q) and
Definition 3 of the factorization width fw(Q): (1) the use of
summation vs. maximum, though the gap between them is
linear in m and thus independent of the database size; (2)
the cover for S(Q) can only use relation symbols of the view;
(3) for S(Q), we only need to cover key and not also the vari-
able at the view as in the case of fw(Q). The interplay of
(2) and (3) can in fact make S(Q) larger than fw(Q). For
acyclic queries, both complexities are linear if all relations
have the same size and S(Q) can be smaller than fw(Q) in
case some relations are asymptotically smaller than others.
For cyclic queries, however, S(Q) can be larger than fw(Q).
We show this for the triangle query in Equation (1) and re-
lations of the same size N . Under any variable order, there
is a view of size O(N2), whereas fw(Q/) = N3/2. For in-
stance, for the variable order x−y−z we materialize the view
V@z

R2,R3
[x, y] = ⊕z(IP [z]�R2[y, z]�R3[x, z]), which may create

O(N2) pairs (x, y) as we need both R2 and R3 to cover the
variables x and y. To avoid the large intermediate result, we
join all three relations at the same time [29], so as to cover
(x, y) using R1. That would, however, require recomputa-
tion of this 3-way join for each update. This takes O(N)
time since only two of the three variables are bound to con-
stants. In contrast, our IVM approach trades off space for
time: We need O(N2) space but then support O(1) updates
to one of the three relations (Example 6).

6. EXPERIMENTS
We benchmark our approach against DBToaster, a state-

of-the-art IVM system for queries with joins and aggre-
gates [23]. Our results can be summarized as follows:

• For maintaining a sum aggregate on top of a join query,
our approach outperforms first-order and recursive higher-
order IVM by pushing partial aggregates past joins and
exploiting the factorization structure in the join result.

• Maintaining more complex aggregates in the form of co-
variance matrices widens the performance gap, resulting
in several orders of magnitude better performance for our
approach over the competitors.

• The performance of maintaining a covariance matrix de-
pends on the update size. In our experiments, the through-
put peaks for updates with 1, 000 - 10, 000 tuples.

• Compared with the competitors, our approach uses less
memory for view maintenance over acyclic joins and yet
delivers faster view maintenance. For cyclic queries, we
analyze the trade-off between using more space and having
faster maintenance.

Benchmarked systems. We compare our algorithm
against first-order IVM and fully recursive higher-order IVM.
The latter two techniques are supported by DBToaster, a
system that uses recursive delta processing and program
synthesis to generate high-performance maintenance code.
DBToaster compiles a given SQL query into a set of trig-
gers that keep the query result up to date for updates to
base relations. The generated code represents an in-memory
stream processor that is standalone and independent of any
database system. The IVM performance of DBToaster on
decision support and financial workloads is several orders of
magnitude better than state-of-the-art commercial databases
and stream processing systems [23].



DF DBT IVM DF-RE DBT-RE

Retailer 2.84 1.18 2.31 21.30 17.54

Housing 20.67 20.59 2.42 37.58 0.17

Figure 5: The average throughput (M tuples/sec)
of re-evaluation and incremental maintenance of a
sum aggregate under updates of size 1, 000 to all base
relations of the Retailer and Housing datasets.

We implement our factorization-based IVM algorithm as a
relational program that processes a set of views materialized
for a given variable order. We use the intermediate language
of DBToaster to encode such a program, which then serves
as input to the code generation phase performed by the back-
end of DBToaster. In our experiments, all the benchmarked
approaches use the same code generator and runtime envi-
ronment and materialize views as multi-indexed maps with
memory-pooled records. The algorithms and record types
used in these approaches, however, can greatly differ.

We use the following notations:

• DF, short for Dynamic Factorization (dynamic F [39]), is
our factorized incremental maintenance approach.

• DBT and IVM are the fully recursive higher-order IVM
and non-recursive IVM implemented in DBToaster.

• SQL OPT is an optimized SQL encoding of covariance
matrix computation that improves on the SQL encoding
reported in prior work [39]. The latter uses wide relations
with one column per regression aggregate; recall there
are quadratically many such aggregates in the number of
query variables. The former pivots these aggregates into
a single aggregate column indexed by the degree of each
query variable. Both encodings take as input a variable or-
der and construct one SQL query that intertwines join and
aggregate computation by pushing (partial) regression ag-
gregates (counts, sums, and cofactors) past joins [33].

In addition to these incremental approaches, we also bench-
mark two re-evaluation strategies: DF-RE represents reeval-
uation using factorization structures and payload rings (our
implementation of F [39]), and DBT-RE denotes query re-
evaluation in DBToaster.

Workload. We run experiments over three datasets:

• Retailer is a real-world dataset from our industrial col-
laborator LogicBlox used by a retailer for business deci-
sion support and forecasting user demands. The dataset
has a snowflake schema with one fact relation Inventory

with 84M records, storing information about the inven-
tory units for products in a location, at a given date.
The Inventory relation joins along three dimension hi-
erarchies: Item (on product id), Weather (on location and
date), and Location (on location) with its lookup rela-
tion Census (on zip code). The training dataset is the
acyclic natural join of these five relations and has 43 fea-
tures. The regression task is to predict the inventory units
based on all the features in the dataset. We consider a
view tree in which the variables of each relation form a
distinct root-to-leaf path, and the partial order on join
variables is location{ date { product id }, zip }.
• Housing is a synthetic dataset modeling a house price

market [39]. It consists of six relations: House, Shop,

Institution, Restaurant, Demographics, and Transport,
arranged into a star schema and with 1.4M tuples in total
(scale factor 20). The training dataset is the acyclic natu-
ral join of all relations on the common attribute (postcode)
and has 27 features. The regression task is to predict the
housing price based on all the features in the dataset. We
consider an optimal view tree that has each root-to-leaf
path consisting of query variables for one relation.

• Higgs Twitter dataset represents friends/followers social
relationships among users who were active on Twitter dur-
ing the discovery of Higgs boson [2]. We split the first
3M records from the dataset into three binary relations of
equal size, and use these relations to compute a covariance
matrix on top of a triangle query. We consider a view tree
that is a path of the three triangle variables.

We benchmark the performance of maintaining a sum aggre-
gate and a covariance matrix for learning regression models
over a natural join. We compute the covariance matrix over
all variables of the join query (i.e., over all attributes of
the input database), which suffices to learn linear regression
models over any label and set of features that is a subset of
the set of variables [32]. This is achieved by specializing the
convergence step to the relevant restriction of the covariance
matrix. In end-to-end learning of regression models over
factorized joins, the convergence step takes negligible time
compared to the data-dependent covariance matrix compu-
tation, which takes orders of magnitude more time [39].

We run the systems over data streams synthesized from
the above databases by interleaving insertions to the base
relations in a round-robin fashion. We group insertions into
batches of different sizes and place no restriction on the or-
der of records in input relations. All systems use payloads
defined over rings with additive inverse – the sum and co-
variance matrix rings in DF and the sum ring in DBT–
thus processing deletions is similar to that of insertions.

Experimental setup. We run all experiments on an
EC2 m4.4xlarge instance (Intel(R) Xeon(R) CPU E5-2686
v4 2.30GHz, 64GB RAM, 500GB SSD) with Ubuntu Server
14.04. We use DBToaster v2.2 for the IVM competitors and
code generation in our approach. The C++ generated code
is single-threaded and compiled using g++ 6.3.0 and the -O3
optimization flag. We report wall-clock times by averaging
three best results out of four runs of each query. We run
experiments with a one-hour timeout on query execution,
not counting loading of streams into memory.

Maintenance of sum aggregates. We start by analyz-
ing different maintenance strategies on the task of maintain-
ing a sum aggregate over one variable on top of a natural
join. We measure the average throughput of re-evaluation
and batched incremental maintenance under updates of size
1, 000 to all the relations of the Retailer and Housing datasets.
For the former dataset, we aggregate the inventory units for
products in Inventory; for the latter, we sum over the com-
mon join variable. Table 5 summarizes the results.

DF achieves the highest average throughput in the incre-
mental maintenance of the sum aggregate. In the Retailer
schema, the maintenance cost is dominated by the update on
Inventory. DBT’s recursive delta compilation materializes
13 views representing connected sub-queries: five group-by
aggregates over the base relations, Inv, It, W, L, and C; one
group-by aggregate joining L and C; six views joining Inv

with subsets of the others, namely {It}, {It, W}, {It, W, L},
{W}, {W, L}, and {W, L, C}; and the final aggregate. The two
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Figure 6: The performance of incremental maintenance of the covariance matrix over the Retailer (left) and
Housing (right) datasets under updates of size 1, 000 to all base relations. The ONE plots consider updates
to the largest Inventory relation only. For the Retailer dataset, DBT crashes after processing 6.5% of the input
stream and IVM exceeds the one-hour time limit.

views joining Inv with { W, L } and { It, W, L } have linear
maintenance for a single-tuple change in Inventory. IVM
stores only the base relations with no aggregates on top of
them. Its strategy of recomputing a delta from scratch on
each update incurs modest overheads due to relatively small
dimension relations. DF exploits the given variable order to
materialize 8 views, four of them over Inventory (the base
Inv, views over Inv and It, and over Inv, It, and W, and the
final sum) but with constant maintenance for single-tuple
updates to this relation. In contrast to IVM, our approach
stores pre-computed relations in which all non-join variables
are aggregated away. In the Housing schema, both DF and
DBT benefit from this pre-aggregation, and since the query
is a star join, both strategies materialize the same views.

For re-evaluation, DF-RE is capable of pushing the ag-
gregate past joins towards the base relations, in contrast to
DBT-RE. In the Retailer schema, this pre-aggregation has
limited effects due to small dimension relations; in the Hous-
ing schema, however, joining the base relations first blows
up the size of the intermediate result, making DBT-RE
perform two orders of magnitude worse than DF-RE. Also,
DF-RE achieves higher throughput than DF by avoiding
the need to materialize (and maintain) intermediate views.

Maintenance of covariance matrices used in learn-
ing regression models. In addition to three incremental
strategies from before, we now also benchmark SQL OPT.
We consider two datasets, Retailer and Housing, and up-
dates to all their relations.

The systems materialize greatly different numbers of views
for incremental maintenance. In the Retailer schema, DF
and SQL OPT rely on the given variable order in which the
variables of Inventory, Location, and Weather form three
separate root-to-leaf paths, and the other relations are as
close to the root as possible. These two strategies material-
ize 9 views each: five views over the base relations, one view
joining the views over Inventory and Item followed by a
join with the view over Weather, one view joining the views

over Location and Census, and the top-level view. In con-
trast, fully recursive higher-order IVM and first-order IVM
in DBToaster fail to effectively share the computation of the
regression aggregates, materializing linearly many views in
the size of the covariance matrix: DBT and IVM use 3, 425
and respectively 951 views to maintain 946 covariance ag-
gregates. In the Housing schema, where all relations join
on a single variable, DF and SQL OPT materialize one
view per base relations and the final result, so 7 in total,
while DBT and IVM use 512 and 384 views to maintain
378 covariance aggregates.

Figure 6 shows the throughput of these techniques as the
stream progresses. The Retailer stream consists of insertions
into Inventory mostly, and since this relation lies along a
root-to-leaf path in the variable order, processing a single-
tuple update takes O(1) time under DF and SQL OPT.
The former outperforms the latter due to efficient encod-
ing of triples of aggregates (C,S,Q) as payloads contain-
ing vectors and matrices. The recursive delta derivation
in DBT creates a set of supporting views such that up-
dating each covariance aggregate takes constant time for
single-tuple changes in each relation. Although refreshing
the result is cheap, maintaining these auxiliary views be-
comes a linear time operation. Maintaining a large number
of views is a resource-intensive task, which causes DBT to
crash after processing 6.5% of the input stream. For simi-
lar reasons, IVM was unable to process the entire stream
within a one-hour time limit.

The join query in Housing is a star join with all relations
joining on the common variable, which is the root in our
variable order. Thus, DF and SQL OPT can process a
single tuple in O(1) time. DBT exploits the conditional
independence in the derived deltas to materialize each base
relation separately such that all non-join variables are ag-
gregated away. Although each materialized view has O(1)
maintenance cost per update tuple, the large number of such
views in DBT is the main reason for its poor performance.
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Figure 7: The performance of maintaining a covari-
ance matrix under updates of different sizes.

In contrast, IVM stores entire tuples of the base rela-
tions including non-join variables. On each update to the
database, IVM recomputes an aggregate on top of the join
of these base relations and the update. Since an update tu-
ple binds the value of the common join attribute, the delta
query consists of disconnected components. DBToaster op-
timizes such a delta query by placing an aggregate around
each component, which means that re-computing a delta
now involves on-the-fly pre-aggregation of each relation fol-
lowed by a join. Thus, IVM in Housing takes linear time,
which explains its poor performance.

Memory consumption. Figure 6 shows that DF achie-
ves the lowest memory utilization on both datasets while
providing orders of magnitude better performance than its
competitors! The reason behind the memory efficiency of
our approach is twofold. First, it uses complex aggregates
and factorization structures to express the covariance ma-
trix computation over a much smaller set of views compared
to DF and IVM. Second, it encodes regression aggregates
implicitly using vectors and matrices rather than explicitly
using variable degrees, like in SQL OPT. The occasional
throughput hiccups in the plot are due to expansion of the
underlying data structures used for storing views.

The effect of batch size on IVM. In this experiment,
we evaluate the performance of maintaining a covariance
matrix for batch updates of different sizes. Figure 7 shows
the throughput of batched incremental processing for batch
sizes varying from 100 to 100, 000 on the Retailer and Hous-
ing datasets for updates to all relations. To show the desired
behavior, we use a linear scale on the y-axis and omit DBT
and IVM from the plot due to their poor performance.

We observe that using very large or small batch sizes
can have negative performance effects: Iterating over large
batches invalidates previously cached data resulting in fu-
ture cache misses, whereas using small batches cannot offset
the overhead associated with processing each batch. Using
batch sizes of 1, 000−10, 000 delivers best performance in our
experiments. Previous work [30] presented similar findings
in batched delta processing of sum and count aggregates in
decision support workloads. This experiment confirms that
the same also holds for the covariance matrix computation.

The effect of update workload on IVM. Our next ex-
periment studies the effect of different update workloads on
the performance of incremental processing. We consider the
Retailer dataset and two possible update scenarios: the first
one assumes all relations can change, which requires materi-
alization of every view in the view tree; the second scenario
assumes that only Inventory can change, while all others
are static (denoted as ONE in Figure 6). The latter allows
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Figure 8: The performance of incremental mainte-
nance of the covariance matrix on top of the triangle
query over the Twitter dataset under updates of size
1, 000 to all base relations.

us to precompute the views that are unaffected by changes
in Inventory and avoid materialization of those views that
do not directly join with that relation. Thus, restricting up-
dates to only one relation leads to materializing fewer views,
which in turn reduces the maintenance overhead.

Figure 6 shows the throughput of processing updates for
incremental maintenance of the covariance matrix in these
two scenarios. If we restrict updates only to Inventory,
then we can avoid materializing all views on the leaf-to-root
path covered by that relation. This corresponds more to
a streaming scenario where we compute a continuous query
and do not store the stream. Restricting updates to only one
relation improves the average throughput, 3.2x in DF and
1.6x in SQL OPT, and also reduces memory requirements
(note the log scale on the y-axis). The latter is also reflected
in smoother throughput curves for the ONE variants. In
DBT, restricting updates brings constant time maintenance
per view, yet the number of materialized views is still large.

Batched incremental processing is also beneficial for re-
computing the entire covariance matrix from scratch. Us-
ing medium-sized batches of updates brings better perfor-
mance, cf. Figure 7, but can also lower memory requirements
and improve cache locality during query processing. For in-
stance, incrementally processing the entire Retailer dataset
in chunks of 1, 000 tuples can bring up to 50% performance
improvements compared to the re-evaluation approach that
loads and processes the entire dataset at once.

Covariance matrix over cyclic joins. We evaluate
the performance of batched incremental processing of the
covariance matrix on top of the triangle query for updates
of size 1, 000 to all three relations, R, S, and T . The number
of updates to each relation is the same. Alternatively, if R,
S, and T were representing the same relation, we would
consider three trigger executions instead of one per update.

For DF and SQL OPT, we consider the view tree where
S and T are placed at the leaves so that both strategies
materialize the join of S and T of size O(N2). Their time



complexity for single-tuple update to R is O(1), but updat-
ing the join of S and T takes O(N). DBT materializes 21
views in total (to maintain 6 covariance aggregates), out of
which 12 views represent joins of two relations. Its time
complexity for maintaining the covariance matrix upon a
single-tuple update to either of the three relations is O(N).
The IVM strategy maintains just the base relations and
recomputes the delta upon each update in linear time.

The throughput rate of the strategies that materialize
views of quadratic size declines as the input stream pro-
gresses. DBT exhibits the highest processing and memory
overheads caused by storing 12 auxiliary views of quadratic
size. DF outperforms SQL OPT due to its efficient encod-
ing of the covariance aggregates, which also results in 3.8x
lower peak memory utilization. IVM exhibits a 10% decline
in performance after processing the entire trace, which is due
to the linear time maintenance. Overall, the extent of this
decrease is much lower compared to the other approaches
with the quadratic space complexity. Restricting updates
to R only makes DF-ONE requiring just a lookup in the
materialized view joining S and T per update. This strategy
has two orders of magnitude higher throughput than IVM
at the expense of using 30 times more memory.

Clique queries like triangles provide no factorization op-
portunities. Materializing auxiliary views to speed up incre-
mental view maintenance increases memory and processing
overheads, in which case classical IVM techniques are more
appropriate. The DF approach can be tuned, if necessary,
to trade space for time and skip materialization of support-
ing views for cliques in large queries.

7. RELATED WORK
There is a wealth of work in the ML community on incre-

mental or online learning over arbitrary relations, e.g., [40].
Our approach learns over joins and crucially exploits the join
factorization of the underlying training dataset to improve
the performance; as such, it is specific to a database setting.
We next consider immediately related work on incremental
maintenance of in-database analytics.

To the best of our knowledge, ours is the first approach to
propose factorized IVM of regression models. It builds on a
new combination of two distinct lines of prior work: higher-
order delta-based incremental view maintenance (IVM) and
factorized computation of in-database analytics.

IVM. IVM is a well-studied area spanning more than
three decades, we refer the interested reader to a recent sur-
vey [14]. Prior work extensively studied IVM for various
query languages and showed that the time complexity of
IVM is lower than that of re-computation. We go beyond
prior work as we adapt DBToaster, a state-of-the-art higher-
order IVM for queries with joins and aggregates [23], to fac-
torized computation of aggregates over joins [8] and to learn-
ing regression models over factorized joins [39]. DBToaster
uses one materialization hierarchy per relation in the query,
whereas we use one view tree for all relations. One effect
is that DBToaster has much larger space requirements and
update times. Furthermore, the current implementation of
DBToaster does not primarily target the maintenance of co-
variance matrices or large sets of aggregates over joins. This
is also observed experimentally in Section 6.

DBToaster uses generalized multiset relations in which tu-
ples have associated elements from an arbitrary ring, and the
addition and multiplication operations over such generalized

relations form a ring of databases [22]. In our framework,
the data model is that of generalized multiset relations, and
the view language is a subset of that used in DBToaster.
This allowed us to adapt DBToaster to perform factorized
IVM on computation-specific rings.

We are aware of ongoing, independent work on factor-
ized IVM for acyclic joins [41]. This is strictly subsumed
by our general framework when the payload ring is a ring
of databases defined over a set of generalized multiset rela-
tions mapping tuples to integer multiplicities [22]. The so-
called q-hierarchical join queries (such as the Housing query
in our experiments) are exactly those self-join-free conjunc-
tive queries that admit constant time update [9]. Recent
work on in-database maintenance of linear regression models
shows how to compute such models using previously com-
puted models over distinct sets of features [18]. Its contri-
bution is complementary to our algorithmic and complexity
contributions and it shares a similar goal with our prior
work on reusing gradient computation to efficiently explore
the space of possible regression models [32]. Exploiting key
attributes to enable succinct delta representations and acce-
larate maintenance can also complement our approach [21].
LINVIEW shares the goal of our system to incrementally
maintain regression models, but it requires the relational
materialization of the full join result [31]. Applying its idea
of matrix factorization in R or MATLAB also depends on
the full join result, comes with greater costs, and is not scal-
able; in some of our experiments, the full join result needs
space beyond the available memory and time longer than
re-computing the regression model over the factorized join.

Most commercial database systems, e.g., Oracle [3] and
SQLServer [1], support incremental view maintenance for re-
stricted classes of queries. LogicBlox supports higher-order
IVM for Datalog (meta)programs [6, 17]. Trill is a streaming
engine that supports incremental processing of relational-
style queries but no covariance matrix computation [13].

In-DB analytics. Beyond IVM, there is a solid body of
related work at the intersection of databases and machine
learning, cf. a SIGMOD 2015 panel [36]. Our work follows a
recent line of research on marrying databases and machine
learning [19, 15, 10, 24, 26, 28, 20, 12, 38, 36, 35] and in par-
ticular builds on static factorized in-database learning [16,
37, 39, 32]. Our factorization approach is that from prior
work [39, 32]. Limited forms of factorized learning have been
also used by Rendle [37] and Kumar et al. [24]. The former
considers zero-suppresed design matrices for high-degree re-
gression models called factorization machines. The latter
proposes a framework for learning generalized linear models
over key-foreign key joins in a distributed environment.

Most efforts in the database community are on designing
systems to support large-scale machine learning libraries on
distributed architectures [16], e.g., MLLib [26] and Deep-
Dist [28] on Spark [42], GLADE [35], MADlib [19] on Post-
greSQL, SystemML [20, 10], system benchmarking [12] and
sample generator for cross-validate learning [38].

8. CONCLUSION
We introduce a principled approach to factorized incre-

mental maintenance of in-database learning of learning re-
gression models over joins, which relies on a new ring that
captures the computation of covariance matrices. Our ap-
proach is applicable beyond the rings discussed in the paper.
Following earlier work showing that factorized computation



of aggregates over joins captures a host of core computa-
tional problems [5], we are currently investigating the appli-
cability of our approach to incremental maintenance of in-
ference in probabilistic graphical models, matrix chain com-
putation, and count-SAT. The goal is to provide one IVM
mechanism to such core problems of diverse interest.
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with views over ring P.
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APPENDIX
Appendix A gives an extension of our factorized IVM frame-
work to queries with group-by aggregates over joins.

Appendix B further strengthens the framework by show-
ing how the views in a view tree can be factorized; this
is in addition to the factorization of the computation and
maintenance as provided by variable orders and view trees.
View factorization can effectively lower the space and time
complexities for maintenance and recomputation.

Our framework is modular thanks to its use of payload
rings. Appendix C shows how it can capture the main-
tenance of arbitrary conjunctive queries and matrix chain
multiplication.

A. GROUP-BY AGGREGATES
We generalize our framework to group-by aggregates over

joins of relations that map tuples to payloads from the same
ring. The development in the main body of this paper con-
sidered queries that marginalize over all variables, that is,
there are no free variables. In contrast, group-by aggregates
have free variables. We write such queries as functional ag-
gregate queries or FAQ expressions for short [5]:

Q(y1, . . . , yg) =
∑
x1

· · ·
∑
xm

∏
i∈[n]

1Ri(σi)

where 1E is the Kronecker delta that is 1 in case E holds
and 0 otherwise, σi is the set of variables in the relation sym-
bol Ri, the variables (yj)j∈[g] in the head of Q are the free
variables while the variables (xj)j∈[m] are bound. Assuming
the payloads are from a ring P, the above FAQ expression
is stated as follows in our framework:

Q[y1, . . . , yg] = ⊕x1,··· ,xm(�i∈[n]Ri[σi]�j∈[m] IP [ xj ])

To evaluate such queries, we extend the view tree con-
struction procedure shown in Figure 3 to consider free vari-
ables. Figure 9 gives a generalized algorithm that constructs
a view tree τ(ω,G) for a variable order ω and a set of free
variables G of a given query Q. Each view in the view tree
retains free variables in its schema and marginalizes over
bound variables. The top-level view in a view tree defines
the query result. For queries without free variables, the two
algorithms for view tree construction from Figures 3 and 9
yield the same view tree. For queries with free variables,
several views may be identical: This is the case when all
variables in their keys are free. In this case, we only need to
materialize one of the several identical views while the other
identical views remain non-materialized.

The generalized algorithm operates on any variable or-
der that is valid for a given query Q. Following prior work
on variable orders for the evaluation of group-by aggregates
over joins [8, 5], the variable orders that ensure lowest space
and time complexities have the free variables above the bound
variables in the variable order. This leads to view trees
where marginalization over bound variables happens as early
as possible in a bottom-up traversal of the view tree.

Example 7. Consider a path query Q that computes a
group-by aggregate within a given ring P over a natural
join of the input relations R[a, b], S[b, c], T [c, d], and U [d, e],
where the free variables are G = {b, c, d}:

Q[b, c, d] =

⊕a,e (R[a, b]� S[b, c]� T [c, d]� U [d, e]� IP [a]� IP [e])

For the COUNT ring, the values for a and e are mapped
to 1 and the query Q computes the count for each tuple of
free variables. For the SUM ring, the values are mapped to
reals and then the query Q computes the sum of products
of values for a and e for each distinct tuple of free variables.

We next show how to compute and maintain this query
using two distinct variable orders. We first consider the
variable order ω1 in Figure 10(a) and then a second variable
order ω2 in Figure 10(c). Both variable orders have the free
variables {b, c, d} above the bound variables. For simplicity
in the complexity analysis below, we assume all relations
have size N .

Figure 10(b) shows the view tree τ(ω1, {b, c, d}) derived
using the algorithm from Figure 9. Its views marginalize
over the bound variables a and e. The view V@a

R,U[b, d] at
variable a is a product of the marginalization over a and the
view at e. The use of a product is suboptimal and suggests
there may be a different better variable order for this query
or we can keep the view non-materialized (cf. Appendix B).

For both recomputation and incremental maintenance, we
need O(N2) space since we need at least two relations to
cover the free variables {b, c, d}, while all bounded variables
are marginalized as soon as possible. Whereas for recompu-
tation we only store the top view, for maintenance we need
to store all views and the views V@a

R,U[b, d], V@d
R,T,U[b, c, d], and

V@c
R,S,T,U[b, c, d] can have O(N2) size. For recomputation, the

time complexity is also O(N2) for the same reason. For in-
cremental maintenance under single-tuple updates to any
relation, incremental maintenance takes O(N) time, since
the key variables of each view that are not bound to a con-
stant in the update can be covered by one relation. In this
example, the root of the view tree need not be materialized
as it is identical to its child.
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Figure 10: For the query Q from Example 7 with free variables {b, c, d} and payload ring P, from left to right:
variable order ω1 for Q, view tree τ(ω1, {b, c, d}), variable order ω2, and view tree τ(ω2, {b, c, d}).

We next turn to the variable order ω2 in Figure 10(c),
where the (conditionally) independent free variables b and c
are in different branches. The time and space complexities of
recomputation and incremental maintenance are asymptoti-
cally the same as for ω1. However, incremental maintenance
using τ(ω2, {b, c, d}) achieves lower costs in practice as it re-
quires maintenance of only one view of quadratic size, the
top view. As discussed in Appendix B, we can factorized the
top view to further reduce the maintenance time to O(1) and
required space to O(N). 2

B. FACTORIZED VIEWS
Our factorized IVM framework uses variable orders as

plans for query evaluation and to avoid the size explosion
for intermediate query results. So far, we have considered
the factorization of the query by means of a view tree. This
suffices for queries without free variables, such as for aggre-
gates without group-by clauses as considered in the main
body of the paper. There, the variable order (and conse-
quently the view tree) ensures that each bounded variable
is marginalized over as soon as possible.

However, for queries with free variables our approach does
not effectively exploit the conditional independence among
the free variables to achieve smaller views that require lower
maintenance cost. In this section, we are after factorizing
the keys of the views. For instance, the top-level view in
Figure 10(d) uses a relational (flat) representation of the
quadratically many tuples over its keys (b, c, d) of quadratic
size (since we need two relations to cover all these key vari-
ables). However, b and d are independent given c and the
view could be factorized as a join on c of one subview over
(c, b) and a second subview over (c, d), with both subviews
of linear size.

Example 8. Consider the variable order and view tree from
Figure 10(c-d). The top view is not materialized but ex-
pressed as a pair of its children, (V@b

R,S[b, c],V@b
T,U[c, d]). Each

of these two views is materialized as a multi-indexed map.
Querying the result for given b, c, and d values requires two
map lookups, thus O(1) operation. We can enumerate tu-
ples in the result of the factorized view with constant delay,
following prior results on enumeration for factorized repre-
sentations of query results [34]. The space complexity of

τ (variable order ω, free variables G)

switch ω:

R V@R
R [σ(R)]

x

ω1 . . . ωk

V@x
rels[keys]

τ(ω1,G) . . . τ(ωk,G)

where

∀i ∈ [k] : let V@ωi
relsi

[keysi ] be root of τ(ωi,G)

keys = key(x) ∪ (G ∩
⋃
i∈[k] keysi)

rels =
⋃
i∈[k] relsi

if x 6∈ G then
V@x

rels[keys] = ⊕x(IP [x]�i∈[k] V
@ωi
relsi

[keysi ])
else
if keys ⊆ G then

V@x
rels[keys] = (V@ωi

relsi
[keysi ])i∈[k]

else
V@x

rels[keys] = �i∈[k]V
@ωi
relsi

[keysi ]

Figure 11: Algorithm for creating a factorized view
tree τ(ω,G) from a variable order ω and a set of free
variables G with views over ring P.

storing these maps is linear. Incremental maintenance for
single-tuple updates in S and T takes O(1) time and in R
and U takes O(N) time. By factorizing this view, we can
thus reduce the required space for view materialization while
also improving the single-tuple update time! 2

Figure 11 shows the algorithm for creating a view tree
τ(ω,G) for a given variable order ω and a set of free variable
G, where views are selectively materialized based on their
keys. The algorithm materializes views that marginalize
over a bound variable to support incremental maintenance.
It also materializes views that have a mix of free and bound
keys in order to speed up subsequent marginalization (sum-
mation) operations further up in the view tree. However,
the algorithm avoids materialization of views whose keys
are only free keys, denoted by a tuple of views (V1, . . . ,Vn),
as in such cases child views are conditionally independent



on some of the free variables.
Our refinement to factorize those views whose keys only

have free variables is at least as good as non-factorization
in case of acyclic queries, but it can lead to lower space and
time complexities. However, this is not the case for clique
queries, as discussed in the next example.

Example 9. Consider the triangle query from Equation (1)
in which x, y, and z are free variables. Assume the variable
order x−y−z. The view at node z representing the join be-
tween R2 and R3 is not materialized since its keys x, y, and
z are free variables; instead, the algorithm keeps this view in
factorized form as a pair (R2[y, z],R3[x, z]). The view at node
y representing the join of the three relations has the same
set of keys, so it is also not materialized but represented
as a pair (R1[x, y], (R2[y, z],R3[x, z])). Postponing view ma-
terialization until the tree root allows us to join the three
relations using a worst-case optimal join algorithm [29], thus

avoiding the explosion of intermediate results, in O(N3/2)
time. The space complexity of incremental maintenance is
linear in the relation size, O(N), and processing single-tuple
updates to any relation requires O(N) time. 2

Factorized views avoid materialization and thus introduce
another dimension to the search space of possible view trees
when computing dynamic factorization width.

C. APPLICATIONS
In this section, we show how two further problems can

be expressed in our framework: maintaining the results of
conjunctive queries and of matrix chain computations. Fur-
ther applications as possible, such as computing marginal
probabilities and MAP in probabilistic graphical models.

C.1 Conjunctive queries
Consider conjunctive queries Q over relations Ri(σi)i∈[n]:

Q(y1, . . . , yg) = R1(σ1), . . . , Rn(σn)

To incrementally maintain the result of Q under input up-
dates, we construct a view tree over the COUNT (#) ring
using the algorithm from Figure 11 on any variable order for
Q. We thus maintain a count for every tuple in the query
result that states the number of derivations of that tuple
from the input tuples. The tuple is in the result if its count
is greater than 0.

Example 10. Given the schema from Figure 1, we want
to compute the count aggregate over the natural join of the
three relations grouped by z and s.

Q[z, s] = ⊕p,h,t(I#[p]� I#[h]� I#[t]�
House[z, s, p]� Shop[z, h]� Tax[s, t])

We fix a variable order, say z − s − {h, t, p}. The input
relations are located below leaf variables. The view tree
derived from this variable order consists of the following
views (from bottom to top):

V@h
Shop[z] = ⊕h(I#[h]� Shop[z, h])

V@t
Tax[s] = ⊕t(I#[t]� Tax[s, t])

V@p
House[z, s] = ⊕p(I#[p]�House[z, s, p])

V@s
Shop,House,Tax[z, s] = V@h

Shop[z]� V@t
Tax[s]� V@p

House[z, s]

V@z
Shop,House,Tax[z, s] = V@s

Shop,House,Tax[z, s]

For incremental maintenance, the views at h, t, and p are
materialized, while the views at s and z are factorized and
not materialized. Let us assume that each relation has size
N . Each of the former three views takes O(N) space. The
latter two views are equivalent and represent the query re-
sult. Incremental maintenance under single-tuple updates
to House takes O(1) time since all free variables are bound
to update values. For single-tuple updates to Shop and Tax,
incremental maintenance requires O(N) time. If we would
materialize the view V@s

Shop,House,Tax[z, s], then we would need
O(N) space for it, yet without any improvement in the up-
date times. 2

C.2 Matrix Chain Multiplication
Consider the problem of computing a product of a se-

ries of matrices A1, . . . ,An over some ring P, where matrix
Ai[xi, xi+1] has the size of pi × pi+1, i ∈ [n]. The product
A = A1 · · ·An of size p1 × pn+1 can be formulated as:

A[x1, xn+1] =
∑

x2∈[p2]

· · ·
∑

xn∈[pn]

∏
i∈[n]

Ai[xi, xi+1]

In our framework, we express matrix Ai as a relation
Ai[xi, xi+1] and compute A as a SUM aggregate over a path
join grouped by (x1, xn+1). For any variable order, we then
construct a view tree over the SUM (+) ring.

Example 11. Consider a chain of matrix multiplications
A = A1 · · ·A4, where all matrices are of equal size p × p.
Each matrix is represented as a relation Ai[xi, xi+1]. Let
G = {x1, x5} be the set of free variables and ω be the variable
order x1−x5−x3−{x2, x4}, with the matrices being placed
below the leaf variables in ω. Then, the view tree τ(ω,G)
has the following views (from bottom to top):

V@x2
A1,A2

[x1, x3] = ⊕x2(I+[x2]�A1[x1, x2]�A2[x2, x3])

V@x4
A3,A4

[x3, x5] = ⊕x4(I+[x4]�A3[x3, x4]�A4[x4, x5])

V@x3
A1,A2,A3,A4

[x1, x5] = ⊕x3(I+[x3]� V@x2
A1,A2

[x1, x3]� V@x4
A3,A4

[x3, x5])

The view V@x3
A1,A2,A3,A4

[x1, x5] is equivalent to its ancestor
views at x1 and x5 and represents the query result. The
time complexity of computing A is O(p3). Materializing
the views at x2, x3, and x4 for incremental maintenance
takes O(p2) space. Processing single-tuple changes to any
input matrix takes O(p2) time.

Next we generalize this example to a product of n matrices
of equal size p × p. Consider a variable order that yields a
binary view tree of the lowest depth with x1 and xn+1 at
the top: x1 − xn+1 − {V1, V2}, where the variable orders
V1 and V2 are balanced binary trees with roots xn/4 and

respectively x3n/4. It takes O(p3 ·n) time to compute A from
scratch. For incremental maintenance, the space needed to
materialize each of the n views, except for the top two views,
is O(p2). Maintaining A upon a single-tuple update to A1 or
An requires O(p2 logn) time, whereas single-tuple updates
to all other matrices take O(p3 logn) time. 2

Different variable orders lead to different evaluation plans
for matrix chain multiplication. The optimal variable order-
ing corresponds to the optimal sequence of matrix multipli-
cations that minimizes the overall multiplication cost, which
is the textbook Matrix Chain Multiplication problem solved
by dynamic programming.


