
On Factorisation of Provenance Polynomials

Dan Olteanu and Jakub Závodný

Oxford University Computing Laboratory

Wolfson Building, Parks Road, OX1 3QD, Oxford, UK

1 Introduction

Tracking and managing provenance information in

databases has applications in incomplete information and

probabilistic databases, query evaluation under bag se-

mantics, view maintenance and update, debugging and

explanation, and annotation propagation [2]. A recur-

ring observation is that provenance information tends

to grow very large with the number of data operations:

For instance, many records in the Gene Ontology public

database have each over 10MB of provenance data [12].

Practical and theoretical tools are thus necessary to pave

the way to efficient management of such large amounts

of provenance data. A second observation is that the

propagation of provenance information via queries in

databases follows a rather regular pattern, which can be

exploited for query-aware provenance compression.

These two observations are at the outset of our recently

started project, whose goal is to provide a theoretical

and practical framework for managing databases anno-

tated with provenance information in the form of prove-

nance polynomials [7]. Provenance polynomials repre-

sent a unifying formalism for much of recent work in

the aforementioned areas. They capture as particular in-

stances known types of provenance information ranging

from data warehousing lineage, in which a result tuple is

annotated with a set of identifiers of all contributing in-

put tuples, to why-provenance, in which result tuples are

annotated with a set of sets of contributing input tuples.

Provenance polynomials generated by query evalua-

tion in relational databases can have a regular structure

that can be exploited for a more succinct representation

via algebraic factorisations [11]. The novelty of this

project lies in the investigation and use of such factorised

representations of provenance polynomials. In this paper

we highlight key properties and potential benefits of fac-

torised provenance polynomials. We also present a list

of challenges and outline results obtained so far in man-

aging factorised polynomials of query results.

2 Provenance Polynomials

We next exemplify the notions of provenance polyno-

mials and their algebraic factorisations. Consider an

office-supply warehouse database, showing current or-

ders, stocks and employee availability. Each tuple in

the input database is annotated with an indeterminate, or

variable, which encodes here its provenance information.

Order

id item

o1 01 Printer

o2 02 Plotter

o3 03 Ink

o4 04 Printer

o5 05 Ink

Store

location item

s1 Depot1 Printer

s2 Depot1 Plotter

s3 Depot2 Printer

s4 StoreA Ink

Emp

operator location

e1 Joe Depot1

e2 Bob Depot1

e3 Dan Depot2

e4 Dan StoreA

In this scenario, data is aggregated from different ex-

traneous or uncertain source databases: Orders could

come from different vendors, storage information from

different stock lists at each location, and employee avail-

ability could be produced by real-time tracking. When

deciding on which employee should deliver what order

from which location, the source of information support-

ing the decision, that is, its provenance, is essential, and

should ideally be recorded for later reference.

Consider a query that finds all orders with their respec-

tive items, their possible locations and workers available

to access and retrieve them:

Order 1item Store 1location Emp

id item location operator

o1s1e1 01 Printer Depot1 Joe

o1s1e2 01 Printer Depot1 Bob

o1s3e3 01 Printer Depot2 Dan

o2s2e1 02 Plotter Depot1 Joe
. . .

Each tuple in the result table arises as a combination

of input tuples, and its provenance is the product of the

variables of its contributing input tuples. For example,

the tuples annotated with any of o1, s1 or e1 contribute

to the result tuple annotated with o1s1e1. The sum of

the products for all result tuples forms the provenance

polynomial of the whole query result:

Φ1 = o1s1e1 +o1s1e2 +o1s3e3 +o2s2e1 +o2s2e2+

+o3s4e4 +o4s1e1 +o4s1e2 +o4s3e3 +o5s4e4.

The abstract product and sum operations on variables

represent multiplication and summation in various com-

mutative semirings. In the Boolean semiring (B,∨,∧),
we interpret the variables as Booleans and the product

and sum as logical “and” (∧) and “or” (∨) respectively.

The Boolean semiring captures the semantics of posi-

tive relational algebra queries under set semantics: In

the previous example, if the variables o1, s1, and e1 are

set to true, then the input tuples they annotate are in

the database and the tuple annotated with o1s1e1 is in

the query result. The Boolean semiring is also used in

the context of incomplete and probabilistic databases [7].

The semiring over natural numbers (N,+, ·) captures the

semantics of positive queries under bag semantics: The

variables are interpreted as tuple multiplicities. Individ-

ual monomials then give the multiplicities of result tu-

ples and the whole polynomial yields the cardinality of

the query result.

In the following sections, we consider provenance

polynomials of the entire result of a query. This is with-

out loss of generality, since the analysis for this case can

be extended in a standard way to the case of provenance

polynomials for individual result tuples.

3 Factorisation of Provenance Polynomials

A useful property of provenance polynomials is the dis-

tributivity of product over sum. This enables the polyno-

mial Φ1 to be factorised into a nested expression:

Φ2 = (o1 +o4)(s1(e1 +e2)+ s3e3)+o2s2(e1 +e2)

+(o3 +o5)s4e4.

The factorised form Φ2 is equivalent to Φ1 in the sense

that it has the same monomials as Φ1.

When compared to flat polynomials such as Φ1, fac-

torised polynomials can be both more informative and

more succinct. Algebraic factorisations of provenance

polynomials allow us to make explicit the structure in the

query result. For instance, Φ2 shows more directly than

Φ1 that orders annotated by o1 and o4 are joined with the

same tuples from tables Store and Emp. Moreover, fac-

torised polynomials of query results can be exponentially

more succinct than their flat equivalents, with the expo-

nent being the query size. Consider the query expressing

a product of n relations R1×·· ·×Rn. The flat polynomial

of the result enumerates explicitly all combinations of tu-

ples from the input relations, and its size is the product of

the sizes of the input relations. An equivalent factorised

polynomial is the product of n sums S1 · · ·Sn, where sum

Si is over all variables of relation Ri, and whose size is

the sum of the sizes of the input relations. Moreover,

this factorisation can be computed efficiently and directly

from the input database. This means that in addition to

space savings, we can also reduce the time complexity

for computing the provenance polynomial by an expo-

nential factor.

A downside of factorisations is that the monomials of

a factorised polynomial are not any longer represented

explicitly, and accessing them require more work than in

the case of flat polynomials. We can nevertheless enu-

merate them with polynomial delay. That is, the time

needed to output the first monomial (in some order) as

well as the delay between the output of two subsequent

monomials is polynomial. In particular, the delay and the

space requirements for the enumeration are O(S logS),
where S is the size of the factorised representation [11].

4 From Factorised Polynomials to Fac-

torised Representations of Relations

Algebraic factorisations can be straightforwardly ex-

tended from provenance polynomials to entire query re-

sults and even to arbitrary relations by inlining tuples

next to their variables. This extended factorisation forms

a complete representation system for relational data with

provenance. In particular, we obtain a succinct and effi-

ciently computable representation of the query result and

its provenance.

For instance, the polynomial Φ2 can be extended to

the following representation

(o1〈01,Printer〉+o4〈04,Printer〉)

(s1〈Depot1,Printer〉(e1〈Joe,Depot1〉+e2〈Bob,Depot1〉)+

s3〈Depot2,Printer〉e3〈Dan,Depot2〉)+

o2〈02,Plotter〉s2〈Depot1,Plotter〉

(e1〈Joe,Depot1〉+e2〈Bob,Depot1〉)+

(o3〈03,Ink〉+o5〈05,Ink〉)s4〈StoreA,Ink〉e4〈Dan,StoreA〉.

To correctly interpret this representation, we would need

a mapping between the variables annotating the tuples,

and the schemas of these tuples in the input database.

Some attributes appear several times in the monomials

of the above representation. For instance, the attribute

item occurs with variables from both Order and Store.

As in the relational case, we keep one of them in case of

a natural join between Order and Store and project out

the other one. One possible representation after dropping

duplicate attributes is shown next:

(o1〈01,Printer〉+o4〈04,Printer〉)

(s1〈Depot1〉(e1〈Joe〉+e2〈Bob〉)+ s3〈Depot2〉e3〈Dan〉)+

o2〈02,Plotter〉s2〈Depot1〉(e1〈Joe〉+e2〈Bob〉)+

(o3〈03,Ink〉+o5〈05,Ink〉)s4〈StoreA〉e4〈Dan〉.

In addition to the relational schema that captures the

attributes of the tuples in the representation, we would

like to capture the structure of the representation. A

factorised schema defines both the relational schema of

the tuples and the nesting structure of the factorisation.

For our example above, the factorised schema would

be ((id, item), (location, (operator))). This

reads as follows: There can be several (id, item) val-

ues that are paired with several locations, and for each

location there can be several operators. Factorised rep-

resentations of query results always have a factorised

schema, which can be inferred from the query. In partic-

ular, such schemas correspond to join orders in the query

plans used to evaluate the query.

5 Challenges

Managing factorised representations poses new theoret-

ical and practical challenges; we outline here a few of

these challenges and focus mostly on provenance poly-

nomials, although these challenges also apply to fac-

torised representations of relations.

1. Characterisation of queries with bounded-size fac-

torised provenance polynomials. Of paramount impor-

tance to the feasibility of our approach is to quantify how

factorisable the (provenance polynomials of) query re-

sults are as a function of both input database and query.

In particular, we would like a classification of relational

queries based on the minimal possible size of the fac-

torised provenance polynomials for any input database.

Consider the query Store 1location Emp on our ex-

ample database. For each location l, all tuples in Store

reporting items at location l join with tuples in Emp re-

porting employees serving location l. The polynomial

for l can be expressed as a product of two sums, one sum

for the items at location l and one sum for the operators at

location l. To obtain the polynomial of the query result,

we sum the polynomials for all locations:

Φ3 = (s1 + s2)(e1 +e2)+ s3e3 + s4e4.

A key observation is that the polynomial of

Store 1location Emp can be factorised into a sum of

products of sums for any input database and that the re-

sulting factorisation is read-once, that is, it contains at

most one occurrence of each variable. Its size is there-

fore at most linear in the size of the database. As part

of the characterisation, it would be desirable to identify

all queries whose results admit read-once factorisations.

In contrast to the above query, the query from the intro-

duction can have polynomials that do not have read-once

factorisations: This is already the case for the polynomial

Φ1 obtained for the example database. For the original

query, it turns out that the minimal possible number of

occurrences of some variables in any factorised form de-

pends on the input database and is therefore unbounded.

Specific semirings may introduce further equivalences

between polynomials and hence more compact forms

than those allowed by algebraic factorisations alone. In

the Boolean semiring, for example, both multiplication

and addition are idempotent, and we can use the identi-

ties x · x = x+ x = x to further decrease the size of the

polynomials. The query Order 1id≤id′ δid→id′Order

yields the polynomial

Φ4 = o1o1 +o1o2 +o1o3 +o1o4 +o1o5 +o2o2 +o2o3+

+o2o4 +o2o5 +o3o3 +o3o4 +o3o5 +o4o4 +o4o5 +o5o5.

We can factorise Φ4 algebraically into

Φ5 = o1(o1 +o2 +o3 +o4 +o5)+o2(o2 +o3 +o4 +o5)+

+o3(o3 +o4 +o5)+o4(o4 +o5)+o5o5,

but when interpreted in the Boolean semiring, it is also

equivalent to the much simpler expression

Φ6 = o1 +o2 +o3 +o4 +o5.

2. Efficient computation of factorised polynomials.

Given a polynomial, how can we compute an optimal

factorisation, that is, a factorisation with smallest possi-

ble size? This is computationally difficult. In the setting

of Boolean factorisation (as opposed to algebraic factori-

sation considered here), [3] shows that for k > 2, it is

NP-hard to decide for a given flat polynomial whether

there exists a factorisation using at most k occurrences of

each variable. The problem is open for k = 2.

In our setting we are specifically concerned with the

problem of finding factorisations for polynomials of

query results. On one hand, this restricts the class of

polynomials under consideration. On the other hand, we

would like to compute an optimal factorisation of the

provenance polynomial directly from the query and the

input database, that is, without first computing the flat

polynomial and then factorising it.

The optimality requirement may be relaxed for prac-

tical reasons. Also, it may be desirable to trade the op-

timality for a simpler nesting structure of the factorisa-

tion. Although all factorisations of a given polynomial

are equivalent, particular nesting structures may facili-

tate more sophisticated manipulation, better storage, or

faster enumeration of monomials in a desired order.

For example, consider the two equivalent polynomials

Φ7 = (s1 + s2)(e3 +e4)+(s3 + s4)(e1 +e2)+

+ s1e2 + s2e1 + s3e4,

Φ8 = s1(e2 +e3 +e4)+ s2(e1 +e3 +e4)+

+ s3(e1 +e2 +e4)+ s4(e1 +e2).

Assume here that the polynomials are enriched with the

input tuples from our example database. Although Φ7

has smaller size (that is, less variable occurrences) than

Φ8, the latter has a structure that allows a quick enumer-

ation of tuples with variables s1 to s4; in our database,

that would be tuples from relation Store. Also, a join on

location or item values, as provided by these tuples, is

better supported by Φ8.

3. Queries over factorised representations of relations

and over factorised provenance polynomials. To what

extent is it possible to use factorisations of provenance

polynomials, or even of entire query results, for further

processing? The ability to evaluate queries on factorised

forms would greatly amplify the advantage of their suc-

cinctness and low time complexity, turning them into a

truly advantageous representation system for relational

data and its provenance.

In particular, this challenge is to identify classes of

queries that can be evaluated on factorised representa-

tions without unfolding them into a flat form and with

minimal re-structuring. For illustration, consider a sce-

nario in which the result of our query Q = Order 1item

Store1location Emp has the provenance polynomial

Φ9 = (o1 +o2)(s1(e1 +e2)+ s2(e3 +e4))+

+(o3 +o4)(s3(e1 +e2)+ s4(e3 +e4)).

An equivalent factorisation is

Φ10 = ((o1 +o2)s1 +(o3 +o4)s3)(e1 +e2)+

+((o1 +o2)s2 +(o3 +o4)s4)(e3 +e4).

The expressions Φ9 and Φ10 have equal sizes but dif-

ferent structures. Suppose that the result of Q is to be

joined with a relation Shipping on order IDs. Then Φ9

is more suitable to carry out this join, since each order

tuple, which occurs with one of the variables o1 to o4,

appears only once, whereas the order tuples appear mul-

tiple times in Φ10. For a further example, consider that

each relation Store and Emp in our example database has

an additional attribute time, which records the time an

item and respectively an operator are at a location. We

would like to further refine the query Q by adding the

equality condition on time: Store.time = Emp.time.

This constraint can lead to dropping some combinations

of tuples from Store and Emp that already exist in Q’s

result. In the polynomials Φ9 and Φ10, this means that

some combinations of variables si and e j are dropped.

While this can be performed locally in case of Φ9, it can

require re-structuring in case of Φ10.

4. Approximation of provenance polynomials by

more succinct factorised polynomials. For query re-

sults, whose polynomials Φ are poorly factorisable, we

would like to find factorised polynomials ΦL and ΦU that

represent lower and upper bound approximations of Φ in

a given provenance semiring. For instance, if Φ serves as

an explanation of a query result, then the lower bound ΦL

represents a necessary, but possibly not sufficient expla-

nation of the query result, whereas the upper bound ΦU

represents a sufficient, but possibly not necessary expla-

nation of the query result.

We would like the bounds ΦL and ΦU to have better

properties than Φ, such as being of size linear in the input

or having read-k factorisations, i.e., factorisations where

each variable occurs at most k times. Also, the bounds

should be optimal in the sense that there are no other

bounds that are “closer” to Φ and have the same good

properties. The definitions of “closer,” as well as of up-

per and lower bounds, depends on the provenance semir-

ing. It nevertheless holds for any semiring that lower and

upper bounds can be obtained by removing and respec-

tively adding monomials to the polynomial Φ.

We illustrate this with our example query and

database. We have seen that the polynomial Φ1 does not

have a read-once factorisation. However, by removing

two monomials from Φ1 (corresponding to two tuples in

Q’s result), we can factorise the polynomial into

ΦL = (o1 +o4)(s1(e1 +e2)+ s3e3)+(o3 +o5)s4e4.

By adding seven new monomials to Φ1 (corresponding

to seven new tuples in Q’s result), we obtain

ΦU = (o1 +o2 +o4)((s1 + s2)(e1 +e2)+ s3e3)+

+(o3 +o5)s4e4.

The polynomials ΦL and ΦU represent lower and upper

bounds of Φ1 respectively. They are optimal with respect

to the class of read-once polynomial factorisations.

The interpretation and optimality of bounds change in

case of specific semirings. For the Boolean semiring, an

optimal lower bound polynomial for Φ in a given class

of polynomials P would be a polynomial ΦL ∈ P such

that the set of satisfying assignments of ΦL is included in

that of Φ and there is no other polynomial Φ′
L ∈ P such

that its set of satisfying assignments strictly includes that

of ΦL and is included in that of Φ. The case of upper

bounds is analogous. As an example, consider the poly-

nomial

Φ11 = s1e1 + s1e2 + s2e1.

By adding one monomial to Φ11, we obtain an optimal

upper bound that is a read-once factorisation:

Φ
′
U = (s1 + s2)(e1 +e2) = s1e1 + s1e2 + s2e1 + s2e2.

However, the polynomial

Φ
′′
U = s1 + s2e1

is also an optimal upper bound of Φ11, is a read-

once factorisation, and is incomparable with Φ′
U . The

polynomial Φ′′
U is nevertheless no valid upper bound

in case of the semiring over natural numbers: Indeed,

if the variables are replaced by natural numbers, then

s1e1 + s1e2 + s2e1 ≥ s1 + s2e1.

This challenge can be shifted from approximation by

polynomials to approximation by queries: Given a query

Q whose polynomial Φ is poorly factorisable, find lower

and upper bound queries QL and QU with polynomials

ΦL and ΦU that are better factorisable, such that ΦL and

ΦU are lower and upper bounds, respectively, of Φ in a

given provenance semiring.

5. Factorised representations of relational data. For

this challenge, we depart from the central point of this

paper, namely factorisation of provenance polynomials.

If all we are interested in is compact factorised represen-

tation of relational data (under bag or set semantics) and

not of provenance polynomials, then the representation

discussed in Section 4 can be made more compact by ag-

gregating the variables that annotate empty tuples in the

query result. Such aggregates are necessary for comput-

ing correctly multiplicities of tuples in case of bag se-

mantics. Under set semantics, these aggregates are not

necessary and can be dropped altogether. This challenge

is to compute compact representations of relational data

using such reduced factorisations.

We next give an example. The query πid,location(Q),
where Q is the query from the introduction, reports the

IDs and locations of all retrievable orders. Under bag

semantics, each such pair appears as many times as there

are employees available to retrieve the order from that

location. Its factorised representation is

(o1〈01〉+o4〈04〉)(s1〈Depot1〉(e1〈〉+e2〈〉)+ s3〈Depot2〉e3〈〉)+

+o2〈02〉s2〈Depot1〉(e1〈〉+e2〈〉)+(o3〈03〉+

+o5〈05〉)s4〈StoreA〉e4〈〉.

The variables for tuples from Emp annotate the empty

tuple. We can interpret it as the multiplicative unit, and

aggregate sums of such units:

(o1〈01〉+o4〈04〉)(2s1〈Depot1〉+ s3〈Depot2〉)+

+2o2〈02〉s2〈Depot1〉+(o3〈03〉+o5〈05〉)s4〈StoreA〉.

The coefficients represent multiplicities of tuples: For

instance, there are two employees available to retrieve

orders 01 and 04 from Depot1.

6. Provenance data management system. We plan

to build an open-source scalable management system

whose key ingredient are factorised representations at

the physical layer, but annotated relations at the logical

layer. The challenges that we want to address in par-

ticular are the design and implementation of a storage

manager aware of the factorised polynomials and of disk-

resident query evaluation techniques.

6 Results So Far

We have recently addressed facets of some of the chal-

lenges mentioned above [11, 4].

Result 1. A contribution to the first challenge is a

tight characterisation of conjunctive queries by bounds

on the minimal possible size of their factorised prove-

nance polynomials. The tightness of the characterisation

is with respect to factorisations whose nesting structure

is independent of the database. For any query we define

so-called factorisation trees, which are essentially query

join trees, that define nesting structures of provenance

polynomials independent of the input database.

To measure the size of a factorisation, we use the total

number of occurrences of its variables: The flat polyno-

mial Φ1 has size 10× 3 = 30, while the factorised form

Φ2 has size 15 only. In fact, Φ2 is the smallest possible

factorised polynomial equivalent to Φ1.

A different measure for the complexity of a polyno-

mial is its readability, which is the minimum over all of

its equivalent factorised forms of the maximum number

of occurrences of any variable. In the polynomial Φ1, the

variable s1 occurs 4 times. However, s1 occurs only once

in Φ2, and no variable occurs more than twice. Also,

there is no equivalent factorisation in which each variable

occurs at most once. The readability of these equivalent

polynomials is thus two. The readability of a polyno-

mial Φ is an important tool that can be used to compute

bounds on the minimal possible size of Φ’s factorisation.

The notion of readability is borrowed from earlier

work on Boolean functions [5]. That strand of work dif-

fers from ours in that we only consider polynomials of

query results, and classify queries based on worst-case

analysis of the readability of their result polynomials.

Expressed in terms of readability, our result states

that for any conjunctive query Q we can find a ratio-

nal number f (Q) derived from the query, such that for

any database D the provenance polynomial of the result

Q(D) has readability at most |D| f (Q). Moreover, there

exist arbitrarily large databases for which this bound is

asymptotically tight with respect to factorised polynomi-

als whose structures are defined by factorisation trees.

This bound on readability implies an upper bound of

|D| f (Q)+1 on the size of the smallest possible factorisa-

tion of the provenance polynomial for any database D,

which is also tight with respect to factorisation trees, if

repeated tuples are allowed in the input database. Our

result extends an existing result shown for conjunctive

queries under bag semantics [1]. In our context, that re-

sult corresponds to the case of flat, that is, non-factorised,

polynomials.

Result 2. A further contribution to the first challenge is

a dichotomy for conjunctive queries based on whether

their provenance polynomials have readability either in-

dependent or dependent on the database size. It turns out

that these queries are precisely the hierarchical ones [13]

that play a central role in studies with seemingly dis-

parate focus, including the present one, probabilistic

databases, streamed query evaluation, and parallel query

evaluation. Our characterisation of query readability es-

sentially revolves around how far the query is from its

hierarchical subqueries. The rational number f (Q) dis-

cussed under the first contribution above can thus be seen

as the hierarchy width of the query, similar in spirit to

existing width measures that capture the complexity of

conjunctive query, such as the (hyper)tree width [6].

The positive result for hierarchical queries draws on

earlier work in the context of probabilistic databases [10,

13], where polynomials of readability one in the Boolean

semiring and over random variables are useful since their

exact probability can be computed in polynomial time.

For larger readabilities, probability computation quickly

becomes #P-hard [14]. In our case, however, a readabil-

ity that is polynomial in the sizes of the input database

and query is acceptable.

Mirroring the dichotomies in the contexts of prob-

abilistic data and provenance readability, it has been

shown recently that the hierarchical property separates

queries that can be evaluated in one pass from those that

cannot in the finite cursor machine model of computa-

tion [8]. In this model, queries are evaluated by first

sorting each relation, followed by one pass over each re-

lation. It would be interesting to investigate the relation-

ship between the readability of a query Q and the number

of passes necessary in this model to evaluate Q.

Furthermore, in the Massively Parallel computation

model, any conjunctive query that can be evaluated (un-

der bag semantics) with one synchronisation step is hier-

archical [9].

Result 3. For the second challenge, we have developed

algorithms that, for a given conjunctive query Q and any

database D, can directly compute factorised provenance

polynomials of asymptotically optimal size, that is, of

size O(|D| f (Q)+1) for the result of Q on D. Moreover,

the running time of the algorithms is bounded above by

the same bounds as the size of the factorised polynomi-

als, that is, it runs it time O(|Q| · |D| f (Q)+1) for f (Q)> 0

(with an additional log |D| factor for hierarchical queries

for which f (Q) = 0). Therefore, in the cases when the

factorised polynomials are exponentially more succint

compared to the flat polynomials, these algorithms also

bring exponential savings in computation time.

Result 4. For the fourth challenge, we have considered

so far the case of approximations of provenance polyno-

mials over the Boolean semiring, where the lower and

upper bound approximations are expressed as factorised

polynomials with readability one [4]. The key contribu-

tions are equivalences of syntactic and model-theoretic

characterisations of optimal bounds for provenance poly-

nomials of results to positive relational algebra queries,

as well as algorithms to enumerate such bounds with

polynomial delay. The bounds can also be computed by

first-order queries extended with transitive closure and a

choice construct.

Acknowledgment. The authors would like to thank

Robert Fink for his useful comments on earlier drafts of

this work.

References

[1] ATSERIAS, A., GROHE, M., AND MARX, D. Size bounds and

query plans for relational joins. In FOCS (2008), pp. 739–748.

[2] CHENEY, J., CHITICARIU, L., AND TAN, W. C. Provenance

in databases: Why, how, and where. Foundations and Trends in

Databases 1, 4 (2009).

[3] ELBASSIONI, K. M., MAKINO, K., AND RAUF, I. On the read-

ability of monotone boolean formulae. In COCOON (2009).

[4] FINK, R., AND OLTEANU, D. On the Optimal Approximation

of Queries Using Tractable Propositional Languages. In ICDT

(2011).

[5] GOLUMBIC, M. C., PELED, U. N., AND ROTICS, U. Chain

graphs have unbounded readability. Tech. rep., University of

Haifa, 2006.

[6] GOTTLOB, G., LEONE, N., AND SCARCELLO, F. The com-

plexity of acyclic conjunctive queries. J. ACM 48 (May 2001),

431–498.

[7] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Prove-

nance semirings. In PODS (2007).

[8] GROHE, M., GUREVICH, Y., LEINDERS, D., SCHWEIKARDT,

N., TYSZKIEWICZ, J., AND DEN BUSSCHE, J. V. Database

query processing using finite cursor machines. TCS 44, 4 (2009).

[9] KOUTRIS, P., AND SUCIU, D. Parallel evaluation of conjunctive

queries. In PODS (2011). to appear.

[10] OLTEANU, D., AND HUANG, J. “Using OBDDs for Efficient

Query Evaluation on Probabilistic Databases”. In SUM (2008).

[11] OLTEANU, D., AND ZÁVODNÝ, J. Factorised representations of

query results. Tech. rep., Oxford, April 2011. Also arXiv report

1104.0867, available at http://arxiv.org/abs/1104.0867.

[12] RÉ, C., AND SUCIU, D. Approximate lineage for probabilistic

databases. PVLDB 1, 1 (2008).

[13] SUCIU, D., OLTEANU, D., RÉ, C., AND KOCH, C. Probabilis-

tic Databases. Synthesis Lectures on Data Management. Morgan

& Claypool Publishers, 2011.

[14] VADHAN, S. The Complexity of Counting in Sparse, Regular,

and Planar Graphs. SIAM J. Comput. 32, 2 (2001).

